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Transport in quantum dots from the integrability of the Anderson model
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In this work we exploit the integrability of the two-lead Anderson model to compute transport properties of
a quantum dot, in and out of equilibrium. Our method combines the properties of integrable scattering together
with a Landauer-Buttiker formalism. Although we use integrability, the nature of the problem is such that our
results are not genericallgxact but must only be considered as excellent approximations which nonetheless
are valid all the way through crossover regimes. The key to our approach is to identify the excitations that
correspond to scattering states and then to compute their associated scattering amplitudes. We are able to do so
both in and out of equilibrium. In equilibrium and at zero temperature, we reproduce the Friedel sum rule for
an arbitrary magnetic field. From this we compute exactly the behavior of the zero-temperature linear-response
conductance as a function of both the gate voltage and field. We also study transport quantities requiring
knowledge of scattering states away from the Fermi surface. We compute the linear-response conductance at
finite temperature at the symmetric point of the Anderson model and reproduce the numerical renormalization-
group computation of this quantity of Cogtt al. We then explore the out-of-equilibrium conductance for a
near-symmetric Anderson model and arrive at quantitative expressions for the differential conductance, both in
and out of a magnetic field. We reproduce the expected splitting of the differential conductance peak into two
in a finite magnetic fieldd. We determine the width, height, and position of these peaks. In particular, we find
that forH>T,, the Kondo temperature, the differential conductance has maxiredfoccurring for a bias
V close to but smaller thaH. The nature of our construction of scattering states suggests that our results for
the differential magnetoconductance are not merely approximate, but become exact in the large-field limit.
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[. INTRODUCTION The source and drain can be held at any relative voltage,
thus enabling the study of both linear-response and out-of-
The Kondo effect is a cynosure of modern condensedquilibrium transport quantities. Beyond the gates that serve
matter physics. Due to the strongly coupled nature of its IRO confine the electrons of the 2DEG, additional gates can be
fixed point, understanding its low-energy behavior hasdeposited on the GaAs/AlGaAs heterostructure. Such gates
proven a major theoretical challenge. Typically, the phenomcapacitively couple to the quantum dot through a gate volt-
enon refers to the interaction of isolated magnetic impuritie298Vg, thus allowing the chemical potential of the dot to be
in a bulk metal. However, in the last several years the exdjusted. This has two important consequences. By adjusting
perimental study of single magnetic impurities has moved tghe gate voltage, one can tune the number of electrons in the
a new arena: that of quantum dots connected to external
leadst™ In analogy to the traditional realization of the
Kondo effect, the leads serve as the bulk metal and the dot as >€d+U
the magnetic impurity. The appearance of the Kondo effect
in this new setting has brought a new set of theoretical chal-

lenges: how to compute transport quantities that form the HL
main experimental signatures of these systems. r
Quantum dots come in at least two forms. Semiconductor { HR
quantum dots# are a product of the continuing project of } a
the miniaturization of solid-state devices. They are fabricated
by confining electrons in a two-dimensional electron gas l

(2DEG) within a GaAs/AlGaAs structure using a combina-
tion of metallic gates. The region to which the electrons are
confined is small enough that its energy levels may be con-
sidered discrete. The dot is connected to source and drain
contacts(the two leads Schematically, the quantum dot can
be pictured as shown in Fig. 1. FIG. 1. Schematic of the quantum dot.
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confined region to be odd so that there is a single unpairetleight of the tunnel barriers between the leads and dot. In
electron. The presence of an unpaired electron allows thgeneral, they differ between the two leads. The quartity

appearance of Kondo-like physics. Moreover, by turNhg (see Fig. 1 measuring the width of the level resonance that
the unpaired electron’s chemical potential can be adjustedirises through the interaction of the leads, and the dot is

thus controlling the scal&, where Kondo physics sets in. given in terms of the tunnel barrier heights to Be= (V2
Such systems are thus said to possess a “tunable” Kondorvg)/z_ Typically, T/U<1 in the experiments of
effect? concernt—4

Quantum dots may also be fabricated from metallic car-  Ajthough the above-described experimental results have
bon nanotube$.By depositing metallic leads on top of @ come relatively recently, the theoretical study of transport
small section of a carbon nanotube, an effective quantum dqhrough impurities is much older. Appelbaum and Anderson
is made. Like their semiconductor counterparts, these dot§oth studied conductance anomalies present in tunnel junc-
are tunable: gates may be added to the semiconductor sufgsns due to the presence of magnetic impurifiétowever,
strate upon which the nanotube and leads lie. Semicondugneir efforts were perturbative in nature and did not describe
tors dots typically carry 10-100 electrons. Nanotube dots, ifhe strong-coupling nature of the Kondo effect. More re-
contrast, have many thousands of electrons and yet still ©¢ently, Ng and Lekstudied the linear-response conductance
hibit Kondo-like physics. _ _both in and out of a magnetic field using the Friedel sum

The transport quantities that lie at the focus of the experiyyje. The Friedel sum rule relates the scattering phase of the
mental study of a tunable Kondo effect in quantum dots havgjectrons at the Fermi surface to the average number of elec-
been measured under a variety of conditions. Conductancgg,ns sitting on the dot. However, the Friedel sum rule is
of the lead-dot system have been determined both in and oyefyl only in determining the linear-response conductance, a
of equilibrium and both in and out of the presence of a magyonsequence of the rapid variation in the scattering phase as
netic field. R'emarkably, this wide vgnety of experimental gne moves away from the Fermi surface. In contrast to the
phenomena is thought to be described by a conceptuallynear-response conductance where the Friedel sum rule is an
simple theory: the Anderson model. _ _ exact relationship, the techniques used to determine out-of-

The Anderson model is fashioned from a chain of nonin-gqyilibrium transport are limiting in nature. In one approach,
teracting spinful fermiongthe lead$ connected via hopping 4 noncrossing approximati®i (NCA) was employed. The
to a single-site impurity on which alone Coulomb repulsionyca approach has drawbacks. In order to implement the
is present. On a lattice, the Hamiltonian reddith no bias  45sociated use of slave bosons, one must thkeo. More-
andH=0) over, the NCA is in some sense a lafgeapproximation

where N is the number of spin degrees of freedom of the

H=D, _t(CiTaCi+1,a+ H-C-)""UndTndl""E [Vi(c!, d, impurity (in this caseN=2). It is known to be remarkably

ia ’ a ' accurate in computing thermodynamics. However, it is less
accurate when it comes to transport quantities15%
errors) due to its less accurate prediction of behavior right at
Herec! andc,, are the lead electron creation and destructiorthe Fermi surface. And as such these difficulties render it
operators, respectivelgt’ andd the dot electron creation and Unusable in nonzero magnetic fiefti another approach to
destruction operators, respectively, ang=d’d. The dot is computing nonequilibrium properties, a clever combination
considered to reside at=0. The indexa indicates the spin Of the analysis of the equations of motion with perturbation
species. The interaction on the dot is present in the terrfl€0ry was employed to study the differential magneto-
Ung;ng, . Although deceptively simple, the presence of aconductancé. However, the truncation of the equations of
nonzeroU makes the problem many body with all of its motion necessary to perform the anglysys in this work is in
manifold complications. some sense an uncontrqlled approximation. The_authors of

U is pictured in Fig. 1 and represents the charging energjRef- 10 indicate that their methodology underestimates the
incurred when an electron is added to the dot. Roughly, it ca'agnitude of the differential conductance. Another set of

+H.c)+Vy(c] d,+H.c)l+eg(Ngi +ng)). 1.2

be estimated as approaches has relied upon perturbation th&bri?As with
the results of Ref. 6, perturbation theory requires relatively
e? small U (Coulomb repulsionor, alternatively, temperatures
U=5g+Ae, (1.2 far in excess of the Kondo temperature and so presumably

can access, at best, qualitative, not quantitative, features of
where C is the capacitance of the dot addt is the dot's  the strongly coupled physics found in the Kondo regime of
energy level spacing. For the experiments at habd, quantum dots at low temperatures.
~1meV. The counterpart of the gate voltayg in the These inherent difficulties with the out-of-equilibrium
above Hamiltonian issy, the parameter that controls the Anderson were circumvented in the study of a nonequilib-
chemical potential of the electrons on the dot. By adjustingium Kondo impurity at its Toulouse poiff.At this point,
€4, the number of electrons on the model dot can be variethe model can be mapped to a system of noninteracting fer-
from O to 2.(Although there may be a large number of elec-mions, thus permitting an exact solution. It is unclear, how-
trons on the actual dot, the concern here both theoreticallgver, how the Toulouse limit affects the underlying physics.
and experimentally is of electrons in the highest-occupiedAlthough the ordinary Kondo model shares the same IR
energy leve). The final pair of parameteié, , measure the fixed point as its Toulouse counterpart, we are interested in
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part in physics for large applied field, bias, and tempera- However, we have managed to circumvent these problems
ture: that is, in physics far away from this fixed point. in a number of cases. In particular, we have successfully
Given the limitations of these methods, one cannot helglescribed both scattering states at the Fermi surface for ge-
but notice that the Anderson model is exactly solvable. Inneric values olJ, 4, andI” and scattering at finite energies
deed, this integrability has already been exploited througt@t the symmetric point of the Anderson model= —&4/2.
Bethe ansatz solutions to compute thermodynamid here we argue that by correctly gluing together a spin and
quantitied>*®such as the specific heat and magnetic suscep:harge excitation, we are able to form an excitation that is
tibility. But what of transport quantities? A limited attempt to €lectronic in nature. Moreover, the excitations are such that
deduce information about transport properties from the Beth@ne can understand them in terms of the individual leads and
ansatz solution of th&ondo model was made recently. SO compute reflection and transmission amplitudes of the ex-
There the equilibrium impurity density of states that arisescitation off the dot. We do so in an argument akin to that
from the Bethe ansatz was studied. In general, the impurityiSed by Andref in computing the magnetoresistance in the
density of states coming from the Bethe ansatz is unrelatefondo model. There he argues that the scattering phase of an
to the spectral density of states arising from the dot corexcitation can be identified with its impurity momentum. In
relator, In{dd"). Indeed, at zero temperature and zero field, itturn, this momentum is related to the impurity density of
is clear the two are much different quantitigse heights of ~States as it appears in the Bethe ansatz and so can be directly
the zero-energy peaks in both quantities are controlled by fsgomputed. o
different energy scalg¢sBut in the methodology of Ref. 17, ~ We now turn to how we use these excitations to compute
it is this latter quantity Itdd") that is directly related to transport quantltles._AII such quantities could be expr_essed in
transporf1%12 Moreover, the context of their computation, terms of the scattering of asymptotically free electrairs,
as determined in Refs. 9, 10, and 12, demands thandne  €lectrons in the attached leadsff the quantum dot. How-
equilibrium properties of Intdd™ be computed. Given the €Ver, such scattering, in general, is not part|cularly.3|mpl'e. In
general unavailability from the integrability of information 9eneral away from the Fermi surface such scattering will be
about correlators such as {(dd), a different approach is inelastic and |n_volve particle-hole prod_uctlon. We hoyveve_r
needed to extract transport properties from the exact sol/€cast the density of states of asymptotically free fermions in
ability of the model. Here we advocate a LandauétiBer ~ €rms of the.|n.tegrable_ excitations we haveT |d<_ent|f|ed. Be-
approach to transport and so are instead faced with the ta§iguse of their integrability, .thelr scat.termg is simple: their
of identifying scattering states in the context of integrability, character does not change in scattering through the dot and
The key feature of an integrable system is the exactheir transport can be described individually: they scatter one
knowledge of eigenfunctions of the fully interacting Hamil- Py one through the dot. _ _
tonian. In turn, there is a well-defined notion of elementary _ It iS, however, unlikely that the integrable electronic ex-
excitations. In particular, these excitations have an infiniteéf!tations we use in computing transport properties provide
lifetime: integrability forbids any decay processes from oc-€Xact results in all case_s—the_ls_sues involved h_ere are subtle
curring. This arises from the infinite series of nontrivial con-and will be discussed in detail in the next sections. In par-

servation laws in the model. In some sense an integrablicular, it is unlikely the high-energy limit of the excitations
system is a superior version of a Fermi liquid. we construct are entirely confined to a single lead. However,

In the Anderson model, there is such a set of excitationsthis methodology successfully passes a number of tests. The
as detailed in Secs. lll and IV. They are not on the face of it,fIrSt test of our method comes in proving the Friedel sum
however, particularly electronic. And if we are to understandule- The Friedel sum rule relates the occupancy of $pin
the transport of the sea of electrons in the attached leads, viectrons on the quantum daty;, , to the scattering phase
necessarily need scattering states which carry the quantuff an electron of the same spifi, , at the Fermi surface:
numbers of an electron. Rather, the excitations divide into S =2 (1.3
separate spin and charge sectors. The closest they come to el/| = €T - '
being electronic is in bound states between excitations whickt thus relates a dynamic quantity to a thermodynamic quan-
can be thought of as bound states of electrons. This is not gity. With this in hand, previous works have computed the
unnatural. If one were to bosonize the Anderson model, onénear-response conductance from the knowledge of this oc-
would find that the degrees of freedom separate into spin anclpancy, at least ai =0.1>2° However, such works do not
charge bosons. But this is only one problem with the excitamake any attempt to explicitly identify the excitations that
tions arising from integrability. These excitations, as ex-scatter according to the Friedel sum rule. Here we do so. We
plained in Sec. Ill, are a combination of degrees of freedonshow that the scattering phase of the excitations we have
in both of the leads connected to the dot. And it is the casddentified to be the same as that predicted by the Friedel sum
that this entanglement cannot always be simply reversed. rule both in and out of a magnetic field. As we have repro-

And so there is the difficulty. The scattering states are notluced the Friedel sum rule, we can say that the excitations
necessarily electronic in nature and not confined to a singleve have identified coincide exactly with the free fermians
lead. Only if one can understand electronic excitations in arthe Fermi surface
individual lead can one hope to make sense of scattering Now, while the Friedel sum rule only deals with excita-
amplitudes off the dot. It is these two facts that have pretions at the Fermi surface, our methods goes beyond excita-
vented the integrability of the Anderson model from beingtions directly at the Fermi surface, at least near the symmet-
applied to transport quantities up to now. ric point of the Anderson model. To determine whether the
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excitations we have identified together with their associate@ne. It is important to understand that this means of compu-
scattering amplitudes provide a complete solution of theation introduces no additional error into the calculation. The
problem, we compute the linear-response conductance at fsole source of uncertainty is found in whether the scattering
nite temperature. At finite temperature, the excitationsstates that we construct are entirely confined to a single lead.
needed for the linear-response conductance using But because of the excellent agreement of the filiitiear-
Landauer-Bttiker formalism exist over a range of energies. response conductance with the previous NRG results, we ex-
In particular, we compute the linear-response conductance glct this error to be similarly insignificant in our nonequilib-
the symmetric point { U/2=¢&4) of the Anderson model as  rjum computations.

a function of temperatur® and compare it to the numerical It is important to understand that this approach to the
renormalization grougNRG) computation of this quantity nonequilibrium physics differs from that used in Refs. 9, 10,
by Costiet al”* and find excellent agreement. We thus areand 12 in a fundamental way. There the nonequilibrium con-
able to conclude that using our excitations away from thejuctance is expressed in terms of the nonequilibrium density
Fermi surface is a valid procedure. of states of the impurity as determined from the correlator

Although our finite-temperature computation suggestym(dd). Here we have nothing direct to say about the non-
that we have correctly identified the lobut finite) energy  equilibrium (or, indeed, the equilibriumbehavior of this
excitations at the symmetric point, we do not claim that ourguantity.
result isexact Again, our |nab|l|ty to make this claim hinges We must stress th|s as the reader may be Confused by the
on the question of whether the integrable excitations we confact we do use the impurity momentutwhich is in turn
struct are entirely confined to a single lead and so makeejated to the Bethe ansatz impurity density of states as ex-
appropriate scattering states. Moreover, we know that oupjained in Sec. )l to compute the scattering amplitudes of
prescription for scattering fails once we leave the Kondoexcitations off the dot. This confusion may be heightened in
regime where approximately one electron sits on the dot anghat we employ the equilibrium Bethe ansatz density of states
enter the mixed'valence regime Of the Anderson mOde|. Th|ﬁ"| Computing the Scattering matrices. It would thus seem
again suggests that near the symmetric point, our methodggitimate to ask why we do not need to use a nonequilib-
are merely highly accurate. The situation here is not dissimirjym impurity density of states in computing the out-of-
lar to form-factor computations of correlation and responsequilibrium conductanc®
fUnCtionS, where integrable techniques can pI’OVide, if not the The answer |ies in Correctly understanding the basis of
exact result(WhiCh W0u|d inVOIVe resumming an |nf|n|te excitations by which we Compute the Conducta?ﬁ:‘ﬂ[e are
number of contributions controlled approximations of ex- aple to use the equilibrium scattering phases as we employ
cellent accuracy, from the lowest energies through crossovehe pasis that is naturally present when the system is equili-
regimes=” brated. However, because of the integrability of the system,

The physical origin of the accurate reproduction of scatwe can continue to employ this basis when we move the
tering at nonzero energies relative to the Fermi surface at theystem out of equilibrium. These particles continue to scatter
Anderson model's symmetric point lies in a separation ofas they do in equilibrium. We note that if one were to com-
scales. At this point there are two relevant scales in the probpute out-of-equilibrium scattering matrices, one would find
lem: one is the Kondo temperatuflg, while the other is  that they differ from their in-equilibrium counterparts by an
JUT, a function of the Coulomb repulsidd and the reso- overall phase alone. As transport quantities depend upon the
nance width of the dot level,. At the symmetric pointT,  absolute value of the scattering, this overall phase would
<JUT. We exploit this fact to make our identification of then have no effeé® While the application of finite voltage
integrable scattering states. But in turn this means that weloes not effect the scattering of the excitations, it does
expect errors in transport quantities involving scatteringchange their distribution in the leads. And indeed we must
away from the Fermi surface @(T,/\UT). and do take this into account.

