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Elementary vortex pinning potential in a chiral p-wave superconductor
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The elementary vortex pinning potential is studied in a chiralp-wave superconductor with a pairingd
5 z̄( k̄x6 i k̄y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and
numerical results are presented to show that the vortex pinning potential is dependent on whether the vorticity
and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is
physically crucial to the effect of the pinning center inside the vortex core.
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Much attention has been focused on the vortex pinning
type-II superconductors. The vortex pinning plays an imp
tant role on various vortex-related quantities and phenom
such as the critical current and the hysteresis of the ma
tization in superconductors under magnetic fields. The c
acteristics of the vortex-related phenomena are of partic
interest in unconventional superconductors with multi
components of the superconducting order parameter.1 In such
superconductors, multiple states of superconducting o
can coexist. Accordingly there appear multiple kinds of v
tex structure, where the nature of the vortex pinning can
dependent on the microscopics of the superconducting o

One of the superconductivities with multiple compone
of the order parameter is the chiralp-wave oned5 z̄( k̄x

6 i k̄y), which is composed of two degenerate pairing sta
k̄x andk̄y and breaks time-reversal symmetry. This superfl
3He-A type of chiralp-wave pairing state has been antic
pated in a layered ruthenate superconductor Sr2RuO4.2

While identification of the genuine superconducting pairi
of this material is still open to further discussion,3–6 that
chiral p-wave pairing has the simplest and essential form
has attracted a great deal of attention. The vortices
Sr2RuO4 have been investigated intensively.7–20 In the con-
text of the vortex pinning, we will see a rich physics co
tained in that chiralp-wave pairing state.

In this paper, we investigate the elementary vortex p
ning potential in the chiralp-wave superconductor with th
pairing d5 z̄( k̄x6 i k̄y). A pointlike pinning center and a
single vortex with vorticity perpendicular to conduction la
ers in a layered superconductor are considered. We show
the vortex pinning potential depends on the sense of
chirality of the Cooper pairs relative to the vorticity of th
vortex in the chiralp-wave superconductor. First we analy
cally discuss the interplay between the chirality and vortic
to explain the mechanism of the chirality dependence of
vortex pinning potential~see also Ref. 21!. We then presen
numerical results for the vortex pinning potential obtain
from self-consistent order parameters. Our numerical re
confirms the analytical one. The chirality dependence of
vortex pinning would have an influence on the hysteresis
the magnetization and the distribution of the magnetic fi
in samples, which might be observed with superconduc
quantum interference device~SQUID! and magneto-optica
imaging techniques.
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To investigate the vortex pinning, we use the quasicla
cal theory of superconductivity.22 We start with the Eilen-
berger equation for the quasiclassical Green function in
absence of pinning,

ĝimt~ ivn ,r ,k̄!52 ipS gimt i f imt

2 i f imt
† 2gimt

D , ~1!

namely,

ivFk̄•“ĝimt1@ ivnt̂z2D̂,ĝimt#50, ~2!

where the order parameter isD̂(r ,k̄)5@( t̂x1 i t̂y)D(r ,k̄)
2( t̂x2 i t̂y)D* (r ,k̄)#/2 andt̂ i the Pauli matrices. The Eilen
berger equation~2! is supplemented by the normalizatio
condition ĝimt( ivn ,r ,k̄)252p21̂, and the commutator is

@ â,b̂#5âb̂2b̂â. The vector r5(r cosf,r sinf) is the
center-of-mass coordinate, and the unit vectork̄
5(cosu,sinu) represents the relative coordinate of the Co
per pair. A cylindrical Fermi surface is assumed. We u
units in which\5kB51.

Following Thuneberget al.,23–25 the effect of pinning is
introduced into the quasiclassical theory of superconduc
ity as follows. The quasiclassical Green functionĝ in the
presence of a pointlike nonmagnetic defect situated atr5R
is obtained from the Eilenberger equation

ivFk̄•“ĝ1@ ivnt̂z2D̂,ĝ#5@ t̂ ,ĝimt#d~r 8!, ~3!

and thet matrix due to the defect

t̂~ ivn ,r 8!5
v
D

@ 1̂1N0v^ĝimt~ ivn ,r 8,k̄!&u#, ~4!

where r 85r2R, the denominatorD511(pN0v)2@^gimt&u
2

1^ f imt&u^ f imt
† &u#, the average over the Fermi surface^•••&u

5*•••du/2p, the normal-state density of states on t
Fermi surfaceN0, and we assumes-wave scatteringv when
obtaining Eq.~4!. We define a parameters5(pN0v)2/@1
1(pN0v)2#, which measures how strong the scattering p
tential of the defect is.

The free energy in the presence of the defect is, at
temperatureT, given as23–26
©2002 The American Physical Society11-1
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dV~R!5N0TE
0

1

dl(
vn

E dk̄E drTr@dĝlD̂b#, ~5!

wheredĝl5ĝ2ĝimt is evaluated atD̂5lD̂b , andD̂b is the
order parameter in the absence of the defect. Equation~5!
represents the difference in the free energy between the s
with and without the defect, and then gives the vortex p
ning potentialdV(R).

