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Transport in quantum dots from the integrability of the Anderson model
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In this work we exploit the integrability of the two-lead Anderson model to compute transport properties of
a quantum dot, in and out of equilibrium. Our method combines the properties of integrable scattering together
with a Landauer-Buttiker formalism. Although we use integrability, the nature of the problem is such that our
results are not genericallyexact, but must only be considered as excellent approximations which nonetheless
are valid all the way through crossover regimes. The key to our approach is to identify the excitations that
correspond to scattering states and then to compute their associated scattering amplitudes. We are able to do so
both in and out of equilibrium. In equilibrium and at zero temperature, we reproduce the Friedel sum rule for
an arbitrary magnetic field. From this we compute exactly the behavior of the zero-temperature linear-response
conductance as a function of both the gate voltage and field. We also study transport quantities requiring
knowledge of scattering states away from the Fermi surface. We compute the linear-response conductance at
finite temperature at the symmetric point of the Anderson model and reproduce the numerical renormalization-
group computation of this quantity of Costiet al. We then explore the out-of-equilibrium conductance for a
near-symmetric Anderson model and arrive at quantitative expressions for the differential conductance, both in
and out of a magnetic field. We reproduce the expected splitting of the differential conductance peak into two
in a finite magnetic fieldH. We determine the width, height, and position of these peaks. In particular, we find
that forH@Tk , the Kondo temperature, the differential conductance has maxima ofe2/h occurring for a bias
V close to but smaller thanH. The nature of our construction of scattering states suggests that our results for
the differential magnetoconductance are not merely approximate, but become exact in the large-field limit.
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I. INTRODUCTION

The Kondo effect is a cynosure of modern conden
matter physics. Due to the strongly coupled nature of its
fixed point, understanding its low-energy behavior h
proven a major theoretical challenge. Typically, the pheno
enon refers to the interaction of isolated magnetic impuri
in a bulk metal. However, in the last several years the
perimental study of single magnetic impurities has moved
a new arena: that of quantum dots connected to exte
leads.1–5 In analogy to the traditional realization of th
Kondo effect, the leads serve as the bulk metal and the do
the magnetic impurity. The appearance of the Kondo eff
in this new setting has brought a new set of theoretical c
lenges: how to compute transport quantities that form
main experimental signatures of these systems.

Quantum dots come in at least two forms. Semiconduc
quantum dots1–4 are a product of the continuing project o
the miniaturization of solid-state devices. They are fabrica
by confining electrons in a two-dimensional electron g
~2DEG! within a GaAs/AlGaAs structure using a combin
tion of metallic gates. The region to which the electrons
confined is small enough that its energy levels may be c
sidered discrete. The dot is connected to source and d
contacts~the two leads!. Schematically, the quantum dot ca
be pictured as shown in Fig. 1.
0163-1829/2002/66~12!/125304~38!/$20.00 66 1253
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The source and drain can be held at any relative volta
thus enabling the study of both linear-response and out
equilibrium transport quantities. Beyond the gates that se
to confine the electrons of the 2DEG, additional gates can
deposited on the GaAs/AlGaAs heterostructure. Such g
capacitively couple to the quantum dot through a gate v
ageVg , thus allowing the chemical potential of the dot to b
adjusted. This has two important consequences. By adjus
the gate voltage, one can tune the number of electrons in

FIG. 1. Schematic of the quantum dot.
©2002 The American Physical Society04-1
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confined region to be odd so that there is a single unpa
electron. The presence of an unpaired electron allows
appearance of Kondo-like physics. Moreover, by tuningVg ,
the unpaired electron’s chemical potential can be adjus
thus controlling the scaleTk where Kondo physics sets in
Such systems are thus said to possess a ‘‘tunable’’ Ko
effect.2

Quantum dots may also be fabricated from metallic c
bon nanotubes.5 By depositing metallic leads on top of
small section of a carbon nanotube, an effective quantum
is made. Like their semiconductor counterparts, these
are tunable: gates may be added to the semiconductor
strate upon which the nanotube and leads lie. Semicon
tors dots typically carry 10–100 electrons. Nanotube dots
contrast, have many thousands of electrons and yet still
hibit Kondo-like physics.

The transport quantities that lie at the focus of the exp
mental study of a tunable Kondo effect in quantum dots h
been measured under a variety of conditions. Conducta
of the lead-dot system have been determined both in and
of equilibrium and both in and out of the presence of a m
netic field. Remarkably, this wide variety of experimen
phenomena is thought to be described by a conceptu
simple theory: the Anderson model.

The Anderson model is fashioned from a chain of non
teracting spinful fermions~the leads! connected via hopping
to a single-site impurity on which alone Coulomb repulsi
is present. On a lattice, the Hamiltonian reads~with no bias
andH50!

H5(
ia

2t~ci ,a
† ci 11,a1H.c.!1Und↑nd↓1(

a
@V1~c21,a

† da

1H.c.!1V2~c1,a
† da1H.c.!#1«d~nd↑1nd↓!. ~1.1!

Hereca
† andca are the lead electron creation and destruct

operators, respectively,d† andd the dot electron creation an
destruction operators, respectively, andnd5d†d. The dot is
considered to reside atx50. The indexa indicates the spin
species. The interaction on the dot is present in the t
Und↑nd↓ . Although deceptively simple, the presence of
nonzeroU makes the problem many body with all of i
manifold complications.

U is pictured in Fig. 1 and represents the charging ene
incurred when an electron is added to the dot. Roughly, it
be estimated as

U5
e2

2C
1D«, ~1.2!

where C is the capacitance of the dot andD« is the dot’s
energy level spacing. For the experiments at hand,U
;1 meV. The counterpart of the gate voltageVg in the
above Hamiltonian is«d , the parameter that controls th
chemical potential of the electrons on the dot. By adjust
«d , the number of electrons on the model dot can be va
from 0 to 2.~Although there may be a large number of ele
trons on the actual dot, the concern here both theoretic
and experimentally is of electrons in the highest-occup
energy level.! The final pair of parametersV1,2 measure the
12530
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height of the tunnel barriers between the leads and dot
general, they differ between the two leads. The quantityG
~see Fig. 1! measuring the width of the level resonance th
arises through the interaction of the leads, and the do
given in terms of the tunnel barrier heights to beG5(V1

2

1V2
2)/2. Typically, G/U!1 in the experiments of

concern.1–4

Although the above-described experimental results h
come relatively recently, the theoretical study of transp
through impurities is much older. Appelbaum and Anders
both studied conductance anomalies present in tunnel ju
tions due to the presence of magnetic impurities.6 However,
their efforts were perturbative in nature and did not descr
the strong-coupling nature of the Kondo effect. More r
cently, Ng and Lee7 studied the linear-response conductan
both in and out of a magnetic field using the Friedel su
rule. The Friedel sum rule relates the scattering phase of
electrons at the Fermi surface to the average number of e
trons sitting on the dot. However, the Friedel sum rule
useful only in determining the linear-response conductanc
consequence of the rapid variation in the scattering phas
one moves away from the Fermi surface. In contrast to
linear-response conductance where the Friedel sum rule
exact relationship, the techniques used to determine ou
equilibrium transport are limiting in nature. In one approac
a noncrossing approximation8,9 ~NCA! was employed. The
NCA approach has drawbacks. In order to implement
associated use of slave bosons, one must takeU5`. More-
over, the NCA is in some sense a large-N approximation
where N is the number of spin degrees of freedom of t
impurity ~in this caseN52!. It is known to be remarkably
accurate in computing thermodynamics. However, it is l
accurate when it comes to transport quantities~;15%
errors9! due to its less accurate prediction of behavior right
the Fermi surface. And as such these difficulties rende
unusable in nonzero magnetic fields.9 In another approach to
computing nonequilibrium properties, a clever combinati
of the analysis of the equations of motion with perturbati
theory was employed to study the differential magne
conductance.10 However, the truncation of the equations
motion necessary to perform the analysis in this work is
some sense an uncontrolled approximation. The author
Ref. 10 indicate that their methodology underestimates
magnitude of the differential conductance. Another set
approaches has relied upon perturbation theory.11–13As with
the results of Ref. 6, perturbation theory requires relativ
small U ~Coulomb repulsion! or, alternatively, temperature
far in excess of the Kondo temperature and so presum
can access, at best, qualitative, not quantitative, feature
the strongly coupled physics found in the Kondo regime
quantum dots at low temperatures.

These inherent difficulties with the out-of-equilibrium
Anderson were circumvented in the study of a nonequi
rium Kondo impurity at its Toulouse point.14 At this point,
the model can be mapped to a system of noninteracting
mions, thus permitting an exact solution. It is unclear, ho
ever, how the Toulouse limit affects the underlying physi
Although the ordinary Kondo model shares the same
fixed point as its Toulouse counterpart, we are intereste
4-2
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part in physics for large applied field, bias, and tempe
ture: that is, in physics far away from this fixed point.

Given the limitations of these methods, one cannot h
but notice that the Anderson model is exactly solvable.
deed, this integrability has already been exploited throu
Bethe ansatz solutions to compute thermodyna
quantities15,16 such as the specific heat and magnetic susc
tibility. But what of transport quantities? A limited attempt
deduce information about transport properties from the Be
ansatz solution of theKondo model was made recently.17

There the equilibrium impurity density of states that aris
from the Bethe ansatz was studied. In general, the impu
density of states coming from the Bethe ansatz is unrela
to the spectral density of states arising from the dot c
relator, Im̂dd†&. Indeed, at zero temperature and zero field
is clear the two are much different quantities~the heights of
the zero-energy peaks in both quantities are controlled by
different energy scales!. But in the methodology of Ref. 17
it is this latter quantity Im̂dd†& that is directly related to
transport.9,10,12 Moreover, the context of their computatio
as determined in Refs. 9, 10, and 12, demands that thenon-
equilibrium properties of Im̂dd†& be computed. Given the
general unavailability from the integrability of informatio
about correlators such as Im^dd†&, a different approach is
needed to extract transport properties from the exact s
ability of the model. Here we advocate a Landauer-Bu¨ttiker
approach to transport and so are instead faced with the
of identifying scattering states in the context of integrabili

The key feature of an integrable system is the ex
knowledge of eigenfunctions of the fully interacting Ham
tonian. In turn, there is a well-defined notion of elementa
excitations. In particular, these excitations have an infin
lifetime: integrability forbids any decay processes from o
curring. This arises from the infinite series of nontrivial co
servation laws in the model. In some sense an integra
system is a superior version of a Fermi liquid.

In the Anderson model, there is such a set of excitatio
as detailed in Secs. III and IV. They are not on the face o
however, particularly electronic. And if we are to understa
the transport of the sea of electrons in the attached leads
necessarily need scattering states which carry the quan
numbers of an electron. Rather, the excitations divide i
separate spin and charge sectors. The closest they com
being electronic is in bound states between excitations wh
can be thought of as bound states of electrons. This is no
unnatural. If one were to bosonize the Anderson model,
would find that the degrees of freedom separate into spin
charge bosons. But this is only one problem with the exc
tions arising from integrability. These excitations, as e
plained in Sec. III, are a combination of degrees of freed
in both of the leads connected to the dot. And it is the ca
that this entanglement cannot always be simply reversed

And so there is the difficulty. The scattering states are
necessarily electronic in nature and not confined to a sin
lead. Only if one can understand electronic excitations in
individual lead can one hope to make sense of scatte
amplitudes off the dot. It is these two facts that have p
vented the integrability of the Anderson model from bei
applied to transport quantities up to now.
12530
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However, we have managed to circumvent these proble
in a number of cases. In particular, we have successf
described both scattering states at the Fermi surface for
neric values ofU, «d , andG and scattering at finite energie
at the symmetric point of the Anderson model,U52«d/2.
There we argue that by correctly gluing together a spin a
charge excitation, we are able to form an excitation tha
electronic in nature. Moreover, the excitations are such
one can understand them in terms of the individual leads
so compute reflection and transmission amplitudes of the
citation off the dot. We do so in an argument akin to th
used by Andrei18 in computing the magnetoresistance in t
Kondo model. There he argues that the scattering phase o
excitation can be identified with its impurity momentum.
turn, this momentum is related to the impurity density
states as it appears in the Bethe ansatz and so can be di
computed.

We now turn to how we use these excitations to comp
transport quantities. All such quantities could be expresse
terms of the scattering of asymptotically free electrons~i.e.,
electrons in the attached leads! off the quantum dot. How-
ever, such scattering, in general, is not particularly simple
general away from the Fermi surface such scattering will
inelastic and involve particle-hole production. We howev
recast the density of states of asymptotically free fermion
terms of the integrable excitations we have identified. B
cause of their integrability, their scattering is simple: th
character does not change in scattering through the dot
their transport can be described individually: they scatter
by one through the dot.

It is, however, unlikely that the integrable electronic e
citations we use in computing transport properties prov
exact results in all cases—the issues involved here are su
and will be discussed in detail in the next sections. In p
ticular, it is unlikely the high-energy limit of the excitation
we construct are entirely confined to a single lead. Howe
this methodology successfully passes a number of tests.
first test of our method comes in proving the Friedel su
rule. The Friedel sum rule relates the occupancy of spin↑/↓
electrons on the quantum dot,nd↑/↓ , to the scattering phas
of an electron of the same spin,de↑/↓ , at the Fermi surface

de↑/↓52pn↑/↓ . ~1.3!

It thus relates a dynamic quantity to a thermodynamic qu
tity. With this in hand, previous works have computed t
linear-response conductance from the knowledge of this
cupancy, at least atH50.19,20 However, such works do no
make any attempt to explicitly identify the excitations th
scatter according to the Friedel sum rule. Here we do so.
show that the scattering phase of the excitations we h
identified to be the same as that predicted by the Friedel
rule both in and out of a magnetic field. As we have rep
duced the Friedel sum rule, we can say that the excitati
we have identified coincide exactly with the free fermionsat
the Fermi surface.

Now, while the Friedel sum rule only deals with excit
tions at the Fermi surface, our methods goes beyond ex
tions directly at the Fermi surface, at least near the symm
ric point of the Anderson model. To determine whether t
4-3
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excitations we have identified together with their associa
scattering amplitudes provide a complete solution of
problem, we compute the linear-response conductance a
nite temperature. At finite temperature, the excitatio
needed for the linear-response conductance using
Landauer-Bu¨ttiker formalism exist over a range of energie
In particular, we compute the linear-response conductanc
the symmetric point (2U/25«d) of the Anderson model a
a function of temperatureT and compare it to the numerica
renormalization group~NRG! computation of this quantity
by Costi et al.21 and find excellent agreement. We thus a
able to conclude that using our excitations away from
Fermi surface is a valid procedure.