Bootstrapping from our success with the finite- The rationale behind this understanding has been tested
temperature linear response conductance, we look at the noheyond the various checks of these ideas applied by Ref. 24
equilibrium conductance near the symmetric point both inin their computations of conductances of quantum Hall
and out of a magnetic field at zero temperature. In order t@dges. Generically, the thermodynamics of an integrable field
compute this conductance we again employ a Landauetheory can be computed using thermodynamic Bethe ansatz
Buttiker formalism akin to that employed in computing the which employs zero-temperatu&matrices(and not finite-
out-of-equilibrium conductance of interacting quantum Halltemperaturé&S matrices as might again be naively expected—
edges* We imagine placing each lead at two differing the finite-temperature distribution might be thoughhexes-
chemical potentialg.; and u,. These differing voltages in- sarily dress the scatteringWith the thermodynamics, one
duce different populations of free electrons in the leads. Axan determine the finite-temperature scaling behavior of a
with the finite-temperature linear-response problem, we refield theory. If in the UV or IR limit the theory flows to a
cast these electrons in terms of our integrable scatteringonformal field theory, the finite-scaling behavior in these
states. We then compute tlequilibrium) scattering ampli- limits is independently determined by the central chargé
tudes of scattering states in the leads. These scattering artinte theory. That the two computations always agree provides
plitudes then provide the probability for a state to tunnelstrong evidence we are handling the problem correctly.
from one lead to the other. Although the system is interact- Turning to our nonequilibrium results, we find that they
ing, its integrability again implies the states scatter one byeproduce the expected gross features of the experimental
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differential conductance. WheH=0 and we are near the ing from its zero-field value of to its free-fermion value of
symmetric point, the differential conductance is sharply2l’. The peak height, in turn, decreases from its maximal
peaked about its linear-response value. The peak width igalue of 2%/h to e%/h. And finally the location of the peak
controlled by the scal&,, the Kondo temperature. We find shifts frome = —U/2 to H/2 (we scaleH here and through-
that the peak is roughly symmetrical abotit=0 in accor- ~ out this paper such thaug=1), appropriate to a spin-up

dance with experimertt. free fermion with a field-induced, shifted chemical potential.
In a nonzero field, Meiet al*° predicted that the differ- These results are encoded in Fig. 6. _ .
ential conductance would peak av==+H. We find such At the symmetric poinU/2=—g4, we provide a simple

peaks with our techniques, although our peaks are founglosed-form expression for the conductarisee Sec. IV B
shifted to values o€|V/| notably smaller thafH|. Even inthe ~ We then find that the conductance deviates from its unitary
limit of fields much larger thafT,, we do not find the peaks Maximum for small fields via

at|H|. This is again consistent with experiméntve should

not necessarily expect the peaks to occur exactlg\at H e? 72 H2

as the prediction of Meiet al. is predicated in part upon a G=2—|1-—==+OHYTY |. (1.9
second-order perturbative result. Moreover, our construction h 16 T

of the scattering states suggests that in the particular case of

the differential magnetoconductance, our results become ex-his deviation from the maximal conductance is quadratic,
act in the limit of large applied fields. appropriate for the controllingl =0 strongly coupled Fermi-

A portion of the results of this paper have been reported idiquid fixed point. HereT, the Kondo temperature, is given
Ref. 27. Here in this work we provide far greater detail onin Eqg. (3.16).
the nature of our computations. The paper is organized as In Sec. IV we compute the finite-temperature linear-
follows. In Sec. Il we introduce the continuum version of theresponse conductance at the symmetric pdif@= —¢y.
two-lead Anderson model. The two-lead Anderson model isThis requires recomputing the scattering of Sec. Il. At finite
integrable as is. However, we first map it onto a one-leademperature one must consider the thermal bath of all pos-
problem. If we were to explicitly solve the two-lead problem, sible excitations. This highly nontrivial bath modifies the
we would find nevertheless that we would be implicitly scattering. However, doing so leads us to a highly pleasing
implementing the map to the one-lead case. Having doneesult. We are able to reproduce the NRG result of Costi
this, we review the Bethe ansatz for the one-lead Andersoat al.for G as a function ofl (see Fig. 9. This is convincing
model together with the excitations necessary to form theevidence that we have correctly identified the scattering
ground state at zero temperature. The remaining portion cftates(at least at the symmetric point of the gd¥lore spe-
Sec. Il is devoted to identifying the excitatiofisoth at and  cifically, we know the linear-response conductance will again
away from the Fermi surfagethat can be identified with have a Fermi-liquid form
scattering states and then computing their scattering ampli-
tudes. We provide further details of the approximate nature 2 T2
of the scattering states so identified away from the Fermi G(M=2—[1-c=+O(T4Ty |. (1.5
surface. In the course of this discussion we demonstrate the h T
Friedel sum rule.

In Sec. Il we explore the behavior of tiE=0 linear-  Costiet al. demonstrated in perturbation theory that the con-
response conductance both in and out of a magnetic fieldtant ¢ takes the valuec=7*/16=6.088. We compute in
Because Wiegmann and Tsvefiflcomputed expressions for comparison c=6.05+0.1. Beyond the low-temperature
the occupancy of the dotyg, , as a function of the gate Fermi-liquid regime, we emphasize we are able to describe
voltagee 4 andH in a variety of regimes, and the Friedel sum accurately the conductance in the crossover redgimd, .
rule relates the electron scattering phase to this occupancy, We also compare the scaling curve for the finite-
we can derive closed-form expressions for the lineartemperature linear-response conductance with the experi-
response conductance in these same regimes. Outside thesental data found in Ref. 1. The comparison is plotted in
regimes we compute the occupancy numerically. Using theskig. 10. We find that the experimental measurements, even
results, we show how the linear-response conductance béiough taken away from the symmetric point of the Ghdt
haves as function of. though still in its Kondo regime agree well with our scaling

We plot the linear-response conductance as a function afurve. This suggests that the Kondo regime of the dot exists
the gate voltage in zero field in Fig. 4. However, the most over a wide range of gate voltagés., eq).
interesting results of this section are found in our computa- In Sec. V we move on to compute the nonequilibrium
tions of the linear-response conductance at fiHitén Fig. 5  conductance at zero temperature. Again, the scattering am-
we plot the linear-response conductance as functiarnydér  plitudes need to be recomputed to take into account the
a variety of values oH. As H is increased from zero, we see change in the distributions of electrons in the leads induced
that the linear-response conductance is suppressed as a regyltthe finite bias. We also discuss subtleties with understand-
of the destruction of the Kondo effect in a finite field. We ing how to think of a finite-biased system in its one-lead
also see the structure of the conductance peak evolve from ifermulation. We then present results of the differential con-
zero-field value to that of free fermions. With increasiig  ductance both in and out of a magnetic field as discussed
the full width at half maximum becomes narrower, decreasabove.
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X=- L > ’VL‘O’YZ‘ : 5 x=o where n(,zdf,d(,. Here X, is a sum over the two leads (
_— oo =1,2). We have allowed for the possibility that the hopping
x=0 matrix elementV, differs between the leads as is typical in
any experimental realization. Rather than treating the leads
as half-lines with both left- and right-moving fermions, we
We are able to derive a number of simple closed-formrepresent the leads as “unfolded” with fermions that are
results for the out-of-equilibrium conductance. The differen-SCI€ly right moving. Fermions in either lead that are incident

tial conductance in zero field at the symmetric point is com-.UPON the dot are considered to lie in the region0, while

FIG. 2. Sketch of two leads attached to a quantum dot.

puted to be those traveling away from the dot in either lead are found
with x>0. We represent this in Fig. 2 by drawing the leads
e? 1 P as elongated arcs.
G(u1,u2)=2~1 , 1.6 . o
(pa,m2) h [1+ 72(pg— pp) 04T, We stress that there are no interactions in the lgads

opposed to the calculations in Ref. 24, for instandbe
a remarkably simple result. This expression is expected to bgontrivial physics of the problem arises solely from the
valid for u;—u,=<T,. We are also able to characterize the strongly interacting dynamics of the dot.
peak in the differential conductance that develops in the It will be advantageous to reformulate this problem as a
presence of a magnetic field. The quantity most discussed ipne-lead Anderson modéi.e., a single-lead modelTo do
the literature—the bias at which the peak occurs—is giverso, we introduce even/odd electrons
by the expression

1
1 1 Cofo=—+—(V +V5Cr). 2.2
eVmaxz—H(l——Zwtan1I_1_b+~-'), e \/v§+v§( oy Vaita) (22
RecastingH in this new basis, the odd electrop decouples
1 H me and we are left with
1 _pb=Inl — \/—
| b w'”(sz 5 ) 1.7

valid for H>T, andH<UT. Because of the logarithmic ~ H= 2 AX{ — CL(X) 0Cap(X) + (V3 +V5)M25(x)
dependence df uponH, the position of the peak approaches
eV=|H| extremely slowly. In addition to the location of the

peak, we are also able to describe both the peak width and ><[c;,(x)d(,Jrdf,ce,,(x)]}Jrsd; ny+unin,.
height of the peak. The peak width is given by

eAV= 2 tan [—1-1/2— b—tan [~1+1/2— b) ' We have thus reduced the problem to that solved using Bethe

(1.8 ansatz in a series of papers by Kawakami and &kind
while the peak height is equal to Wiegmann, Filyov, and TsvelicK.
With this reformulation of the model, we have to address
e? (3 (I71=b) the question of computing scattering amplitudes of electronic
max~ | 27 m . (1.9  excitations in the original two lead problem. Naively it

would seem we can do this. L&(e) andR(e) be defined
We see that the height of the conductance peak approachb¥
e?/h, one-half the unitary limit, in the asymptotic limit of

large H. Interestingly, the nonequilibrium Kondo model in 1(¢): the transmission amplitude for an electronic

the_Toquuse limit* also predicts a zero-temperature differ- excitation of energye to scatter from
ential magnetoconductance pealed=H which has a peak
of €%/h, one-half the unitary limit. lead 1 to lead 2(or 2 to 1), (2.43
Il. BASIC FORMALISM R(e), reflection amplitude for an electronic
A. Description of the system excitation of energye to scatter from
Pictured in Fig. 2 is a sketch of the quantum dot con- lead 1 to lead 1(or 2 to 2. (2.4b

nected to two leads. The Hamiltonian for this model in the

continuum limit is given by Assuming that the amplitudes behave linearly under the

even/odd mag2.2), we have(for V,=V,)

H:Z f dx{— ], (X)d,61, () + V;80[c], (X)d,, e'%(e)=R(e)+T(e),
) e'%)=1=R(g)—T(e). (2.5
+d + +U , 2.1
oG ()]} sdg N0, @D We then conclude that
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e) eldels) — 1 (i) associated with each of thd \ ,'s are
E)=m ———,

2 two complexk’s k% , described by

ifse(s) a . .
R(s):ez_“, 2.6 9(kD) =glx(A) Fiy(N o) ]=No*il2,

_ _nr 2 1/211/2
govern scattering in the two-lead problem. However, not all X(\)=Ul2+ eq= JUT [A+ A+ 1412,
electronic excitations behave linearly under the nta) — OTr 2 129112
and so things are not always this simple. We will consider Y= VUL =N+ (A4 1422 (2.9
this in more detail in Sec. IID and in particular Sec. IlE.  Although only valid fore4>—U/2, we can also understand
As noted, in writing the above two equations, we havethe case:y< — U/2 through a particle-hole transformation. If
assumed/,;=V,. If V;#V,, the transmission amplitude is we take the continuum limit of Eq$2.9), we no longer deal

scaled by the factor with discrete values of andk, but rather go over to smooth
distributionsp (k) for the realk;'s ando(A) for the\ ,’s and

2V1V, their associate&®’s. To derive these distributions, we first
VZ+V2 take the logarithm of Eq2.7):

As this is a constant factor, it always possible to rescale M

results to take into account an asymmetry in the dot-lead kiL+ (k) =27N;— Z 01(9(Kj)—Np),

couplings. As such, we will assume throughout the paper that At

Vi=V,. M N-2M

213, t 2 BN~ N+ 2 O1(Na—9(K)

B. Bethe ansatz solution of the one-lead Anderson model B=1 =1
In order to understand the scattering between the two = —2LX(N o) =2 ReS(X(N ) +iy(N,)),

leads we will rely upon aspects of the one-lead Bethe ansatz
solution found in Refs. 15 and 16. As such, we summarize
briefly the results of this work. Applying the Bethe ansatz
yields a set of quantization conditions describing a finite
number of bare excitations in the system:

O(x)=2tan | =x |+ . (2.10

N; andJ, are the quantum numbers of the charge and spin
excitations, respectively. Taking the thermodynamic limit
(i.e., N,M,L— with N/L andM/L finite), followed by de-

glkjLtialk)) — H w rivatives of the above gives
1 9(Kj) =N, —i/2°
(k)= i+L+ (k)fad)\a (g(k)=N)o(N)
ﬁ N9k +il2 o NN gt o p L o[ dhalg !
=1 Na—0(k)—i/2 g1 Ng—Ng—i’ '
X"(\) AO\) )
where oN)=———+—— f d\"ax(N'=N)a(N')
5(k) = —2 tan Y —- °
(k)=—2tan " ==/ —fﬁdeal(x—gm)p(k), (211
o (k—g4—U/2)2 where
9( )—T, L
A(k)= 5= da(k),
2 2 2
I'=(Vi+V5). (2.8
As in all problems with an S(2) symmetry, there are two AN)=— Eax ReS(x(\)+iy(N))
types of excitations: chargevith rapiditiesk) and spin(with ™ '

rapidities\). Here N is the total number of particles in the
system, andVl marks out the spin projection of the system, a(x)= ia 6.(x) = 2n 1
2S,=N—2M (in zero magnetic field =N/2). M 27 I (n?+4x2%)

Whenegy>—U/2, the ground state of the system conS|stsV imi i the ab . for the distrib
of the following set of excitations: arious limits appear in the above equations for the distribu-

tions. — D marks the lower allowed limit of th&'s while Q

(2.12

(i) N—=2M realk;’s, marks out the bandwidth of thes. As each\ has a pair of
complexk’s, its associated energy isx@\). We thus deter-
(i) M realn,’s, mine Q by
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x(Q)=-D. (2.13 These_ re_Iations will be _key in verifying the Frie(_jel sum rule.
Substituting Eqs(2.16) into Eqgs.(2.11), we obtain separate
Often, it will be possible to replac® and—D by » and—c.  equations fopyy/ pimp and opyk/ Timp :

Here B and Q, on the other hand, give the spin and charge
Fermi surfaces. They are determined by the constraints 1 5
K)==—+g'(k d\ k)—X\ N),
N_oM (B Pouk(K) = 5—+9'( )fQ a1(g(k) = N) apuidN)
- |7 dket,

L -D

X/

M Q Tpur(N) = — ()\)_Jadh'az(h'—)\)%mk(?\')
f:fQ d\ a(N). (2.149 T Q

B

- [ dkan-gmm0 (218

C. Determination of the scattering phase at the Fermi -b
surface: The Friedel sum rule

In this section we examine the relationship between thénd
scattering phase of electrods(e) at the Fermi surface and
the number of electrons on the dot and so verify the Friedel 5
sum rule. Pl =80 +9'(K) [ SO\ 24(9(0 V) g,
To determined.(e), we employ an energetics argument Q
of the sort used by Andrei in the computation of the magne-
toresistance in the Kondo mod&limagine adding an elec- -
tron to the system. Through periodic boundary conditions, its Uimp()\)zz()\)_ de)\’az()\’—)\)crimp()\’)
momentum is quantizegg=27n/L. If the dot was absent, Q
the quantization condition would be determined solely by the B
conditions in the bulk of the system and we would write _f dk a;(X —g(k)) pimp(K). (2.19
Ppu=27n/L. Upon including the dot, this bulk momentum D
is shifted by a term scaling asll/ The quantization condi-
tion is then rewritten as

In Appendix A we give alternative forms to the above equa-
tions governing the density functionals. These alternatives
are far more amenable to numerical analysis and in practice,
the ones used in solving for the densities.

. . Having obtained the equations governing the impurity
wherelL is the system's length. The coefficient of thet 1/ gensities of state, we now focus on the scattering phase itself.
term is identified with the scattering phase of the electron offz.q Egs.(2.10 we can read off the bulk momentum of a

the dot. _ _ o charge/spin excitation with quantum numbétJ to be
As we are interested in expressidy in terms of the

number of electrons on the dot, it is useful to separate out
from p(k) and o(\) the impurity contribution to the density _ 27N 0
of states. We thus write p(k)=——=k+ o d\ opu(N) 01(g(K) —=N),

2mn Se(€)
P= = Pouk™ — (2.19

1
p(K) = ppu(K) + Epimp(k): 2] 5
p()\)=—T=2x()\)+fQ AN opyiN") O2(N—=N")
1
a(N)=opu(N) + Ea'imp()\)- (2.19 B
+f depbulk(k)al()\_g(k))- (2.20

Poui! Tpuk represents the bulk contribution to the densities
while piyn,/oimp determine the number of electrons of defi-

nite spin,ng; /ng, , sitting on the dot. From Eqg2.14 we We assume here that t‘ahin_alz varies from/2 to 72,
have thus ensuring a simple relationship between the momentum

and energy functionals to be derived in the next subsection.