For the chiral p-wave pairing stated5 z̄( k̄x1 i k̄y)
5 z̄exp(iu), it is known that the order parameter around
single vortex, Db(r ,k̄) @[Db(r ,f;u)#, has two possible
forms depending on whether the chirality and vorticity a
parallel or antiparallel each other.9,17,18One form is

Db
12~r ,f;u!5D1~r !ei (u2f)1D2~r !ei (2u1f), ~6!

where the chirality and vorticity are antiparallel~case I!. The
other is

Db
11~r ,f;u!5D1~r !ei (u1f)1D2~r !ei (2u13f), ~7!

where the chirality and vorticity are parallel~case II!. Here,
the vortex center is situated atr50, the dominant compo
nent D1(r→`)5DBCS(T), and the induced oneD2(r
→`)50. Because of the axisymmetry of the system, we
takeD6(r ) to be real.

First we analytically investigate the vortex pinning pote
tial. We discuss the quantitydV(R50), where both the de
fect and vortex center are situated just at the originr50
(R[uRu). From the quasiclassical viewpoint, the quasipa
cles inside the vortex core, subject to Andreev reflection,
along straight lines called quasiparticle paths.27–29 We con-
sider the quasiparticle paths which go through the origir
50. On those paths with zero impact parameter, the posi
vector is parallel to the direction of the quasiparticle pa
~i.e., r i k̄), and thereforef5u,u1p. In this situation (f
5u), from Eqs.~6! and~7!, the order parameter on the pa
is

Db
12~r ,f5u;u!5D1~r !1D2~r ! ~8!

in case I and

Db
11~r ,f5u;u!5@D1~r !1D2~r !#e2iu ~9!

in case II. The cancellation between the chirality and vor
ity occurs in Eq.~8! and not in Eq.~9!. Of importance is the
resultant difference in the phase factor of these order par
eters.

On the basis of an analysis of the so-called zero-core
tex model in Ref. 24, the matrix elements ofĝimt at the
vortex center are approximately obtained as30

gimt5Avn
21uD̃u2vn

21 , f imt52D̃vn
21 , f imt

† 5D̃* vn
21 ,
~10!

whereD̃5Db
16(r→`,f5u;u). Here, Eq.~10! is obtained

assuming that the amplitude of the order parameter is c
stant ~i.e., zero core! around the vortex, which is the onl
approximation in this analysis. Inserting the order parame
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of Eq. ~8! into Eq. ~10!, we obtain the anomalous Gree
functions integrated over the Fermi surface as, in case I,

^ f imt&u5 f imt , ^ f imt
† &u5 f imt

† ~11!

because of the absence of any phase factors in Eq.~8!, i.e.,
because of the cancellation between the chirality fac
exp(iu) and the vorticity factor exp(2if) in Eq. ~6!. On the
other hand, in case II,

^ f imt&u50, ^ f imt
† &u50 ~12!

because of the phase factor exp(2iu) contained in Eq.~9!.
The diagonal component of^ĝimt&u is ^gimt&u5gimt both in
cases I and II. Consequently, in case I,^ĝimt&u5ĝimt and we
obtain@ t̂ ,ĝimt#50 from Eq.~4!. In case II,^ĝimt&uÞĝimt and

@ t̂ ,ĝimt#Þ0 generally.
When @ t̂ ,ĝimt#50, the Eilenberger equation~3! in the

presence of the defect is identical to Eq.~2! ~the equation in
the absence of the defect!; namely, the defect has no influ
ence on the Green function and the free energy. From
and the above results of the analysis of the factor@ t̂ ,ĝimt#,
we find thatdV(0)50 in case I when the chirality is anti
parallel to the vorticity anddV(0)Þ0 in case II when the
sense of the chirality is the same as that of the vorticity
means that the vortex pinning depends on the chirality in
chiral p-wave superconductor.

The above analytical result is based on the zero-core
tex model, i.e., on the non-self-consistent~constant! ampli-
tude of the order parameter. We next investigate the vo
pinning potentialdV(R) numerically with the self-consisten
order parameters around the vortex which have the form
Eqs. ~6! and ~7!. As the self-consistent amplitudeD6(r ) in
Eqs. ~6! and ~7!, we adopt numerical data which we hav
obtained in Ref. 18 by solving self-consistently the Eile
berger equation.