Although our finite-temperature computation sugge
that we have correctly identified the low-~but finite-! energy
excitations at the symmetric point, we do not claim that o
result isexact. Again, our inability to make this claim hinge
on the question of whether the integrable excitations we c
struct are entirely confined to a single lead and so m
appropriate scattering states. Moreover, we know that
prescription for scattering fails once we leave the Kon
regime where approximately one electron sits on the dot
enter the mixed-valence regime of the Anderson model. T
again suggests that near the symmetric point, our meth
are merely highly accurate. The situation here is not dissi
lar to form-factor computations of correlation and respon
functions, where integrable techniques can provide, if not
exact result~which would involve resumming an infinite
number of contributions!, controlled approximations of ex
cellent accuracy, from the lowest energies through crosso
regimes.22,23

The physical origin of the accurate reproduction of sc
tering at nonzero energies relative to the Fermi surface a
Anderson model’s symmetric point lies in a separation
scales. At this point there are two relevant scales in the p
lem: one is the Kondo temperatureTk , while the other is
AUG, a function of the Coulomb repulsionU and the reso-
nance width of the dot level,G. At the symmetric point,Tk

!AUG. We exploit this fact to make our identification o
integrable scattering states. But in turn this means that
expect errors in transport quantities involving scatter
away from the Fermi surface ofO(Tk /AUG).

Bootstrapping from our success with the finit
temperature linear response conductance, we look at the
equilibrium conductance near the symmetric point both
and out of a magnetic field at zero temperature. In orde
compute this conductance we again employ a Landa
Büttiker formalism akin to that employed in computing th
out-of-equilibrium conductance of interacting quantum H
edges.24 We imagine placing each lead at two differin
chemical potentialsm1 andm2 . These differing voltages in
duce different populations of free electrons in the leads.
with the finite-temperature linear-response problem, we
cast these electrons in terms of our integrable scatte
states. We then compute the~equilibrium! scattering ampli-
tudes of scattering states in the leads. These scattering
plitudes then provide the probability for a state to tunn
from one lead to the other. Although the system is intera
ing, its integrability again implies the states scatter one
12530
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one. It is important to understand that this means of com
tation introduces no additional error into the calculation. T
sole source of uncertainty is found in whether the scatter
states that we construct are entirely confined to a single le
But because of the excellent agreement of the finite-T linear-
response conductance with the previous NRG results, we
pect this error to be similarly insignificant in our nonequili
rium computations.

It is important to understand that this approach to
nonequilibrium physics differs from that used in Refs. 9, 1
and 12 in a fundamental way. There the nonequilibrium c
ductance is expressed in terms of the nonequilibrium den
of states of the impurity as determined from the correla
Im^dd†&. Here we have nothing direct to say about the no
equilibrium ~or, indeed, the equilibrium! behavior of this
quantity.

We must stress this as the reader may be confused by
fact we do use the impurity momentum~which is in turn
related to the Bethe ansatz impurity density of states as
plained in Sec. II! to compute the scattering amplitudes
excitations off the dot. This confusion may be heightened
that we employ the equilibrium Bethe ansatz density of sta
in computing the scattering matrices. It would thus se
legitimate to ask why we do not need to use a nonequi
rium impurity density of states in computing the out-o
equilibrium conductance.25

The answer lies in correctly understanding the basis
excitations by which we compute the conductance.26 We are
able to use the equilibrium scattering phases as we em
the basis that is naturally present when the system is eq
brated. However, because of the integrability of the syste
we can continue to employ this basis when we move
system out of equilibrium. These particles continue to sca
as they do in equilibrium. We note that if one were to co
pute out-of-equilibrium scattering matrices, one would fi
that they differ from their in-equilibrium counterparts by a
overall phase alone. As transport quantities depend upon
absolute value of the scattering, this overall phase wo
then have no effect.26 While the application of finite voltage
does not effect the scattering of the excitations, it do
change their distribution in the leads. And indeed we m
and do take this into account.

The rationale behind this understanding has been te
beyond the various checks of these ideas applied by Ref
in their computations of conductances of quantum H
edges. Generically, the thermodynamics of an integrable fi
theory can be computed using thermodynamic Bethe an
which employs zero-temperatureS matrices~and not finite-
temperatureSmatrices as might again be naively expected
the finite-temperature distribution might be thought toneces-
sarily dress the scattering!. With the thermodynamics, on
can determine the finite-temperature scaling behavior o
field theory. If in the UV or IR limit the theory flows to a
conformal field theory, the finite-scaling behavior in the
limits is independently determined by the central chargec of
the theory. That the two computations always agree provi
strong evidence we are handling the problem correctly.

Turning to our nonequilibrium results, we find that the
reproduce the expected gross features of the experime
4-4
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differential conductance. WhenH50 and we are near th
symmetric point, the differential conductance is shar
peaked about its linear-response value. The peak widt
controlled by the scaleTk , the Kondo temperature. We fin
that the peak is roughly symmetrical aboutV50 in accor-
dance with experiment.1

In a nonzero field, Meiret al.10 predicted that the differ-
ential conductance would peak ateV56H. We find such
peaks with our techniques, although our peaks are fo
shifted to values ofeuVu notably smaller thanuHu. Even in the
limit of fields much larger thanTk , we do not find the peaks
at uHu. This is again consistent with experiment.3 We should
not necessarily expect the peaks to occur exactly ateV5H
as the prediction of Meiret al. is predicated in part upon
second-order perturbative result. Moreover, our construc
of the scattering states suggests that in the particular cas
the differential magnetoconductance, our results become
act in the limit of large applied fields.

A portion of the results of this paper have been reported
Ref. 27. Here in this work we provide far greater detail
the nature of our computations. The paper is organized
follows. In Sec. II we introduce the continuum version of t
two-lead Anderson model. The two-lead Anderson mode
integrable as is. However, we first map it onto a one-le
problem. If we were to explicitly solve the two-lead problem
we would find nevertheless that we would be implicit
implementing the map to the one-lead case. Having d
this, we review the Bethe ansatz for the one-lead Ander
model together with the excitations necessary to form
ground state at zero temperature. The remaining portion
Sec. II is devoted to identifying the excitations~both at and
away from the Fermi surface! that can be identified with
scattering states and then computing their scattering am
tudes. We provide further details of the approximate nat
of the scattering states so identified away from the Fe
surface. In the course of this discussion we demonstrate
Friedel sum rule.

In Sec. III we explore the behavior of theT50 linear-
response conductance both in and out of a magnetic fi
Because Wiegmann and Tsvelick28 computed expressions fo
the occupancy of the dot,nd↑/↓ , as a function of the gate
voltage«d andH in a variety of regimes, and the Friedel su
rule relates the electron scattering phase to this occupa
we can derive closed-form expressions for the line
response conductance in these same regimes. Outside
regimes we compute the occupancy numerically. Using th
results, we show how the linear-response conductance
haves as function of«d .

We plot the linear-response conductance as a functio
the gate voltage«d in zero field in Fig. 4. However, the mos
interesting results of this section are found in our compu
tions of the linear-response conductance at finiteH. In Fig. 5
we plot the linear-response conductance as function of«d for
a variety of values ofH. As H is increased from zero, we se
that the linear-response conductance is suppressed as a
of the destruction of the Kondo effect in a finite field. W
also see the structure of the conductance peak evolve from
zero-field value to that of free fermions. With increasingH,
the full width at half maximum becomes narrower, decre
12530
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ing from its zero-field value ofU to its free-fermion value of
2G. The peak height, in turn, decreases from its maxim
value of 2e2/h to e2/h. And finally the location of the peak
shifts from«d52U/2 to H/2 ~we scaleH here and through-
out this paper such thatgmB51!, appropriate to a spin-up
free fermion with a field-induced, shifted chemical potenti
These results are encoded in Fig. 6.

At the symmetric pointU/252«d , we provide a simple
closed-form expression for the conductance~see Sec. IV B!.
We then find that the conductance deviates from its unit
maximum for small fields via

G52
e2

h S 12
p2

16

H2

Tk
2 1O~H4/Tk! D . ~1.4!

This deviation from the maximal conductance is quadra
appropriate for the controllingH50 strongly coupled Fermi-
liquid fixed point. HereTk , the Kondo temperature, is give
in Eq. ~3.16!.

In Sec. IV we compute the finite-temperature linea
response conductance at the symmetric point,U/252«d .
This requires recomputing the scattering of Sec. II. At fin
temperature one must consider the thermal bath of all p
sible excitations. This highly nontrivial bath modifies th
scattering. However, doing so leads us to a highly pleas
result. We are able to reproduce the NRG result of Co
et al. for G as a function ofT ~see Fig. 9!. This is convincing
evidence that we have correctly identified the scatter
states~at least at the symmetric point of the dot!. More spe-
cifically, we know the linear-response conductance will ag
have a Fermi-liquid form

G~T!52
e2

h S 12c
T2

Tk
2 1O~T4/Tk! D . ~1.5!

Costiet al. demonstrated in perturbation theory that the co
stant c takes the valuec5p4/1656.088. We compute in
comparison c56.0560.1. Beyond the low-temperatur
Fermi-liquid regime, we emphasize we are able to desc
accurately the conductance in the crossover regimeT;Tk .

We also compare the scaling curve for the finit
temperature linear-response conductance with the exp
mental data found in Ref. 1. The comparison is plotted
Fig. 10. We find that the experimental measurements, e
though taken away from the symmetric point of the dot~al-
though still in its Kondo regime!, agree well with our scaling
curve. This suggests that the Kondo regime of the dot ex
over a wide range of gate voltages~i.e., «d!.

In Sec. V we move on to compute the nonequilibriu
conductance at zero temperature. Again, the scattering
plitudes need to be recomputed to take into account
change in the distributions of electrons in the leads indu
by the finite bias. We also discuss subtleties with understa
ing how to think of a finite-biased system in its one-le
formulation. We then present results of the differential co
ductance both in and out of a magnetic field as discus
above.
4-5
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We are able to derive a number of simple closed-fo
results for the out-of-equilibrium conductance. The differe
tial conductance in zero field at the symmetric point is co
puted to be

G~m1 ,m2!52
e2

h

1

@11p2~m12m2!2/4Tk#
, ~1.6!

a remarkably simple result. This expression is expected to
valid for m12m2&Tk . We are also able to characterize t
peak in the differential conductance that develops in
presence of a magnetic field. The quantity most discusse
the literature—the bias at which the peak occurs—is giv
by the expression

eVmax52HS 12
1

2p
tan21

1

I 212b
1¯ D ,

I 212b5
1

p
lnS H

2Tk
Ape

2 D , ~1.7!

valid for H@Tk and H!AUG. Because of the logarithmic
dependence ofb uponH, the position of the peak approach
eV5uHu extremely slowly. In addition to the location of th
peak, we are also able to describe both the peak width
height of the peak. The peak width is given by

eDV5
H

2p S tan21
1

I 2121/22b
2tan21

1

I 2111/22bD ,

~1.8!
while the peak height is equal to

Gmax5
e2

h S 3

2
2

~ I 212b!

A4~ I 212b!11
D . ~1.9!

We see that the height of the conductance peak approa
e2/h, one-half the unitary limit, in the asymptotic limit o
large H. Interestingly, the nonequilibrium Kondo model
the Toulouse limit14 also predicts a zero-temperature diffe
ential magnetoconductance peak ateV5H which has a peak
of e2/h, one-half the unitary limit.

II. BASIC FORMALISM

A. Description of the system

Pictured in Fig. 2 is a sketch of the quantum dot co
nected to two leads. The Hamiltonian for this model in t
continuum limit is given by

H5(
ls

E
2`

`

dx$2 ic ls
† ~x!]xcls~x!1Vld~x!@cls

† ~x!ds

1ds
†cls~x!#%1«d(

s
ns1Un↑n↓ , ~2.1!

FIG. 2. Sketch of two leads attached to a quantum dot.
12530
-
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be

e
in
n

nd

es
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wherens5ds
†ds . Here ( l is a sum over the two leads (l

51,2). We have allowed for the possibility that the hoppi
matrix elementVl differs between the leads as is typical
any experimental realization. Rather than treating the le
as half-lines with both left- and right-moving fermions, w
represent the leads as ‘‘unfolded’’ with fermions that a
solely right moving. Fermions in either lead that are incide
upon the dot are considered to lie in the regionx,0, while
those traveling away from the dot in either lead are fou
with x.0. We represent this in Fig. 2 by drawing the lea
as elongated arcs.

We stress that there are no interactions in the leads~as
opposed to the calculations in Ref. 24, for instance!: the
nontrivial physics of the problem arises solely from t
strongly interacting dynamics of the dot.

It will be advantageous to reformulate this problem as
one-lead Anderson model~i.e., a single-lead model!. To do
so, we introduce even/odd electrons

ce/o5
1

AV1
21V2

2 ~V1/2c16V2/1c2!. ~2.2!

RecastingH in this new basis, the odd electronco decouples
and we are left with

H5(
s

E dx$2ces
† ~x!]xces~x!1~V1

21V2
2!1/2d~x!

3@ces
† ~x!ds1ds

†ces~x!#%1«d(
s

ns1Un↑n↓ .

~2.3!

We have thus reduced the problem to that solved using B
ansatz in a series of papers by Kawakami and Okiji15 and
Wiegmann, Filyov, and Tsvelick.16

With this reformulation of the model, we have to addre
the question of computing scattering amplitudes of electro
excitations in the original two lead problem. Naively
would seem we can do this. LetT(«) andR(«) be defined
by

T~«!, the transmission amplitude for an electronic

excitation of energy« to scatter from

lead 1 to lead 2~or 2 to 1!, ~2.4a!

R~«!, reflection amplitude for an electronic

excitation of energy« to scatter from

lead 1 to lead 1~or 2 to 2!. ~2.4b!

Assuming that the amplitudes behave linearly under
even/odd map~2.2!, we have~for V15V2!

eide~«!5R~«!1T~«!,

eido~«!515R~«!2T~«!. ~2.5!

We then conclude that
4-6
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T~«!5
eide~«!21

2
,

R~«!5
eide~«!11

2
, ~2.6!

govern scattering in the two-lead problem. However, not
electronic excitations behave linearly under the map~2.2!
and so things are not always this simple. We will consid
this in more detail in Sec. II D and in particular Sec. II E.

As noted, in writing the above two equations, we ha
assumedV15V2 . If V1ÞV2 , the transmission amplitude i
scaled by the factor

2V1V2

V1
21V2

2 .

As this is a constant factor, it always possible to resc
results to take into account an asymmetry in the dot-l
couplings. As such, we will assume throughout the paper
V15V2 .

