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Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes
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We show that dynamic magnetization at the lateral edges of a thin, axially magnetized magnetic element
with finite in-plane size can be described by effective ‘‘pinning’’ boundary conditions. This effective pinning is
of a purely dipolar nature, is not related to the magnetocrystalline surface anisotropy of the magnetic material,
and is determined by the inhomogeneity of the dynamic demagnetizing field near the edges of the element.
Eigenfunctions and eigenvalues obtained using these effective boundary conditions give quantitative descrip-
tion of the quantized spin wave spectra experimentally observed in long and thin permalloy stripes of a
micron-size width.
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Progress in magnetic recording led to the developmen
patterned recording media where pattern elements~rectangu-
lar stripes, prisms, or cylinders! have nonellipsoidal shap
and are used to record individual bits of information.1–4 At
the same time, rapid increase of processor speeds in mo
computers leads to the necessity to write bits of informat
during subnanosecond time intervals. To achieve this t
scale in writing process, one can take advantage of the
called precessional remagnetization,5 where the remagnetiz
ing field is applied for a time interval, which is determine
by the resonance frequencies~or eigenfrequencies! of the
patterned media. Thus, the theoretical and experime
study of the eigenfrequencies of magnetic excitations in
patterned recording media is of great importance.

The eigenexcitations in the patterned media are activ
studied in experiment, and the measurements of spin w
spectra performed by Brillouin light scattering on the si
plest pattern of axially magnetized rectangular permal
stripes have demonstrated quantization of the spin wave
quencies due to the finite width and thickness of
stripe.1–4 Theoretical calculation of these spin wave eige
frequencies even in the simplest case of a rectangular s
~or a rectangular magnetic waveguide! encounters, however
a significant difficulty due to the absence of exact inform
tion of the boundary conditions for variable magnetization
the lateral edges of the pattern elements.

It is well known that the usual electrodynamic bounda
conditions leave the amplitude of dynamic magnetization
the boundaries of a rectangular magnetic stripe undefin
Thus, in practical calculations it is usually assumed that
boundary conditions at the lateral edges of a stripe~or wave-
guide! are either of the ‘‘free spins’’ type, or, more often, o
the ‘‘magnetic wall’’ type~see, e.g., Chap. 6 in Ref. 6!. Both
assumptions lead to a simple quantization condition for
component of the spin wave wave vectork directed along
the particular finite size of the waveguide~e.g., widthw! in
the form
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wherer 5n for free spins boundary conditions,r 5n11 for
magnetic wall boundary conditions, andn50,1,2,... is a
mode number. The eigenfunctions for the dynamic magn
zation in these cases are assumed to be cosinusoidal or
soidal, respectively, but the fundamental question of the
behavior of the dynamic magnetization at the edges o
finite-size nonellipsoidal magnetic element remains open

In this Report we calculate profiles and frequencies of
width modes of an axially magnetized magnetic stripe wit
rectangular cross section~see Fig. 1! directly from the inte-
gral equation describing nonlocal dipole-dipole interaction
the stripe. A similar solution was obtained numerically f
the case of an infinitely thin stripe in Ref. 7. We show th
our solution, obtained for the stripe having finite thicknessL,
leads to the boundary conditions for the dynamic magnet
tion describing effective ‘‘pinning’’ of magnetization at th
lateral edges of the stripe. The obtained pinning is of a pur
dipolar nature and is a measure of inhomogeneity of the
ternal dynamic magnetic field along the stripe width. Th
result allows us not only to accurately predict the spin wa
eigenfrequencies of a rectangular magnetic stripe, but
explains why the magnetic wall boundary conditions tra
tionally used in calculations of eigenmodes of rectangu
magnetic waveguides~see, e.g., Chap. 6 in Ref. 6! give ap-
proximately correct results.