5 B The impurity contribution to the momentum for each type
Ng; = fQ d\ Timp(N) + jﬁdepimp(k)v of excitation can be similarly determined to be
Q Q
ndfo dX Timp(N). (2.17) pimp(k)=5(k)+fQ d\ oimp(M){01(g(K) —N) — 2},
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Pimp(A) =2 ReS(X(N) +iy(N)) To determine the scattering of a spin-down electron we
~ employ particle-hole symmetry. A particle-hole transforma-
" de)\,Uimp()\,)[HZ()\_)\’)_z'ﬂ'] tion is implemented via

Q

ci(k)—c (—k),

B
+jﬁdepimp(k){Hl()\_g(k))_zw}' clk—c (—k),
(2.2 di—d,,
Here we have chosen a different range for tam 0, , for .
describing the impurity momentum. Shifting back to the di—dj,
original range leads then to the appearance of tis. Zhis
choice is governed by our ultimate desire to give the scatter- gg——U—¢gq. (2.29

ing phases in terms of the impurity momentum. In particular
we wantpimp(k— — ) = pjmp(A—2) =0.

According to Eq.(2.19, we identify pjn,(k) with the
scatter!ng phase of a ch'arge gxcjtation @rﬂ_q)()\) vyith the 5#10(—U —gq)= 5]3(8(,)_ (2.26)
scattering phase of a spin excitation. By differentiating these ) o
expressions and comparing to Ed8.19, we obtain the The phase of this excitation is then
relations

'‘Consequently, the scattering phase of a gpile is related
to that of a spin| electron via

5 ’ ’ k ’ !
5#10(—U—8d)=27rf AN Timp(A )+27TJ_de Pimp(K")

akpimp( k)= 27Tpimp( k), A

5)\pimp()\)= _27To'imp()\)- (2.22 :andT(sd)’ (2.27
Again, we have relations crucial to verifying the Friedel sumwhere the last equality holds if we take the hole to be at the
rule. Fermi surfaceA=Q andk=B. As ng;(eq)=1—ng (U

In order to determine the scattering phase of an electrom £4), We have
(as opposed to a spin or charge excitatiome must specify .
how to glue together a spin and a charge excitation to form Shol —U—&g)mod 27=—ng (-U—eq). (2.28
the electron. The situation is analogous to adding a singl
particle excitation in the attractive Hubbard mo#fehdding
a single spinf electron to the system demands that we add pin-down electrons.

realk>B (charge excitation. In doing so we create a hole at The reader may be puzzled why we rely on a particle-hole

A>Q in the spin distribution as the number of the available. o «tormation in computing the scattering amplitude for

slots in the spin distribution is determined by the number Ofspin—down electrons. Although it would be desirable to do

electrons in the system. Adding an electron to the systerfis computation directly, it does not seem to be possible. To

thus opens up an addit_ional slot in thallis_tributi_on._ construct a spin electron at the Fermi surface, it is natural
The electron scattering phase off the impurity is then the, (amove &= B excitation while adding a = Q excitation.

difference of the right-moving k-impurity momentum  re coresponding scattering phase is then given b
Pimp(K) and the left-movingA-hole—impurity momentum P g ap g y

— Pimp(\): 5= Phop= Pimp(K) + Pimp(N)
522 piTmp: pimp( k)+ pimp()\)

At the Fermi surface, hole and electron scattering are identi-
cal (up to a sigh and so we verify the Friedel sum rule for

5 -
zgwf dkpimp(k)+2wJQd)\/gimp()\/)
-D Q

K ~
=2 J dk’ p: k’ +27Tf d\' o N )
ar lep( ) N |mp( ) — z,n.nm . (2.29)

(2.23  But this is obviously not what we want—a manifest violation

where we have used Eq®.22) in writing the last line. If the of the Friedel sum rule. Rather by comparing E2129 with

excitations are added or removed at the Fermi surfaces, i.&-d- (2-27, the scattering indicates that we have constructed a

k=B, A\=Q, we obtain the Friedel sum rule for spin-up spin | electron not aky4, but at the particle-hole conjugate
electrons point —U —e&4. Why this is so it is not entirely clear. How-

ever, one can notice that theexcitations are not only charge
B o excitations, but are in some sense unbound $patectrons
5(2:27TJ dkpimp(k)+2ﬂf d\ oimp(N) = 27Ny, (the number ofk excitations is directly proportional to the
P Q (2.24) magnetization of the systemSo in removing & excitation
' to form the spin| electron, we are in some sense creating a
where Eq.(2.17 has been used. The total energy of thisspin hole. And a spin| hole at chemical potentialy will
excitation ise(k=B) +e(A=Q)=0, as it should be. scatter as a spify electron at—U —¢y.
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This entire discussion has concerned itself with provingfor the space of excitations, chosen such that scattering at the
the Friedel sum rule for the one-lead Anderson model. Howimpurity is as simple as possible. However, we do have to
ever, we can argue that it applies, appropriately revised, toaoncern ourselves with rewriting the original free electrons
the two-lead model. More precisely, we can argue that thén terms of the integrable scattering basis. As indicated in the
excitations at the Fermi surface behave linearly under théntroduction, we are not able to provide an answer to this
map (2.2) and so have two-lead scattering amplitudes giverproblem in its entirety.
by Egs.(2.6). This will be detailed in the following two Our approach will then be to build excitations which are
sections. “electronic,” that is, carry the same quantum numbers as

In Appendix B we give an alternate derivation of the scat-electrons, but scatter simplyi.e., elastically at the
tering phase that focuses upon the impurity energy of ammpurity—they will also scatter in a simple, factorized way
excitation as opposed to its impurity momentum. In doing soamong themselves, although th8imatrix is nontrivial(it is
we elucidate subtleties not explicitly discussed in Ref. 28not S=—1 anymorg¢. One can certainly think of these exci-
We also give a third derivation of the scattering phase intations as dressed electrons.

Appendix C by directly considering the dressing of the bare This being understood, another difficulty remains: the po-

scattering. tential parameter space of electronic excitations, ilg) ),
is two dimensionalprovided we neglect other solutions of
D. Excitations away from the Fermi surface the Bethe ansatz: see Sec. )] Wwhereas we naturally want
in the Kondo regime the space to be one dimensional. For the moment, we can

only make the necessary dimensional reduction when we are

In the previous section we were mainly concerned Wlthin the Kondo regime of the Anderson model. The first step in

Scaf“e””g at the Fermi surface. However, as made clear bé(oing so is to determine the energy-momentum of an excita-
taking k#B, A#Q, we can look at scattering above the

Fermi surf tion labeled by k,\).
eTm;?g:ni)ct%g to ask first whether the noninteracting elec We already know the momentum of the excitations from
. . . S . "Egs. (2.20. We thus must only compute the energies. To
trons in the lead can still be described in this formalidm as. (2.20 . > y bu g

lect the standard bl i facilitate the calculation of excitation energies, it is useful to
electrons we mean the standard plane-wave excitations ecompose (k) ando(\) into particle and hole densities:
appropriate spin and changdiere it is useful to recall some

weI.I-k'nown regults from many—b_od)éotheory: Langreth3 in pan(K)=0(=BFK)p(K),
verifying the Friedel sum rule fad =0, computed the ratio
. . . . _l
of the elastic inverse lifetime,,~ of a plane-wave mode to Fom(N)=0(FQEN) (M), 2.33

that of its total inverse lifetime- 1, finding
Now imagine varyingp,, and o, and asking what is the
-1 . . . . .
e (€) _ r corresponding variation in the energy. We can write this
 Xe) 2Im3(e)’ (2.30 variation in two ways: one in terms of the bare energies and

one in terms of new functions™ (k) ande=(\) governing
where X(¢) is the self-energy for the dot electron Green'sthe dressed energies:

function. At the Fermi surface,

r 5E=Lf dk{e " (k) Spy(K)— &~ (K) Spp(K)
Im3(e=0)= 7, 2.31) { P 9}
and there are no inelastic processes. However, away from the +|—f d7\{8+()\)50p(’\)_87(’\)5%(’\)}
Fermi surface,
H
r =LJ dk(k— 5) 5pp(k)+2Lf d\ X(N) dop(N).
ImX(e)= E-I—Csz, c>0, (2.32

(2.39
and 7o,"<7 -, SO eIectrons_Wlth energies above the Fermiryq yariations OBp,yp, and dp,y, are not independent. From
surface do not scatter elastically.

; L Egs.(2.11) we see
On the other hand, the simple excitations we construct

within the integrable description by gluing spin and charge

excitations will necessarily scatter elastically: beyond the  Jpy(k)+ 5ph(k):g’(k)f d\ Sop(N)ag(g(k)—N),
Fermi surface, they cannot be the free electrons one would

initially like to describe. In and of itself, this does not matter

as all we are interested in at the end is charge transport, s, ()\)+50h(7\):_f d\’ Soy(N)as(N —\)
irrespective of what kind of objects actually do carry this P P

charge. A similar situation occurs in the fractional quantum

Hall effect?® where the integrability approach uses quasipar- —f dk dpp(K)ag(A—g(k)).
ticles which are neither electrons nor Laughlin quasiparti-

cles. This approach merely provides a more convenient basis (2.395
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Substituting Eqs(2.39 into Eq. (2.34), we obtain k

H
e (K)o (K)=k— 5—] dr e~ (M)ar(h—g(k),
8+(7\)+87()\)=2X()\)—f d\'e (N )ay(N' —N\)

+ [ kg (e toayao v,

e~

(2.3
e*(\) ande* (k) are characterized by
e (M)=0(Q—N)(e"(N)+e (N))>0,
>\
e”(M)=0(A—Q)(e"(N)+e (N))<O,
FIG. 3. Cartoon of the parameter space describing electronic
e (k)=0(k—B)(e"(k)+& (k))>0, excitations. The drawing supposes that=0<e;<e,<e3<gy4.

Each curve represents a set of the excitations that share the same
e (K)=0(B—k)(e"(k)+e& (k))<O. (2.37 energye. Only in the case,=0, i.e., when we are at the Fermi
surface, is the pairl(,\) uniquely specified. The dashed line marks
The functionse=¢*+¢~ are continuous and monotonic. out the ansatz we employ in the Kondo regime.

e* have been defined such that(k/)\) is the cost of add-

ing an excitation atk/\ while —g~(k/\) is the energy not captured by the cartoon in Fig. 3 where the specification

needed to create a hole lt\. Again, in Appendix A, we s unique. We have only a single possible p&ir\) for each

give alternative forms to the above equations governing thenergy in the case of spinhole scattering in finite magnetic

energy functionals which are more amenable to numericaiield at the symmetric point of the model. The reason behind

analysis. the reduction of the parameter space for this case will be
Having determined the energy of the excitation, we canmade clear in what follows.

easily relate it to its corresponding momentum. We consider For the other cases where the choice is not unique, the

the case oH=0 first. Comparing Eqg2.20 and(2.36 and  question becomes on what operative principle do we reduce

using dye (K) =2mppu(k) and dye(N)=—2mop (), we  the space. The key that we have identified to reducing the

see that parameter space is determining how the excitations behave
under the mag2.2). Only if they behave linearly under the
Poui(K) = &(k), map are they of use for it is only then that we can compute
their scattering amplitudes in the two-lead picture via EQs.
PobulN) = &(N), (238  (2.6).

Although we have refined the question, we cannot in gen-

wherepy, is the portion of momentum not scaling as 1/ : . oo : .
With this in hand, we can parametrize the scatteringeral determine whether a given excitation unfolds linearly in

phases of electronic excitations away from the Fermi surface :
Suppose we want to characterize a spialectron with en- can, howe_ver, make some progress when we are in the
ergy . (This is sufficiently general foH=0 as we know K(_)ndo regime of the Anderson mo_d@]e., U+2¢e4~0). In

spin | electrons will scatter identically. The possibl&and ~ tNiS regime we expect the scattering phase to vary on the

\ forming this excitation must satisfy scale of the Kondo temperatuilg.. The electron scattering
phase is determined by, and oy, the two impurity den-
e(K)—e(N)=¢gq. (2.39 sities. Of the two, only;y,, varies on scales on the order of

_ . ) . o Ty In contrast,oiy, is controlled by the much larger scale
Given Egs.(2.39, this choice automatically satisfiesy  \/UT. Thus, in computing electronic scattering phases away
=Pel (up to 1L corrections. _ from the Fermi surface at zero temperature, it is natural to

This parametrization leaves an unresolved issue. It doe@eep)\:Q its Fermi surface value, and vaky Specifically.

not in general uniquely specify a particular pakX), cru- g describe an electron of energy;, we chose k,\) such
cial if we are to actually compute quantities involving infor- {4t

mation away from the Fermi surface. We have schematically

illustrated the degeneracy of choices in Fig. 3: as the energy k particle, &(k)=¢g,
is increased, the multiplicity of pairk(\) correspondingly
Increases. N\ hole atA=Q. (2.40

In certain cases, however, the specification is unique. At
the Fermi surface, the degeneracy of pairs is lifted. This idVith this ansatz, we then have restricted the two-dimensional
already illustrated in Fig. 3. However, there is another cas@hase space\(k) of potential excitations carrying the quan-
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tum numbers of an electron to a one-dimensional subspacélnlike scattering at the Fermi surface where we could infer
Hence the scattering phases of electrons of enegggbove  behavior ate 4> —U/2 from behavior at 4<—U/2, we can-

the Fermi surface &l =0 are given by not do so for scattering away from the Fermi surface. Thus,
when we need to compute explicitly the scattering of gpin
objects—say, in computing the magnetoconductance out of
equilibrium—we will be restricted to the symmetric point
Eq— — U/2

k
Siee) = Op(ee) =2 f K pimp(k)

+277Jde Timo(N)s e(K)=eq. (24D
Q E. Returning to the two-lead problem

WhenH+0, we still have a simple relation between the !N this section we explore in more depth the map between
energy and momentum, i.e., we have the one- and two-lead models and its attendant problems. To

review the map in more formal terms cé&l}, , the integrable
excitations in the even and odd leads. We then describe the

e(k)=p(k)— 7, factorized scattering by the relations
— aide
e(\)=p(\). (2.42 E.D=e"DE.,
Hence withH+#0 we are still faced with an oversized pa- E,D=¢€'%DE,, (2.47

rameter space. But we conjecture similar relations to those in

Egs.(2.40 hold in constructing the electronic spinexcita- ~ WhereD is a formal symbol representing the impurity. Again,
tions: the phase’, is nontrivial, while §,= 0. Under the ma§2.2),

integrable excitations in the two-lead picture are given by
1 electron: k particle, e(k)=gg,
E1’2: Eei EO . (24&

A hole atA=Q. 243 Scattering of an excitation in the first lead is then described
The scattering phase of this excitation is accordingly by

K Q = +
Sea=27 | K pmglk)+27 [ SO\ o), FID=RPETTDE,
-D Q

or
e(k)=¢eq. (2.44 (Ee+Eo)D=RD(E¢+Ey)+TD(Es—E,), (2.49
With H#0 and consequently™ (k) not identically zero, we

can construct spif hole states by removinglastate and a
hole. The scattering phase of sgirholes is then equal to

where consistency with Eq$2.47) demands that the trans-
mission and reflection amplitudeR and T satisfy R+ T
=g'% andR—T=e¢'%. An implicit assumption in this deter-
i —n , mination of the scattering in the two-lead picture is that the
Onef &0 0) = Pimp(K) + Pimp( M), superpositiorE, + E, of an electronic excitation in the even
K 3 sector and an electronic excitation in the odd sector carries
=277f dk'pimp(k')+277f A\ oimp(N), unit charge in lead 1 and no charge in lead 2. For an arbitrary
-D Q fermionic excitation in the even and odd leads this will not
be the case. For example, imagine an electronic excitation in
e(K)=—eno- (249 the even lead that if decomposed into a plane-wave basis of

For this particular excitation we do not need the scatterindree electrons consists in part of particle-hole excitations:
ansatz. If we are to remove ) hole, we must do it foin
< Q. However, at the symmetric poinQ= —« and so the _ t ;
choice is unique. This fgct will allgw us to conclude that in Fe ; B4CeidFermi se
the large-field limit, our computation of the differential mag-
netoqonductance becomes exact. We also point ou'F that as + E Ak CZkCl Cekh“:ermi sedt- -,
e(k) is bounded below, i.eg(k=—D)=—H, we are lim- kkpkn PP %
ited in the energy rangg Q,H]) in which we can construct (2.50
spin 1 holes. '

With H#0, we must compute the scattering of spin  where herec, is a plane-wave electron in the even lead with
objects separately. To do so we again employ a particle-holgave vectork. The linear combinatiorE.+ E,, where the

transformation. We so obtain excitationE, is arrived at from Eq(2.50 throughc.—c,,
. ) does then not carry unit charge in lead 1. Rather, it carries
Oe(€el,—U—£q) = Spo(€no=2¢el:€d), indefinite charge in both leads. In this case the excitation
! : does not transform between the two pictures as indicated by
Sho(€nor —U =€) = Fe(€e/= €hoy€0)- (246  Eq. (2.49 and its scattering cannot be expected to be de-
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scribed by Eq(2.49. If E, was strictly a linear combination surface with the corresponding plane-wave electron excita-
of terms of the fornc!,|Fermi sed, this problem would not  tion. Given our reliance on this equivalence, it deserves fur-
surface. ther exploration.