B. Bethe ansatz solution of the one-lead Anderson model

In order to understand the scattering between the
leads we will rely upon aspects of the one-lead Bethe an
solution found in Refs. 15 and 16. As such, we summar
briefly the results of this work. Applying the Bethe ansa
yields a set of quantization conditions describing a fin
number of bare excitations in the system:

eik jL1 id~kj !5 )
a51

M
g~kj !2la1 i /2

g~kj !2la2 i /2
,

)
j 51

N
la2g~kj !1 i /2

la2g~kj !2 i /2
52 )

b51

M
la2lb1 i

la2lb2 i
, ~2.7!

where

d~k!522 tan21S G

~k2«d! D ,

g~k!5
~k2«d2U/2!2

2UG
,

G5~V1
21V2

2!. ~2.8!

As in all problems with an SU~2! symmetry, there are two
types of excitations: charge~with rapiditiesk! and spin~with
rapiditiesl!. HereN is the total number of particles in th
system, andM marks out the spin projection of the system
2Sz5N22M ~in zero magnetic fieldM5N/2!.

When«d.2U/2, the ground state of the system consi
of the following set of excitations:

~ i! N22M real kj ’s,

~ ii ! M real la’s,
12530
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~iii ! associated with each of theM la’s are

two complexk’s k6
a , described by

g~k6
a !5g@x~la!7 iy~la!#5la6 i /2,

x~l!5U/21«d2AUG @l1~l211/4!1/2#1/2,

y~l!5AUG @2l1~l211/4!1/2#1/2. ~2.9!

Although only valid for«d.2U/2, we can also understan
the case«d,2U/2 through a particle-hole transformation.
we take the continuum limit of Eqs.~2.9!, we no longer deal
with discrete values ofl andk, but rather go over to smooth
distributionsr(k) for the realkj ’s ands~l! for the la’s and
their associatedk6

a ’s. To derive these distributions, we firs
take the logarithm of Eq.~2.7!:

kjL1d~kj !52pNj2 (
b51

M

u1~g~kj !2lb!,

2pJa1 (
b51

M

u2~la2lb!1 (
j 51

N22M

u1~la2g~kj !!

522Lx~la!22 Red~x~la!1 iy~la!!,

un~x!52 tan21S 2

n
xD1p. ~2.10!

Nj andJa are the quantum numbers of the charge and s
excitations, respectively. Taking the thermodynamic lim
~i.e., N,M,L→` with N/L andM /L finite!, followed by de-
rivatives of the above gives

r~k!5
1

2p
1

D~k!

L
1g8~k!E

Q

Q̃
dl a1~g~k!2l!s~l!,

s~l!52
x8~l!

p
1

D̃~l!

L
2E

Q

Q̃
dl8a2~l82l!s~l8!

2E
2D

B

dk a1~l2g~k!!r~k!, ~2.11!

where

D~k!5
1

2p
]kd~k!,

D̃~l!52
1

p
]l Red~x~l!1 iy~l!!,

an~x!5
1

2p
]xun~x!5

2n

p

1

~n214x2!
. ~2.12!

Various limits appear in the above equations for the distri
tions.2D marks the lower allowed limit of thek’s while Q̃
marks out the bandwidth of thel’s. As eachl has a pair of
complexk’s, its associated energy is 2x(l). We thus deter-
mine Q̃ by
4-7
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x~Q̃!52D. ~2.13!

Often, it will be possible to replaceQ̃ and2D by ` and2`.
Here B and Q, on the other hand, give the spin and char
Fermi surfaces. They are determined by the constraints

N22M

L
5E

2D

B

dk r~k!,

M

L
5E

Q

Q̃
dl s~l!. ~2.14!

C. Determination of the scattering phase at the Fermi
surface: The Friedel sum rule

In this section we examine the relationship between
scattering phase of electronsde(e) at the Fermi surface an
the number of electrons on the dot and so verify the Frie
sum rule.

To determinede(«), we employ an energetics argume
of the sort used by Andrei in the computation of the mag
toresistance in the Kondo model.18 Imagine adding an elec
tron to the system. Through periodic boundary conditions
momentum is quantized,p52pn/L. If the dot was absent
the quantization condition would be determined solely by
conditions in the bulk of the system and we would wr
pbulk52pn/L. Upon including the dot, this bulk momentum
is shifted by a term scaling as 1/L. The quantization condi-
tion is then rewritten as

p5
2pn

L
5pbulk1

de~«!

L
, ~2.15!

where L is the system’s length. The coefficient of the 1L
term is identified with the scattering phase of the electron
the dot.

As we are interested in expressingde in terms of the
number of electrons on the dot, it is useful to separate
from r(k) ands~l! the impurity contribution to the densit
of states. We thus write

r~k!5rbulk~k!1
1

L
r imp~k!,

s~l!5sbulk~l!1
1

L
s imp~l!. ~2.16!

rbulk /sbulk represents the bulk contribution to the densit
while r imp /s imp determine the number of electrons of de
nite spin,nd↑ /nd↓ , sitting on the dot. From Eqs.~2.14! we
have

nd↑5E
Q

Q̃
dl s imp~l!1E

2D

B

dk r imp~k!,

nd↓5E
Q

Q̃
dl s imp~l!. ~2.17!
12530
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These relations will be key in verifying the Friedel sum ru
Substituting Eqs.~2.16! into Eqs.~2.11!, we obtain separate
equations forrbulk /r imp andsbulk /s imp :

rbulk~k!5
1

2p
1g8~k!E

Q

Q̃
dl a1~g~k!2l!sbulk~l!,

sbulk~l!52
x8~l!

p
2E

Q

Q̃
dl8a2~l82l!sbulk~l8!

2E
2D

B

dk a1~l2g~k!!rbulk~k! ~2.18!

and

r imp~k!5D~k!1g8~k!E
Q

Q̃
dl a1~g~k!2l!s imp~l!,

s imp~l!5D̃~l!2E
Q

Q̃
dl8a2~l82l!s imp~l8!

2E
2D

B

dk a1~l2g~k!!r imp~k!. ~2.19!

In Appendix A we give alternative forms to the above equ
tions governing the density functionals. These alternati
are far more amenable to numerical analysis and in prac
the ones used in solving for the densities.

Having obtained the equations governing the impur
densities of state, we now focus on the scattering phase it
From Eqs.~2.10! we can read off the bulk momentum of
charge/spin excitation with quantum numberN/J to be

p~k!5
2pN

L
5k1E

Q

Q̃
dl sbulk~l!u1~g~k!2l!,

p~l!52
2pJ

L
52x~l!1E

Q

Q̃
dl8sbulk~l8!u2~l2l8!

1E
2D

B

dk rbulk~k!u1~l2g~k!!. ~2.20!

We assume here that tan21 in u1,2 varies fromp/2 to p/2,
thus ensuring a simple relationship between the momen
and energy functionals to be derived in the next subsect

The impurity contribution to the momentum for each ty
of excitation can be similarly determined to be

pimp~k!5d~k!1E
Q

Q̃
dl s imp~l!$u1~g~k!2l!22p%,
4-8
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pimp~l!52 Red~x~l!1 iy~l!!

1E
Q

Q̃
dl8s imp~l8!@u2~l2l8!22p#

1E
2D

B

dk r imp~k!$u1~l2g~k!!22p%.

~2.21!

Here we have chosen a different range for tan21 in u1,2 for
describing the impurity momentum. Shifting back to t
original range leads then to the appearance of the 2p’s. This
choice is governed by our ultimate desire to give the scat
ing phases in terms of the impurity momentum. In particu
we wantpimp(k→2`)5pimp(l→`)50.

According to Eq.~2.15!, we identify pimp(k) with the
scattering phase of a charge excitation andpimp(l) with the
scattering phase of a spin excitation. By differentiating th
expressions and comparing to Eqs.~2.19!, we obtain the
relations

]kpimp~k!52pr imp~k!,

]lpimp~l!522ps imp~l!. ~2.22!

Again, we have relations crucial to verifying the Friedel su
rule.

In order to determine the scattering phase of an elec
~as opposed to a spin or charge excitation!, we must specify
how to glue together a spin and a charge excitation to fo
the electron. The situation is analogous to adding a sin
particle excitation in the attractive Hubbard model.29 Adding
a single spin↑ electron to the system demands that we ad
realk.B ~charge! excitation. In doing so we create a hole
l.Q in the spin distribution as the number of the availab
slots in the spin distribution is determined by the number
electrons in the system. Adding an electron to the sys
thus opens up an additional slot in thel distribution.

The electron scattering phase off the impurity is then
difference of the right-moving k-impurity momentum
pimp(k) and the left-movingl-hole–impurity momentum
2pimp(l):

de
↑5pimp

↑ 5pimp~k!1pimp~l!

52pE
2D

k

dk8r imp~k8!12pE
l

Q̃
dl8s imp~l8!,

~2.23!

where we have used Eqs.~2.22! in writing the last line. If the
excitations are added or removed at the Fermi surfaces,
k5B, l5Q, we obtain the Friedel sum rule for spin-u
electrons,

de
↑52pE

2D

B

dk r imp~k!12pE
Q

Q̃
dl s imp~l!52pnd↑ ,

~2.24!

where Eq.~2.17! has been used. The total energy of th
excitation is«(k5B)1«(l5Q)50, as it should be.
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To determine the scattering of a spin-down electron
employ particle-hole symmetry. A particle-hole transform
tion is implemented via

c↑
†~k!→c↓~2k!,

c↓
†~k!→c↑~2k!,

d↑
†→d↓ ,

d↑
†→d↓ ,

«d→2U2«d . ~2.25!

Consequently, the scattering phase of a spin↓ hole is related
to that of a spin↑ electron via

dho
↓ ~2U2«d!5de

↑~«d!. ~2.26!

The phase of this excitation is then

dho
↓ ~2U2«d!52pE

l

Q̃
dl8s imp~l8!12pE

2D

k

dk8r imp~k8!

52pnd↑~«d!, ~2.27!

where the last equality holds if we take the hole to be at
Fermi surface,l5Q and k5B. As nd↑(«d)512nd↓(2U
2«d), we have

dho
↓ ~2U2«d!mod 2p52nd↓~2U2«d!. ~2.28!

At the Fermi surface, hole and electron scattering are ide
cal ~up to a sign! and so we verify the Friedel sum rule fo
spin-down electrons.

The reader may be puzzled why we rely on a particle-h
transformation in computing the scattering amplitude
spin-down electrons. Although it would be desirable to
this computation directly, it does not seem to be possible.
construct a spin↓ electron at the Fermi surface, it is natur
to remove ak5B excitation while adding al5Q excitation.
The corresponding scattering phase is then given by

de
↓5pimp

↓ 5pimp~k!1pimp~l!

52pE
2D

B

dk r imp~k!12pE
Q

Q̃
dl8s imp~l8!

52pnd↑ . ~2.29!

But this is obviously not what we want—a manifest violatio
of the Friedel sum rule. Rather by comparing Eq.~2.29! with
Eq. ~2.27!, the scattering indicates that we have constructe
spin ↓ electron not at«d , but at the particle-hole conjugat
point 2U2«d . Why this is so it is not entirely clear. How
ever, one can notice that thek excitations are not only charg
excitations, but are in some sense unbound spin↑ electrons
~the number ofk excitations is directly proportional to th
magnetization of the system!. So in removing ak excitation
to form the spin↓ electron, we are in some sense creating
spin ↑ hole. And a spin↑ hole at chemical potential«d will
scatter as a spin↓ electron at2U2«d .
4-9
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This entire discussion has concerned itself with prov
the Friedel sum rule for the one-lead Anderson model. Ho
ever, we can argue that it applies, appropriately revised
the two-lead model. More precisely, we can argue that
excitations at the Fermi surface behave linearly under
map ~2.2! and so have two-lead scattering amplitudes giv
by Eqs. ~2.6!. This will be detailed in the following two
sections.

In Appendix B we give an alternate derivation of the sc
tering phase that focuses upon the impurity energy of
excitation as opposed to its impurity momentum. In doing
we elucidate subtleties not explicitly discussed in Ref.
We also give a third derivation of the scattering phase
Appendix C by directly considering the dressing of the b
scattering.

D. Excitations away from the Fermi surface
in the Kondo regime

In the previous section we were mainly concerned w
scattering at the Fermi surface. However, as made clea
taking kÞB, lÞQ, we can look at scattering above th
Fermi surface.

It is tempting to ask first whether the noninteracting ele
trons in the lead can still be described in this formalism~by
electrons we mean the standard plane-wave excitation
appropriate spin and charge!. Here it is useful to recall some
well-known results from many-body theory: Langreth,
verifying the Friedel sum rule forH50,30 computed the ratio
of the elastic inverse lifetimetel

21 of a plane-wave mode to
that of its total inverse lifetimet21, finding

tel
21~«!

t21~«!
5

G

2 ImS~«!
, ~2.30!

where S~«! is the self-energy for the dot electron Green
function. At the Fermi surface,

Im S~«50!5
G

2
, ~2.31!

and there are no inelastic processes. However, away from
Fermi surface,

Im S~«!5
G

2
1c«2, c.0, ~2.32!

and tel
21,t21, so electrons with energies above the Fer

surface do not scatter elastically.
On the other hand, the simple excitations we constr

within the integrable description by gluing spin and char
excitations will necessarily scatter elastically: beyond
Fermi surface, they cannot be the free electrons one wo
initially like to describe. In and of itself, this does not matt
as all we are interested in at the end is charge transp
irrespective of what kind of objects actually do carry th
charge. A similar situation occurs in the fractional quantu
Hall effect,24 where the integrability approach uses quasip
ticles which are neither electrons nor Laughlin quasipa
cles. This approach merely provides a more convenient b
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for the space of excitations, chosen such that scattering a
impurity is as simple as possible. However, we do have
concern ourselves with rewriting the original free electro
in terms of the integrable scattering basis. As indicated in
Introduction, we are not able to provide an answer to t
problem in its entirety.

Our approach will then be to build excitations which a
‘‘electronic,’’ that is, carry the same quantum numbers
electrons, but scatter simply~i.e., elastically! at the
impurity—they will also scatter in a simple, factorized wa
among themselves, although theirSmatrix is nontrivial~it is
not S521 anymore!. One can certainly think of these exc
tations as dressed electrons.

This being understood, another difficulty remains: the p
tential parameter space of electronic excitations, i.e., (k,l),
is two dimensional~provided we neglect other solutions o
the Bethe ansatz: see Sec. II F!, whereas we naturally wan
the space to be one dimensional. For the moment, we
only make the necessary dimensional reduction when we
in the Kondo regime of the Anderson model. The first step
doing so is to determine the energy-momentum of an exc
tion labeled by (k,l).

We already know the momentum of the excitations fro
Eqs. ~2.20!. We thus must only compute the energies.
facilitate the calculation of excitation energies, it is useful
decomposer(k) ands~l! into particle and hole densities:

rp/h~k!5u~6B7k!r~k!,

sp/h~l!5u~7Q6l!s~l!. ~2.33!

