PHYSICAL REVIEW B 66, 132402 (2002

Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes
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We show that dynamic magnetization at the lateral edges of a thin, axially magnetized magnetic element
with finite in-plane size can be described by effective “pinning” boundary conditions. This effective pinning is
of a purely dipolar nature, is not related to the magnetocrystalline surface anisotropy of the magnetic material,
and is determined by the inhomogeneity of the dynamic demagnetizing field near the edges of the element.
Eigenfunctions and eigenvalues obtained using these effective boundary conditions give quantitative descrip-
tion of the quantized spin wave spectra experimentally observed in long and thin permalloy stripes of a
micron-size width.
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Progress in magnetic recording led to the development of [
patterned recording media where pattern elem@ettangu- K=" 1)

lar stripes, prisms, or cylinderdiave nonellipsoidal shape
and are used to record individual bits of informatfofi At wherer =n for free spins boundary conditions=n+1 for
the same time, rapid increase of processor speeds in modefifagnetic wall boundary conditions, ant=0,1,2,... is a
computers leads to the necessity to write bits of informatiormode number. The eigenfunctions for the dynamic magneti-
during subnanosecond time intervals. To achieve this timeation in these cases are assumed to be cosinusoidal or sinu-
scale in writing process, one can take advantage of the ssoidal, respectively, but the fundamental question of the real
called precessional remagnetizatfowhere the remagnetiz- behavior of the dynamic magnetization at the edges of a
ing field is applied for a time interval, which is determined finite-size nonellipsoidal magnetic element remains open.
by the resonance frequenci¢sr eigenfrequencigsof the In this Report we calculate profiles and frequencies of the
patterned media. Thus, the theoretical and experimentalidth modes of an axially magnetized magnetic stripe with a
study of the eigenfrequencies of magnetic excitations in theectangular cross sectiqeee Fig. 1 directly from the inte-
patterned recording media is of great importance. gral equation describing nonlocal dipole-dipole interaction in
The eigenexcitations in the patterned media are activelyhe stripe. A similar solution was obtained numerically for
studied in experiment, and the measurements of spin wavhe case of an infinitely thin stripe in Ref. 7. We show that
spectra performed by Brillouin light scattering on the sim-our solution, obtained for the stripe having finite thickness
plest pattern of axially magnetized rectangular permalloyleads to the boundary conditions for the dynamic magnetiza-
stripes have demonstrated quantization of the spin wave frdion describing effective “pinning” of magnetization at the
guencies due to the finite width and thickness of thelateral edges of the stripe. The obtained pinning is of a purely
stripe}~* Theoretical calculation of these spin wave eigen-dipolar nature and is a measure of inhomogeneity of the in-
frequencies even in the simplest case of a rectangular strigernal dynamic magnetic field along the stripe width. This
(or a rectangular magnetic waveguidmcounters, however, result allows us not only to accurately predict the spin wave
a significant difficulty due to the absence of exact informa-eigenfrequencies of a rectangular magnetic stripe, but also
tion of the boundary conditions for variable magnetization atexplains why the magnetic wall boundary conditions tradi-
the lateral edges of the pattern elements. tionally used in calculations of eigenmodes of rectangular
It is well known that the usual electrodynamic boundarymagnetic waveguide&see, e.g., Chap. 6 in Ref) §ive ap-
conditions leave the amplitude of dynamic magnetization aproximately correct results.
the boundaries of a rectangular magnetic stripe undefined. Spectra of spin wave excitations in magnetic films and
Thus, in practical calculations it is usually assumed that thether finite magnetic samples can be found using the method
boundary conditions at the lateral edges of a stfgravave-  of magnetostatic Green’s functiofts.In the framework of
guide are either of the “free spins” type, or, more often, of this method the Landau-Lifshitz equation for the magnetiza-
the “magnetic wall” type(see, e.g., Chap. 6 in Ref).8Both  tion and the magnetostatic Maxwell equations are reduced to
assumptions lead to a simple quantization condition for then integrodifferential equatiofsee, e.g., Eq(7) in Ref. g|,
component of the spin wave wave vectordirected along which is solved by expanding the variable magnetization in a
the particular finite size of the waveguide.g., widthw) in series of eigenfunctions of the exchange differential operator
the form that satisfy the exchange boundary conditions at the film
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function (2) given in Ref. 10: G (X,X")+G,AX,x")
=—478(x—x"). In the calculations below we shall omit
the indicesz and x, definingA,=\,, and\,=— (47 +X\,).
We shall also use dimensionless coordingtex/w and di-
mensionless aspect ratio of the stripe L/w.