Thus, in order to exploit the map between the two pic- This equivalence is, of course, strongly suggested by our
tures, we must limit ourself to excitations that behave lin-aPility o reproduce the Friedel sum rule and the fact
early under the map as described in E2.48. There are Lang(etﬁ demonstrated that plane-wave electrons at the
then two questions to be answered. Do such excitations iFermi surface scatter elastically, the hallmark of integrable

general exist? And if they do exist, are they sufficient for Ourexcitations. Nevertheless, the statement that the integrable

purposes, the description of transport properties. We hav%xcitation coincides with a plane-wave electron needs further

L . } . Clarification. If we denote the wave function of the integrable
two arguments that excitations with scattering described b%xcitation asin (XX xy), Wherex is the coordinate of
int\ X, X100 XN)

E.q.. (2.48 do exIst. More premsely, we have. two argumentsthe excitation and thg; are the coordinates of the electrons
giving t.hat excitations falling along some line in the tvvp— in the Fermi sea, anthee o (X,X1,... Xy) as the many-body
dimensional k,\) parameter space have such scatteringy,,ye function of the corresponding plane-wave electron plus
Moreover, we argue that the scattering of such excitations igermj sea, we know that the orthogonality catastrophe im-
sufficient to determine transport properties. _ plies the matrix elemenint|free e} equals

The first argument relies upon the transformation proper-

ties of the Fermi field&(x). Recall that in order to implement
the map between the one- and two-lead pictures, @(i9
that is transformed, i.e.,

(int|free ebzf_ dx dxg - dXn i X, X1+ XN)

X wfree e(vala---vXN)
=0O(1L),

and so vanishes in the thermodynamic limit. Thus it would
seem that in fact the two excitations do not coincide.
However, we are not interested in matrix elements involv-
ing full eigenstates of the Hamiltonian, but matrix elements
involving asymptotic scattering states defined far from the
(CelEe) #0, impurity. These are the states of concern in applying a

i Landauer-Buttiker formalism. With such states, we would
must also behave linearly under the map from one to tWQyayate the above matrix elements by restricting<0 or

leads. To see this more explicitly imagine making a modex' x;>0, depending on whether the state is ingoing or outgo-

expansion of the fielé.(x) in terms of the integrable exci- jng. with such a restriction, the orthogonality catastrophe
tations. Ask, couples toc., E., must appear in this expan- does not apply and

sion:

1
ce(X)—>‘72[cl(X)i02(X)]-

Thus any integrable excitatiog, that has a finite matrix
element withc,, i.e.,

(int|/free ep=1+O(1/L).

In this sense the excitations coincide.

With this equivalence so understood, the two
excitations—the integrable and plane-wave excitations—
where it suggests th#, is one of theE,,’s. Asc, andE, are  share the same transformation prop&ayld under the map.
linearly related, they must share the same transformatiodVe now exploit this fact by combining it with the behavior
properties. This then would guarantee that any excitation apf the low-energy sector of the theory. In this sector we can
pearing in the above mode expansion will have scattering@ke @ scaling limit and obtain a relativistic theory invariant
described by Eq(2.49. under Lo_rentz_ transforr_natlons. _Under such trgns_formanons,

But we can say more on the basis of the properties of/¢ €an imagine boosting the integrable excitations at the
c.(x). Because the underlying model is essentially free, we €/Mi surface, obtaining in the process an excitation with
know the single-particle spectral function of the model will [N/t e€nergy and momentum. However, the transformation
be given by properties of the excitation car!not_be altered by_the boost. As

such, the boosted excitation will still transform via E2.48
under the map. This again implies that there is a linekim }
parameter space describing excitations transforming in the

<CeCe>(E,p)0C5(E— p)-
Thus, for any given energi=p, we know that some inte- desired fashion. In this case moving along this line amounts
to making a Lorentz boost.

grable excitation with this energy and momentum must ap- Having argued that there do exist excitations transforming

pear in the mode expansia2.50. I_n _tef”_‘s of the tWO_' as Eq.(2.48, we now have to address whether the existence
dimensional parameter spadeX), this implies that there is ¢ o0y excitations is sufficient for our computations of
at least one line in this space describing excitations ransgansport properties. We can answer in the affirmative. To
forming as Eq(2.48 and scattering as E§2.49. ~ compute any given transport quantity in the Landauer-
The second argument for the existence of this line in thesyttiker approach, we need to sum up transmission ampli-
(k,\) parameter space relies upon combining the propertiefides over some given energy range. For example, if we
of the low-energy sector of the theory with the equivalenceyere to compute the zero-temperature out-of-equilibrium
of the integrable excitation we have constructed at the Fermionductance, this energy range would be determined by the

Ce(X)=E areierEer"_"' ) (2.5)
r
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difference of chemical potentials in the two leads. Nowmatch the number of degrees of freedom on the left and on
imagine looking at a particular infinitesimal energy interval the right of Eq.(2.52). At this point, however, an exact un-
within this range. As we know the density of states of thederstanding of Eq(2.52 is beyond our reach.
free electron in the lead and we know that the interactions in
the problem do not affect thi_s pgrticglgr guantity, we know IIl. LINEAR-RESPONSE CONDUCTANCE AT T=0
precisely how much charge lies in this interval. Now we are
able to construct an integrable state that transforms via Eq. In this section we discuss the linear-response conductance
(2.48 with an energy in this interval and with the same both in and out of a magnetic field at zero temperature. We of
density of states as the free particles. Thus our integrableourse note that none of Sec. Il is necessary to compute the
state completely exhausts the charge lying within this infini-linear-response conductance &at=0. Although we have
tesimal interval. Given that we are able to compute its transdemonstrated the Friedel sum rule using integrability, all we
mission amplitudg2.49, we can compute the contribution need for this quantity is the occupancy of the dot as a func-
of this infinitesimal energy interval to the transport quantity.tion of various parameters, something available from the
As a corollary to this, the manifold of other integrable original Bethe ansatz work on the one-lead Anderson model.
states arising from the Bethe ansatz equations are then nbiowever, the behavior of the linear-response conductance as
needed for the computation of transport properties. We deredicted by the Bethe ansatz has never been adequately ex-
not need to account for thd (\) states that do not transform plored, particularly in the case with a magnetic field. Indeed,
as Eq.(2.48. We also do not need to worry about statesthe original work of Ng and Leeshowing that the Friedel
consisting of k,\) excitations together with particle-hole sum rule could be applied to quantum dots employs a
excitations ofk and\ or, indeed, excitations involving more Hartree-Fock approximation in estimating the dot occupancy
complicated string solutions of the Bethe ansatz equation@ind so obtains some qualitatively incorrect predictions as to
The inclusion of such states in the computation of any transthe behavior of the conductance.
port quantity would amount to a double counting, given that Generally, the linear-response conductance equals
the line of ,\) states transforming as E@.48 completely
exhausts the density of states of free electrons in the leads.
Given all of this, we still must stress that our computation
of scattering amplitudes away from the Fermi surface is in
general only approximate. Although we believe that theravhere T, (¢ =0) is the scattering amplitude at the Fermi
exists a line of excitations in thek(\) parameter space for surface:
which we understand and can compute scattering, we do not
know which line. Rather, at the symmetric point of the model Ty (e=0)[?=sirf(mngy|). (3.2
we have only an ansatz of how this line cuts through param- .
eter space. However, we again stress that this ansatz is suI  the case witiH =0, the number of electrons on the dot as
ported by the nature of the two scales in the Kondo regime; function ofe, the gate voltage, can be computed e_xactly,
T, and JUT. Moreover, our ansatz appears to be extremehf*> has been g%ne Iby Ref.|28. WQH.WE 0, theleqllJatlons .
good given its agreement with the NRG results of Cettl. elcome more difficult to analyze and in general only numeri-
Fortuitously, there is one case where this ansatz is exac a solupons are available. However, at the symmetric point,
the description of spin holes. There thek(\) parameter LIS again possible to complaj%te n closed'form the numbgr of
space is one dimensional from the start and no ansatz RPN 1/1 electrons on the dot and so arrive at aE analytic
needed. We point out that the scattering of such holes proe_xpressmn foG. We first consider the case with=0.
vides by far and away the main contribution to the differen-
tial magnetoconductance at large fieldsAs such, we ex- A. H=0 linear-response conductance
pect the differential magnetoconductance to be exact at |n this case the Friedel sum rule tells us that
asymptotically large fields.

eZ
G= L [ITi(e=0)[*+|T (e=0)[?], (3.0

In order to determine for all cases how the line of linearly [ 81(e=0)
transforming excitations cuts through thk,X) parameter |Tm|2=SIrT2 T) (3.9
space we would have to have complete control of the change
of basis between the free electrons and integrable excitationghere the phasé,,, is equal to
There must presumably exist a complete set of such excita-
tions providing a proper change of basis of the form 81y =27y - (3.4

The number of electronsyy,,, , on the dot wherH=0 sim-
EY=2 CrpprFiFi- (252 piifies to

Here the notation is highly symboli& stands for any pos-
sible integrable excitation, whilE; stands for free electrons
with some spin and energy with the sum over the nunkber
the types, and the energies of such excitations. Presumably;,,(\) in turn is given by Eq(2.19 with the charge Fermi
there are some complex selection rules making it possible teurfaceB set to the bottom of the bandD:

Ngp/) = fsd)\ o'imp()\)- (3.5

125304-14



TRANSPORT IN QUANTUM DOTS FROM THE . .. PHYSICAL REVIEW B 66, 125304 (2002

0 2
> Q 12 ’ !
oimp(x):A()\)—f d\"ax(N = N)oimp(N"). (3.6)
Q ———- numerical
. . . . . . 15 ¢ closed form |
The Fermi surfac® of the spin excitations is determined by
the equations )
N 0 <
—= f d\ o(N),
L Jo 0.5
X’()\) 6 ! ! ! t s i
o(\)==——~ fQ d\a,(\'=N)a(N'). (3.7 Y e a3 5 3

These equations are solved explicitly over most of the rel-
evant parameter range in Ref. 28 using a Wiener-Hopf tech- FIG. 4. Plot of the linear-response conductance at zero tempera-

nique. ture in zero magnetic field. The parameters usedUse0.75 and
The solution breaks down into three cases according td =U/12. The dashed line marks out the conductivity derived from
the value ofQ describing the Fermi surface a numerical solution afiy while the solid line represents the closed-

Case (i): If we are close to the symmetric point(2 ~ form solution described in this section.

+e4<+/(UT)), then Q<0 (at the symmetric pointQ

— ) and we have The first two terms are found in Ref. 28, although we dis-

agree by a factor of 2 in the term @¥(1 *—Q) while the

1 1.2 (-1)0 remaining term was computed by the authors alone.
Ngj =5— G, (im(2n+1)) Case(iii): In the final case we are far from the symmetric
2 qvzn=o(2n+1) point such that (/2+&4)> Ul and Q>I|"t=u/8r
" —TI'/(2U). We then have instead
xJ dkA(k)e™ 2ntLmel0-Q) (3.9
o 1 = dw 27w(1N -
ndmzz—mJ —(1/2+w)e*™ =)
whereG, arises in factoring the kernel of the integral equa- ™™ Jo W
tion (3.6): —w
Xsin(2 )(W (3.14
‘ sin27w)| —| .
G - V2 (—iw-i—s —iol2m 39 e
+(@)= Fi-jiw/2m)\ 2me ' with Q in this case determined by
We include above an extra factor efomitted from Ref. 28 L 1 .
through a typoQ is determined implicitly by the equation Q=q" + Zln(Zweq ),
2eqtU V2.5 (—1)"
- = 7mQ(2n+1) i eqt+U/2
ot w ey Giliment == (315
(3.10 veur

This differs from Ref. 28 by a factor of 2. This same factor of  In Fig. 4 is plotted the linear-response conductance as a
2 is missing from Eq. 8.2.38 of Ref. 28, which should, we function of the dot chemical potentiat,y>—U/2 (for &4
believe, read < —U/2 particle-hole symmetry tells us the plot is a mirror
image about the = —U/2 axig, according to this closed-
form solution. For the purposes of comparison, we also
present the conductance derived from a numerical evaluation
of the equations determining; . The vertical lines divide the
Case(ii): In the next case the location of the Fermi sur- plot according to the three cases of the closed-form solution.

Q
dx o(M). (3.12)

1(8d+U/2)=J

ko

face satisfies the constraint We see that this solution best matches the numerical solution
in caseq(i) and (iii). We also see that the solution makes a
, u T discontinuous transition from cage to case(ii), a conse-
0<Q<I""= sT 2u" (3.12 quence of the approximate nature of the solution in ¢age
As expected, the linear-response conductance rises
In this caseng;,| is computed to be smoothly from zero at large, positive values of to its

maximum possible valuee?/h at the symmetric point of the

2 .
o T LT V2 1 a2 model,U/2= —g4. The ratio of the values dff andI’ cho-
Ngj/ =2-v2+ 62 (1 Q) (24)2(I Q) sen for this plot corresponds to that of the experimental re-
alization of a quantum dot discussed in Ref(Note that our
+0((171=Q)3). (3.13 definition of I" is related to that of Ref. 1 bi/=1"/2,)
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FIG. 5. Plot of the linear-response conductance at zero tempera- ,§
ture for various values of the magnetic field. By particle-hole sym- % 1.5 :
metry, the conductance for values&f< —U/2 is obtained by tak- K]
ing the plot's mirror image about the axisg=-—U/2. The 3
parameters used até=0.75/7D (D being the bandwidthand I =
=U/12. For these parameters, the Kondo temperature at the sym- 1 P SR el
metric point isT,=0.02508". 0 0.5 1 1.5 2
12 v T T 5 T L T ] T
B. H#0 linear-response conductance 10 1
1. Solution away from the symmetric poirite ;=>—U/2) g 1
Again, the transmission amplitude of the electrons is §
given by Egs(3.3) and(3.4). But in this case, &
° 3 :
ndT: J;depimp(k)"_ fQ dA Uimp(}\)v

0 0.5 1 1.5 2
HT

ng, = dex Fimp(N), (3.16
Q FIG. 6. Plots of how the conductance peak evolves with increas-
where gy, and o, are given by Eqs(2.19. ing magnetic field. In the top panel is a plot of the location of the
In general, the equations far;y,, and oy, cannot be peak Wt_wile the middle pgnel records the peak height and the bottom
solved analytically. Therefore, we resort to numerical soluPanel gives the peak width. The parameters usedJar®.75/mD
tions. In Fig. 5 we plot the result. Presented there is théP Peing the bandwidthandT"=U/12.

linear-response conductance as a functionpofor a variety _ _ _
of magnetics fields ranging fromd =0 to H=3T. voltage g4 at which ny;, =1/2 splits, leading to a corre-

As H is increased from zero, we see two effects: the valuéPonding split in the conductance resonance. For example,
of &4 marking the conductance peak shifts away from théor Iargel—_l the resgnance associated with the spaiectrons
symmetric pointey=—U/2(=—6T), while the magnitude 'S @Pproximatelye/h and occurs aH/2.

of the peak decreases. This is as expected. The Kondo tem- e see for example in Fig. 5 that wheh=1/100 the
perature for the model is given by Refs. 31 and 28 to be, Kondo temperature is never exceeded regardless of the value

of the gate voltage and so we see little consequent suppres-
U 5 sion of the conductance. However, for the next largest value
T=\/ 5 elealeat V- (8.17  of H, H=I/15, the Kondo temperature is exceeded in the
Kondo regime and we see a corresponding depression in the
and so varies strongly as a function of the dot chemical poeonductance in this regime. For the largest valueHof
tential. WhenH>T, we expect the Kondo effect to be sup- =3I", we see as expected that the peak value is approxi-
pressed and any consequent enhanceme@ttm disappear. matelye?/h and that it occurs roughly aty=H/2.
For values ofs 4 away from the symmetric point,, is rela- We note that the linear-response conductance curves are
tively large and thus strong fields are needed to suppress ttsymmetric about their peak value. This differs from the pre-
conductance. Closer to the symmetric poifi,is exponen-  diction based upon a Hartree-Fock computation of Ng and
tially suppressed and weak fields are sufficient to destroy theee! But it is in agreement with Meir and Wingreén.
Kondo effect. The conclusions in the above discussion are reiterated in
WhenH=0, a conductance maximum o&2h occurs at  Fig. 6. There we plot the behavior of the conductance peak
the symmetric point. At the symmetric poimty;, =1/2, and  as the magnetic field is increased from zero. In the top panel
so each spin species makes a correspondgmg contribu-  of Fig. 6 we see that the location of the peak rapidly moves
tion to G. As H is increased to large positive values, the gateaway fromey= —U/2 towards the large field value &f/2.
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The straight line in this panel indicates the behavior of the 2

peak if interactions were absent. Similarly, we see the peak

height in the middle panel of Fig. 6 change from its maximal LN, | T closed form
value of 2%/h atH=0 to e?/h at large fields corresponding numerical
to a contribution to the conductance of a single spin species. = 18 |

And finally in the bottommost panel of Fig. 6 we examine e

the width of the peak. AH=0 the width of the peak is o L7

approximately 1P. However, in the large field limit this

settles down to R appropriate to the conductance being gov- L6 |

erned by the Breit-Wigner formula, 15

¢’ re H/T
G=————"7"-7, 3.1 k
h [?+(eq—H/2)* (319
) ) ) ) ) FIG. 7. Plot of the linear response conductance at zero tempera-
appropriate to a single noninteracting electron species. e at the symmetric poineg=—U/2) as a function of magnetic
] ] ] field. The parameters used dde=0.75 andl’=U/12. The dashed
2. Solution at the symmetric pointeq=—U/2) line marks out the conductivity derived from a numerical solution
Although we cannot in general express the magnetocor@f n¢ while the solid line represents the closed-form solution de-
ductance in closed form, we can do so at the symmetrigcribed in this section.
point. At the symmetric point, the Fermi surface of the spin

excitations,Q, goes tox. The density equations then sim- > 1 18
S Y | dom=5-5 | kom0 @29
1 , » This is established by integrating”.., Eq. (3.20. We can
Pouk(K)=5—+9"(k) wd)‘ a1(9(k)=N) opui(N), thus focus solely upon thedistribution.
In order to evaluate the phase shift in the equation above,
X' (\) w we are thus interested in computing the integral
Thuik(N) = — —j_ (N = N)opu(N') 5
5 f_ dkpimp(k)ZZMiy (3.29
- dk a;(A—g(k k), 3.1 . . L . .
f—o 10 =900) pou(k) (319 which, as indicated, is directly related to the impurity mag-
netizationM; . Using the same Wiener-Hopf technidfide-
and termined this integral in the cagg>H to be
— o i ]
T 3=0 (2n+1)
aimp<x>=A(x>—f_wdx (' =N oimp(\") b:im(i E)_ (3.25
= \H V 7e
_ jB dk a(A — g(K)) pimn(K). (3.20 Combining this with the expression for the Kondo tempera-
-D mP ture in Eq.(3.17), we have for the scattering phases at lead-

i der inH/T
Here the limitB is determined by ng orcerin k

é_H

. B 5eT:277_5ei:77
5 _Zw_ﬁdep(k). (3.21)

a
1+ 2—_|_k , (3.26

_ . _ ~ which in turn gives the magnetoconductance as
As the electrons in the leads are noninteracting, the first

equality is a result of Pauli paramagnetism. 2 w2 (H\? H\4
The phase shifts are given by G(H):zﬁ 1- 16 T_k +0 T_k ' 3.27
9 B The quadratic deviation from the maximal conductance has
ey =2m— O =2 o d\ Timp(N) +27 wdkpimp(k) the expected Fermi-liquid form.