Now imagine varyingrp/h andsp/h and asking what is the
corresponding variation in the energy. We can write t
variation in two ways: one in terms of the bare energies a
one in terms of new functions«6(k) and«6(l) governing
the dressed energies:

dE5LE dk$«1~k!drp~k!2«2~k!drh~k!%

1LE dl$«1~l!dsp~l!2«2~l!dsh~l!%

5LE dkS k2
H

2 D drp~k!12LE dl x~l!dsp~l!.

~2.34!

The variations ondrp/h anddrp/h are not independent. From
Eqs.~2.11! we see

drp~k!1drh~k!5g8~k!E dl dsp~l!a1~g~k!2l!,

dsp~l!1dsh~l!52E dl8dsp~l8!a2~l82l!

2E dk drp~k!a1~l2g~k!!.

~2.35!
4-10
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Substituting Eqs.~2.35! into Eq. ~2.34!, we obtain

«1~k!1«2~k!5k2
H

2
2E dl «2~l!a1~l2g~k!!,

«1~l!1«2~l!52x~l!2E dl8«2~l8!a2~l82l!

1E dk g8~k!«2~k!a1~g~k!2l!.

~2.36!

«6(l) and«6(k) are characterized by

«1~l!5u~Q2l!~«1~l!1«2~l!!.0,

«2~l!5u~l2Q!~«1~l!1«2~l!!,0,

«1~k!5u~k2B!~«1~k!1«2~k!!.0,

«2~k!5u~B2k!~«1~k!1«2~k!!,0. ~2.37!

The functions«5«11«2 are continuous and monotonic
«6 have been defined such that«1(k/l) is the cost of add-
ing an excitation atk/l while 2«2(k/l) is the energy
needed to create a hole atk/l. Again, in Appendix A, we
give alternative forms to the above equations governing
energy functionals which are more amenable to numer
analysis.

Having determined the energy of the excitation, we c
easily relate it to its corresponding momentum. We consi
the case ofH50 first. Comparing Eqs.~2.20! and~2.36! and
using ]k«(k)52prbulk(k) and ]l«(l)522psbulk(l), we
see that

pbulk~k!5«~k!,

pbulk~l!5«~l!, ~2.38!

wherepbulk is the portion of momentum not scaling as 1/L.
With this in hand, we can parametrize the scatter

phases of electronic excitations away from the Fermi surfa
Suppose we want to characterize a spin↑ electron with en-
ergy «el . ~This is sufficiently general forH50 as we know
spin↓ electrons will scatter identically.! The possiblek and
l forming this excitation must satisfy

«~k!2«~l!5«el . ~2.39!

Given Eqs. ~2.38!, this choice automatically satisfies«el
5pel ~up to 1/L corrections!.

This parametrization leaves an unresolved issue. It d
not in general uniquely specify a particular pair (k,l), cru-
cial if we are to actually compute quantities involving info
mation away from the Fermi surface. We have schematic
illustrated the degeneracy of choices in Fig. 3: as the ene
is increased, the multiplicity of pairs (k,l) correspondingly
increases.

In certain cases, however, the specification is unique
the Fermi surface, the degeneracy of pairs is lifted. This
already illustrated in Fig. 3. However, there is another c
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not captured by the cartoon in Fig. 3 where the specificat
is unique. We have only a single possible pair (k,l) for each
energy in the case of spin↑ hole scattering in finite magneti
field at the symmetric point of the model. The reason beh
the reduction of the parameter space for this case will
made clear in what follows.

For the other cases where the choice is not unique,
question becomes on what operative principle do we red
the space. The key that we have identified to reducing
parameter space is determining how the excitations beh
under the map~2.2!. Only if they behave linearly under th
map are they of use for it is only then that we can comp
their scattering amplitudes in the two-lead picture via E
~2.6!.

Although we have refined the question, we cannot in g
eral determine whether a given excitation unfolds linearly
the case when there are multiple possible pairs (k,l). We
can, however, make some progress when we are in
Kondo regime of the Anderson model~i.e., U12«d;0!. In
this regime we expect the scattering phase to vary on
scale of the Kondo temperatureTk . The electron scattering
phase is determined byr imp ands imp , the two impurity den-
sities. Of the two, onlyr imp varies on scales on the order o
Tk . In contrast,s imp is controlled by the much larger sca
AUG. Thus, in computing electronic scattering phases aw
from the Fermi surface at zero temperature, it is natura
keepl5Q, its Fermi surface value, and varyk. Specifically,
to describe an electron of energy«el , we chose (k,l) such
that

k particle, «~k!5«el ,

l hole at l5Q. ~2.40!

With this ansatz, we then have restricted the two-dimensio
phase space (l,k) of potential excitations carrying the quan

FIG. 3. Cartoon of the parameter space describing electro
excitations. The drawing supposes that«050,«1,«2,«3,«4 .
Each curve represents a set of the excitations that share the
energy«. Only in the case«050, i.e., when we are at the Ferm
surface, is the pair (k,l) uniquely specified. The dashed line mar
out the ansatz we employ in the Kondo regime.
4-11
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tum numbers of an electron to a one-dimensional subsp
Hence the scattering phases of electrons of energy«el above
the Fermi surface atH50 are given by

de
↑~«el!5de

↓~«el!52pE
2D

k

dk8r imp~k8!

12pE
Q

Q̃
dl s imp~l!, «~k!5«el . ~2.41!

When HÞ0, we still have a simple relation between th
energy and momentum, i.e., we have

«~k!5p~k!2
H

2
,

«~l!5p~l!. ~2.42!

Hence withHÞ0 we are still faced with an oversized p
rameter space. But we conjecture similar relations to thos
Eqs.~2.40! hold in constructing the electronic spin↑ excita-
tions:

↑ electron: k particle, «~k!5«el ,

l hole atl5Q. ~2.43!

The scattering phase of this excitation is accordingly

de
↑~«el!52pE

2D

k

dk8r imp~k8!12pE
Q

Q̃
dl s imp~l!,

«~k!5«el . ~2.44!

With HÞ0 and consequently«2(k) not identically zero, we
can construct spin↑ hole states by removing ak state and al
hole. The scattering phase of spin↑ holes is then equal to

dho
↑ ~«ho.0!5pimp~k!1pimp~l!,

52pE
2D

k

dk8r imp~k8!12pE
Q

Q̃
dl8s imp~l8!,

«~k!52«ho. ~2.45!

For this particular excitation we do not need the scatter
ansatz. If we are to remove al hole, we must do it forl
,Q. However, at the symmetric point,Q52` and so the
choice is unique. This fact will allow us to conclude that
the large-field limit, our computation of the differential ma
netoconductance becomes exact. We also point out tha
«(k) is bounded below, i.e.,«(k52D)52H, we are lim-
ited in the energy range (@0,H#) in which we can construc
spin ↑ holes.

With HÞ0, we must compute the scattering of spin↓
objects separately. To do so we again employ a particle-h
transformation. We so obtain

de
↓~«el ,2U2«d!5dho

↑ ~«ho5«el ,«d!,

dho
↓ ~«ho,2U2«d!5de

↑~«el5«ho,«d!. ~2.46!
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Unlike scattering at the Fermi surface where we could in
behavior at«d.2U/2 from behavior at«d,2U/2, we can-
not do so for scattering away from the Fermi surface. Th
when we need to compute explicitly the scattering of spin↓
objects—say, in computing the magnetoconductance ou
equilibrium—we will be restricted to the symmetric poin
«d52U/2.

E. Returning to the two-lead problem

In this section we explore in more depth the map betwe
the one- and two-lead models and its attendant problems
review the map in more formal terms callEe,o the integrable
excitations in the even and odd leads. We then describe
factorized scattering by the relations

EeD5eideDEe ,

EoD5eidoDEo , ~2.47!

whereD is a formal symbol representing the impurity. Agai
the phasede is nontrivial, whiledo50. Under the map~2.2!,
integrable excitations in the two-lead picture are given by

E1,25Ee6Eo . ~2.48!

Scattering of an excitation in the first lead is then describ
by

E1D5RDE11TDE2

or

~Ee1Eo!D5RD~Ee1Eo!1TD~Ee2Eo!, ~2.49!

where consistency with Eqs.~2.47! demands that the trans
mission and reflection amplitudesR and T satisfy R1T
5eide andR2T5eido. An implicit assumption in this deter
mination of the scattering in the two-lead picture is that t
superpositionEo1Ee of an electronic excitation in the eve
sector and an electronic excitation in the odd sector car
unit charge in lead 1 and no charge in lead 2. For an arbitr
fermionic excitation in the even and odd leads this will n
be the case. For example, imagine an electronic excitatio
the even lead that if decomposed into a plane-wave bas
free electrons consists in part of particle-hole excitations

Ee5(
k

akcek
† uFermi sea&

1 (
k,kp ,kh

akkpkh
cek

† cekp

† cekh
uFermi sea&1¯ ,

~2.50!

where herecek is a plane-wave electron in the even lead w
wave vectork. The linear combinationEe1Eo , where the
excitationEo is arrived at from Eq.~2.50! throughce→co ,
does then not carry unit charge in lead 1. Rather, it car
indefinite charge in both leads. In this case the excitat
does not transform between the two pictures as indicated
Eq. ~2.48! and its scattering cannot be expected to be
4-12
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scribed by Eq.~2.49!. If Ee was strictly a linear combination
of terms of the formcek

† uFermi sea&, this problem would not
surface.

Thus, in order to exploit the map between the two p
tures, we must limit ourself to excitations that behave l
early under the map as described in Eq.~2.48!. There are
then two questions to be answered. Do such excitation
general exist? And if they do exist, are they sufficient for o
purposes, the description of transport properties. We h
two arguments that excitations with scattering described
Eq. ~2.48! do exist. More precisely, we have two argumen
giving that excitations falling along some line in the tw
dimensional (k,l) parameter space have such scatteri
Moreover, we argue that the scattering of such excitation
sufficient to determine transport properties.

The first argument relies upon the transformation prop
ties of the Fermi fieldc(x). Recall that in order to implemen
the map between the one- and two-lead pictures, it isc(x)
that is transformed, i.e.,

ce~x!→ 1

&
@c1~x!6c2~x!#.

Thus any integrable excitationEe that has a finite matrix
element withce , i.e.,

^ceuEe&Þ0,

must also behave linearly under the map from one to
leads. To see this more explicitly imagine making a mo
expansion of the fieldce(x) in terms of the integrable exci
tations. AsEe couples toce , Ee must appear in this expan
sion:

ce~x!5(
r

are
iprxEer1¯ , ~2.51!

where it suggests thatEe is one of theEer’s. As ce andEe are
linearly related, they must share the same transforma
properties. This then would guarantee that any excitation
pearing in the above mode expansion will have scatte
described by Eq.~2.49!.

But we can say more on the basis of the properties
ce(x). Because the underlying model is essentially free,
know the single-particle spectral function of the model w
be given by

^cece&~E,p!}d~E2p!.

Thus, for any given energyE5p, we know that some inte
grable excitation with this energy and momentum must
pear in the mode expansion~2.50!. In terms of the two-
dimensional parameter space (k,l), this implies that there is
at least one line in this space describing excitations tra
forming as Eq.~2.48! and scattering as Eq.~2.49!.

The second argument for the existence of this line in
(k,l) parameter space relies upon combining the proper
of the low-energy sector of the theory with the equivalen
of the integrable excitation we have constructed at the Fe
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surface with the corresponding plane-wave electron exc
tion. Given our reliance on this equivalence, it deserves
ther exploration.

This equivalence is, of course, strongly suggested by
ability to reproduce the Friedel sum rule and the fa
Langreth30 demonstrated that plane-wave electrons at
Fermi surface scatter elastically, the hallmark of integra
excitations. Nevertheless, the statement that the integr
excitation coincides with a plane-wave electron needs furt
clarification. If we denote the wave function of the integrab
excitation asc int(x,x1 ,...,xN), wherex is the coordinate of
the excitation and thexi are the coordinates of the electron
in the Fermi sea, andc free el (x,x1 ,...,xN) as the many-body
wave function of the corresponding plane-wave electron p
Fermi sea, we know that the orthogonality catastrophe
plies the matrix element̂intufree el& equals

^ intufree el&5E
2`

`

dx dx1¯dxNc int* ~x,x1 ,...,xN!

3c free el~x,x1 ,...,xN!

5O~1/L !,

and so vanishes in the thermodynamic limit. Thus it wou
seem that in fact the two excitations do not coincide.

However, we are not interested in matrix elements invo
ing full eigenstates of the Hamiltonian, but matrix elemen
involving asymptotic scattering states defined far from
impurity. These are the states of concern in applying
Landauer-Buttiker formalism. With such states, we wou
evaluate the above matrix elements by restrictingx,xi!0 or
x, xi@0, depending on whether the state is ingoing or out
ing. With such a restriction, the orthogonality catastrop
does not apply and

^ intufree el&511O~1/L !.

In this sense the excitations coincide.
With this equivalence so understood, the tw

excitations—the integrable and plane-wave excitation
share the same transformation property~2.48! under the map.
We now exploit this fact by combining it with the behavio
of the low-energy sector of the theory. In this sector we c
take a scaling limit and obtain a relativistic theory invaria
under Lorentz transformations. Under such transformatio
we can imagine boosting the integrable excitations at
Fermi surface, obtaining in the process an excitation w
finite energy and momentum. However, the transformat
properties of the excitation cannot be altered by the boost
such, the boosted excitation will still transform via Eq.~2.48!
under the map. This again implies that there is a line in (k,l)
parameter space describing excitations transforming in
desired fashion. In this case moving along this line amou
to making a Lorentz boost.

Having argued that there do exist excitations transform
as Eq.~2.48!, we now have to address whether the existen
of such excitations is sufficient for our computations
transport properties. We can answer in the affirmative.
compute any given transport quantity in the Landau
Buttiker approach, we need to sum up transmission am
tudes over some given energy range. For example, if
were to compute the zero-temperature out-of-equilibri
conductance, this energy range would be determined by
4-13
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difference of chemical potentials in the two leads. No
imagine looking at a particular infinitesimal energy interv
within this range. As we know the density of states of t
free electron in the lead and we know that the interaction
the problem do not affect this particular quantity, we kno
precisely how much charge lies in this interval. Now we a
able to construct an integrable state that transforms via
~2.48! with an energy in this interval and with the sam
density of states as the free particles. Thus our integra
state completely exhausts the charge lying within this infi
tesimal interval. Given that we are able to compute its tra
mission amplitude~2.49!, we can compute the contributio
of this infinitesimal energy interval to the transport quanti

As a corollary to this, the manifold of other integrab
states arising from the Bethe ansatz equations are then
needed for the computation of transport properties. We
not need to account for the (k,l) states that do not transform
as Eq.~2.48!. We also do not need to worry about stat
consisting of (k,l) excitations together with particle-hol
excitations ofk andl or, indeed, excitations involving mor
complicated string solutions of the Bethe ansatz equatio
The inclusion of such states in the computation of any tra
port quantity would amount to a double counting, given th
the line of (k,l) states transforming as Eq.~2.48! completely
exhausts the density of states of free electrons in the lea

Given all of this, we still must stress that our computati
of scattering amplitudes away from the Fermi surface is
general only approximate. Although we believe that th
exists a line of excitations in the (k,l) parameter space fo
which we understand and can compute scattering, we do
know which line. Rather, at the symmetric point of the mod
we have only an ansatz of how this line cuts through para
eter space. However, we again stress that this ansatz is
ported by the nature of the two scales in the Kondo regim
Tk andAUG. Moreover, our ansatz appears to be extrem
good given its agreement with the NRG results of Costiet al.