Spectra of spin wave excitations in magnetic films a
other finite magnetic samples can be found using the met
of magnetostatic Green’s functions.8,9 In the framework of
this method the Landau-Lifshitz equation for the magneti
tion and the magnetostatic Maxwell equations are reduce
an integrodifferential equation@see, e.g., Eq.~7! in Ref. 8#,
which is solved by expanding the variable magnetization i
series of eigenfunctions of the exchange differential opera
that satisfy the exchange boundary conditions at the fi
©2002 The American Physical Society02-1
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surfaces.8 Since the lower width modes in the spin wa
spectrum of a finite-width stripe are, in most cases, o
dipolar nature, we, in contrast with Ref. 8, find below a s
tem of eigenfunctions of theintegral operator of nonlocal
dipole-dipole interaction, and then use these eigenfunctio
as a basis for expansion of the dynamic magnetization of
stripe.

We consider an infinitely long magnetic stripe of a re
angular cross section with thicknessL being much smaller
than the widthw (p5L/w!1). The stripe is uniformly mag-
netized along they axis, while thez axis is directed along the
stripe thickness~see Fig. 1!. Solving magnetostatic Maxwel
equations with electrodynamic boundary conditions, we fi
that the magnetization distributionm(r ) within the stripe
leads to the demagnetizing field Hd(r )
5*VĜ(r ,r 8)m(r 8)dr 8, whereĜ is a tensorial operator~ten-
sorial magnetostatic Green’s function!. The general expres
sion for Ĝ is defined in Ref. 10@see Eq.~5.98! in Ref. 10#.

In the case of a thin and infinitely long magnetic stripe t
general expression forĜ can be substantially simplified b
neglecting dependence on the infinite axial coordinatey and
assuming homogeneous distribution of the dynamic mag
tization along the coordinatez ~stripe thickness!. Thus, for
the mz component of the dynamic magnetization the eq
tion for the eigenfunctions of the dipolar integral opera
averaged overy andz can be written in the form

lzmz~x!5E
2w/2

w/2

dx8Gzz~x,x8!mz~x8!, ~2!

where the kernel

Gzz~x,x8!5
2

L
lnF ~x2x8!2

~x2x8!21L2G ~3!

depends only on the coordinatex ~along the stripe width!.
The mx component of the dynamic magnetization al

satisfies an integral equation, which is similar to Eq.~2!. The
eigenvalueslx ~corresponding tomx) andlz ~corresponding
to mz) are connected by the equationlx1lz524p. which
follows from the definition of the magnetostatic Green

FIG. 1. Geometry of the problem and the system of coordina
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function ~2! given in Ref. 10: Gxx(x,x8)1Gzz(x,x8)
524pd(x2x8). In the calculations below we shall om
the indicesz and x, defininglz5ln and lx52(4p1ln).
We shall also use dimensionless coordinatej5x/w and di-
mensionless aspect ratio of the stripep5L/w.

If the complete and orthogonal set of eigenfunctions
the stripe is known, then the dynamic magnetizationm(j)
can be expanded in a series of these eigenfunctionsm(j)
5SnBnmn(j), and the eigenvaluesln of the problem can be
calculated from Eq.~2! as

ln~p!5
1

imn~j!i2 E
21/2

1/2 E
21/2

1/2

dj dj8g

3~j2j8,p!mn~j!mn~j8!, ~4!

whereg(j,p)5(2/p)ln@j2/(j21p2)#.
If the dipolar eigenvaluesln are found from Eq.~4!, then,

neglecting anisotropy and exchange, the frequencies of
quantized spin wave modes~or eigenmodes! of the stripe in
vM units can be found from the solution8,9 of the Landau-
Lifshitz equation as

S vn

vM
D 2

5S vH

vM
111

ln

4p D S vH

vM
2

ln

4p D , ~5!

wherevH5gH, vM5g4pM , H is the bias magnetic field
applied along the stripe axis, andMs is the saturation mag
netization of the stripe. Obviously, Eq.~5! where exchange
interaction is neglected will give best results for the lowe
spin wave modesn50,1, while for the higher modes the fu
dipole-exchange spin wave dispersion equation should
calculated using the formalism of Refs. 8 and 9.

To find the eigenvalues and eigenfunctions of the integ
equation~2! we can replace this equation with an infinit
order differential equation of the form

lnmn~j!5 (
n50

I n~j,p!
]nmn~j!

]jn , ~6!

where

I n~j,p!5
1

G~n11!
E

21/22j

1/22j

dt g~ t,p!tn. ~7!