If the complete and orthogonal set of eigenfunctions of
the stripe is known, then the dynamic magnetizatmft)
can be expanded in a series of these eigenfunctif®
=3,B,my(¢), and the eigenvalues, of the problem can be
calculated from Eq(2) as

1/2 1/2

1
MnlP)= Ima(&)[? f—1/2 —1/2d§d§ g

w2 w2 X (£= & p)my(EHmy(£"), (@

___whereg(¢,p) = (2/p)In[&/(&+p?)].
FIG. 1. Geometry of the problem and the system of coordinates. |f the dipolar eigenvalues,, are found from Eq(4), then,
&g i . ) neglecting anisotropy and exchange, the frequencies of the
surfaces. Since the lower width modes in the spin wave quantized spin wave modésr eigenmodesof the stripe in

spectrum of a finite-width stripe are, in most cases, of g, ynits can be found from the solut®fof the Landau-
dipolar nature, we, in contrast with Ref. 8, find below a sys-| itshitz equation as

tem of eigenfunctions of thentegral operator of nonlocal
dipole-dipole interactionand then use these eigenfunctions oy \? [ wy An
as a basis for expansion of the dynamic magnetization of the —) =(—+ 1+ 4—)
stripe. @M “M 77
We consider an infinitely long magnetic stripe of a rect-where wy=yH, wy= y47M, H is the bias magnetic field
angular cross section with thickneksbeing much smaller applied along the stripe axis, aids is the saturation mag-
than the widthw (p=_L/w<1). The stripe is uniformly mag- netization of the stripe. Obviously, E¢) where exchange
netized along thg axis, while thez axis is directed along the interaction is neglected will give best results for the lowest
stripe thicknesgsee Fig. 1 Solving magnetostatic Maxwell spin wave modea=0,1, while for the higher modes the full
equations with electrodynamic boundary conditions, we finddipole-exchange spin wave dispersion equation should be
that the magnetization distributiom(r) within the stripe  calculated using the formalism of Refs. 8 and 9.
leads to the demagnetizing field Hgy(r) To find the eigenvalues and eigenfunctions of the integral
=[G(r,r'Ym(r")dr’, whereG is a tensorial operatdten- ~ €quation(2) we can replace this equation with an infinite-
sorial magnetostatic Green’s functjoThe general expres- order differential equation of the form

sion for G is defined in Ref. 1Qsee Eq(5.99 in Ref. 10. 2m (&)
n

— —) , ®

In the case of a thin and infinitely long magnetic stripe the My (€)= E | (£,p) =, (6)
general expression fa& can be substantially simplified by =0 9%
neglecting dependence on the infinite axial coordiyaé®d  \yhere
assuming homogeneous distribution of the dynamic magne-
tization along the coordinate (stripe thickness Thus, for 1 U2—¢
the m, component of the dynamic magnetization the equa- (&p)= mf dtg(t,p)t". (7)
tion for the eigenfunctions of the dipolar integral operator “uz¢
averaged ovey andz can be written in the form The nonanalytic behavior of the functiong(é,p) and
w2 I,(&,p) near the stripe bordetg|= =+ 3 does not allow one
)\zmz(x):J dx’ G, X, X" )m,(x"), (2) to get a solution of Eq(6) in a reasonable closed form.
—w/2

