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Elementary vortex pinning potential in a chiral p-wave superconductor
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The elementary vortex pinning potential is studied in a chiraave superconductor with a pairirgy
=Tkxii?y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and
numerical results are presented to show that the vortex pinning potential is dependent on whether the vorticity
and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is
physically crucial to the effect of the pinning center inside the vortex core.
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Much attention has been focused on the vortex pinning in  To investigate the vortex pinning, we use the quasiclassi-
type-1l superconductors. The vortex pinning plays an imporal theory of superconductivity. We start with the Eilen-
tant role on various vortex-related quantities and phenomenigerger equation for the quasiclassical Green function in the
such as the critical current and the hysteresis of the magnemsence of pinning,
tization in superconductors under magnetic fields. The char-

acteristics of the vortex-related phenomena are of particular Dimt ifime
interest in unconventional superconductors with multiple Jimt(i @ rk=—iml + , 1)
components of the superconducting order parantétesuch ~fim — Gimt

superconductors, multiple states of superconducting ord

can coexist. Accordingly there appear multiple kinds of vor-

tex structure, where the nature of the vortex pinning can be L — R

dependent on the microscopics of the superconducting order. 10 ek Vimt [ 0n7,— A, Gimi] =0, @
One of the superconductivities with multiple components

of the order parameter is the chirptwave oned=z(k, where the order parameter B(rk)= KTXHTV)A(r k)

*

=ik,), which is composed of two degenerate pairing state%e(rTX i7,)A% (r,k)]/2 andr, the Pauli matrices. The Eilen-

ger equation2) is supplemented by the normalization
k andky and breaks time-reversal symmetry. This superflwd diti K2=— 721, and th tat
3HeA type of chiralp-wave pairing state has been antici- condition g'mt('“’”’r’ ) ™ an e commutator is
pated in a layered ruthenate superconductosRE@,.2 [a.b]=ab—ba. The vector r=(rcosersing) is the
While identification of the genuine superconducting pairingcenter-of-mass ~ coordinate, and the unit vectdr
of this material is still open to further discussidi, that = (cos#,sin6) represents the relative coordinate of the Coo-
chiral p-wave pairing has the simplest and essential form angber pair. A cylindrical Fermi surface is assumed. We use
has attracted a great deal of attention. The vortices founits in whichA=kg=1.

er{amely,

SrL,RuUO, have been investigated intensivély° In the con- Following Thuneberget al,*~?° the effect of pinning is
text of the vortex pinning, we will see a rich physics con-introduced into the quasiclassical theory of superconductiv-
tained in that chirap-wave pairing state. ity as follows. The quasiclassical Green functignin the

In this paper, we investigate the elementary vortex pinpresence of a pointlike nonmagnetic defect situated=a®
ning potential in the chirap-wave superconductor with the s optained from the Eilenberger equation
pairing d= z(kxi|ky) A pointlike pinning center and a
single vortex with vorticity perpendicular to conduction lay- ivek- Vg+[iw,m,—A,g]1=[1,0im] 8(r"), 3
ers in a layered superconductor are considered. We show that
the vortex pinning potential depends on the sense of th@nd thet matrix due to the defect
chirality of the Cooper pairs relative to the vorticity of the
vortex in the chirap-wave superconductor. First we analyti-
cally discuss the interplay between the chirality and vorticity
to explain the mechanism of the chirality dependence of the
vortex pinning potentiaisee also Ref. 21 We then present Wherer’=r—R, the denominatoD =1+ (7Nov)?[(Gim)5
numerical results for the vortex pinning potential obtained+{fim)« fin) sl the average over the Fermi surfage -),
from self-consistent order parameters. Our numerical resuke [ - - -d6/27, the normal-state density of states on the
confirms the analytical one. The chirality dependence of thé-ermi surfaceNy, and we assumswave scattering when
vortex pinning would have an influence on the hysteresis obbtaining Eq.(4). We define a parameter=(7Nqv)?/[1
the magnetization and the distribution of the magnetic field+ (7Ngv)?2], which measures how strong the scattering po-
in samples, which might be observed with superconductingential of the defect is.
guantum interference devidSQUID) and magneto-optical The free energy in the presence of the defect is, at the
imaging techniques. temperaturel, given a§®~2°