In Fig. 7 is plotted how the magnitude of the linear-

B response conductance at the symmetric point changes as a
=7t 7"Jlmdkpimp( k), 322 function of H/T, (for smallH) according to this solution. We
plot it against the numerical solution, and we obtain agree-
which follows as ment at worst of 1.5%. The disagreement becomes larger as

125304-17



ROBERT M. KONIK, HUBERT SALEUR, AND ANDREAS LUDWIG PHYSICAL REVIEW B66, 125304 (2002

2 , ‘ - : their distributions determined by a thermodynamic Bethe an-
satz, employing the zero-temperat@enatrices. Finally, the
conductance would be determined by the zero-temperature
+—— closed form impurity scattering matrices as in Ref. 24. A potential diffi-
————— numerical culty in this approach would come in understanding the glu-
ing necessary to form excitations carrying electronic quan-
tum numbers as it only such excitations that can be mapped
\ back to the two-lead picture.
05 N ] Whatever the likelihood for success, one can see that this
____________________ way of proceeding requires considerable technical expendi-
0 - ‘ - E—— ture. It turns out to be easier to determine the thermalized
0 02 04 06 08 1 ground state directly from the Bethe ansatz, i.e., by dealing
HT with bare excitations rather than first determining the zero-
temperature ground state, classifying its “physical” or
%dressed” excitations and expressing the thermalized ground
state in terms of these excitations. On the other hand, with
line marks out the conductivity derived from a numerical solution the ‘?I“,‘%”t“m Hall edges, it was the natural way to proceed as
of ng while the solid line represents the closed-form solution de-the initial data om_a had at har(dn.th UO calculations what-
scribed in this section. soevey are precisely the excitations about the zero-
temperature ground state together with tt®matrices, both
. L _ bulk and impurity.
H increases as the closed-form solution is only validHat 14 hroceed then, the first step is to identify all solutions of
<Tyxe ™. BeyondH>T,, we rely entirely on anumerical o Bethe ansatz equations. These are of three typesk real
soluthn to determlne_the magnetoconductance. We plot th§tates, spin complexes associated with comfilexboth of
behavior ofG(H) in Fig. 8 up toH=T". which we have seen as the ground state at zero temperature
is composed of such excitationsand spin complexes not
associated with compleiXs. Below we give a more specific
IV. LINEAR-RESPONSE CONDUCTANCE description together with the quantum numbers carried by
AT FINITE TEMPERATURE each excitation. The spin quantum numbers are measured

In the previous section we focused upon scattering at théelative to a vacuum carrying spi/2 whereN is the num-
Fermi surface. In this section, we discuss a problem thaper of particles in the system. _
requires us to understand scattering at finite energy: the (i) Realk's: These appear in the ground stateTat0 in
linear-response conductance as a function of temperature. \ae presence of a magnetic field. They carry charged no
compare it to the NRG results of Costi al. and find excel- SPIN. _ _ _
lent agreement. This is important as it indicates that we have (i) n-spin complex with no associatéts: An n-complex
an essentially correct description of the low-energy scatter"volvesn \'s organized as
ing states, i.e., an excellent approximation to the right-hand
side of Eq.(2.52.

Computing the linear-response conductance at fihitea AVU=\"+i
complicated matter. Even though we only consider glued
charge and spin excitations as explained in Sec. Ill, we now
have to compute their scattering matrix—thé& borrection Here\" is a real rapidity and is known as the center of the
of their associated momenta—in the presence of a “thermaleomplex. Then-spin complex carries spif n.
ized ground state.” This ground state is no longer composed (iii) n-spin complex with 2 associated compleis: The
of merely realk states and two-string bound states of spinn-complex is organized as before,
and charge as it was a=0. Rather, all the possible solu-
tions of the Bethe ansatz equations of the model make an
appearance. Thus, to begin the computation of the scattering A= )"+
amplitudes at finitelT, we give the complete list of excita-
tions in the model.

It is useful to understand how the following calculation put now there are twé's associated with eack™:
differs from the exact computation of the conductances in the
fractional quantum Hall probleff. The logic of Ref. 24
would first require the identification of all the excitations
above the zero-temperature ground state. We then would
need to compute both the bulk and impurity scattering ma-
trices of these excitations. Having done this, the second step
would be to turn on the temperature. The thermalized ground
state would then consist of seas of all these excitations with

1.5

G(e’/h)
o

FIG. 8. Plot of the linear-response conductance at zero temper.
ture at the symmetric pointg=—U/2) as a function of magnetic
field. The parameters used dde=0.75 andl’=U/12. The dashed

2

n+1
) i=1,...n. (4.1

n+1
T—j), j=1,...,n, (42)

n

+njy—y N
g(k ))\+|2

+1—j), ji=1,...n,

g(k”i)=)\”+i(g—j). 4.3
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These excitations carry charge@ and spin—n. The sim-  are in the thermodynamic limithe object of our concejrf®
plest of these excitations& 1) appear in the ground state at  We can derive equations constraining the particle-hole
zero temperature. Now the claim is that these are solutions tdensities of these various excitations in the same fashion we
the Bethe ansatz equatiof®.7) and (2.8) and indeed they arrive at Eqs(2.11) from Eqgs.(2.7) and(2.8). The result is

1 Ak N ,
po(k)+pn(K)= 5+ = +g'(K) 2, fﬁwdxanw(k)—x)[apn(xwcrpnm],

o0

xn(N)  BL(N) [ -
7 E ‘f,xanm—g(k))pp(k)—mzzl Ld"'Anm“\—h’)Ume\’)-

Ohn(N)=—

oo

a0 = [ 2= g00pp0= S [ N AN )

=1

1/2

n U
Xp(N)=+y2UT R%)\—HE +n §+8d
_ 1 1 1/2
An()\)z—;(%\&n()\)z—;ﬂ)\ Re&(—\/ZUF )\+i§ +U/2+ ¢y
1 n-1 i 1/2 i 1/2
_E(;*E {5(—\/2UF()\+i§(n—2k) +U/2+¢gq4|+ 6| y2UT )\+§(n—2k) +U/R2+¢eq4| . (4.9
k=1

The kernels in the density equations are given by - % -
P00 =26,00+ [ dkpTP {0 -0 (k)1-27)
2n 1

M= Ay

+ 2| VIS Jopi), (4.9
Anm()\)zénmé()\)+a|n—m\(7\)

min(n,m)—1

+2 gl Qn—m/+2k(N) +ans m(N).

with %, given by
min(n,m)—1
ZarM)=(On-mN)=2m) 42 2 (Op-mis2N)
(4.9
Here p, is as before whilery,, denotes the particle/hole

densities ofn-strings associated with compléds (in Sec. Il
we denotedo,,, by o) and O-;JIhn denotes particle/hole

—2m)+ (Opsm(N) —2). (4.7

We again can read off thell/contributions to the momenta
and the densities and arrive at the all important relations

densities ofn-strings not so associated. A P™P(K) = 27p™P(Kk),
As stated in the introduction of this section, we construct
the electronic excitations in the same fashion as at zero tem- AHPMP(N)=—2m0™P()\), (4.8

perature, the only difference being that the excitations are ) . )
now over the thermal ground state, not tie0 ground Still valid at finite temperatures. The scattering phases, as
state. In order to describe the scattering amplitudes we thu§€y are given(as in Sec. Il from the impurity momenta

need to specify the impurity momentum of thgk) and ~ P™P(k) andpi™(\), can be computed from a knowledge of
o1(\) excitations. The finite-temperature momenta for suchp™ ando™”. For example, a spin-up excitation constructed
excitations are as followgompare Eqs(2.20]: from a charge excitatiokand an=1 spin-charge complex
has a scattering phase of the form
P =otk)+ S, [ {ag(-N1-27) 8e=P™ (k) pI(N)
n=1J-w
" -
. . _ i Q [ ’
X[O-mp()\)+0£)|r[|]1p()\)]! —Zﬂf_deplmp(k)+27JA dx O'gnp()\ ), (49)
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identical to Eq.(2.23. tron. AsH=0, we will simply focus on spiri electrons. In
Another piece of the prescription of computing the scat-forming a spin? electron we add & excitation inp(k) and

tering amplitudes at finite temperature is the energy assoca \ hole ino1(\). The energy of the electron is then

ated with the charge and spin excitations. The energies of the

various excitations can be derived as in Sec. Il with the result ea=e(k)—e(N). (4.19

o[ f(—ep(N)) We again will only allowk to vary in varyinge ¢ while fixing
e(k)= k+Tn§l _ax In( f(_gn()\))) an(A—9g(k)), \ to some\, . While atT=0 we fixed\ to beQ, its value at
the Fermi surface, this is not appropriate at finite temperature
2 % as the Fermi surface has become blurred. However, we have
In[f(e,(N\)]=— TX”()\)_ f dk g’ (k)In(f(—e(k))) another way to characterize the correct choicexfoat least
o at the symmetric point, which we give in the following sub-
o0 section.
X an(g(k)—N)+ >, f d\' AL (A —\) We are now ready to specify the final equation governing
m=1 the finite-temperature linear-response conductance. Given
that we construct the electronic excitations by gluing to-
gether a fixed spin excitatiax, and a range ok excitations,
" these excitations are distributed according to the Fermi dis-
In(f(e/(N\))=— f dk g (K)In(f(—&(k)))an(g(k)—\) tribution, as they must be. Thus the conductance at fihite

XIn(f(—em(X'))),

given by
: 2
+ dN AL A =N)In(f(=g/,(N"))), e [~
2, | AN e 6(M=25 | deul =, f(ea) (el
(4.10
where f(g)=[1+expe/T)] ! is the Fermi distribution. P } B _
These equations are arrived at by relating the densities to the [ T(ee)|*=sir® 2 dellee=2(k)=2(ho) )| (4.19
energies via )
Here the first formula is the standard LandauettiRar for-
expe(k)/T)=pn(K)/pp(k), mula applied to the electronic excitations discussed in Sec.
I, while the second formula follows from the expression of
explen(N)/T)=oann(N)oqp(N), |T(£e)|? in terms of phase shifts in the even and odd leads,
, ) ) and &, is given by Eq.(4.9) with A=X\,. Finally, we have
expen(N)/T)=opp(N)opp(N). (41D used the key result that the density of statpsr unit of
This relation is chosen so that the energies determine th rr;erzrzggqfo(rzlﬂigelectronlc excitations is a constant as follows

particle-hole distributions in the same fashion that they do i
the case of noninteracting fermionic particles, i.e.,

pe(K)=[pp(k) + Pk T (2 (K)), 4.12 So far, we have discussed the computationGgfT) in
and likewise foro,,, and o,’m,h. This definition is com- general terms. In this section we specialize to the symmetric
pletely consistent with that at zero temperature. Taking point (4= —U/2). There are two reasons to do so. At the
—0 in the above recovers Eqf2.36. This is a general symmetric point the equations become more amenable to
feature of energy functionals in a thermodynamic Bethe ananalysis. However, more importantly, it is only at the sym-
satz analysis. However, here the energies are related to theetric point that we are able to compute the conductance, for
densities in an additional way indicative that the bulk of theit is only at this point that we can compute electron scattering
system(i.e., the leadsis indeed noninteracting: for arbitrary energy, as required by Ed4.15.
The problem is a technical one. The energy functional
1 e(k) is bounded below. For example, as the analysis of Refs.
pom(K) =5 dke (k) T(=e(k)), 32-34 shows, at the symmetric poik) satisfies

Computation at the symmetric point

1 e(k)=—TIn(3). 4.1
Unp/h()\):_E’?)\sn()\)f(isn(x))a (o 3 419
Thus we are unable to compute directly electron scattering

1 phases for energies below(k=—-D)—e(A=\,). Rather,
Trph(N)= Z—&As,g(x)f(is,;()\)). (4.13  for energies below this, we must compute hole scattering and
™ relate this to particle scattering via

Having specified the energy functionals, we can now de- N ;
termine the particulak and\ we choose in creating an elec- Oe(€el,8d) = Opo €no=Eel, — U~ £q), (4.17
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valid whenH=0. In order to exploit then this relation, we
needsq=—U—gq, i.€., e4=—U/2. To computes),, we P™(K)=A(k)+g’ (k)z f d\ ay(g(k)— )\)(a'mp
remove ak and a\ hole. Thus akin to Eq(2.45 we have

+ O"mp)()\)

Sl ene) = 2wf Ak’ pimp(K’ >+2wadwoimp<w>,
o o) =, A)—f dk p™(k)ay (A — (k)
e(k)=—gpote(A=N\y), (4.18

0

with the difference\ ,# Q ande(\ ) #0. —f A\ 2 AN =N\,
With this, we can now consider the simplifications in the e om=t

structure of the equations that arise at the symmetric point.

Following Re_f. 28, we can recast the equations (_jefining the Urr]lr;np()\)_f dkp'mp(k)an(x—g(k))

energy functionals in a universal form for energies compa-

rable toT,, the Kondo temperature. Define

1 [2A —J d\’ 2 AnrN =N [P\,
dn(N)= 8n()\_ In(?))v -

(4.22
1 1 [2A We will recast these equations in a simpler form. We use the
$1(9(k)) = — $8< —g(k)+ ;In(7) ) , inverse of the matrixd,,,
) L lan AN = 8amd(N) =SV (Same 1+ Sam-1), (4.23
bre1(N)= Tén| “A T ;lI’I(?) ) together with the equalities
LUT S5 1s(>\—>\"):f AN ALY N=N)ay(N —\"),
A= : (4.19 " c nm m
2
In our definition of ¢7, we rely upon the fact that in the Zn()\)zf dkA(k)ay(A—g(k)), (4.24

energy range we are interested érfk) depends solely upon
g(k). With these definitionsg,, and ¢,, satisfy the equations g rewrite Eqgs(4.22) as

e0=- | avso-an pR0=AK+'(K) [ aN s -gEy00)

XIN(F(Tén-1(N)F(TE€q11(N))) — 5pie™,
(4.20

where &,= ¢, or ¢, ands(\)=cosh (m\)/2. These equa- lmp()\)+glmp(}\)
tions have been analyzed by Refs. 32—34. In practice, theyp
are highly accurate in determining energies up to scales of _ _
tens of T’s. This is a consequence of two scales existing in zf dN'SON=N")[apP i(N )+ o ()]
the problemT, andJUT. These equations focus on the first o
scale while throwing out information on the second. But be-
causeT,</UT in the Kondo regime, this approximation is +5nlj dkpi™(k)s(A —g(k)),
extremely good.

With these equations in hand, we can determine the
choice of\,. At the symmetric point we expect the scatter- ¢
ing phase to be symmetric in energy, i.e.,

~g' (0 | st g k)OO0 + a0V

/|m ()\)_'_ /|mp()\)

- [7 avso-a oo+

Oel() = el — &), (4.2
regardless of the temperature. We thusNXix \, such that
qu. (4.21) is satisfied. P ° +0m J dk py™(k)s(A —g(k)). (4.29

We now derive the specific equations for the impurity
densities at the symmetric point. These equations have th&/e can further simplify these equations. For energies
initial form < UT", it is an excellent approximation to take
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1 — ‘ 1 o
0.8 ; 0.8
g 0.6 | X 1 g 0.6
Nﬂ) LY
S 04 ! < 0.4
o ’ Bethe Ansatz N\ \\ © : © experiment
-=- 1-loop RG AR — Bethe Ansatz
0.2 | + NRG . \‘\( 1 0.2 R
0 5 2 = Q 1 2 05 =) = 0 1 2
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T/T T/Ty

FIG. 9. Plot of the scaling curve for the conductance as a func-  FIG. 10. Comparison of the data from Ref. 1 with the computed
tion of T/T,.. HereT, is as defined in the work of Costit al. and  scaling curve for the conductance. We now plot on the abscissa the
so there are no free parameters. Our computation was carried out gitio of the conductance with the maximal possible conductance.

the symmetric point in the Anderson model;+2e4=0. For the experimental realization in Ref. 1, the dot-lead couplings
V., are asymmetric and the conductance does not achieve its uni-
g’ (k) 1 tary maximum 22/h. However, the scaling behavior &/ G, is
) cost [ g(k)—| 1)) expected to be the same.