The nonanalytic behavior of the functionsI 0(j,p) and
I 1(j,p) near the stripe bordersuju56 1

2 does not allow one
to get a solution of Eq.~6! in a reasonable closed form
Fortunately, forp!1 the first two terms (n50,1) in Eq.~6!,
containing functionsI 0(j,p) and I 1(j,p), give a dominant
contribution to the decomposition~6! near the lateral bound
aries of the stripe. Direct calculation shows thatI 0(2 1

2 ,p)
522p12p, I 1(2 1

2 ,p)52p12p ln p, and all the others
terms (n>2) in the decomposition ~6! containing
I n(2 1

2 ,p)522p/(n21)G(n11) are substantially smalle
than the first two. A similar situation exists at the oth
boundaryj5 1

2 . This leads to the relations between the a
plitude of the magnetization modemn and its first derivative
at the stripe boundaries that can be interpreted as effec
boundary conditions of the form

s.
2-2
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]mn~j!

]j
6d~p!mn~j!uj561/250, ~8!

where forp!1 the effective ‘‘pinning’’ parameterd(p).0
depends only on the stripe aspect ratiop and is the same fo
all mode numbersn:

d~p!5
2p

p@112 ln~1/p!#
. ~9!

We would like to stress, that, although the boundary c
ditions ~8! look formally analogous to the exchange boun
ary conditions in a perpendicularly magnetized film@see,
e.g., Eq.~7.45! in Ref. 6#, the obtained effective pinning is o
a purely dipolar nature. In contrast to the usual ‘‘exchang
pinning, this dipolar pinning parameter~9! is not related to
the magnetocrystalline surface anisotropy of the magn

FIG. 2. Profiles ofz component of the dynamic magnetizatio
mz(j) in the two lowest (n50 andn51) width modes of an axi-
ally magnetized stripe forp5L/w50.019: broken lines, results o
the numerical solution of Eq.~2!; solid lines, graphs of approximat
eigenfunctions Eq.~10!.

FIG. 3. Calculated and measured frequencies of quantized
wave modes of an axially magnetized magnetic stripe of fin
width w: lower broken line, free boundary conditions; upper brok
line, magnetic wall boundary conditions; solid line, frequencies c
culated using the boundary conditions, Eq.~8!. Circles show the
experimental data from Ref. 2 for a FeNi stripe of the thicknesL
529 nm and width thew51.5mm (p50.019).
13240
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icmaterial. The physical role of this pinning is to minimize th
surface magnetostatic energy which results from the indu
surface chargess5(m•n)S at the edges of a nonellipsoida
magnetic stripe. It is interesting to note that forp→0 the
effective pinning parameterd(p), Eq.~9!, is rather large, and
the boundary conditions~8! are close to the magnetic wa
boundary conditions that were traditionally used at the late
edges of a thin magnetic waveguide~see, e.g., paragraph 6.
in Ref. 6!.

Taking into account the rectangular geometry of the pr
lem and using the above-mentioned analogy with excha
pinning in a perpendicularly magnetized film, it is natural
assume that the dipolar eigenfunctions of the stripe wo
have a simple sinusoidal form, analogous to the form of s
wave resonance modes in a perpendicularly magnetized
For symmetricmn

s(x) and antisymmetricmn
a(x) modes these

functions have the form

mn
s~x!5An

s cos~kn
sx!, mn

a~x!5An
a sin~kn

ax!, n50,1,2... .
~10!

Substituting functions~10! for mn in the boundary conditions
~8! we get the well-known equations for the quantized wa

in
e

l-

FIG. 4. Comparison of frequencies of two lowest (n50 andn
51) quantized spin wave modes calculated using Eqs.~4!, ~5!, and
~10! for different values of stripe aspect ratiop ~solid lines! to the
experimental frequencies measured by Brillouin light scattering
permalloy stripes~symbols!: ~a! comparison with the experimenta
results from Ref. 1 forH5500 Oe, 4pMs510.2 kG, ~b! compari-
son with the experimental results from Ref. 2 forH5550 Oe,
4pMs57.8 kG.
2-3
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numberskn @see, e.g., Eqs.~7.48! and ~7.49! in Ref. 6#. In
the limit of smallp @and larged(p)] it is possible to obtain a
simple explicit approximate expression forkn :

kn5
~n11!p

w F12
2

d~p!G , n50,1,2... , ~11!

