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Density of states near a magnetic impurity in thed-density wave state
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The response of localized magnetic moments in the pseudogap phase is examined-detisgy wave
scenario. We find that in the strong scattering limit, the magnetic impurity induces two resonance peaks, one
due to the superconducting gap localized at the Fermi energy and another one duéd-teiisity wave gap
whose shifting from the Fermi energy is controlled by the chemical potential. The weights of the resonances
are proportional with the values of the corresponding gap amplitudes. By measuring the density of states near
the magnetic impurity, it is possible to compare our theoretical findings with the available experimental data for
probing the existence of thétdensity wave order in the pseudogap state.
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The pseudogap observed in high-temperature supercoseon between the theoretical results and the experimental out-
ductors above the superconducting transition temperdigre come is possible for probing the existence of the DDW order
has been subject to intense studies in the past years. Inflin the pseudogap state.
ence of the pseudogap formation shows up in different ex- The starting point of our analysis is the following Hamil-
perimental probes, such as nuclear-magnetic-resonance rf@nian defined byH =Hy+H;y,,, whereH, is the mean-
laxation time, Knight shift, neutron scattering, specific heatfield Hamitonian describing the coexistence of the DWS and
and optical conductivity:> Recent elastic neutron scattering DDW, andH;n,,, is the contribution due to the magnetic im-
have found direct evidence for the existence of a new ordepurity.
state, named d-density wave (DDW) (Ref. 4 in
YBaCuQ, 5. Other experimentsare compatible with the
DDW scenario.

The principal feature of the DDW state is the existence of
the staggered orbital magnetic moments, which breaks time
reversal symmetry and translation invariance by one lattice
spacing. DDW state competes with tth@vave superconduc- ) i
tivity (DWS) in the underdoped region of the phase whereA, is the superconducting order parameter gnpds
diagram® when the doping is less then critical doped-holeth® DDW gap. Bothd, and x, have a (2 2)-wave sym-
concentratiorp,, , where the DDW order is believed to van- MY, Ai=2Ap(cosk,—cosky), xx=2xo(cosk,—cosk,),
ish. DDW develops below characteristic temperafiiteand ~ @1d & is the dispersion relation thén our mode] is given
is strongly suppressed by the disorder, so only clean sampl&y #k= _Zt(COSkf'COSky)- The chemical potential is de-
are expected to show a phase transitionT4t Recently, —hoted byu, andcy,(cy,) are the creatioiannihilatior) op-
c-axis response and the density of states were investigated ffators. Throughout our calculation we have considered for
the framework of DDW scenariband experimental data of the hopping integral the value=0.25 eV, sow=8t is the
Renneret al® do not agree with the predictions of the DDW bandwidth. The impurity Hamiltonian can be written as
scenario for the quasiparticle density of states. The density dflimp=JZk k' Ck «TapCr’ S, WhereJ is the exchange cou-
states was also calculated near a nonmagnetic impurity in tHeling, o are the Pauli matrices, arflis the impurity mag-
same scenario by different authdrdt was found that a netic moment. The exchange interaction preserves the
single resonance peak appears in the local density of stat@article-hole symmetry due to the spin-rotational symmetry.
around the impurity, and the position of this resonance peathe mean-field Hamiltonian can be written in Nambu
shifts away from the Fermi surface in accord with the chemiformalism®  Hy==,_.p, ¥ AV, where W
cal potential. In a similar way, magnetic moments perturb thez(ckﬂ Ck) ,CLQT ,C_k—q), and the matri>A, is given by
superconducting properties of the system. When a magnetic

Ho=k2 (sk—mckzcm; Ag(cy,CEy e Cyp)
, o

+i2k Xkck++Q(er(r @

impurity is placed in a superconductor, the exchange interac- e M Ay Xk 0
tion between the localized impurity spin and the conduction A (o — 0 i

. . k (ex—m) I Xk
electrons leads to the formation of the Shiba bound states A, = . , 2
or resonances inside the superconducting gap. Spectral prop- ~ Xk 0 —(extu)  —Ag
erties of quasiparticle excitations induced by magnetic mo- 0 —ixk —Ay et
ments ind-wave superconductors were extensively studied ) ] ]
using T-matrix approximatiort® and the interating term can be written abljy,