Fortuitously, there is one case where this ansatz is ex
the description of spin↑ holes. There the (k,l) parameter
space is one dimensional from the start and no ansat
needed. We point out that the scattering of such holes
vides by far and away the main contribution to the differe
tial magnetoconductance at large fieldsH. As such, we ex-
pect the differential magnetoconductance to be exac
asymptotically large fields.

In order to determine for all cases how the line of linea
transforming excitations cuts through the (k,l) parameter
space we would have to have complete control of the cha
of basis between the free electrons and integrable excitati
There must presumably exist a complete set of such ex
tions providing a proper change of basis of the form

uE&5( cn,F1¯Fk
uF1 ,...,Fk&. ~2.52!

Here the notation is highly symbolic:E stands for any pos
sible integrable excitation, whileFi stands for free electron
with some spin and energy with the sum over the numbek,
the types, and the energies of such excitations. Presum
there are some complex selection rules making it possibl
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match the number of degrees of freedom on the left and
the right of Eq.~2.52!. At this point, however, an exact un
derstanding of Eq.~2.52! is beyond our reach.

III. LINEAR-RESPONSE CONDUCTANCE AT TÄ0

In this section we discuss the linear-response conducta
both in and out of a magnetic field at zero temperature. We
course note that none of Sec. II is necessary to compute
linear-response conductance atT50. Although we have
demonstrated the Friedel sum rule using integrability, all
need for this quantity is the occupancy of the dot as a fu
tion of various parameters, something available from
original Bethe ansatz work on the one-lead Anderson mo
However, the behavior of the linear-response conductanc
predicted by the Bethe ansatz has never been adequatel
plored, particularly in the case with a magnetic field. Inde
the original work of Ng and Lee7 showing that the Friede
sum rule could be applied to quantum dots employs
Hartree-Fock approximation in estimating the dot occupa
and so obtains some qualitatively incorrect predictions a
the behavior of the conductance.

Generally, the linear-response conductance equals

G5
e2

h
@ uT↑~«50!u21uT↓~«50!u2#, ~3.1!

where T↑/↓(«50) is the scattering amplitude at the Ferm
surface:

uT↑/↓~«50!u25sin2~pnd↑/↓!. ~3.2!

In the case withH50, the number of electrons on the dot
a function of«d , the gate voltage, can be computed exac
as has been done by Ref. 28. WhenHÞ0, the equations
become more difficult to analyze and in general only nume
cal solutions are available. However, at the symmetric po
it is again possible to compute in closed form the number
spin ↑/↓ electrons on the dot28 and so arrive at an analyti
expression forG. We first consider the case withH50.

A. HÄ0 linear-response conductance

In this case the Friedel sum rule tells us that

uT↑/↓u25sin2S d↑/↓~«50!

2 D , ~3.3!

where the phased↑/↓ is equal to

d↑/↓52pnd↑/↓ . ~3.4!

The number of electrons,nd↑/↓ , on the dot whenH50 sim-
plifies to

nd↑/↓5E
Q

Q̃
dl s imp~l!. ~3.5!

s imp(l) in turn is given by Eq.~2.19! with the charge Fermi
surfaceB set to the bottom of the band2D:
4-14
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s imp~l!5D̃~l!2E
Q

Q̃
dl8a2~l82l!s imp~l8!. ~3.6!

The Fermi surfaceQ of the spin excitations is determined b
the equations

N

L
5E

Q

Q̃
dl s~l!,

s~l!52
x8~l!

p
2E

Q

Q̃
dl8a2~l82l!s~l8!. ~3.7!

These equations are solved explicitly over most of the
evant parameter range in Ref. 28 using a Wiener-Hopf te
nique.

The solution breaks down into three cases according
the value ofQ describing the Fermi surface

Case „i…: If we are close to the symmetric point (U/2
1«d!A(UG)), then Q!0 ~at the symmetric point,Q
52`! and we have

nd↑/↓5
1

2
2

1

p&
(
n50

`
~21!n

~2n11!
G1~ ip~2n11!!

3E
2`

`

dk D~k!e2~2n11!p~g~k!2Q!, ~3.8!

whereG1 arises in factoring the kernel of the integral equ
tion ~3.6!:

G1~v!5
A2p

G~ 1
2 2 iv/2p!

S 2 iv1«

2pe D 2 iv/2p

. ~3.9!

We include above an extra factor ofe omitted from Ref. 28
through a typo.Q is determined implicitly by the equation

2«d1U

A2UG
5
&

p (
n50

`
~21!n

~2n11!3/2epQ~2n11!G1@ ip~2n11!#.

~3.10!

This differs from Ref. 28 by a factor of 2. This same factor
2 is missing from Eq. 8.2.38 of Ref. 28, which should, w
believe, read

1

p
~«d1U/2!5E

2`

Q

dl s~l!. ~3.11!

Case„ii …: In the next case the location of the Fermi su
face satisfies the constraint

0,Q,I 21[
U

8G
2

G

2U
. ~3.12!

In this casend↑/↓ is computed to be

nd↑/↓522&1
p

6&
~ I 212Q!2

p2&

~24!2 ~ I 212Q!2

1O„~ I 212Q!3
…. ~3.13!
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The first two terms are found in Ref. 28, although we d
agree by a factor of 2 in the term ofO(I 212Q) while the
remaining term was computed by the authors alone.

Case„iii …: In the final case we are far from the symmetr
point such that (U/21«d)@AUG and Q.I 21[U/8G
2G/(2U). We then have instead

nd↑/↓5
1

2p3/2E
0

` dw

w
G~1/21w!e2pw~1/I 2Q !

3sin~2pw!S w

e D 2w

, ~3.14!

with Q in this case determined by

Q5q* 1
1

2p
ln~2peq* !,

Aq* 5
«d1U/2

A2UG
. ~3.15!

In Fig. 4 is plotted the linear-response conductance a
function of the dot chemical potential,«d.2U/2 ~for «d
,2U/2 particle-hole symmetry tells us the plot is a mirr
image about the«d52U/2 axis!, according to this closed
form solution. For the purposes of comparison, we a
present the conductance derived from a numerical evalua
of the equations determiningnd . The vertical lines divide the
plot according to the three cases of the closed-form solut
We see that this solution best matches the numerical solu
in cases~i! and ~iii !. We also see that the solution makes
discontinuous transition from case~i! to case~ii !, a conse-
quence of the approximate nature of the solution in case~ii !.

As expected, the linear-response conductance r
smoothly from zero at large, positive values of«d to its
maximum possible value 2e2/h at the symmetric point of the
model,U/252«d . The ratio of the values ofU andG cho-
sen for this plot corresponds to that of the experimental
alization of a quantum dot discussed in Ref. 1.~Note that our
definition of G is related to that of Ref. 1 byG5G/2.!

FIG. 4. Plot of the linear-response conductance at zero temp
ture in zero magnetic field. The parameters used areU50.75 and
G5U/12. The dashed line marks out the conductivity derived fro
a numerical solution ofnd while the solid line represents the close
form solution described in this section.
4-15
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B. HÅ0 linear-response conductance

1. Solution away from the symmetric point„«dÌÀUÕ2…

Again, the transmission amplitude of the electrons
given by Eqs.~3.3! and ~3.4!. But in this case,

nd↑5E
2D

B

dk r imp~k!1E
Q

Q̃
dl s imp~l!,

nd↓5E
Q

Q̃
dl s imp~l!, ~3.16!

wheres imp ands imp are given by Eqs.~2.19!.
In general, the equations fors imp and s imp cannot be

solved analytically. Therefore, we resort to numerical so
tions. In Fig. 5 we plot the result. Presented there is
linear-response conductance as a function of«d for a variety
of magnetics fields ranging fromH50 to H53G.

As H is increased from zero, we see two effects: the va
of «d marking the conductance peak shifts away from
symmetric point,«d52U/2(526G), while the magnitude
of the peak decreases. This is as expected. The Kondo
perature for the model is given by Refs. 31 and 28 to be

Tk5AUG

2
ep@«d~«d1U !2G2#/~2GU !, ~3.17!

and so varies strongly as a function of the dot chemical
tential. WhenH.Tk we expect the Kondo effect to be su
pressed and any consequent enhancement inG to disappear.
For values of«d away from the symmetric point,Tk is rela-
tively large and thus strong fields are needed to suppress
conductance. Closer to the symmetric point,Tk is exponen-
tially suppressed and weak fields are sufficient to destroy
Kondo effect.

WhenH50, a conductance maximum of 2e2/h occurs at
the symmetric point. At the symmetric point,nd↑/↓51/2, and
so each spin species makes a correspondinge2/h contribu-
tion to G. As H is increased to large positive values, the g

FIG. 5. Plot of the linear-response conductance at zero temp
ture for various values of the magnetic field. By particle-hole sy
metry, the conductance for values of«d,2U/2 is obtained by tak-
ing the plot’s mirror image about the axis«d52U/2. The
parameters used areU50.75/pD ~D being the bandwidth! and G
5U/12. For these parameters, the Kondo temperature at the
metric point isTk50.02508G.
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voltage «d at which nd↑/↓51/2 splits, leading to a corre
sponding split in the conductance resonance. For exam
for largeH the resonance associated with the spin↑ electrons
is approximatelye2/h and occurs atH/2.

We see for example in Fig. 5 that whenH5G/100 the
Kondo temperature is never exceeded regardless of the v
of the gate voltage and so we see little consequent supp
sion of the conductance. However, for the next largest va
of H, H5G/15, the Kondo temperature is exceeded in t
Kondo regime and we see a corresponding depression in
conductance in this regime. For the largest value ofH
53G, we see as expected that the peak value is appr
matelye2/h and that it occurs roughly at«d5H/2.

We note that the linear-response conductance curves
symmetric about their peak value. This differs from the p
diction based upon a Hartree-Fock computation of Ng a
Lee.7 But it is in agreement with Meir and Wingreen.9

The conclusions in the above discussion are reiterate
Fig. 6. There we plot the behavior of the conductance p
as the magnetic field is increased from zero. In the top pa
of Fig. 6 we see that the location of the peak rapidly mov
away from«d52U/2 towards the large field value ofH/2.

ra-
-

m-

FIG. 6. Plots of how the conductance peak evolves with incre
ing magnetic field. In the top panel is a plot of the location of t
peak while the middle panel records the peak height and the bo
panel gives the peak width. The parameters used areU50.75/pD
~D being the bandwidth! andG5U/12.
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The straight line in this panel indicates the behavior of
peak if interactions were absent. Similarly, we see the p
height in the middle panel of Fig. 6 change from its maxim
value of 2e2/h at H50 to e2/h at large fields correspondin
to a contribution to the conductance of a single spin spec
And finally in the bottommost panel of Fig. 6 we examin
the width of the peak. AtH50 the width of the peak is
approximately 12G. However, in the large field limit this
settles down to 2G appropriate to the conductance being go
erned by the Breit-Wigner formula,

G5
e2

h

G2

G21~«d2H/2!2 , ~3.18!

appropriate to a single noninteracting electron species.

2. Solution at the symmetric point„«dÄÀUÕ2…

Although we cannot in general express the magnetoc
ductance in closed form, we can do so at the symme
point. At the symmetric point, the Fermi surface of the sp
excitations,Q, goes to`. The density equations then sim
plify to

rbulk~k!5
1

2p
1g8~k!E

2`

`

dl a1~g~k!2l!sbulk~l!,

sbulk~l!52
x8~l!

p
2E

2`

`

a2~l82l!sbulk~l8!

2E
2D

B

dk a1~l2g~k!!rbulk~k!, ~3.19!

and

r imp~k!5D~k!1g8~k!E
2`

`

dl a1~g~k!2l!s imp~l!,

s imp~l!5D̃~l!2E
2`

`

dl a2~l82l!s imp~l8!

2E
2D

B

dk a1~l2g~k!!r imp~k!. ~3.20!

Here the limitB is determined by

2Sz

L
5

H

2p
5E

2D

B

dk r~k!. ~3.21!

As the electrons in the leads are noninteracting, the
equality is a result of Pauli paramagnetism.

The phase shifts are given by

de↑52p2de↓52pE
Q

Q̃
dl s imp~l!12pE

2`

B

dk r imp~k!

5p1pE
2`

B

dk r imp~k!, ~3.22!

which follows as
12530
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E
2`

`

dl s imp~l!5
1

2
2

1

2 E2`

B

dk r imp~k!. ~3.23!

This is established by integrating*2`
` , Eq. ~3.20!. We can

thus focus solely upon thek distribution.
In order to evaluate the phase shift in the equation abo

we are thus interested in computing the integral

E
2`

B

dk r imp~k!52Mi , ~3.24!

which, as indicated, is directly related to the impurity ma
netizationMi . Using the same Wiener-Hopf technique28 de-
termined this integral in the caseTk.H to be

2Mi5
&

p (
n50

`
G1~ ip~2n11!!

~2n11!
~21!ne2p~2n11!~b21/I !,

b5
1

p
lnS 2

H
AUG

pe D . ~3.25!

Combining this with the expression for the Kondo tempe
ture in Eq.~3.17!, we have for the scattering phases at lea
ing order inH/Tk

de↑52p2de↓5pS 11
H

2Tk
D , ~3.26!

which in turn gives the magnetoconductance as

G~H !52
e2

h F12
p2

16 S H

Tk
D 2

1OS H

Tk
D 4G . ~3.27!

The quadratic deviation from the maximal conductance
the expected Fermi-liquid form.