% - We have arrived at this value by fitting the plot in the region
=A(k)+g' (k) fﬁxs(’\ —g(k)Ai(N), T/T,<0.1. The error is systematic in nature, arising from the

arbitrary nature of deciding the region over which to fit.
U T We also compare our results in Fig. 9 with Ref. 13. It

[ p—— (4.26 appears that the logarithmic dependenc&in

1/1n2
Together with this approximation we can take G~ 1/n*(T/Ty),

characteristic of weak coupling and arising from a one-loop
RG ! should only be expected to become qualitatively de-
o scriptive for values ofl/T in excess of about 20. This ob-
om=0, m>1. (4.27  servation will play a role in our determination of the validity

. . . oJ our computation of the zero field differential conductance
These densities are identically zero at zero temperature an

are governed by the energy scal®/I". Since we work at N the next section.

. . The quality of the fit is a good indicator of the validity of
temperatures far below this scale, they can be safely approxj, . approach in the Kondo regime. We expect from argu-

E:nai[ebde asil\zlzzjoﬁlmtgrit:halﬁ,y %?O?erasi'gr:ggnenergy equationg e g given in Sec. Il that our methodology should be char-
We do so and plot, in Fig. 9 as a function off/T acterized by errors of orde?(T,/\JUT) <1, and as such we
Comparing to the NRé compﬁtation of Costial. we firkﬁi should see an exact match between our scaling curve and the

. ! . NRG results. We are thus uncertain whether the slight dis-
excellent agreement for energies up to sevEgalthe regime crepancy between our results and the results of @ost, at

where one would expect j[he NRG, .by Its very nat.ure, tq bFT' rgeT is a consequence of the some unguessed shortcoming
most robust. We emphasize that this agreement is achlevqﬁ our approach, some problem with the NRG, or some dif-

with no f_::[t'ng rr)]arameters. (?]ur def|r(;|tLonCof th_el l;ondo tem- ficulty with our numerics. While we cannot speak to the first
g?ﬁtzrieﬁrfi.ﬁiqeu%arr?aetﬁseto?ttﬁiss,e proﬁler?tlsvé I?r?gyvsfhe two, we do note that our handling of the numerics opens up
functional form of the conductance Bit<T is, the possibility for error at larg&/T, ; the numerics are fash-
k ioned so to more readily reproduce the low-temperature be-
havior.
. (4.28 We end this section by comparing in Fig. 10 our scaling
curve with the experimental results of Ref. 1. We see that we
Costiet al,2* based upon results borrowed from Refs. 35 andind excellent agreement. We point out, however, that while
36, computed: to be we compute the scaling curve at the symmetric polht2(
+e4=0) of the Anderson model, the data in Ref. 1 were
s taken away from the symmetric point, but still in the dot's
=715 =6.08... . (4.29  Kondo regime(The Kondo temperature obtains an exponen-
tially suppressed minimum at the symmetric point and so is
We find numerically usually below the temperature that can be experimentally
realized. In order to experimentally see Kondo physics one
c=6.05+0.1. (4.30  then must move away from the symmetric pointThe con-

imp_
ohr =0,

G(T/Ty) 2¢* ( 1 r +
= — —C_ .o
k h Tk2
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1 P VN 2
& —H,

FIG. 11. Sketch of two leads attached to a quantum dot. Each
lead is, as indicated, at differing chemical potentials.

tinuing applicability of our scaling curve suggests a certain 1 2
robustness to the scaling behavior.
R )
V. OUT-OF-EQUILIBRIUM CONDUCTANCE o S
FIG. 12. Sketch of the distribution of particles in the leads when
A. Basic formalism 1> g

In order to compute the nonequilibrium conductance we

imagine placing the reservoirs attached to each lead at ditV® could also compute the corresponding scattering ampli-
fering chemical potentials as pictured in Fig. 11. This on theudes. Such amplitudes, however, would only differ from the

face of it poses a problem. In doing do we add a term to th@"iginal by an overall phase. As the conductance depends
Hamiltonian of the form upon the absolute value of the scattering matrices, our an-

swer would go unchanged. The sole consequenceof
# uo is then felt in the distributions. In this sense, then, the
H,me dx CI(X)Cl(X)JFsz dx c}(X)Ca(X). problemis akin to scattering between quantum Hall edges.
(5.1) We now proceed with the actual calculation. Here we
keep 4 constant and imagine varying, alone. The com-
This term does not behave well under the map into the everﬁutaﬂon divides itself into two caseg:;> u, and u,> .
odd electron basis in as much as the odd electron no long&ke examine the former first.
decouples. It would thus seem it is not possible to employ The caseu,> u, is pictured in Fig. 12. As we are at zero
the results of the previous sections in analyzing the out-oftemperature, particles will only diffuse from lead 1 to lead 2.

equilibrium system. The current is thus given by

However, we must ask what we need to compute the non-
equilibrium conductance. We need to know the distribution e (o _— ) 1 5
of particles in each of the two reservoirs. And we need tod(#1,42)= n de[| Ty (e, ) [*+|T] (&, 1) |7].
know the scattering amplitudes of said particles. For the par- Hemi (5.2

ticle distributions, we note that the particles in the two res-
ervoirs do not interact with one another. Knowledge of oneWe have expressed the current as an integral over all ener-
distribution is not needed to determine the other. Thus, t@ies ranging from zero t@,— x,. We note that the above
compute the distribution of particles in reservoir 1, we canintegral reflects that the density of states as a function of
set u, to be whatever is convenient and likewise for theenergy is constant. Our particular choice of limits in the
determination of the distribution in reservoir 2. This is nota-above integral is a consequence of our conventions: our
bly different from what occurs in the scattering of quasipar-equations governing the energy of the excitatipsse Eq.
ticles between quantum Hall edges. In the boundary sinet2.36] give the Fermi energy of lead 1 as 0. Itis only in this
Gordon formulation of this problem, the two reservoirs—oneenergy range that particles are available to scatter in lead 1
reservoir of positive solitons and one of negativeand that are not Pauli blocked in lead 2. We choose energies
solitons—do interact with one another. The above devicdo parametrize the particles as opposed to either of the pa-
would thus not work in this context. rametersk or \. These latter parameters are not convenient in
We emphasize again that the distribution of particles wedetermining Pauli blocking in that witly; # u, the energy
compute are not the plane wave modes of an electron bdunctionals for the leads are also not equal, is.(k/\)
rather are “dressed” electrons. But they do share severa¥ e,(k/N). We note that even though, and u, are bare
features with plane-wave electrons. Beyond carrying thechemical potentials, they are the correct ones to use in deter-
same quantum numbers of electrons, they share the samaning the current. They are not renormalized by interac-
constant density of states as a function of energy as thtons, understandably, as there are no interactions in the bulk.
plane-wave electron modes. Moreover, their dispersion reld-Technically this may be seen as follows. Changing the
tionship is the same as the plane-wave modes. chemical potential in a lead bgu yields a change in the
Having dealt with the computation of the distributions, we number of particleSAN=A n/7. The density of states per
now turn to the scattering. Here there is no problem. As weunit energy of the\ particles filling the ground state is
are using an integrable basis, we are able to compute the(e)=1/27. As each\ particle is a bound state of two par-
scattering in the context of the in-equilibrium model. Theticles, the shift in the Fermi energy induced by the change in
scattering of the basis of integrable excitations is unaffectedhemical potential is preciseliu.]
by the differing chemical potentials in the leads. We could, if It is worthwhile commenting on the dependence of the
we wished, adopt a basis éfressell excitations that was currentd uponu, andu,. Although the limits governing the
aware of the finite voltage. Although technically challenging,energy range of excitations contributing to transport are a
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function of the differencew,— u,, of chemical potentials, 5ﬁ$(8ho>,u1,8d—,u1)

the current’s dependence uppn and u, is more compli- )

cated. This reflects the dependence of the transmission am- =85 (8e=€no— U—g4+ 1)

plitude T*~2 upon u, alone. In particular, in the Kondo p ~

regime of this problem, the Kondo temperature that appears ZZWJ’ dk’pilmp(k’)+27rJQd)\ O-ij;np()\)1

in the expressions for the current will be a function of -D Q

— &4 and will not depend at all upop.,. e 1K) = £pg— po1. 5.6

Appearing in Eq.(5.2) are the electron scattering prob-
abilities T1~2 from lead 1 to lead 2. The amplitudé —~2is  We have no similar constraint on the energy range for $pin
given from Eq.(2.6): scattering. But we can see another issue arises. We are able

to compute spirf hole scattering for a dot chemical potential
1 egq— 1> —U/2, while for spin| hole scattering we can only
1— 2_ o 1. — erform the computation fogq— w1 <—U/2. We are thus
[T (e o) = sir® 2° (no="2:8ap1) |- (53 IFi)mited in the casz of nonzer‘é t(’;L%he symmetric point 4
—u1=—U/2. But given our belief that our ansatz for the
The phase for an electron below the Fermi surface, as indscattering states is only valid near the symmetric point, this
cated above, is computed by exciting the corresponding hol&onstraint costs us little. . .
As indicated in the introduction to this section, scattering in 10 compute the energy functional relating the paramieter
this case is determined solely by the dynamics in lead 1. t0 the energy we employ the equations

To computes,,, involves exploiting particle-hole transfor- H 5
mations. As such, it is worthwhile to consider the cases of el(k)=k— 5 ,ul—f dx ef(N)a;(N—g(k)),
zeroH and nonzerdd separately. WititH=0, we can com- Q
pute the scattering of a spinhole by relating it to a spir ~
electron. According to Eq¢2.25 and(2.41), we have eX(N)=2x(N)—2u,— j(;?d)\’sl()\’)az()\’—)\)

511 ~ _ B
ol ho” £ 24 1) + [ dkgmoetmaen-n. 67
=85 (8e= &no» —U—&q+ 11) _ P o
These equations are identical to those of EQs36), but for
the presence of.;. The Fermi surface® andB are deter-

K ~
— 1 Q 1
_wa_odkpimp(kszfQ AN Timp(M), mined as before by

e'(A=Q)=0,
el (K)=eno—p1- (5.4 s}(k=B)=0:; (5.8

) .~ thatis, the energy functionals are defined such that the Fermi
Here the energies,— u, ande,,— w4 are measured relative energy is always zero.

to the Fermi surface in lead 1. By $2) spin symmetry we Computing the differential conductance then amounts to
then know érs(ene) = 6r(eno). Because of the behavior of computing—ed,, J:

g4 under a particle-hole transformation, we can only directly 2

compute out-of-equilibrium conductances when— u, G(p1,m2)=—€d, I(p1,12)

<—U/2, unusual in that it is on the other side of the particle-
hole symmetric point.

WhenH is nonzero the situation is more complicated. We
no longer can equate spinand spin| scattering. However,
we now can compute spif hole scattering directly. From +|Tf2(8=M2—M1,M1)|2 (5.9
Eqg. (2.45 we have

e? 1-2
:F |TTH (SZMZ_Mlvﬂ1)|2

As the particle distribution and correspondent scattering in

lead 1 are, as discussed above, only dependent pporG

has a particularly simple form: there are no terms of the form

k 1 ’ 6 1 0#2|T|2'

:27rf7de Pimp(K )+27er dX\ Timp(N), In the second casg@,>u, (pictured in Fig. 13, such
terms do come into play. Here the current has the form

1
Sho(Eno™> M1 80— 1)

0
el(k)=—(eno— p1)- (5.5 J(Ml:ﬂz):_; de |T%Hl(8,,bb2)|2
M1 K2
Because the bottom bound ef(k) is —H, we are limited
to computing spin| hole scattering for energies<Ge <H. +|Tf"1(s,,u2)|2 ) (5.10
For spin| hole scattering we resort to the particle-hole trans-
formation used above: In this case particles scatter from lead 2 to lead 1. The choice
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-—H, 1 .
(9/.L2|T2H1(81/~L2)|2:§S|n( Pimp(Q) + Pimp(K))

X (aﬂzpimp(Q) + auzpimp( k)):

oo

&szimp(Q)ZZWfQ dA a,uzo'imp()\-_sd"':u’Z_ u),

k
<, ﬁ,u.zpimp(k) = 271'fioodk’a,uzpimp(k, &gt ua—U),

FIG. 13. Sketch of the distribution of particles in the leads when
M1<pz.

ga(k)=—e. (5.13
From the density equations in Appendi{gee Eq(A6)], we

of limits in the above integral now reflects that the Fermifind that withH=0, d,,,oimp(\) andd,, pimp(k) satisfy
energy in lead 2 has been taken to be z&®.! can be

determined by the same set of equatith8)—(5.6), but with (5.1
the energies and densities defined in lead 2. The expression

for the differential conductance is more complicated than 9y.,Pimp(K)=3,,A(K, —gq+u—U)

previously as the scattering matrices are determined on the
basis of distributions in leads 2 and so the scattering varies as
Mo is varied. We thus have

3,,Timp(N) =0,

1 Q
b o Jimdx s MS —(K))

e? Q ,
G=—ed, )=+ T2 e=p1— o, o) |? —(akg(k))zﬁxdx Timp(N)S' (A —g(Kk))

1 oo
+|Tfﬂ<s=m—u2,uz>|2} - or | akamoragio gtk
e? (o
+ — de
h )y —u,

3, TE (e, m2)|? —<akg<k>)2ff dk' A(k")R'(g(k)—g(k")),

(5.15
where hereg(k) = (k+&4— up+U/2)?/(2UT). In comput-
ing 9y, T, We have neglected contributions frosz. We
can see from the energy equatiqis?) and(5.8) that

(5.1

However, Q, determining the Fermi surface relative to the
bottom of the band, is reflective of energy scales on the order
of the bandwidth whereas we consider changesunof
O(Ty). Henced, ,Q is negligible.

+0,L2|Tfﬂl<s,m)lz}. (5.11)

Here T2~ is given by

(1
|T2Hl|225m2(§5ho(_813d_,u2)) ‘9;&2Q¢0'

(1
=S|n2(§5e|(—s,—sd+,u2—U)). (5.12

We thus see explicitly,, |T>~*? is nonzero. WherH 0

recall we can only comput&; and T only at the symmetric
point. Given that we are varying, and so varying the ef-
fective dot chemical potential, we cannot compute the differ-

B. Differential conductance atH=0

The differential conductance in zero field is expected to

ential conductance for nonzekbin the caseu,> u,. More-
over, we are restricted to the region wherg- u,<—U/2,
also as discussed previously.

fall off rapidly with a scale~T, from its linear-response
value near the symmetric point ef2e?/h. The characteris-

tics of this peak are related to the peak, the Kondo resonance,

We again comment upon the dependence of the currerni the spectral weight of the impurity density of states as

uponu, andu, . As with the casec;> u,, the current is not

determined by the Bethe ansatz. This is similar to the find-

simply a function of the difference of the two chemical po-ings of Refs. 9, 10, and 12 where they cast all transport
tentials. In this case, however, the scattering amplitudes desroperties in terms of the impurity density of states though as
pend solely uponu, not ;. In particular, in the Kondo determined by Irdd"). With the Landauer-Buttiker approach

regime, the Kondo temperature is determined by differenceve have adopted, all scattering quantities are ultimately re-

of wu, with the dot chemical potentialy .
As 6, is given by an equation akin to E¢.5), we can
computed,, | T>~*? to be

lated to the equilibrium density of states; the nonequilibrium
density of states plays no part in the computation marking an
important difference with Refs. 9, 10, and 12. At the sym-
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metric point we are able to derive in the case of negative bias e2 1
m2> pq @ closed-form expression for the differential conduc-  G(uy,u2)=—€d,,I(ur)=2— —.
tance. Away from the symmetric point we must rely upon a N1+ (wo— uy) T2

numerical solution of the associated integral equations.
(5.20

) ) The simplicity of these results is striking. In our approach, it
At the symmetric point(and hence only the case; s girectly related to the simple form of the dressed scattering

> wp assumingu, is being variedi we derive a closed-form nhage(519), which only comes about at the end of a com-

expression for the current and differential conductance. Apjex calculation. It is not clear to us whether there is a more

the symmetric pointpin, is given by® direct way to obtain the results.20).