Hion.r ) =511+ Nop @mlionr K)o, (@)
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1 _ A of Eqg. (8) into Eq. (10), we obtain the anomalous Green
5Q(R)=N0Tf0 dh; dkj drTr{69,Ap], (5  functions integrated over the Fermi surface as, in case |,
where 59, =g — gin is evaluated a =\A,, andA, is the (fim)o=Fimts (Fim) o= Firme 1y
order parameter in the absence of the defect. EquaBibn pecause of the absence of any phase factors in@gji.e.,
represents the difference in the free energy between the statggscause of the cancellation between the chirality factor
with and without the defect, and then gives the vortex pin-exp(6) and the vorticity factor exp{i¢) in Eg. (6). On the

ning potentials()(R). - other hand, in case I,

For the chiral p-wave pairing stated=z(k,+ik,) :
=76 it i (fim)6=0,  (fims=0 (12
=zexp(#6), it is known that the order parameter around a imt

single vortex, Ap(r,k) [=Ay(r,¢;6)], has two possible because of the phase factor exgl2contained in Eq(9).
forms depend_ing on whether the7 %ﬂrality and.vorticity areThe diagonal component fim) IS (Gime) o= Jime Ot in
parallel or antiparallel each oth&t’'8One form is cases | and Il. Consequently, in Caséélm)féimt and we

AfT(rd;0)=A, (NP1 A_(ne#9) () oAbtAain[t,gimt]=O from Eq.(4). In case I1,{gim) 97 Jim: @Nd
[t,Qimd] # O generally.

When [t,0;m]=0, the Eilenberger equatio(8) in the
presence of the defect is identical to E8) (the equation in

AFT(r i 0)=A,(NeWHd LA _(r)el-0+34) (7  the absence of the defgchamely, the defect has no influ- -
ence on the Green function and the free energy. From this

where the chirality and vorticity are parall@ase I). Here,  ang the above results of the analysis of the faftog; ],
the vortex center is situated at0, the dominant compo- e find that5Q(0)=0 in case | when the chirality is anti-
nent A, (r—«)=Apcg(T), and the induced on&\_(r  parajiel to the vorticity andsQ(0)+#0 in case Il when the
—2)=0. Because of the axisymmetry of the system, we Carsense of the chirality is the same as that of the vorticity. It

where the chirality and vorticity are antiparallebse ). The
other is

takeA.(r) to be real. _ o means that the vortex pinning depends on the chirality in the
First we analytically investigate the vortex pinning poten-chiral p-wave superconductor.
tial. We discuss the quantit§{)(R=0), where both the de-  The above analytical result is based on the zero-core vor-

fect and vortex center are situated just at the origin0  tex model, i.e., on the non-self-consistéobnstant ampli-
(R=[R|). From the quasiclassical viewpoint, the quasiparti-jude of the order parameter. We next investigate the vortex
cles inside the vortex core, subject to Andreev reflection, lUihinning potentialdQ(R) numerically with the self-consistent
along straight lines called quasiparticle paths” We con-  order parameters around the vortex which have the forms of
sider the quasiparticle paths which go through the origin gqs. (6) and (7). As the self-consistent amplitude. (r) in

=0. On those paths with zero impact parameter, the positioEqS_ (6) and (7), we adopt numerical data which we have
vector is parallel to the direction of the quasiparticle pathoptained in Ref. 18 by solving self-consistently the Eilen-
(i.e., r|[k), and thereforep= 6,6+ . In this situation ¢p  berger equation.

=4§), from Egs.(6) and(7), the order parameter on the path  In Fig. 1, we show the numerical results 64 (R) in the

is Born limit (0<1) and the unitary limit §—1). We present
those results for chirap-wave pairing and the isotropic

Ay (r,¢=0;0)=A_(r)+A_(r) (8  swave one. As noted in Fig. 1, in the case of theave
in case | and pairing (dot-dashed lines the difference in the free energy