The aim of this paper is to calculate the density of states™ Zkerbz¥« VoW, whereV=1/2]S. A local Coulomb in-
near a magnetic impurity in a DDW scenario. Such a densitgeraction can be also considered in the form Ief;,
of states can be experimentally measured using scanning tur-= ., ¥, U7V, and describes a scattering of the con-
nel microscopgSTM) spectroscopy and a direct compari- duction electrons on a nonmagnetic impufitfhe 4x 4 A,
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matrix can be exactly diagonalized and the Green’s function =r

can be calculated a3y(K,iw,) = (iw,—Ay) L. Adirect cal-
culation gives for the eigenvalues Af, the valuest E;(k)

and = Ey(k), where Ey(K)=[(\e7+ x7— u)>+AZ]Y and

E,(K)=[(Ve+ x2+ n)2+A2]1Y2 and the Green's function

can be written as

G
o166
Go(kilwn)za GEY
0

6841)

G(()lz)
o)
G
G 642)

Gng)
G
G
GE)43)

6814)
G(()24)
GE)34) '
6844)

()

where D is the determinant of thé, matrix given byD
=[w?—E3(k)[[w?—E5(k)], and the matrix elements are

GiV(K,iwn)=[w+ (sx— ) ][0°— (g 1) > = Af]
—Xilo+ (et )],

Gk wn) = A @?— (&4t 1)~ AF]- Axf,
GGk, wn) =ixil (= )= k= A= X,
GE(K,iwp) =2i Ay,

Gk iwn) =G (ki wy),
GEA(K,iwp) =[0— (e~ w) [[0?— (e4+ 1) 2~ AZ],
—xilo— (et )],

GEI(k,iwn) =~ G K,iwy),

GP(Kiwy) =ixl (w+u)?—ef—AF—xEl, (@
Gk iwy)=—G§¥(k,iwy),
GE(K,iwy) =G (K,iwy),
Gk iwn) =[w— (e + ) [ 02— (e~ u) >~ AF]
—xw—(e—w)]

GRI(K,i wp) = — A 0?— (s~ ) >~ AZ+ A,
GE(K,iwy) = -G8 (K, iwy),
GE(K, i) =—GF (K iw,),
GE¥(K,iwy) =Gk, iwy),
GE (K iwp) =[w+ (g + ) ][0 = (e~ p) 2= Af]
—xtlo+(ex—p)]

The mean-field Green’s function given by E¢3). and(4)
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FIG. 1. Density of states for the superconducting state at half
filling («=0) for different values of the DDW gap.

tem. We are interested in the frequency dependence of the
density of states of the bulk system and the modification
induced by the presence of a single magnetic impurity.

The density of states for the bulk system can be calculated
directly from the mean-field Green’s function a$(w)
= =25 i AM[ Gk, ) + GE¥(k,w)]. The results are
presented in Fig. 1 for different values of the ratig/ x,. In
this case the chemical potential was chosen to be zgro (
=0), so the system is at half filling with perfect electron-
hole symmetry. Both the DDW and DWS gaps develop at the
Fermi surface, and the system is analogous to the case of a
pure DWS with a gap value equal fo = \/A2k+)(2k.

There is a strong competition between the superconduct-
ing gap and the DDW gap in the case where the chemical
potential is different from zero, as can be seen from the
results for the density of states presented in Fig. 2. Increasing
the absolute value of the chemical potential, the supercon-
ducting gap remains pinned at the Fermi surface correspond-
ing to (w=0), while the DDW gap shifts to lower values
and develops at energies comparable with the chemical po-
tential, |o|=|u/.