Fortunately, fopp<1 the first two terms ¢=0,1) in Eq.(6),
containing functiond o(¢&,p) andl(&,p), give a dominant

where the kernel o -
contribution to the decompositia®) near the lateral bound-

2 (x—x")2 aries of the stripe. Direct calculation shows thgt— 3,p)
Gzz(x,x’)ztln =X)L L2 B =-27+2p, I,(—%,p)=—p+2pinp, and all the others
terms @=2) in the decomposition (6) containing
depends only on the coordinatgalong the stripe width I (—3.p)=—2p/(v—1)I'(v+1) are substantially smaller

The m, component of the dynamic magnetization alsothan the first two. A similar situation exists at the other
satisfies an integral equation, which is similar to Et). The  boundaryé=3%. This leads to the relations between the am-
eigenvalues\, (corresponding tan,) and\, (corresponding plitude of the magnetization mods, and its first derivative
to m,) are connected by the equatiap+\,=—4. which  at the stripe boundaries that can be interpreted as effective
follows from the definition of the magnetostatic Green’sboundary conditions of the form
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FIG. 2. Profiles ofz component of the dynamic magnetization
m,(¢) in the two lowest =0 andn=1) width modes of an axi-
ally magnetized stripe fop=L/w=0.019: broken lines, results of
the numerical solution of Ed2); solid lines, graphs of approximate
eigenfunctions Eq(10).

IMq(&)

g T dPIMA(&)]¢-12=0,
where forp<1 the effective “pinning” parameted(p)>0
depends only on the stripe aspect ratiand is the same for
all mode numbers:

®)

2

p[1+2In(1/p)]" ©)

d(p)=
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FIG. 4. Comparison of frequencies of two lowest<0 andn
=1) quantized spin wave modes calculated using Efs(5), and
(10) for different values of stripe aspect ragio(solid lineg to the

We would like to stress, that, although the boundary conexperimental frequencies measured by Brillouin light scattering in
ditions (8) look formally analogous to the exchange bound-permalloy stripegsymbols: (a) comparison with the experimental

ary conditions in a perpendicularly magnetized filsee,

results from Ref. 1 foH =500 Oe, 4rM¢=10.2 kG, (b) compari-

e_g_, Eq(743 |n Ref 6]' the 0bta|ned effect|ve plnr"ng |S Of son with the experimental results from Ref. 2 feir=550 Oe,
a purely dipolar nature. In contrast to the usual “exchange™7™Ms=7.8 kG.

pinning, this dipolar pinning parameté®) is not related to

the magnetocrystalline surface anisotropy of the magnetignaterial. The physical role of this pinning is to minimize the
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surface magnetostatic energy which results from the induced
surface charges=(m-n)g at the edges of a nonellipsoidal
magnetic stripe. It is interesting to note that fo~0 the
effective pinning parametel(p), Eq.(9), is rather large, and
the boundary condition&3) are close to the magnetic wall
boundary conditions that were traditionally used at the lateral
edges of a thin magnetic waveguigee, e.g., paragraph 6.2
in Ref. 6.

Taking into account the rectangular geometry of the prob-
lem and using the above-mentioned analogy with exchange
pinning in a perpendicularly magnetized film, it is natural to
assume that the dipolar eigenfunctions of the stripe would
have a simple sinusoidal form, analogous to the form of spin
wave resonance modes in a perpendicularly magnetized film.
For symmetriam;(x) and antisymmetrieni(x) modes these

FIG. 3. Calculated and measured frequencies of quantized spifunctions have the form
wave modes of an axially magnetized magnetic stripe of finite

width w: lower broken line, free boundary conditions; upper broken mﬁ(x) = Af, cog Kﬁx),
line, magnetic wall boundary conditions; solid line, frequencies cal-

culated using the boundary conditions, E§). Circles show the
experimental data from Ref. 2 for a FeNi stripe of the thickness
=29 nm and width thev=1.5um (p=0.019).

n=0,1,2....
(10

MA(x) = A3 sin( x2x),

Substituting function$10) for m,, in the boundary conditions
(8) we get the well-known equations for the quantized wave
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numbersk, [see, e.g., Eq97.48 and (7.49 in Ref. 6]. In
the limit of smallp [and larged(p)] it is possible to obtain a
simple explicit approximate expression fef :

_(n+1)77
“= w1 dp)

, n=01,2.., (11
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approximate explicit formula for eigenvalu€k?) also gives
reasonably accurate results when 1.