In Fig. 7 is plotted how the magnitude of the linea
response conductance at the symmetric point changes
function ofH/Tk ~for smallH! according to this solution. We
plot it against the numerical solution, and we obtain agr
ment at worst of 1.5%. The disagreement becomes large

FIG. 7. Plot of the linear response conductance at zero temp
ture at the symmetric point («d52U/2) as a function of magnetic
field. The parameters used areU50.75 andG5U/12. The dashed
line marks out the conductivity derived from a numerical soluti
of nd while the solid line represents the closed-form solution d
scribed in this section.
4-17
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H increases as the closed-form solution is only valid atH
,Tk}e21/I . BeyondH.Tk , we rely entirely on a numerica
solution to determine the magnetoconductance. We plot
behavior ofG(H) in Fig. 8 up toH5G.

IV. LINEAR-RESPONSE CONDUCTANCE
AT FINITE TEMPERATURE

In the previous section we focused upon scattering at
Fermi surface. In this section, we discuss a problem
requires us to understand scattering at finite energy:
linear-response conductance as a function of temperature
compare it to the NRG results of Costiet al. and find excel-
lent agreement. This is important as it indicates that we h
an essentially correct description of the low-energy scat
ing states, i.e., an excellent approximation to the right-h
side of Eq.~2.52!.

Computing the linear-response conductance at finiteT is a
complicated matter. Even though we only consider glu
charge and spin excitations as explained in Sec. III, we n
have to compute their scattering matrix—the 1/L correction
of their associated momenta—in the presence of a ‘‘therm
ized ground state.’’ This ground state is no longer compo
of merely realk states and two-string bound states of sp
and charge as it was atT50. Rather, all the possible solu
tions of the Bethe ansatz equations of the model make
appearance. Thus, to begin the computation of the scatte
amplitudes at finiteT, we give the complete list of excita
tions in the model.

It is useful to understand how the following calculatio
differs from the exact computation of the conductances in
fractional quantum Hall problem.24 The logic of Ref. 24
would first require the identification of all the excitation
above the zero-temperature ground state. We then w
need to compute both the bulk and impurity scattering m
trices of these excitations. Having done this, the second
would be to turn on the temperature. The thermalized gro
state would then consist of seas of all these excitations w

FIG. 8. Plot of the linear-response conductance at zero temp
ture at the symmetric point («d52U/2) as a function of magnetic
field. The parameters used areU50.75 andG5U/12. The dashed
line marks out the conductivity derived from a numerical soluti
of nd while the solid line represents the closed-form solution
scribed in this section.
12530
e

e
at
e
e

e
r-
d

d
w

l-
d

n
ng

e

ld
-

ep
d

th

their distributions determined by a thermodynamic Bethe
satz, employing the zero-temperatureSmatrices. Finally, the
conductance would be determined by the zero-tempera
impurity scattering matrices as in Ref. 24. A potential dif
culty in this approach would come in understanding the g
ing necessary to form excitations carrying electronic qu
tum numbers as it only such excitations that can be map
back to the two-lead picture.

Whatever the likelihood for success, one can see that
way of proceeding requires considerable technical expe
ture. It turns out to be easier to determine the thermali
ground state directly from the Bethe ansatz, i.e., by dea
with bare excitations rather than first determining the ze
temperature ground state, classifying its ‘‘physical’’
‘‘dressed’’ excitations and expressing the thermalized grou
state in terms of these excitations. On the other hand, w
the quantum Hall edges, it was the natural way to procee
the initial data one had at hand~with no calculations what-
soever! are precisely the excitations about the ze
temperature ground state together with theirSmatrices, both
bulk and impurity.

To proceed then, the first step is to identify all solutions
the Bethe ansatz equations. These are of three types: rk
states, spin complexes associated with complexk’s ~both of
which we have seen as the ground state at zero temper
is composed of such excitations!, and spin complexes no
associated with complexk’s. Below we give a more specific
description together with the quantum numbers carried
each excitation. The spin quantum numbers are meas
relative to a vacuum carrying spinN/2 whereN is the num-
ber of particles in the system.

~i! Realk’s: These appear in the ground state atT50 in
the presence of a magnetic field. They carry chargee and no
spin.

~ii ! n-spin complex with no associatedk’s: An n-complex
involvesn l’s organized as

ln j5ln1 i S n11

2
2 j D , j 51, . . . ,n. ~4.1!

Hereln is a real rapidity and is known as the center of t
complex. Then-spin complex carries spin2n.

~iii ! n-spin complex with 2n associated complexk’s: The
n-complex is organized as before,

ln j5ln1 i S n11

2
2 j D , j 51, . . . ,n, ~4.2!

but now there are twok’s associated with eachln j:

g~k1n j!5ln1 i S n

2
112 j D , j 51, . . . ,n,

g~k2n j!5ln1 i S n

2
2 j D . ~4.3!
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These excitations carry charge 2ne and spin2n. The sim-
plest of these excitations (n51) appear in the ground state
zero temperature. Now the claim is that these are solution
the Bethe ansatz equations~2.7! and ~2.8! and indeed they
e

uc
em
a

th

c
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are in the thermodynamic limit~the object of our concern!.28

We can derive equations constraining the particle-h
densities of these various excitations in the same fashion
arrive at Eqs.~2.11! from Eqs.~2.7! and ~2.8!. The result is
rp~k!1rh~k!5
1

2p
1

D~k!

L
1g8~k! (

n51

` E
2`

`

dlan~g~k!2l!@spn~l!1spn8 ~l!#,

shn~l!52
xn8~l!

p
1

D ñ~l!

L
2E

2`

`

an~l2g~k!!rp~k!2 (
m51

` E
2`

`

dl8Anm~l2l8!spm~l8!,

shn8 ~l!5E
2`

`

an~l2g~k!!rp~k!2 (
m51

` E
2`

`

dl8Anm~l2l8!spm8 ~l8!,

xn~l!5A2UG ReS l1 i
n

2D 1/2

1nS U

2
1«dD

D̃n~l!52
1

p
]ldn~l![2

1

p
]l RedS 2A2UGS l1 i

n

2D 1/2

1U/21«dD
2

1

2p
]l (

k51

n21 H dS 2A2UGS l1 i
i

2
~n22k! D 1/2

1U/21«dD1dSA2UGS l1
i

2
~n22k! D 1/2

1U/21«dD J . ~4.4!
as

of
ed
The kernels in the density equations are given by

an~l!5
2n

p

1

~n214l2!
,

Anm~l!5dnmd~l!1aun2mu~l!

12 (
k51

min~n,m!21

aun2mu12k~l!1an1m~l!.

~4.5!

Here rp/h is as before whilesp/hn denotes the particle/hol
densities ofn-strings associated with complexk’s ~in Sec. II
we denotedsp/h1 by sp/h! and sp/hn8 denotes particle/hole
densities ofn-strings not so associated.

As stated in the introduction of this section, we constr
the electronic excitations in the same fashion as at zero t
perature, the only difference being that the excitations
now over the thermal ground state, not theT50 ground
state. In order to describe the scattering amplitudes we
need to specify the impurity momentum of ther(k) and
s1(l) excitations. The finite-temperature momenta for su
excitations are as follows@compare Eqs.~2.20!#:

pimp~k!5d~k!1 (
n51

` E
2`

`

$un@g~k!2l#22p%

3@spn
imp~l!1spn8 imp~l!#,
t
-

re

us

h

p1
imp~l!52d1~l!1E

2`

`

dk rp
imp~k!$u1@l2g~k!#22p%

1 (
m51

` E dl8@S1m~l2l8!#spm
imp~l8!, ~4.6!

with Snm given by

Snm~l!5~u un2mu~l!22p!12 (
k51

min~n,m!21

~u un2mu12k~l!

22p!1~un1m~l!22p!. ~4.7!

We again can read off the 1/L contributions to the momenta
and the densities and arrive at the all important relations

]kp
imp~k!52pr imp~k!,

]lp1
imp~l!522ps imp~l!, ~4.8!

still valid at finite temperatures. The scattering phases,
they are given~as in Sec. II! from the impurity momenta
pimp(k) andp1

imp(l), can be computed from a knowledge
r imp ands1

imp . For example, a spin-up excitation construct
from a charge excitationk and an51 spin-charge complexl
has a scattering phase of the form

de
↑5pimp~k!1p1

imp~l!

52pE
2D

k

dk r imp~k!12pE
l

Q̃
dl8s1

imp~l8!, ~4.9!
4-19
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identical to Eq.~2.23!.
Another piece of the prescription of computing the sc

tering amplitudes at finite temperature is the energy ass
ated with the charge and spin excitations. The energies o
various excitations can be derived as in Sec. II with the re

«~k!5k1T(
n51

` E
2`

`

dl lnS f „2«n8~l!…

f „2«n~l!…
Dan~l2g~k!!,

ln@ f „«n~l!…#52
2

T
xn~l!2E

2`

`

dk g8~k!ln~ f „2«~k!…!

3an~g~k!2l!1 (
m51

` E dl8Anm~l2l8!

3 ln~ f „2«m~l8!…!,

ln~ f „«n8~l!…!52E
2`

`

dk g8~k!ln~ f „2«~k!…!an~g~k!2l!

1 (
m51

` E dl8Anm~l2l8!ln~ f „2«m8 ~l8!…!,

~4.10!

where f («)5@11exp(«/T)#21 is the Fermi distribution.
These equations are arrived at by relating the densities to
energies via

exp~«~k!/T!5rh~k!/rp~k!,

exp~«n~l!/T!5snh~l!/snp~l!,

exp~«n8~l!/T!5snh8 ~l!/snp8 ~l!. ~4.11!

This relation is chosen so that the energies determine
particle-hole distributions in the same fashion that they do
the case of noninteracting fermionic particles, i.e.,

rp~k!5@rp~k!1rh~k!# f „«~k!…, ~4.12!

and likewise forsnp/h and snp/h8 . This definition is com-
pletely consistent with that at zero temperature. TakingT
→0 in the above recovers Eqs.~2.36!. This is a general
feature of energy functionals in a thermodynamic Bethe
satz analysis. However, here the energies are related to
densities in an additional way indicative that the bulk of t
system~i.e., the leads! is indeed noninteracting:

rp/h~k!5
1

2p
]k«~k! f „6«~k!…,

snp/h~l!52
1

2p
]l«n~l! f „6«n~l!…,

snp/h8 ~l!5
1

2p
]l«n8~l! f „6«n8~l!…. ~4.13!

Having specified the energy functionals, we can now
termine the particulark andl we choose in creating an elec
12530
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tron. As H50, we will simply focus on spin↑ electrons. In
forming a spin↑ electron we add ak excitation inr(k) and
a l hole in s1(l). The energy of the electron is then

«el5«~k!2«~l!. ~4.14!

We again will only allowk to vary in varying«el while fixing
l to somelo . While atT50 we fixedl to beQ, its value at
the Fermi surface, this is not appropriate at finite tempera
as the Fermi surface has become blurred. However, we h
another way to characterize the correct choice forl, at least
at the symmetric point, which we give in the following su
section.

We are now ready to specify the final equation govern
the finite-temperature linear-response conductance. G
that we construct the electronic excitations by gluing
gether a fixed spin excitationlo and a range ofk excitations,
these excitations are distributed according to the Fermi
tribution, as they must be. Thus the conductance at finiteT is
given by

G~T!52
e2

h E
2`

`

d«el~2]«el
f ~«el!!uT~«el!u2,

uT~«el!u25sin2S 1

2
del„«el5«~k!2«~lo!,T…D . ~4.15!

Here the first formula is the standard Landauer-Bu¨ttiker for-
mula applied to the electronic excitations discussed in S
II, while the second formula follows from the expression
uT(«el)u2 in terms of phase shifts in the even and odd lea
anddel is given by Eq.~4.9! with l5lo . Finally, we have
used the key result that the density of states~per unit of
energy! for the electronic excitations is a constant as follo
from Eq. ~4.13!.

Computation at the symmetric point

So far, we have discussed the computation ofG(T) in
general terms. In this section we specialize to the symme
point («d52U/2). There are two reasons to do so. At t
symmetric point the equations become more amenable
analysis. However, more importantly, it is only at the sym
metric point that we are able to compute the conductance
it is only at this point that we can compute electron scatter
for arbitrary energy, as required by Eqs.~4.15!.

The problem is a technical one. The energy functio
«(k) is bounded below. For example, as the analysis of R
32–34 shows, at the symmetric point«(k) satisfies

«~k!>2T ln~3!. ~4.16!

Thus we are unable to compute directly electron scatte
phases for energies below«(k52D)2«(l5lo). Rather,
for energies below this, we must compute hole scattering
relate this to particle scattering via

de
↑~«el ,«d!5dho

↑ ~«ho5«el ,2U2«d!, ~4.17!
4-20
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valid whenH50. In order to exploit then this relation, w
need«d52U2«d , i.e., «d52U/2. To computedho

↑ , we
remove ak and al hole. Thus akin to Eq.~2.45! we have

dho
↑ ~«ho!52pE

2D

k

dk8r imp~k8!12pE
lo

Q̃
dl8s imp~l8!,

«~k!52«ho1«~l5lo!, ~4.18!

with the differenceloÞQ and«(lo)Þ0.
With this, we can now consider the simplifications in t

structure of the equations that arise at the symmetric po
Following Ref. 28, we can recast the equations defining
energy functionals in a universal form for energies com
rable toTk , the Kondo temperature. Define

fn~l!5
1

T
«nS l2

1

p
lnS 2A

T D D ,

f18~g~k!!52
1

T
«S 2g~k!1

1

p
lnS 2A

T D D ,

fn118 ~l!5
1

T
«n8S 2l1

1

p
lnS 2A

T D D ,

A5
A2UT

2p
. ~4.19!

In our definition of f18 , we rely upon the fact that in the
energy range we are interested in,«(k) depends solely upon
g(k). With these definitions,fn andfn8 satisfy the equations

jn~l!52E
2`

`

dl8s~l2l8!

3 ln~ f „Tjn21~l!…f „Tjn11~l!…!2dn1epl,

~4.20!

wherejn5fn or fn8 and s(l)5cosh21(pl)/2. These equa-
tions have been analyzed by Refs. 32–34. In practice, t
are highly accurate in determining energies up to scale
tens ofTk’s. This is a consequence of two scales existing
the problem,Tk andAUG. These equations focus on the fir
scale while throwing out information on the second. But b
causeTk!AUG in the Kondo regime, this approximation
extremely good.

With these equations in hand, we can determine
choice oflo . At the symmetric point we expect the scatte
ing phase to be symmetric in energy, i.e.,

del~«!5del~2«!, ~4.21!

regardless of the temperature. We thus fixl5lo such that
Eq. ~4.21! is satisfied.

We now derive the specific equations for the impur
densities at the symmetric point. These equations have
initial form
12530
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r imp~k!5D~k!1g8~k! (
n51

` E
2`

`

dl an~g~k!2l!~spn
imp

1spn
imp!~l!,

shn
imp~l!5D̃n~l!2E

2`

`

dk rp
imp~k!an~l2g~k!!