which is a new quantization condition for the spin wa
wave vector along the stripe width, replacing the traditio
formula ~1!. This condition does not have the form of th
quantization conditionkn5(n21/3)p/w empirically found
for this case in Ref. 2@see Eq.~11! in Ref. 2#, although it
gives very similar numerical values ofkn for the first four
modes. It should be also mentioned that condition~11! can
be rewritten askn5(n11)p/weff , where the effective width
of the stripe weff5w@d/(d22)# approaches the real strip
width w when the aspect ratiop5L/w of the stripe is de-
creasing.

Substituting functions~10! for mn(x) in Eq. ~4! one can
find dipolar eigenvaluesln of the problem~2!, and using the
dispersion equation~5! it is then easy to calculate quantize
spin wave eigenfrequenciesvn .

To obtain an approximate explicit expression forln one
may neglect the dependence of eigenfunctionsmn(j) on p,
and retain this dependence only in the kernel~3! of Eq. ~2!
and in the eigenvalues@assuming thatln5ln(p)]. This as-
sumption allows us to regularize the kernel of Eq.~2!, and,
using the Fredholm’s theory,11 to derive an approximate ana
lytic expression for the eigenvalues of the problem~2! in the
form

ln~p!524p1p2~2n11!p, n50,1,2,... . ~12!

Figure 2 shows the result of comparison of the two low
eigenfunctionsm0

s(x) and m1
a(x) calculated numerically

from Eq. ~2! ~solid lines!, and obtained analytically using
Eqs.~10! and~11! ~broken lines!. It can be seen from Fig. 2
that explicit expressions~10! obtained from the approximat
boundary conditions~8! give a very good approximation o
the eigenfunctions of the original problem, Eq.~2!.

The calculation of eigenvaluesln of the stripe forp!1
done by direct numerical solution of the integral equation~2!
and using the explicit expressions~10! for the eigenfunctions
mn(x) of the stripe in Eq.~4! give very similar results. The
13240
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approximate explicit formula for eigenvalues~12! also gives
reasonably accurate results whenn.1.

It is interesting to compare our results for dipolar sp
wave eigenfrequenciesvn calculated from Eq.~5! @using Eq.
~4! and approximate eigenfinctions~10!# to the results ob-
tained from the simple quantization of the dipolar spin wa
dispersion equation~e.g., Damon-Eshbach equation for ma
netostatic surface wave12! using the quantization conditio
~1!. The results of this comparison are presented in Fig
where the lower broken line connects the points obtai
from the quantization of the Damon-Eshbach dispers
equation using a ‘‘free’’ boundary, the upper broken line c
responds to the magnetic wall boundary conditions, while
solid line in the middle connects the points obtained fro
Eq. ~5! for the approximate boundary conditions~8!. The
symbols show the experimental data obtained in Ref. 2
the FeNi stripe of the thicknessL529 nm and the widthw
51.5mm (p50.019). It is clear from Fig. 3 that for sma
mode numbersn,2 our theoretical result~solid line! is
closer to the result obtained from the magnetic wall con
tion, while for lager mode numbers our result tends to co
closer to the result obtained for free spins boundary con
tions. It is also clear that our calculations performed us
the dipolar boundary conditions~8! and ~9! give a quantita-
tive description of the experiment.2

The results of comparison of dipolar spin wave eigenf
quenciesvn calculated from Eq.~5! for the two lowest
modes (n50 andn51 shown in Fig. 2! with the experimen-
tal data for magnetic~permalloy! stripes of micron-sized
width published in two papers1,2 are presented in Figs. 4~a!
and 4~b!, respectively. Figure 4 shows that the above dev
oped approximate theory of dipolar eigenfunctions and
genvalues gives good quantitative description of experime
performed by different groups, on magnetic stripes with d
ferent saturation magnetization, and in a reasonably w
range of magnitudes of the stripe aspect ratiop. We believe
that although our calculations were done in a rectang
geometry, similar effective boundary conditions could be o
tained in other geometries, and, in particular, in the case
perpendicularly magnetized thin magnetic dot of a circular
elliptic shape.
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