It is interesting to compare our results for dipolar spin
wave eigenfrequencies, calculated from Eq(5) [using Eq.
(4) and approximate eigenfinctiord0)] to the results ob-
tained from the simple quantization of the dipolar spin wave
dispersion equatiofe.g., Damon-Eshbach equation for mag-
netostatic surface wav® using the quantization condition

which is a new quantiza_tion (_:ondition fo_r the spin wave (1). The results of this comparison are presented in Fig. 3,
wave vector along the stripe width, replacing the traditionawhere the lower broken line connects the points obtained
formula (1). This condition does not have the form of the from the quantization of the Damon-Eshbach dispersion

guantization conditiornc,= (n—1/3)7/w empirically found
for this case in Ref. 2see Eq.(11) in Ref. 2], although it
gives very similar numerical values &, for the first four
modes. It should be also mentioned that conditibh) can
be rewritten asc,= (n+ 1)7/wg;, Where the effective width
of the stripe w.s=wWd/(d—2)] approaches the real stripe
width w when the aspect ratip=L/w of the stripe is de-
creasing.

Substituting functiong10) for m,(x) in Eq. (4) one can
find dipolar eigenvalues, of the problem(2), and using the

equation using a “free” boundary, the upper broken line cor-
responds to the magnetic wall boundary conditions, while the
solid line in the middle connects the points obtained from
Eqg. (5) for the approximate boundary conditioi8). The
symbols show the experimental data obtained in Ref. 2 for
the FeNi stripe of the thickneds=29 nm and the widtiw
=1.5um (p=0.019). It is clear from Fig. 3 that for small
mode numbersn<2 our theoretical resultsolid line) is
closer to the result obtained from the magnetic wall condi-
tion, while for lager mode numbers our result tends to come

dispersion equatiofb) it is then easy to calculate quantized closer to the result obtained for free spins boundary condi-

spin wave eigenfrequencies, .

To obtain an approximate explicit expression fqy one
may neglect the dependence of eigenfunctiongé) on p,
and retain this dependence only in the kerf&lof Eq. (2)
and in the eigenvaludsaissuming thah ,=\,(p)]. This as-
sumption allows us to regularize the kernel of Eg), and,
using the Fredholm’s theofy,to derive an approximate ana-
lytic expression for the eigenvalues of the probléhin the
form

eigenfunctionsmg(x) and mi(x) calculated numerically
from Eq. (2) (solid lineg, and obtained analytically using
Egs.(10) and(11) (broken lines. It can be seen from Fig. 2
that explicit expression&l0) obtained from the approximate
boundary condition$8) give a very good approximation of
the eigenfunctions of the original problem, Eg).

The calculation of eigenvalues, of the stripe forp<1
done by direct numerical solution of the integral equati®n
and using the explicit expressiofi)) for the eigenfunctions
m,(x) of the stripe in Eq(4) give very similar results. The

tions. It is also clear that our calculations performed using
the dipolar boundary condition8) and(9) give a quantita-
tive description of the experimeft.

The results of comparison of dipolar spin wave eigenfre-
quenciesw, calculated from Eq.5) for the two lowest
modes =0 andn=1 shown in Fig. 2with the experimen-
tal data for magnetigpermalloy stripes of micron-sized
width published in two papet$ are presented in Figs(a)
and 4b), respectively. Figure 4 shows that the above devel-
oped approximate theory of dipolar eigenfunctions and ei-
genvalues gives good quantitative description of experiments
performed by different groups, on magnetic stripes with dif-
ferent saturation magnetization, and in a reasonably wide
trange of magnitudes of the stripe aspect ratidVe believe
that although our calculations were done in a rectangular
geometry, similar effective boundary conditions could be ob-
tained in other geometries, and, in particular, in the case of a
perpendicularly magnetized thin magnetic dot of a circular or
elliptic shape.
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