2E
2`

`

dl8 (
m51

`

Anm~l2l8!spm
imp~l8!,

shn8 imp~l!5E
2`

`

dk rp
imp~k!an~l2g~k!!

2E
2`

`

dl8 (
m51

`

Anm~l2l8!spm8 imp~l8!.

~4.22!

We will recast these equations in a simpler form. We use
inverse of the matrixAnm ,

Anm
21~l!5dnmd~l!2s~l!~dnm111dnm21!, ~4.23!

together with the equalities

dn1s~l2l9!5E
2`

`

dl8Anm
21~l2l8!am~l82l9!,

D̃n~l!5E
2`

`

dk D~k!an~l2g~k!!, ~4.24!

to rewrite Eqs.~4.22! as

r imp~k!5D~k!1g8~k!E
2`

`

dl s~l2g~k!!D̃1~l!

2g8~k!E
2`

`

dl s~l2g~k!!@sh1
imp~l!1sh18

imp~l!#,

spn
imp~l!1shn

imp~l!

5E
2`

`

dl8s~l2l8!@shn11
imp ~l8!1shn21

imp ~l8!#

1dn1E
2`

`

dk rh
imp~k!s~l2g~k!!,

spn8 imp~l!1shn8 imp~l!

5E
2`

`

dl8s~l2l8!@shn118 imp ~l8!1shn218 imp ~l8!#

1dn1E
2`

`

dk rp
imp~k!s~l2g~k!!. ~4.25!

We can further simplify these equations. For energ
!AUG, it is an excellent approximation to take
4-21
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2
g8~k!

2

1

cosh~p@g~k!2I 21# !

5D~k!1g8~k!E
2`

`

s~l2g~k!!D̃1~l!,

I 215
U

8G
2

G

2U
. ~4.26!

Together with this approximation we can take

sh1
imp50,

sm
imp50, m.1. ~4.27!

These densities are identically zero at zero temperature
are governed by the energy scaleAUG. Since we work at
temperatures far below this scale, they can be safely appr
mated as zero. With this, the density and energy equat
can be solved numerically through iteration.

We do so and plot, in Fig. 9,G as a function ofT/Tk .
Comparing to the NRG computation of Costiet al., we find
excellent agreement for energies up to severalTk , the regime
where one would expect the NRG, by its very nature, to
most robust. We emphasize that this agreement is achie
with no fitting parameters. Our definition of the Kondo tem
peratureTk is the same as that used by Costiet al. Because
of the Fermi-liquid nature of this problem, we know th
functional form of the conductance atT!Tk is

G~T/Tk!5
2e2

h S 12c
T2

Tk
2 1¯ D . ~4.28!

Costiet al.,21 based upon results borrowed from Refs. 35 a
36, computedc to be

c5
p4

16
56.088 . . . . ~4.29!

We find numerically

c56.0560.1. ~4.30!

FIG. 9. Plot of the scaling curve for the conductance as a fu
tion of T/Tk . HereTk is as defined in the work of Costiet al. and
so there are no free parameters. Our computation was carried o
the symmetric point in the Anderson model,U12«d50.
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We have arrived at this value by fitting the plot in the regi
T/Tk,0.1. The error is systematic in nature, arising from t
arbitrary nature of deciding the region over which to fit.

We also compare our results in Fig. 9 with Ref. 13.
appears that the logarithmic dependence inG,

G;1/ln2~T/Tk!,

characteristic of weak coupling and arising from a one-lo
RG,13 should only be expected to become qualitatively d
scriptive for values ofT/Tk in excess of about 20. This ob
servation will play a role in our determination of the validi
of our computation of the zero field differential conductan
in the next section.

The quality of the fit is a good indicator of the validity o
our approach in the Kondo regime. We expect from arg
ments given in Sec. II that our methodology should be ch
acterized by errors of orderO(Tk /AUG)!1, and as such we
should see an exact match between our scaling curve an
NRG results. We are thus uncertain whether the slight d
crepancy between our results and the results of Costiet al.at
largeT is a consequence of the some unguessed shortcom
in our approach, some problem with the NRG, or some d
ficulty with our numerics. While we cannot speak to the fi
two, we do note that our handling of the numerics opens
the possibility for error at largeT/Tk ; the numerics are fash
ioned so to more readily reproduce the low-temperature
havior.

We end this section by comparing in Fig. 10 our scali
curve with the experimental results of Ref. 1. We see that
find excellent agreement. We point out, however, that wh
we compute the scaling curve at the symmetric point (U/2
1«d50) of the Anderson model, the data in Ref. 1 we
taken away from the symmetric point, but still in the do
Kondo regime.~The Kondo temperature obtains an expone
tially suppressed minimum at the symmetric point and so
usually below the temperature that can be experiment
realized. In order to experimentally see Kondo physics o
then must move away from the symmetric point.! The con-

-

t at

FIG. 10. Comparison of the data from Ref. 1 with the compu
scaling curve for the conductance. We now plot on the abscissa
ratio of the conductance with the maximal possible conductan
For the experimental realization in Ref. 1, the dot-lead couplin
V1,2 are asymmetric and the conductance does not achieve its
tary maximum 2e2/h. However, the scaling behavior ofG/Gmax is
expected to be the same.
4-22
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tinuing applicability of our scaling curve suggests a cert
robustness to the scaling behavior.

V. OUT-OF-EQUILIBRIUM CONDUCTANCE

A. Basic formalism

In order to compute the nonequilibrium conductance
imagine placing the reservoirs attached to each lead at
fering chemical potentials as pictured in Fig. 11. This on
face of it poses a problem. In doing do we add a term to
Hamiltonian of the form

Hm5m1E dx c1
†~x!c1~x!1m2E dx c2

†~x!c2~x!.

~5.1!

This term does not behave well under the map into the ev
odd electron basis in as much as the odd electron no lo
decouples. It would thus seem it is not possible to emp
the results of the previous sections in analyzing the out
equilibrium system.

However, we must ask what we need to compute the n
equilibrium conductance. We need to know the distribut
of particles in each of the two reservoirs. And we need
know the scattering amplitudes of said particles. For the p
ticle distributions, we note that the particles in the two re
ervoirs do not interact with one another. Knowledge of o
distribution is not needed to determine the other. Thus
compute the distribution of particles in reservoir 1, we c
set m2 to be whatever is convenient and likewise for t
determination of the distribution in reservoir 2. This is no
bly different from what occurs in the scattering of quasip
ticles between quantum Hall edges. In the boundary s
Gordon formulation of this problem, the two reservoirs—o
reservoir of positive solitons and one of negati
solitons—do interact with one another. The above dev
would thus not work in this context.

We emphasize again that the distribution of particles
compute are not the plane wave modes of an electron
rather are ‘‘dressed’’ electrons. But they do share sev
features with plane-wave electrons. Beyond carrying
same quantum numbers of electrons, they share the s
constant density of states as a function of energy as
plane-wave electron modes. Moreover, their dispersion r
tionship is the same as the plane-wave modes.

Having dealt with the computation of the distributions, w
now turn to the scattering. Here there is no problem. As
are using an integrable basis, we are able to compute
scattering in the context of the in-equilibrium model. T
scattering of the basis of integrable excitations is unaffec
by the differing chemical potentials in the leads. We could
we wished, adopt a basis of~dressed! excitations that was
aware of the finite voltage. Although technically challengin

FIG. 11. Sketch of two leads attached to a quantum dot. E
lead is, as indicated, at differing chemical potentials.
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we could also compute the corresponding scattering am
tudes. Such amplitudes, however, would only differ from t
original by an overall phase. As the conductance depe
upon the absolute value of the scattering matrices, our
swer would go unchanged. The sole consequence ofm1
Þm2 is then felt in the distributions. In this sense, then, t
problemis akin to scattering between quantum Hall edge

We now proceed with the actual calculation. Here w
keepm1 constant and imagine varyingm2 alone. The com-
putation divides itself into two cases:m1.m2 andm2.m1 .
We examine the former first.

The casem1.m2 is pictured in Fig. 12. As we are at zer
temperature, particles will only diffuse from lead 1 to lead
The current is thus given by

J~m1 ,m2!5
e

h Em22m1

0

d«@ uT↑
1→2~«,m1!u21uT↓

1→2~«,m1!u2#.

~5.2!

We have expressed the current as an integral over all e
gies ranging from zero tom22m1 . We note that the above
integral reflects that the density of states as a function
energy is constant. Our particular choice of limits in t
above integral is a consequence of our conventions:
equations governing the energy of the excitations@see Eq.
~2.36!# give the Fermi energy of lead 1 as 0. It is only in th
energy range that particles are available to scatter in lea
and that are not Pauli blocked in lead 2. We choose ener
to parametrize the particles as opposed to either of the
rametersk or l. These latter parameters are not convenien
determining Pauli blocking in that withm1Þm2 the energy
functionals for the leads are also not equal, i.e.,«1(k/l)
Þ«2(k/l). We note that even thoughm1 and m2 are bare
chemical potentials, they are the correct ones to use in de
mining the current. They are not renormalized by intera
tions, understandably, as there are no interactions in the b
@Technically this may be seen as follows. Changing
chemical potential in a lead byDm yields a change in the
number of particles,DN5Dm/p. The density of states pe
unit energy of thel particles filling the ground state i
s(«)51/2p. As eachl particle is a bound state of two pa
ticles, the shift in the Fermi energy induced by the change
chemical potential is preciselyDm.#

It is worthwhile commenting on the dependence of t
currentJ uponm1 andm2 . Although the limits governing the
energy range of excitations contributing to transport ar

h

FIG. 12. Sketch of the distribution of particles in the leads wh
m1.m2 .
4-23
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function of the difference,m12m2 , of chemical potentials
the current’s dependence uponm1 and m2 is more compli-
cated. This reflects the dependence of the transmission
plitude T1→2 upon m1 alone. In particular, in the Kondo
regime of this problem, the Kondo temperature that appe
in the expressions for the current will be a function ofm1
2«d and will not depend at all uponm2 .

Appearing in Eq.~5.2! are the electron scattering prob
abilities T1→2 from lead 1 to lead 2. The amplitudeT1→2 is
given from Eq.~2.6!:

uT1→~«,m1!u25sin2S 1

2
d1~«ho52«,«d2m1! D . ~5.3!

The phase for an electron below the Fermi surface, as i
cated above, is computed by exciting the corresponding h
As indicated in the introduction to this section, scattering
this case is determined solely by the dynamics in lead 1

To computedho involves exploiting particle-hole transfor
mations. As such, it is worthwhile to consider the cases
zeroH and nonzeroH separately. WithH50, we can com-
pute the scattering of a spin↓ hole by relating it to a spin↑
electron. According to Eqs.~2.25! and ~2.41!, we have

dho
1↓~«ho.m1 ,«d2m1!

5de
1↑~«el5«ho,2U2«d1m1!

52pE
2D

k

dk r imp
1 ~k!12pE

Q

Q̃
dl s imp

1 ~l!,

«1~k!5«ho2m1 . ~5.4!

Here the energies«el2m1 and«ho2m1 are measured relativ
to the Fermi surface in lead 1. By SU~2! spin symmetry we
then knowdho

1↓(«ho)5dho
1↑(«ho). Because of the behavior o

«d under a particle-hole transformation, we can only direc
compute out-of-equilibrium conductances when«d2m1
,2U/2, unusual in that it is on the other side of the partic
hole symmetric point.

WhenH is nonzero the situation is more complicated. W
no longer can equate spin↑ and spin↓ scattering. However
we now can compute spin↑ hole scattering directly. From
Eq. ~2.45! we have

dho
1↑~«ho.m1 ,«d2m1!

52pE
2D

k

dk8r imp
1 ~k8!12pE

Q

Q̃
dl s imp

1 ~l!,

«1~k!52~«ho2m1!. ~5.5!

Because the bottom bound on«1(k) is 2H, we are limited
to computing spin↑ hole scattering for energies 0,«,H.
For spin↓ hole scattering we resort to the particle-hole tra
formation used above:
12530
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dho
1↓~«ho.m1 ,«d2m1!

5de
1↑~«el5«ho2U2«d1m1!

52pE
2D

k

dk8r imp
1 ~k8!12pE

Q

Q̃
dl s imp

1 ~l!,

«1~k!5«ho2m1 . ~5.6!

We have no similar constraint on the energy range for sp↓
scattering. But we can see another issue arises. We are
to compute spin↑ hole scattering for a dot chemical potenti
«d2m1.2U/2, while for spin↓ hole scattering we can only
perform the computation for«d2m1,2U/2. We are thus
limited in the case of nonzeroH to the symmetric point«d
2m152U/2. But given our belief that our ansatz for th
scattering states is only valid near the symmetric point, t
constraint costs us little.

To compute the energy functional relating the parametek
to the energy we employ the equations

«1~k!5k2
H

2
2m12E

Q

Q̃
dl «1~l!a1~l2g~k!!,

«1~l!52x~l!22m12E
Q

Q̃
dl8«1~l8!a2~l82l!

1E
2D

B

dk g8~k!«1~k!a1~g~k!2l!. ~5.7!

These equations are identical to those of Eqs.~2.36!, but for
the presence ofm1 . The Fermi surfacesQ andB are deter-
mined as before by

«1~l5Q!50,

«1~k5B!50; ~5.8!

that is, the energy functionals are defined such that the Fe
energy is always zero.

Computing the differential conductance then amounts
computing2e]m2

J:

G~m1 ,m2!52e]m2
J~m1 ,m2!

5
e2

h F uT↑
1→2~«5m22m1 ,m1!u2

1uT↓
1→2~«5m22m1 ,m1!u2G ~5.9!

As the particle distribution and correspondent scattering
lead 1 are, as discussed above, only dependent uponm1 , G
has a particularly simple form: there are no terms of the fo
]m2

uTu2.
In the second casem2.m1 ~pictured in Fig. 13!, such

terms do come into play. Here the current has the form

J~m1 ,m2!52
e

h Em12m2

0

d«F uT↑
2→1~«,m2!u2

1uT↓
2→1~«,m2!u2G . ~5.10!

In this case particles scatter from lead 2 to lead 1. The cho
4-24
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of limits in the above integral now reflects that the Fer
energy in lead 2 has been taken to be zero.T2→1 can be
determined by the same set of equations~5.3!–~5.6!, but with
the energies and densities defined in lead 2. The expres
for the differential conductance is more complicated th
previously as the scattering matrices are determined on
basis of distributions in leads 2 and so the scattering varie
m2 is varied. We thus have

G52e]m2
J5

e2

h F uT↑
2→1~«5m12m2 ,m2!u2

1uT↓
2→1~«5m12m2 ,m2!u2G

1
e2

h E
m12m2

0

d«F]m2
uT↑

2→1~«,m2!u2

1]m2
uT↓

2→1~«,m2!u2G . ~5.11!