between the states with and without the defé®(R), is
ot — oy — 2i 6 equal to zero aR—x (R is the distance between the vortex
Bp (1 ¢=6:6)=[A.(N+a-(r)]e © center and the defect This is because the Anderson’s
in case Il. The cancellation between the chirality and vortictheoreni® is valid far away from the vortex core. On the
ity occurs in Eq.(8) and not in Eq(9). Of importance is the other hand, in the chirap-wave pairing casessolid and
resultant difference in the phase factor of these order paranttashed lines 6Q2(R— ) is finite and positive as seen in
eters. Fig. 1. The quantitysQ)(R— ) is equal to the loss of con-
On the basis of an analysis of the so-called zero-core vordensation energy due to the pair breaking effect of the defect
tex model in Ref. 24, the matrix elements @iﬁm at the far away from the vortex coré@.e., the breakdown of Ander-
vortex center are approximately obtained’as son’s theorem As noted in Figs. @ and 1b), at T
=0.8T, (high temperatune the condensation energy loss in
Jimi= ‘/wﬁ+ 32w, b, fim=—RAw,t, I =A% !, bulk 5Q(R—<) dominantly contributes to the depth of the
(10) vortex pinning potentiab()(R), i.e., to the vortex pinning
_ energy. From Figs. (&) and 1b) it is noticed that the vortex
where A=A} “(r—o%,$=0;6). Here, Eq.(10) is obtained pinning energies of the chirghwave pairing cases at a high
assuming that the amplitude of the order parameter is cortemperature are about 10 times larger than those of the
stant(i.e., zero corg around the vortex, which is the only s-wave pairing case. This enhancement of the pinning effect
approximation in this analysis. Inserting the order parameteis due to the breakdown of the Anderson’s theorem, and then
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it must be a common feature of unconventionalvortex pinning may affect the hysteresis curve during mul-
superconductors:32332For example, in the case of high-  tiple cycles of the magnetization as observadUPt;.
cuprates, this may be one of the reasons why small point In the case of the usual winding-1 vort&x<exp(¢), the
defects such as Zn atofff@nd oxygen vacanciesare effi-  chiral “p-wave” pairing k, = ik, =exp(=i6) is essential for
cient pinning centers. the cancellation between the chirality and vorticity. If
As noted in Figs. () and Xd), at T=0.2T; (low tem-  winding-2 vortices Axexp(d¢) are realized in a chiral
Serature, the coptnbutlon of the vortex coreR(fO) to the d-wave Stategg_@t@?yﬂxp(ﬁi 0), the same kind of
epth of SQ(R) is nonzero in case l(dashed lines Here, cancellation occurs.
the contribution of the vortex core means the energy gain due We comment on the relation of the present vortex pinning

tb the superconducting gap structure inB1Q,. In this ma-
terial, it has been pointed out from experiments that the gap
had line node¥® and little in-plane anisotropYModels for

contrast, the depth af(Q)(R), i.e., the vortex pinning energy,
is determined in case(kolid lineg only by the loss of con-

dglnsa:]lon energyl fg(rla\F/{viyOfrom th? vortex_core. It IIS nTor:'_CG'the gap structure consistent with those experimental facts
able that certainlyd(2(R=0) equals zero in case I. This were proposed in which there existed horizontal line nodes

numerical result confirms the analytical one discussed abov‘f)‘erpendicular to the axis of the cylindrical Fermi surf&fe
The vortex pinning energy depends on whether the chirality oy, for the present theory of chirality-dependent vortex

and vorticity are antiparallgisolid lines or parallel(dashed  inning, what is important is that the Fermi surface averages
lines). Especially in the Born limit, the difference in the vor- ¢ the anomalous Green functioriise., the average of the
tex pinning energy is eminent as noticed in Figc)1because  order parameter except for the chiral pate finite as in Eq.

in this limit the loss of condensation energy in the bulk is (11) The present Ch|ra||ty dependence of the vortex pinning
relatively small compared to the contribution of the vortexdoes not occur if the order parameters have sign changes on
core to the depth 0B (R). all Fermi surfaces relevant to superconductivity k)

In general, the two chiral states of cases | and Il can~exp(+if)cosgk,). It occurs if there are no sign changes as
coexist as domain structures in samples under magnetit(k)~exp(+if)|cosgk,)|. In another casethe chirality de-
fields. The spatial gradient of the magnetic field in a samplgendence is expected to occur when the order parameter is
is proportional to the local strength of the vortex pinning in nodeless on the major Fermi surface with a dominant density
the critical state. In terms of the present chirality-dependenof states, even if there are gap nodes and sign changes on the
vortex pinning, the gradient inside the domain of the case-Ibther minor Fermi surfaces.
state is predicted to be steeper than that inside the domain of In conclusion, we investigated the elementary vortex pin-
the case-l state. This may be experimentally observed asring potential 5Q(R) on the basis of the quasiclassical
signature of the chiral state. Also the domain structure of théheory of superconductivity. In the chirg-wave pairing
two chiral states depends on the hysteresis of the appliestate, 5Q(R) was dependent on the sense of the chirality
magnetic field, and therefore the present chirality-dependentlative to the vorticity at a low temperature. In terms of the
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