In order to calculate the density of states near a magnetic
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e 1 1=-0.2
= n/t=-0.8
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FIG. 2. Density of quasiparticle states for the bulk system for

three values of the chemical potential. The Fermi surface corre-

can be used to calculate the physical properties of the sysponds taw=0. Ag/xo=1, A;=10 meV, and=0.25 eV.
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FIG. 3. Spectral density at the impurity site calculated for dif- F!G- 4. Same as in Fig. 3 with the chemical potentia+
ferent ratios ofA,/xo. The chemical potential ige=0 (electron-
hole symmetry. The other parameters ard,=10 meV, t

=0.25 eV,V=30, andU=0.0. (i) strong magnetic scattering potential that shift the posi-

) ) ) tions of the resonances =0 and(ii) particle-hole sym-
moment, we usd-matrix formalism and the following ap- metry (,=0) when both DWS gap and DDW gap are
proximations(i) the bulk system is a two-dimensional lattice opened at the Fermi energy. On increasing the DDW gap

where a localized magnetic moment is created by a classicgly| e \ . the degeneracy starts to rise due to increase of the
spinS atr=0; (ii) the gap function is uniform everywhere =

and has al,> > symmetry. ratio Ay/V, but each resonance still remains doubly degen-
Xe—y . . . .
Multiple scatterings of quasiparticles by the impurity erate d_ue to the vanishing of the chemical potential. _
are describe by the matrix, T(r,r',@)=T() 8, o5, o. The In Fig. 4 we present the results for the spectral function

presence of magnetic moment modifies the Green’s functiorfWay from half filling. In the case where#0 and where
and implicitly the physical properties of the system in DDW gap is zero, the resonance peak is formed at the Fermi
its neighborhood. The modification in the Green’s functionenergy, and this remains pinned at the Fermi energy for in-
depends on the relative position to the magnetic momerfgand values of the chemical potentiat4t<<u<4t). In

as G(r,r',0)=Gy(r—r',w)+Gy(r,m) T(w)Go(—r',w),  contrast, the opening of the DDW pseudogap leads to the
where Go(r,w)=N"13,_p,Go(k,iw,) e is the Fourier formation of a second peak in the density of states at a fre-
tranform of the Green’s function given by the E§) andN  quency equal to the chemical potential. When the amplitudes
is the number of particles in the systef(w) is also a 4 of the DWS and DDW are comparable, the weights of the
X 4 matrix that can be calculated aw)=[V 1—Gy(r corresponding resonances are also comparable. On increas-
=0,w)] % Impurity bound states or resonances can be idening y, the peak becomes dominant and the spectral weight
tified from the pole structure of th& matrix. The bound  shifts from the DWS peak to the DDW peak. For gap values
states correspond to zeros of the determinar{tTdé{w)]  of y,>A, the DWS peak completely disappears and the
for frequencies that satisfyw|<4A,. Zeros in the vicinity — only peak that remains corresponds to the DDW gap. An

of the real axis correspond to resonances. The imaginary paghalysis for the modification of the density of states near a
of the T matrix poles represent the lifetime of the resonancesyonmagnetic impurity lead to a similar restit.

We are interested in the density of states exactly at the im- |, conclusion. we have calculated the frequency depen-
purity site in which case the spectral density can be calcUgance of the density of states of a two-dimensiahatave

lated as superconductor in which superconducting order coexists
with DDW order. The results for the bulk density of states

Go(w) calculated in this theoretical framework does not agree with
[1-0(V+oU)Gy(w)] the experimental datalue to the existence of a second gap at
(33)] a frequency equal with the chemical potential. We have also

(11)

A (w)= —1/7'rImH

(5) calculated the density of states near a magnetic moment in
the presence of the DDW order. The spectral density at the
magnetic impurity site in the strong scattering limit presents

where Gy(w)=Gq(r=0,w) and the spin-ug-down) corre-  two resonances, one due to the DWS ordecalized at the

sponds to the case=1(—1). The results for the spectral Fermienergy, and the other due to the DDW order shifted in
function at the magnetic impurity site are presented in Fig. 3accord with the chemical potential from the Fermi surface.
in the case when the chemical potential is zévalf filling) Our results can be directly verified by measuring the density
for different values of the ratid\y/xo, as indicated. The of states near the magnetic moments using STM techniques
resonance ab=0 in Fig. 3 is fourfold degenerate because ofin the underdoped region of the phase diagram.

Go(w)
[1-a(V+oU)Gy(w)]
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