We observe that no IpdT,) terms appear in the above

1. Results at the symmetric point

pimo(k<0)=— g9’ (k) 1 expressions for the current and conductance whereas we
imp 2 coshw[g(k)—1"1]) might expect such terms for large'T, . In this regime such
- terms appear in weak-coupling perturbative computations.
—g'(k)S emakran However, we have _already established _with our fini'_[e-
n=0 temperature calculation that weak-coupling perturbation

theory is not even qualitatively accurate until one exceeds
Xf dk’e~ 9K )(1+20) RaA (k). (5.17) scales ofT/T,~ 20. We expect the dlff_erentlal conducta_nce
to be governed by similar considerations. Correspondingly,

K  thi ) we would cautiously conclude that our scattering ansatz as
In order to make use of this expression we need to paramypjied 1o the zero-field differential conductance is at least

etrizek in terms pf the energy(k). For epergies not far in good for energies up t&/T,~0.
excess off we find in solving Eq.(5.2) with H=0, Given that we are at the symmetric point, we would ex-
pect to be able to make contact with low-energy scattering in
v2ul ek (518 the Kondo model as this model should produce identical re-
' ' sults to the Anderson model in the low-energy regime. At
low energies we have

e(k<0)—u;=el(k<0)=
Hence the scattering phase is given by

= 3 1-(e— 2[72
5ﬁo(s,sd—ul——U/2) 5r110(8.8d—,u1=—U/2)=—w—sin_l (e—p1) k’
2 1+ (e—py)?ITE
=65(e,—UI2)
=m+2tan Y (e—u)/ Tyl

% k
=2wf dxaimp(x)+2wf dk’ pimp(K") (5.2

This latter form is identical to that found for spin excitations
in the Kondo modef® In the exact solution of the Kondo

model, the role assigned to “charge” and “spin” excitations
differs from that of the Anderson model. In the Kondo model

1—(e—u)?Th
l+(8—,u,1)2/7|'5

o 1 [ m(e—pmy) 1+2n the charge excitations are noninteracting and so variations in
+22 K1 the scattering phase occur solely because of changes in the
n=o0 1+2n\ 2uT spin sector. In this sense it is not surprising that we find the

scattering phase of electronic excitations in the Anderson
xf dk e m9R(I+20 R A (k) ], (5.19  model is equal to the scattering phase of spin excitations in
the Kondo model. If we were to compute transport properties
directly in a two-lead Kondo model, this equivalence sug-
gests how we would have to formulate the scattering ansatz
that governs the gluing together of excitations from the two
'~I'k=£Tk=E 3 /Eew[(sdfp.l)(sdf,u.lJrU)*I‘Z]/(ZFU)' sectors(in the case of the Anderson model, this is discussed
™ ™ 2 in detall in Sec. I). To compute the finite-energy scattering
phase for the case of the Kondo model, we would Idaaé
its Fermi surface value while varying the exact opposite of
what we find in the Anderson model.
It is also instructive to recast the impurity density of states

where

The latter term in the above is negligible whea—{wq)
""Tk aSTk<\ UF
With this we can compute the current and the differential

conductance: so that it is a function of energy:
I )= — 2T tan 1| 224 (6)= = — (5.22
1 M2)= e g D EE impl€)= = T 5 = 5 :
h T Pimp 7T 1+e2T2
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2 Y T become exact asl/T, becomes large. Our results are in
g “Z rough accordance with Ref. 10—we find that for fields
15 [\ ] >T,, the H=0 differential conductance peak at zero bias
= ;; ‘% divides into two, one peak for each spin species. Roughly
,,f 1 / %\ ] speaking, the origin of the split in the differential conduc-
o / tance arises from a similar bifurcation in the impurity density
s / \\ ] of states. The spectral weight of the Kondo resonance present
| / ~——_| at w=0 whenH=0 divides into two resonances nea¥
0 L — ~=*H, again one associated with each spin species. The
4 -3 -2 -1 0 1 2 3 4 peak at negative biag,<<uq corresponds to a spihreso-
()T, nance while the peak occurring witta,> 1, is associated

with a spin | resonance. Given our ability to work only at

FIG. 14. Plot of the differential conductance in zero magnetic,,< 4, at the symmetric point, we explore the former alone.
field. The value of the parameters used in the plotlare0.05,U For fieldsH>T,, this peak is found at a bias close to
=100, andeq=—5.2I", where we set the energy scale in terms of _ 1 However, unlike Ref. 10 we find the differential con-
the bandwidthD = . ductance peak does not occur exactlye®=—H. This is

) . . . not surprising as this result was predicated upon a second-

We see then that the impurity density of states is sharplyger perturbative computation. We find instead that the peak
peaked about zero energy with a peak height proportional i shifted to values o&|V| smaller thanH. For large fields
1/T. The spectral density of states as determined from thgue can develop closed-form expressions for the position,
dot correlator Ingdd") is also sharply peaked around zero height, and width of the conductance peaks. A related com-
energy. In contrast, however, its peak height is proportionaputation was done in Ref. 17 in the context of the Kondo
to 1", a wildly different energy scale than the one governingmodel. However, there the analysis was restricted to the
the Bethe ansatz impurity density of states. The two quantipeaks in theequilibrium-impurity density of statess deter-
ties then are clearly different thus undermining an importaninined by the Bethe ansatz and not the conductgerese

premise of Ref. 17. As discussed previously, the two are not directly or obvi-
o ously related, as indeed is clear from the work here.
2. Results away from the symmetric point In order to proceed with the computation, we review the

Pictured in Fig. 14 is a plot of the differential conductanceconstituent elements. The scattering phase for $phole
in zero magnetic field. We see that the expected qualitativécattering is given by
features appear: namely, the differential conductance sharply
varies on energy scales related to the Kondo temperajure 5&0(8h0>,u1) = gwf

Although we are not exactly at the symmetric point, we
must remain close in order to keep true to our methodology
of identifying scattering states. If, for example, we were to e'(K)=—(&no— p1). (5.23
compute the differential conductance in the_ mixed-valenceusing Eq.(3.23, we can write the phase solely in terms of
regime of the Anderson model, we would find our results .
unphysical. Our construction of the scattering states wa8™"
predicated on the knowledge that in the Kondo regime th%ﬂo(8h0>,u1)
scattering phase varies on the smallest scale in the problem,

! ! Q
de Pimp(K )+2wf_ Timp(N),

]

k

the Kondo temperature, and that in turn, only the impurity k . B L
density of states for th& excitations is governed by this =27Tf dK' pimp(K") + 7 1—f dkpimp(k));
scale. In the mixed-valence regime all of these assumptions P P
break down. PN
We see that the differential conductance curve in Fig. 14 & (k)= = (eno—pa). (5.29

is asymmetric abouft,— «,;=0. This is a consequence of The scattering phase for spjrhole scattering is found to be
the asymmetry introduced by variations in the effective

Kondo temperature. In the regime > u,, T, does notvary  Sho(eno™> 1)

as it is solely a function oju;—&4 and we have assumed

only u, is changing. However, in the regime,>puq, Ty _ K o1,
now depends upom,—e&4 and so changes i, lead to =2m ,de Pimp(K") + 7
changes inl, and hence the asymmetry in behavior.

_ . 1
1 dekpimp<k>),

(k) =eno— p1. (5.29

through a particle-hole transformation.

At the symmetric point we develop closed-form expres- For H satisfyingH<T,, we can arrive at a closed-form
sions for the differential conductance. As stated previouslyexpression for the differential magnetoconductance. \Mith
the nature of our construction of the scattering states sug<T,, the impurity density of states for thie excitations
gests that our results for the differential magnetoconductanceetains its zero-field form:

C. Results at the symmetric point forH #0
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1 the field H disappears from the the equation, leaving us to
Pimp(K)=——= . (5.2 conclude that energy is shifted by a dressed magnetic energy
UT 2 costim[g(k)—1"1]) H

Using these forms for the energy and the impurity density,
The impurity density is unperturbed by the field at first ap-the spin scattering phase reduces to
proximation as its spectral weight is found at the scBle
while the presence of the field only affects energies far below 9 "
this by assumption. On the other hand, the energy is shifted Ono( €no™ p1) = Z”_S'”
by a constant from its zero-field valagain takingu,=0):

1—(eho— m1—H)?TE
1+ (eno— u1—H)?TE

1 1( 1-H%T? 528
J2uT t5S =2/ :
e'(k)=———e ™ -H/2, k=B, 2 1+H?TE
while for spin | scattering, we have
J2uT 5 _ 1—(eno— puqy+HI2)2T?
e'(k)= e ™N—H, k<B. (527  Shfen>pu)=—m—sin o 1 _k
7 4 1+ (eno— pa+HIHTE
Fork>B the energy is shifted by the bare energy of a spin in 1 1— |-|2/(4'~r§)
a magnetic fieldH/2. Fork<B, the effect of the field upon + Esin‘l ——— | (5.29
g1(k) can be determined by rewriting the energy(k) 1+RH%(4T)

—&l(k)—H and substituting in EqA11). We then find that ~ With this we can compute the differential conductance

Gy =
MlyﬂZ h

Ll 1+ [H2— (o py) 2T 1 1+ [H2/4— (o= py)2)/TE
2 (14 HYTD) YY1+ (g g+ AT 2 (1+ HATD Y 1+ (py— pa— HI2)HT2]

~ 2 Jur
Tk:;‘ /Tew[(ed—#l)(sd—ﬂl+U)—FZ]/(2FU)_ (5.30
TakingH—0 recovers Eq(5.20.

For values oH>T,, we must resort to a Wiener-Hopf analysis of the scattering phases. The details have been relegated
to Appendix D where exact forms of the scattering phase and the eagkygan be found. Here however we summarize their
asymptotic forms. Fok<B andH>T,, the energy:*(k) as given in Eq(D8) takes the form

Yky=—H|1 | R ! ! ¢(1/2)+1 k)—b)tan ? +C
el =—H| 1= 5@\ 005 7h) ~ 222 Tk —b]2 | T(12) T+ (90 —byan 3| oqs—p
1 J2ru | 1 e b7 1
+ = In(47%(1+(g(k)—b)? )+ +e "Mtan ! +0([g(k)—b]73),
(5.3)
|
whereC=0.57725 ... isEuler's constant anth is given k
by 2wf dK pimp= 7+ 2 tan 1(2(1 "1 —g(k))),
1 (2 [UT Y r
b=; (ﬁ E) (532‘ I 8 22U’ (5-33

where againl~! determines the Kondo temperatuiig
Note that only the first two terms in the above expansion are-e™ ™.

at leading order, but we need include the remaining terms in Combining this analysis with numerical work and the re-
order to obtain reasonable estimates of the properties of thaults in Eqs(5.30 allows us to plot in Fig. 15 the magneto-
conductance peak. Under similar conditions keandH we  conductance for a variety of values Bff T,,. As explained
obtain an expression fgf dk piy,: earlier, we are able only able to compute the magneto-
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2 In the first of the above equations, the second integral has
been neglected relative to the first, valid fé& T, . We also
make the approximation that the spjnconductance varies
inappreciably from its Fermi surface value as the bias is var-
ied. Thus we sek=B in the second of the equations. As the
conductance of the spif) species for largeV~H>T, is
constant, the peak maximum occurs when

Shol Eho™> 1) = (5.39

This is turn implies the condition

1.5

G (&)

1 05 0 -1
(k)y=1"1, (5.36
V/H g - - -
and so from EQq.(5.31) the bias at which the maximum
FIG. 15. Plot of the differential conductance in a magnetic field gccurs is

at the symmetric point. The value of the parameters used in the plot

are['=0.05 andu=10I". eVia=el(k=—2UT1 1)
conductance for biases satisfyipg<pu,. Nonetheless, we 1
expect the differential conductance to be roughly symmetric =—H ( 1- Z—tan‘ 1@ +eee],
about theV=0 axis. ™
We see that foH>T, the behavior of the differential
conductance is in rough accordance with the predictions of |"1_p= lln(i me (5.37)
Wingreen and Meif, that is, there is a peak approximately T \ 2T ¥V 2’ ’

at uo,—u1~H for H>T,. However, as we have already
noted, the peak occurs at a bias noticeably smaller #han
while Ref. 10 finds the peak to occur exactlyratAs H is
decreased, this peak moves to smaller ratios gpf; (
— u»2)/H before disappearing altogethertt-T, . For val- 3
ues ofH<T,, the differential conductance does not appre- 5; (eh >M1)=z/ _77,
ciably change from its linear response value for voltage bi- omhe 2 2
ases of the same order of magnitudeda§Ve also see that as C P

H is increased the width of the peak narrows and the heigh\fvhICh in turn implies

where the ellipsis indicates that we have not written out all
the terms arising from Eq5.31). The half maxima of the
peak occur when

of the peak ap.proach.es' the' value e.?f’h, ilndicatir]g that g(k)=1"1+1/2. (5.38
only a single spin specid# this case spirf) is contributing
to the conductance. Hence the peak width equals
We now analyze the properties of the differential conduc-
tance peak for values ¢f>T, . As we have already noted in eAV=gl(k=—2UT(1"1-1/2))
Sec. lll, we expect our results to be exact in the regime that 1 4
H/T, becomes asymptotically large. In this regime the dif- —e (k=—vy2UI'(1" "+ 1/2)),
ferential magnetoconductance is determined solely by the
spin 1 hole scattering, which we are exactly able to deter- _ H tart 1 - 1
mine: no scattering ansatz is needed here. 2 I"1-1_p I"1+1i-p
For H/T,>1, we can write the scattering phases as (5.39
follows: ’

K Finally, we can estimate the peak height. The peak maximum
5i10(8ho> my)= 277f dk’pilmp(k’) will be characterized by the maximal conductance of the spin
-b 1 electrons €?/h) together with the associated conductance

B of the spin| electrons. The latter will vary only slightly from
+a 1—f dkpilmp(k)> its Fermi surface value as already discussed. Hence the
-b height of the peak is given by
~a+2tan 1(2(171—g(k))), o2 1
1 . 1 Ginax= 1 1+sir? Ea,ﬁo(FSF))
St ene= ) =27 [ Ak phy(k')
_e2<3 (I"—b) (5.40
B = Hl\sT T Y |- :
+ar 1—f dkpﬁnp(k)) hl2 Ja(1~'-b)?+1
-D

The results for the location and width of the differential

3 conductance peak are similar to those found by Moore and
~= —1 -1_

~gman 2 b)). (534 \Wen' to characterize the location and width of peaks ap-
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0.6 ‘ ‘ able accuracy even in the regieh~T,, where the assump-
_ + Exact Result tions of their derivation do not necessarily hold.
E . Asymptotic Form 1
% -0.8 |- ’."”00.000 ]
£ tiileseer VI. CONCLUDING REMARKS
=
'§ Computing transport properties in a strongly interacting
= -1 ‘ . ‘ — system is a difficult challenge. In this paper we have attacked
. 10 G 2 0 0 the problem by combining a Landauer-Buttiker approach to-
13 L ‘ ‘ ‘ ‘ | gether with data from integrability. We have thus been able
_ Exact Result to provide a description of the scattering states in the theory
S 12l Asymptobic.Rorm | that has led to several successes. We have verified the Friedel
£ sum rule and provided a quantitative description of the linear
E 11k ] response conductance®t0 both in and out of a magnetic
g field. Our most striking result has, however, been the com-
1 w L L L putation of the finite-temperature linear-response conduc-
0 10 20 30 40 50 tance scaling curve. This result is predicated upon an accu-
ar ‘ ‘ ‘ ‘ rate description of the scattering states away from the Fermi
g S —— surface. As sych, we have al_so been able to compute the
> . Asymptotic Form out_—of-_equmbrlum (_:urrent, again both m_and out of a mag-
05 1 netic field. In particular, we have provided a quantitative
?5; Y description of the differential magnetoconductance. Given
; Nrvvv,., Plyvis 5 5or s the nature of our construction of the scattering states, we
2 believe our computation of this latter quantity to become
0 0 1‘0 2‘0 3‘0 4‘0 ‘ 50 exact in the large-field limit.

While our technique bears a degree of resemblance to the
successful, exact treatment of interacting quantum Hall

FIG. 16. Plots describing the evolution of the differential con- edges’* the technical complexity of the two-lead Anderson
ductance peak with increasing magnetic field. In the top panel is anodel has prevented us from finding a definitive solution of
plot of the location of the peak while the middle panel records thethe problem in all regimes. However, we have still been able
peak height and the bottom panel gives the peak width. The paramg yse integrability to find extremely good approximations to
eters used areJ=0.75/7D (D being the bandwidthand I'  the exact results in the cases of greatest experimental inter-
=Uu/12. est. The situation here is not altogether different from the use

o o ) ) ) of form factors in calculating correlation functions: although

pearing in the equilibrium Bethe ansatz impurity density ofthe techniques of integrability do notet) generically lead to
states for the Kondo model. In the largetimit, the impurity  closed-form expressions, they are nevertheless a break-
density of states as found in the Bethe ansatz then ewdentl{y]rough, providing excellent approximations which are valid
shares certain properties with the nonequilibrium spectrajrom the lowest energies through crossover regimes. These
density of states defined from the dot correlatotddi), but,  approximations are far different from the standard, mean-
however,” makes no prediction as to the height of the dif-field ones, for they contain all the crucial features of low-
ferential conductance peak. We in general do not expect thgimensional, strong interactions. In particular, the results
height of the peak in the Bethe ansatz impurity density ofyresented here represent an improvement on previous ap-
states to be related to the height of the spectral density arigyoximate methods found in the literature. The quality of our
ing from Im(dd"). We already know that no such relationship approach can be gauged from the excellent reproduction
exists atH=0 (see Sec. VBJ, and there is no reason to (with no fitting parameterof the NRG finite-temperature
expect it to appear at finitel. linear-response curve of Cost al. It is unlikely other ana-

In Fig. 16 we plot how peak characteristics evolve with |ytical techniques could do the same.
increasingH. For comparison, we plot both the asymptotic = Qur work raises two kinds of questions. The first is
forms [Egs. (5.36-(5.38] for the peak characteristics whether higher-order approximations can be devised in the
against the exact results. We see that the location of the pegjfesent problem, akin to taking higher-energy intermediate
slowly approacheeV=—H with increasingH. This ap-  states into account in form-factor calculations of correlation

H/T,

K

proach will be logarithmic irH as functions. More precisely, is it possible to develop further the
description of the fermions in terms of the integrable states

evmax+ 1 1 found in Eq.(2.52? The other, more practical question is
H T 271 I—p’ (5.4 whether similar calculations can be performed in other mod-

els of interest and so obtain excellent approximations of out-
and b~In(H). Similarly, the height of the peak approaches of-equilibrium transport properties based upon the exact so-
e?/h, but again logarithmically inH. We note that the lution of the thermodynamics and the proper identification of
asymptotic forms reproduce the exact results with remarkscattering states.
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APPENDIX A: PRACTICAL COMPUTATION T +_f dARON M) T L
OF DENSITY AND ENERGY FUNCTIONALS

Here we present equations for the energy and density fd)\ RN —

fd)\ oh(N)R(N —=N)
functionals that are more amenable to numerical analysis.