In Fig. 1, we show the numerical results fordV(R) in the
Born limit (s!1) and the unitary limit (s→1). We present
those results for chiralp-wave pairing and the isotropic
s-wave one. As noted in Fig. 1, in the case of thes-wave
pairing ~dot-dashed lines!, the difference in the free energ
between the states with and without the defect,dV(R), is
equal to zero atR→` (R is the distance between the vorte
center and the defect!. This is because the Anderson
theorem31 is valid far away from the vortex core. On th
other hand, in the chiralp-wave pairing cases~solid and
dashed lines!, dV(R→`) is finite and positive as seen i
Fig. 1. The quantitydV(R→`) is equal to the loss of con
densation energy due to the pair breaking effect of the de
far away from the vortex core~i.e., the breakdown of Ander
son’s theorem!. As noted in Figs. 1~a! and 1~b!, at T
50.8Tc ~high temperature!, the condensation energy loss
bulk dV(R→`) dominantly contributes to the depth of th
vortex pinning potentialdV(R), i.e., to the vortex pinning
energy. From Figs. 1~a! and 1~b! it is noticed that the vortex
pinning energies of the chiralp-wave pairing cases at a hig
temperature are about 10 times larger than those of
s-wave pairing case. This enhancement of the pinning ef
is due to the breakdown of the Anderson’s theorem, and t
1-2
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FIG. 1. The vortex pinning po-
tential as a function of the dis
tanceR between the vortex cente
and the defect. Solid lines@p(1
2)# correspond to the case of th
p-wave pairing with the chirality
antiparallel to the vorticity~case
I!. Dashed lines@p(11)# corre-
spond to the case of thep-wave
pairing with the chirality parallel
to the vorticity ~case II!. Dot-
dashed lines correspond to th
case of the isotropics-wave pair-
ing. Tc is the superconducting
critical temperature. The distanc
R is normalized with the coher-
ence lengthj05vF /DBCS(T50).
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it must be a common feature of unconvention
superconductors.25,32,33,21For example, in the case of high-Tc

cuprates, this may be one of the reasons why small p
defects such as Zn atoms34 and oxygen vacancies35 are effi-
cient pinning centers.

As noted in Figs. 1~c! and 1~d!, at T50.2Tc ~low tem-
perature!, the contribution of the vortex core (R.0) to the
depth ofdV(R) is nonzero in case II~dashed lines!. Here,
the contribution of the vortex core means the energy gain
to the presence of the scattering center in the vortex core
contrast, the depth ofdV(R), i.e., the vortex pinning energy
is determined in case I~solid lines! only by the loss of con-
densation energy far away from the vortex core. It is noti
able that certainlydV(R50) equals zero in case I. Thi
numerical result confirms the analytical one discussed ab
The vortex pinning energy depends on whether the chira
and vorticity are antiparallel~solid lines! or parallel~dashed
lines!. Especially in the Born limit, the difference in the vo
tex pinning energy is eminent as noticed in Fig. 1~c!, because
in this limit the loss of condensation energy in the bulk
relatively small compared to the contribution of the vort
core to the depth ofdV(R).

In general, the two chiral states of cases I and II c
coexist as domain structures in samples under magn
fields. The spatial gradient of the magnetic field in a sam
is proportional to the local strength of the vortex pinning
the critical state. In terms of the present chirality-depend
vortex pinning, the gradient inside the domain of the cas
state is predicted to be steeper than that inside the doma
the case-I state. This may be experimentally observed
signature of the chiral state. Also the domain structure of
two chiral states depends on the hysteresis of the app
magnetic field, and therefore the present chirality-depend
13251
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vortex pinning may affect the hysteresis curve during m
tiple cycles of the magnetization as observed1 in UPt3.

In the case of the usual winding-1 vortexD}exp(if), the

chiral ‘‘p-wave’’ pairing k̄x6 i k̄y5exp(6iu) is essential for
the cancellation between the chirality and vorticity.
winding-2 vortices D}exp(2if) are realized in a chira

d-wave statek̄x
22 k̄y

26 i k̄xk̄y5exp(62iu), the same kind of
cancellation occurs.

We comment on the relation of the present vortex pinn
to the superconducting gap structure in Sr2RuO4. In this ma-
terial, it has been pointed out from experiments that the
had line nodes3–5 and little in-plane anisotropy.4 Models for
the gap structure consistent with those experimental fa
were proposed in which there existed horizontal line no
perpendicular to the axis of the cylindrical Fermi surface4,5

Now, for the present theory of chirality-dependent vort
pinning, what is important is that the Fermi surface avera
of the anomalous Green functions~i.e., the average of the
order parameter except for the chiral part! are finite as in Eq.
~11!. The present chirality dependence of the vortex pinn
does not occur if the order parameters have sign change
all Fermi surfaces relevant to superconductivity asD(k)
;exp(6iu)cos(ckz). It occurs if there are no sign changes
D(k);exp(6iu)ucos(ckz)u. In another case,5 the chirality de-
pendence is expected to occur when the order paramet
nodeless on the major Fermi surface with a dominant den
of states, even if there are gap nodes and sign changes o
other minor Fermi surfaces.

In conclusion, we investigated the elementary vortex p
ning potential dV(R) on the basis of the quasiclassic
theory of superconductivity. In the chiralp-wave pairing
state,dV(R) was dependent on the sense of the chira
relative to the vorticity at a low temperature. In terms of t
1-3
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present chirality-dependent vortex pinning, a theoreti
analysis for anomalies in the hysteresis of the magnetiza
observed experimentally in Sr2RuO4 ~Ref. 36! would be in-
teresting and is left for future work.
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