The original density equations are given by
—fdkpp<k>s<x—g<k>>, (A3)
pp(K) + pr(K)
whereR(\) ands(\) are given by
1 Ak,
oo+ S [ g -0, -
R(N) f —m,
x'(\)  A(N)
ap(N)+op(N)=— - +T 1 1 e ior
sM=73 costimn) EI do coshiw/2) (A4)
—f d\"ay(N —=N)op(N')
We can further simplify the first of the equations in EGs3)
_J dk a;(A—g(k))pp(K). (A1) by using the relations
Expressing these equations in terms of the Fourier transform B x"(N) :j dk do g0 —g(k)g=|wl/2.
of o(\) gives us (2m)? ’
pp(K)+pi(K) 3 do |
A(2)=f dkﬂA(k)e"“’(”‘g“))e"‘”"z. (A5)
1 Ak do _
T S ’ — a—iwg(k) a—| o2
27T+ 3 +g (k)f > € e op(w), Then
X' A
oplo)+ ()= - o) 20 pok)+ pr(k)
(k) ,
—e llg () =(5+—+g (k)f dk'R(g(k)—g(k"))
o e 1 Ak
—fdké e lelp k). (A2) x(z+¥>)—g'<k>de ar(\)s(A =g (k)
Solving for op(w) and substituting into the right-hand side o , , o
(RHY of both of the above equations gives g"(k) | dk’pp(k")R(g(k) —g(k")),
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Ak) 1
ap(x)+nh(x)=fdk(¥+z

1
s(A—g(k)) J dA R()\)=§, (A7)

+f d\' (A )RV —N) while

- [ dkopos-gtkn. (a8)

These forms of the equations are better behaved numerically
as

f dx a,(\)=1. (A8)

Hence, when we go to solve these equations iteratively, successive iterations grow increasingly small,ast{@vaas before
we would not necessarily expect convergence.
We can now derive new equations for the energy functional. As in(Eg84), we find

5E=|_f dk(s+(k)5pp(k)—a—(k)5ph(k))+Lf d\ (¥ (N)Barp(N) =&~ () San(N))

szdk

But now from Eqs(A6) we have

H
k— 5) 5pp(k)+2Lf d\ X(N) Sarp(N). (A9)

5Pp(k)+5ph(k)=—g'(k)f dA 50h(7\)3(>\—9(k))—9’(k)f dk’ dpp(k")R(g(k) —g(k")),

5pp()\)+5ph()\):f d)\’éah()\’)R()\’—)\)—f dk 8pp(k")s(\—g(k)) (A10)

Solving for 6o,/ 8p, and substituting into EqA9) leaves us with

H
£ (0+e(M=k=5—2 | xS -0+ [ e (Vs -g(k) - [ dkg'(Ke (K Rk~ (k)

8+()\)+87()\):2X()\)—2f d)\'R()\—)\’)x()\’H—f dx’s+(k')R(A—k’)+f dk g’ (k)e " (k)s(g(k)—N\). (All)

APPENDIX B: COMPUTING SCATTERING VIA THE 1 r'(\)
IMPURITY ENERGY Epu=E— EEimp= Lf d\ op(N)2| X(\) + T)
In this appendix we compute the scattering phase of the H o sk
electronic excitations through examining the impurity en- +|_J' dk pp(K)| k= =+ (_)> (B2)
ergy. To do so we will relate the impurity energy to the P 2 L

impurity momentum and then use the already establishegye can thus derive equations for the bulk energy of the
relations in Sec. Il. In doing so, we will bring out subtleties gycitations:

in defining the impurity energy for the purposes of deriving H o 6k
scattering phgses. _ _ o er(K) +ep(K)=k— = +
To determine the impurity energy of the excitations, we 2 L
play a game similar to that used previously in deriving
fz(kl)cl)).i(x). The total impurity energy has the forfftom Eq. _f d\ ep(Mag(A—g(k)),

purd M) F Epui(N)

Eimp=—f d\ opm(zr(x))—f dk pp(K) 8(K),

(B1) =2

I'(A
x<x>+(T))—f UNESECRONESY

whereI'(N)=Red(x(\)+iy(\)). Hence the bulk energy is _
given by( : P » +f dk g’ (k) epy(k)ag(g(k) = ). (B3)
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When we add particles to the system, we want to add them APPENDIX C: DIRECT COMPUTATION
relative to the Fermi surface as determined by the host sys- OF THE SCATTERING PHASE
tem (in other words, we add them far from the impuyityn

light of this, we have another constraint determining the Io'surlrtw IrsuI%Otsrz?li?\\jgl\?erzgvédgiriré??:r:] dﬁ{;\fggogfcg]éhsczgzﬂﬁl
cationsQ andB of the two Fermi surfaces: P 9

phasegas opposed to working through the mediating agent of
epud K=B)=epu A =Q)=0. (B4) the i_mpurity densities For (purely techni.cal_simplicity we
restrict ourselves to the case of a vanishing magnetic field
Of course, any bulk quantity will not distinguish between awhere there are no redls in the ground state.
Fermi surface set as above or a Fermi surface determined by As we discussed in Sec. I, the computation of an electron
scattering phase involves the phases &f @article and a\
e(k=B)=¢(A=Q)=0. (BS) hole. As we work in the zero-field limit, thieparticle phase

The difference between the two amounts th tbrrections. 'S Z6ro and we can focus solely upon the phase ofthele.
However, this difference is important if one is looking at 10 this end, we consider the bulk density of the's,
impurity quantities. See in contrast Ref. 28 in the context of?buk(A). In the ground stateryy(A) obeys the equation
the Kondo problem. 1

We are now in a position to relate the impurity energy to -\ y4 fwd)\’a A=AVl N )= — —x"(\
the impurity density of states. Differentiating the above leads ou( M) o 2 Johui M) = = X (M),

to (CY
aern(K) + deppd K) FoIIOV\_/ing t_he discussipn in R_ef. _37,_ the_ key quantity ir_l the
following will be the shift of this distribution when a particle
5" (K) or a hole is created at rapidity. To study this quantity, we
=1+ ——g’(k)f d\ dyepu M as(N—g(k)), go back to the discrete form of the Bethe ansatz equations,
L which read
I\Epu(N) + 0y Epui(N) M
230t 2 0(Ng—Ng)=—2LX(N,). (C2
2 ,()\HF’()\) Jd)«a (N)ay(N —\) o
= X - 1€ a —
L N bk 2 If a hole is made at\, the rapidities shift ,—\ ") and the
above equation becomes
+ [ dkdeanoanaio v, (20 .
Writing 27TJa+BZl 0N = NG — 0,(N P = A)=—2Lx(A D).
1 (C3
98 pulk= 08 = 1~ I€imp. (B7) Setting
wheree;ny, is the 1L contribution to the energy of the exci- W 1
tation, and comparing to E¢2.19 leads to the relations Touk M) [N —Na]= EF(MM), (C4
Eimp(N) = = \Pimp(N) =2 imp(N), it easily follows using the equation far,,(\) in Eq. (1)
that
I€imp(K) = = dkPimp(K) = = 27 pjmp(K).- (B8)
. . L e 1
Hence, for spin| electrons, the scattering phase is given by F()\|A)+ JQ d\/a(A =N )F(N'[A)=— ﬂ%()\—/\),
8= &imp(K) ~ imp(\). (B9) (CH
Moreover, we have where 6,(x) =2 tar }(x)— . To proceed, it is convenient to
3 introduce the integral operatoks and L defined by
Q
8imp()\): _277";\ Uimp()\)a A w
K(f()\))z—f dr"ay(A—=N")f(N") (Ce)
Q
k
Simp(k): _waiDpimp(k)y (B10) and
allowing us to prove the Friedel sum rule. Note that these (I—K)(i+L)=T. (C7)
relationships only hold due to our choice in defining the
Fermi surface as in EqB4). From Eq.(C7) and the fact that
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1d * ~
ar(N\)=z—=—05(\), Sei= — ¢(A)+277f d\NF(NJA)A(N).  (Cle
27 d\ Q
it follows that Comparing Eq.(C13 with Eq. (C16) shows that withA
. =Q we arrive atdg=mng=2mng;, , the Friedel sum rule
F(7\|A):f d\'L(AN). (cg inthe particular case when the magnetic field vanishes.
A
A similar formula with a minus sign would hold if a particle APPENDIX D:  WIENER-HOPF ANALYSIS
- ~ AT THE SYMMETRIC POINT
were created in lieu of a hole & One can represent as a
power series if one wishes: 1. Alternative equation for (k)
w0 We first solve the equation governied(k), the energy of
LN = —az()\—)\’)+J d\"as(A—=N")ay(N"—\") excitations in lead 1 relative to the Fermi surface. To do so
Q we cast it in a different form than found in E¢6.7). For
I (C9) simplicity, we assume that, is zero. However, finitew,
) ) ) ) does not change the expression #drprovidedu;<D.
Hence, in particular. (A, A")=L(\",\). Now &%(k) is the energy associated with adding or re-
Now consider the impurity density of statesin,. It moving ak excitation. Thus imagine removingkg<B. This
obeys induces a change in the densitjgk) ando(\). At the sym-

. metric point, the unperturbed densities have the fosee
aimp(x)+fQdx'az(x—x’)aimp(w)zﬂx), (Cl0 Edq.(8)]

from which it follows that p(K)=po(k)~ ' (K) f " dk p(kR(g(K) ~g(K),

°° 1 °° ~
| o)== 5= 0@+ | axFl@EM), '
° ° =040 | dkp(ksi—g(k), (DD

(C1y
having setp(\)=—2 Res[x(\)+iy(\)] and where we have hile the perturbed densities;(k) and o;(\) due to the
used thatp(0)=0. As hole atk, are
o Ty 1
nd—2de>\ Timp(1). (12 p1(K)=po(K) — [ 8(k—ko) =" (K)
we find B
1 ) < |7 ak otk IR0 -gk),
nd=—;¢>(Q)+2jQ dyAMF(NQ),  (C13
B

the key formula of this appendix. The RHS of the above ‘Tl()\):‘fo()\)_ﬁxdkpl(k)s(h—g(k)), (D2)

equation is highly suggestive: the first term is proportional to
the bare scattering phase of the electron while the secondherel is the system size. Rewriting; as
term represents the dressing of the bare phase that results L
from the nontrivial ground state of the system.

To complete this section we now explicitly demonstrate p1(K) = p1(K) = - 8(k—ko),
the Friedel sum rule. To do so we first imagine scattering the .
unperturbed ground state through the impurity. The entird/i€lds
scattering phase is then

1
M p1(K)=po(K)+ 9" (WR(g(ko) (k)
321 (N p). (C14

B
-g'(k f dk’p1(k")R(g(k)—g(k")),
Now we imagine scattering the ground state plus hole g’k — pa(k)R(g(k)~g(k"))

through the impurity with a resultant total phase

1 B
Lo =040+ TS -glko) — [ dkpykISh—g(K)).
— + . — 00
SN+ 3 SN (C15 (03
The difference of the two defines the scattering phase of thAnd so changes in the density, apart from e —ky)/L
electron: term already scaled out, are governed by
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dp(K)=L(p.(k)—p(k))
=9'(k)R(g(ko) —g(k))

B
~g'( | dK sp(k R(g(K-g(K))

do(N)=L(a1(N)—0o(N))

PHYSICAL REVIEW B 66, 125304 (2002

v2ur
=~ le ™~ gp(w=im)]

H
+5[1=dp(0=0)], (DY)

where in the last line we have expresselqk) in terms of

the Fourier transform obp. It is to the equation fop that
we actually apply the Wiener-Hopf analysis.
The expression foe!(k) is valid provided we have re-
moved a particle, i.eg(kg) >b or k<B. If we instead add a
(D4) particle atk>B or g(ky)<b, we obtain in a similar fashion
the following description ok(k):

B
~sn—g(ko)— | dkap(Kis( —g(k)).

The energy of the excitation can be expressed in ternép of
and o

Sp(2)=R(z-g(k)) + f:dz' sp(2))R(z-2'),

H
—sl(k0)=—(k0—§ +J dk(k—H/2) 8p(k)

BZ
+2f d\ X(\) Sa(N), b=3ur
J2ur
=—[(ko—H/2)—2f d)\x()\)s()\—g(ko))} gl(ky)= — (e” ™9k + sp(w=i1))

H
+J'dk§p(k) —5(1+5p(w=0)). (D9)

X

H
k— 27 ZJ’ d)\x()\)s()\—g(k))}; (D5) 2. Review of the Wiener-Hopf analysis

We so review the technique as presented in Ref. 28 on

1 .
We see that~(ky) depends now only upo@dp. That this equations of the general form

form for £1(ko) is equivalent to the equations in Sec. Ill or
Appendix A can be shown using the technology found in
Appendix C.

ProvidedB<0, we can introduce a change of variables
that simplifies matters:

f(z)=J:dz’f(z’)h(z—z’)Jrg(z). (D10

Writing f*(2) = f(2) 6(+ z= A), the Fourier transform of the

p(k) above equation yields
p(z)=— 9K’ z=g(k), k<O. (D6)
9 fH(w)+f (0)=f (0)h(w)+g(w), (D11
At energies not far in excess of the Kondo temperature we _ ,
have where Fourier transforms are defined by
(k—le)—zf d\ x(x)s(h—g(k))w_me—wg<k>_;_ a(w)=J do e'“?a(2). (D12)
a
(D7)

The key step in the analysis is writing-Ih(w) as a product
of functionsG ™, which are analytic in the upper and lower
planes, respectively:

The above then simplifies to

3p(2)=~R(z- (ko) + | a7 5p(z R(2-2),

BZ
b= 0T We can then write EqD11) as
v2ur H e_i‘"AM+e_i“’Af_(a))G_(w)=g(w)G_(w)e_i“’A.
—el(ko) =— e*ﬁg(ko)_E G'(w)
™ (D14)
+J’ dz5p(2) vaur o= T7_ ﬂ Given e '“Af*(w) is analytic in the upper and lower half-
p T 2| planes, applying the operators
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If we now instead add a particle lat-B or g(kg) <b, we

1 1
e dw'm (D15  obtain from the Wiener-Hopf analysis of E(D9) the fol-
B lowing equations:
to Eq. (D14) yields solutions for botiH* andf~:
IwA 1 5p((.0:0)
f+(w)=G+(w fd
o' —(w+id) , .
. _ 1 [rde ehw’[g(k@b]M(‘i) ,
Xg(0")G (0" )e ' A Jrlo o INERTT
eerh 1 1 :
- - _ _— - 1) =im
Fe)=-5" 27Tif @ (010 plo=im)
Xg(0)G (o')e A (D16) _e”bfoo 9" oruigiiy 0BT (w')w’
V2e Jo o' +1 i+ €

3. Determination of ép (D20)

Applying the above analysis to E¢D8), appropriate to

the case of removing a particlexb (k<B), we have 4. Determination of 3(k) =27/ dK pymp

ele’ (Z=b) The impurity density of stateg;m,(k), obeys an equation

=— 'wb f the f
Spt(w) oy fdw o —(@Fi0) of the form
XR(&),)G_((D’), _jwd ! ! R ! 1 1
B Pimp(Z) = ] Z pimp(2')R(z—2 )"'Em,
(Iiw-i—& Fiwl2w
2me
+ — _ Pimp(K)
G* (w)=2m —— pmp2=— 2 g, (D21)
F— g’ (k)
2 27
providedB<0, i.e., H<UI'. As we are interested in the
1-R(w)= 1 scattering phase, we want to compute
G.i(0)G_(w)’
k
1 (2 [UT 6(k)=27-rJ' dk’ pimp(K"). (D22
SN R -
= \H e

If z>b, appropriate for when we are computing the phase of

If =0, we can continue the' contour into the upper half a hole. 8(k) becomes
plane about the branch cut & (w) while picking up the 0(k)

pole atw’=0: do —ie- 0000
5(k)=277f —p (w). (D23)
1 sin(27w’) w 27 w—id
5p(w=0)=—1+wf dw’—, ?
mJo @ In this case Wiener-Hopf gives the solution @f (w) as
1
— 1| @= 27w [g(kg)—b]
xXT 2+w e 0 . (D18) . Iwa (a)) 1
Pmpl ) = —(wtid)
With w=i, we find instead
Xpo(wl)G ( ) —Iw b,
Sp(w=im)=e ko)
— o' ol 71
—= J &W;’)(%) pol )= ———. (D24)
a
w' =3 2 coshi
<T E+w, e—270'[g(ko)—b] (D19) Provided we ggsumbi >T, or roughly, equivalently) 1
2 >b, this simplifies to
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1 (=
5(k)=2tan—l(z[l—l—g(k)])+7r—;zfo do

e—Zﬂ'w(g(k)—b) - ) —wr 1
X — =+
> Si(27w) o ST
. e—zmu’(rl—b)
Xf do'———sin(wrw’)
0 o t+w
N I D25
? E-i—a) . ( )

If, on the other hand, we are interested in the phase of an

added patrticldi.e., z<b), we computes(k) via
k
5(k)=277f7 dK’' pimp(K")
g(k)
:2’77_27Tf dZpimp(2)

dw e 199
:2w—2wf - (D26)

27 Siotsl (@)

PHYSICAL REVIEW B 66, 125304 (2002

The Wiener-Hopf analysis then yields fpr (w)

eiwb 1
Pimel @)=~ 5 e (W) f 4o T o=19)
X po(® )G (w')e "D, (D27)
This gives the scattering phase as
37 B
8(k) = —-=sin"*(tant(m(g(k) =17%)))
1 e?m(00=b) tan7rw) (w)®
+—Pf dow —
2m 0] Ii+w)\e
e72mu’(l_17b)
pr dw WSII’\(W(D )
I D28
X ? E"‘Q) , ( )

whereP indicates the principal value of the integral is to be
taken.
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