HereT2→1 is given by

uT2→1u25sin2S 1

2
dho~2«,«d2m2! D

5sin2S 1

2
del~2«,2«d1m22U ! D . ~5.12!

We thus see explicitly]m2
uT2→1u2 is nonzero. WhenHÞ0

recall we can only computeT↑ andT↓ only at the symmetric
point. Given that we are varyingm2 and so varying the ef-
fective dot chemical potential, we cannot compute the diff
ential conductance for nonzeroH in the casem2.m1 . More-
over, we are restricted to the region where«d2m2,2U/2,
also as discussed previously.

We again comment upon the dependence of the cur
uponm1 andm2 . As with the casem1.m2 , the current is not
simply a function of the difference of the two chemical p
tentials. In this case, however, the scattering amplitudes
pend solely uponm2 not m1 . In particular, in the Kondo
regime, the Kondo temperature is determined by differe
of m2 with the dot chemical potential«d .

As dho is given by an equation akin to Eq.~5.5!, we can
compute]m2

uT2→1u2 to be

FIG. 13. Sketch of the distribution of particles in the leads wh
m1,m2 .
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]m2
uT2→1~«,m2!u25

1

2
sin~pimp~Q!1pimp~k!!

3~]m2
pimp~Q!1]m2

pimp~k!!,

]m2
pimp~Q!52pE

Q

`

dl ]m2
s imp~l,2«d1m22U !,

]m2
pimp~k!52pE

2`

k

dk8]m2
r imp~k8,2«d1m22U !,

«2~k!52«. ~5.13!

From the density equations in Appendix A@see Eq.~A6!#, we
find that withH50, ]m2

s imp(l) and]m2
r imp(k) satisfy

]m2
s imp~l!50, ~5.14!

]m2
r imp~k!5]m2

D~k,2«d1m22U !

1
1

UG E
2`

Q

dl s imp~l!s~l2g~k!!

2~]kg~k!!2E
2`

Q

dl s imp~l!s8~l2g~k!!

2
1

UG E
2`

`

dk8D~k8!R~g~k!2g~k8!!

2~]kg~k!!2E
2`

`

dk8D~k8!R8~g~k!2g~k8!!,

~5.15!

where hereg(k)5(k1«d2m21U/2)2/(2UG). In comput-
ing ]m2

T, we have neglected contributions from]m2
Q. We

can see from the energy equations~5.7! and ~5.8! that

]m2
QÞ0. ~5.16!

However,Q, determining the Fermi surface relative to th
bottom of the band, is reflective of energy scales on the or
of the bandwidth whereas we consider changes inm2 of
O(Tk). Hence]m2

Q is negligible.

B. Differential conductance atHÄ0

The differential conductance in zero field is expected
fall off rapidly with a scale;Tk from its linear-response
value near the symmetric point of;2e2/h. The characteris-
tics of this peak are related to the peak, the Kondo resona
in the spectral weight of the impurity density of states
determined by the Bethe ansatz. This is similar to the fi
ings of Refs. 9, 10, and 12 where they cast all transp
properties in terms of the impurity density of states though
determined by Im̂dd†&. With the Landauer-Buttiker approac
we have adopted, all scattering quantities are ultimately
lated to the equilibrium density of states; the nonequilibriu
density of states plays no part in the computation marking
important difference with Refs. 9, 10, and 12. At the sy

n
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metric point we are able to derive in the case of negative b
m2.m1 a closed-form expression for the differential condu
tance. Away from the symmetric point we must rely upon
numerical solution of the associated integral equations.

1. Results at the symmetric point

At the symmetric point~and hence only the casem1
.m2 assumingm2 is being varied!, we derive a closed-form
expression for the current and differential conductance.
the symmetric point,r imp is given by28

r imp~k,0!52
g8~k!

2

1

cosh~p@g~k!2I 21# !

2g8~k! (
n50

`

e2pg~k!~112n!

3E dk8e2pg~k8!~112n! ReD~ ik8!. ~5.17!

In order to make use of this expression we need to par
etrizek in terms of the energy«(k). For energies not far in
excess ofTk we find in solving Eq.~5.2! with H50,

«~k,0!2m15«1~k,0!5
A2UG

p
e2pg~k!. ~5.18!

Hence the scattering phase is given by

dho
1 ~«,«d2m152U/2!

5del
1 ~«,2U/2!

52pE
2`

`

dl s imp~l!12pE
2`

k

dk8r imp~k8!

5
3

2
p2sin21S 12~«2m1!2/T̃k

2

11~«2m1!2/T̃k
2D

12(
n50

`
1

112n S p~«2m1!

A2UG
D 112n

3E dk e2pg~k!~112n! Re@D~ ik !#, ~5.19!

where

T̃k5
2

p
Tk5

2

p
AUG

2
ep@~«d2m1!~«d2m11U !2G2#/~2GU !.

The latter term in the above is negligible when («2m1)
;Tk asTk!AUG.

With this we can compute the current and the differen
conductance:

J~m1 ,m2!522
e

h
T̃k tan21S m22m1

T̃k
D ,
12530
s
-

t

-

l

G~m1 ,m2!52e]m2
J~m2!52

e2

h

1

@11~m22m1!2/T̃k
2#

.

~5.20!

The simplicity of these results is striking. In our approach
is directly related to the simple form of the dressed scatter
phase~5.19!, which only comes about at the end of a com
plex calculation. It is not clear to us whether there is a m
direct way to obtain the results~5.20!.

We observe that no ln(m/Tk) terms appear in the abov
expressions for the current and conductance whereas
might expect such terms for largem/Tk . In this regime such
terms appear in weak-coupling perturbative computation13

However, we have already established with our fini
temperature calculation that weak-coupling perturbat
theory is not even qualitatively accurate until one exce
scales ofT/Tk;20. We expect the differential conductanc
to be governed by similar considerations. Correspondin
we would cautiously conclude that our scattering ansatz
applied to the zero-field differential conductance is at le
good for energies up toT/Tk;0.

Given that we are at the symmetric point, we would e
pect to be able to make contact with low-energy scattering
the Kondo model as this model should produce identical
sults to the Anderson model in the low-energy regime.
low energies we have

dho
1 ~«,«d2m152U/2!5

3

2
p2sin21S 12~«2m1!2/T̃k

2

11~«2m1!2/T̃k
2D ,

5p12 tan21@~«2m1!/T̃k#.
~5.21!

This latter form is identical to that found for spin excitation
in the Kondo model.28 In the exact solution of the Kondo
model, the role assigned to ‘‘charge’’ and ‘‘spin’’ excitation
differs from that of the Anderson model. In the Kondo mod
the charge excitations are noninteracting and so variation
the scattering phase occur solely because of changes in
spin sector. In this sense it is not surprising that we find
scattering phase of electronic excitations in the Ander
model is equal to the scattering phase of spin excitation
the Kondo model. If we were to compute transport propert
directly in a two-lead Kondo model, this equivalence su
gests how we would have to formulate the scattering an
that governs the gluing together of excitations from the t
sectors~in the case of the Anderson model, this is discuss
in detail in Sec. II!. To compute the finite-energy scatterin
phase for the case of the Kondo model, we would leavek at
its Fermi surface value while varyingl, the exact opposite o
what we find in the Anderson model.

It is also instructive to recast the impurity density of sta
so that it is a function of energy:

r imp~«!5
1

pT̃k

1

11«2/T̃k
2

. ~5.22!
4-26



rp
l
th
ro
n
ng
n
an

ce
tiv
rp

e
og
to

nc
lt
a

th
le
ity
s
io

1
f

ive

d

s
sl
u
n

in

as
hly
c-
ity
sent

The

t
e.

to
-

nd-
eak

on,
m-

do
the

vi-

he

of

ti

o

TRANSPORT IN QUANTUM DOTS FROM THE . . . PHYSICAL REVIEW B 66, 125304 ~2002!
We see then that the impurity density of states is sha
peaked about zero energy with a peak height proportiona
1/T̃k . The spectral density of states as determined from
dot correlator Im̂dd†& is also sharply peaked around ze
energy. In contrast, however, its peak height is proportio
to 1/G, a wildly different energy scale than the one governi
the Bethe ansatz impurity density of states. The two qua
ties then are clearly different thus undermining an import
premise of Ref. 17.

2. Results away from the symmetric point

Pictured in Fig. 14 is a plot of the differential conductan
in zero magnetic field. We see that the expected qualita
features appear: namely, the differential conductance sha
varies on energy scales related to the Kondo temperatureTk .

Although we are not exactly at the symmetric point, w
must remain close in order to keep true to our methodol
of identifying scattering states. If, for example, we were
compute the differential conductance in the mixed-vale
regime of the Anderson model, we would find our resu
unphysical. Our construction of the scattering states w
predicated on the knowledge that in the Kondo regime
scattering phase varies on the smallest scale in the prob
the Kondo temperature, and that in turn, only the impur
density of states for thek excitations is governed by thi
scale. In the mixed-valence regime all of these assumpt
break down.

We see that the differential conductance curve in Fig.
is asymmetric aboutm22m150. This is a consequence o
the asymmetry introduced by variations in the effect
Kondo temperature. In the regimem1.m2 , Tk does not vary
as it is solely a function ofm12«d and we have assume
only m2 is changing. However, in the regimem2.m1 , Tk
now depends uponm22«d and so changes inm2 lead to
changes inTk and hence the asymmetry in behavior.

C. Results at the symmetric point forHÅ0

At the symmetric point we develop closed-form expre
sions for the differential conductance. As stated previou
the nature of our construction of the scattering states s
gests that our results for the differential magnetoconducta

FIG. 14. Plot of the differential conductance in zero magne
field. The value of the parameters used in the plot areG50.05,U
510G, and«d525.2G, where we set the energy scale in terms
the bandwidth,D5p.
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become exact asH/Tk becomes large. Our results are
rough accordance with Ref. 10—we find that for fieldsH
.Tk , the H50 differential conductance peak at zero bi
divides into two, one peak for each spin species. Roug
speaking, the origin of the split in the differential condu
tance arises from a similar bifurcation in the impurity dens
of states. The spectral weight of the Kondo resonance pre
at v50 when H50 divides into two resonances neareV
;6H, again one associated with each spin species.
peak at negative biasm2,m1 corresponds to a spin↑ reso-
nance while the peak occurring withm2.m1 is associated
with a spin↓ resonance. Given our ability to work only a
m2,m1 at the symmetric point, we explore the former alon

For fields H@Tk , this peak is found at a bias close
2H. However, unlike Ref. 10 we find the differential con
ductance peak does not occur exactly ateV52H. This is
not surprising as this result was predicated upon a seco
order perturbative computation. We find instead that the p
is shifted to values ofeuVu smaller thanH. For large fields
we can develop closed-form expressions for the positi
height, and width of the conductance peaks. A related co
putation was done in Ref. 17 in the context of the Kon
model. However, there the analysis was restricted to
peaks in theequilibrium-impurity density of statesas deter-
mined by the Bethe ansatz and not the conductanceper se.
As discussed previously, the two are not directly or ob
ously related, as indeed is clear from the work here.

In order to proceed with the computation, we review t
constituent elements. The scattering phase for spin↑ hole
scattering is given by

dho
↑ ~«ho.m1!52pE

2D

k

dk8r imp
1 ~k8!12pE

2`

Q̃
s imp

1 ~l!,

«1~k!52~«ho2m1!. ~5.23!

Using Eq.~3.23!, we can write the phase solely in terms
r imp :

dho
↑ ~«ho.m1!

52pE
2D

k

dk8r imp
1 ~k8!1pS 12E

2D

B

dk r imp
1 ~k! D ,

«1~k!52~«ho2m1!. ~5.24!

The scattering phase for spin↓ hole scattering is found to be

dho
↓ ~«ho.m1!

52pE
2D

k

dk8r imp
1 ~k8!1pS 12E

2D

B

dk r imp
1 ~k! D ,

«1~k!5«ho2m1 . ~5.25!

through a particle-hole transformation.
For H satisfyingH!Tk , we can arrive at a closed-form

expression for the differential magnetoconductance. WithH
!Tk , the impurity density of states for thek excitations
retains its zero-field form:

c

f

4-27
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r imp~k!52
k

UG

1

2 cosh~p@g~k!2I 21# !
. ~5.26!

The impurity density is unperturbed by the field at first a
proximation as its spectral weight is found at the scaleTk ,
while the presence of the field only affects energies far be
this by assumption. On the other hand, the energy is shi
by a constant from its zero-field value~again takingm150!:

«1~k!5
A2UT

p
e2pg~k!2H/2, k@B,

«1~k!5
A2UT

p
e2pg~k!2H, k!B. ~5.27!

For k@B the energy is shifted by the bare energy of a spin
a magnetic fieldH/2. For k!B, the effect of the field upon
«1(k) can be determined by rewriting the energy«1(k)
→«1(k)2H and substituting in Eq.~A11!. We then find that
ar
s
f t

12530
-

w
d

n

the field H disappears from the the equation, leaving us
conclude that energy is shifted by a dressed magnetic en
H.

Using these forms for the energy and the impurity dens
the spin↑ scattering phase reduces to

dho
↑ ~«ho.m1!5

5

4
p2sin21S 12~«ho2m12H !2/T̃k

2

11~«ho2m12H !2/T̃k
2D

1
1

2
sin21S 12H2/T̃k

2

11H2/T̃k
2D , ~5.28!

while for spin↓ scattering, we have

dho
↓ ~«ho.m1!5

5

4
p2sin21S 12~«ho2m11H/2!2/T̃k

2

11~«ho2m11H/2!2/T̃k
2D

1
1

2
sin21S 12H2/~4T̃k

2!

11H2/~4T̃k
2!
D . ~5.29!

With this we can compute the differential conductance
legated
eir
G~m1 ,m2!5
e2

h
F 11

1

2

11@H22~m22m1!2#/T̃k
2

~11H2/T̃k
2!1/2@11~m22m11H !2/T̃k

2#
1

1

2

11@H2/42~m22m1!2#/T̃k
2

~11H2/4T̃k
2!1/2@11~m22m12H/2!2/T̃k

2#
G ,

T̃k5
2

p
AUG

2
ep@~«d2m1!~«d2m11U !2G2#/~2GU !. ~5.30!

Taking H→0 recovers Eq.~5.20!.
For values ofH.Tk , we must resort to a Wiener-Hopf analysis of the scattering phases. The details have been re

to Appendix D where exact forms of the scattering phase and the energy«(k) can be found. Here however we summarize th
asymptotic forms. Fork!B andH@Tk , the energy«1(k) as given in Eq.~D8! takes the form

«1~k!52HS 12
1

2p
tan21S 1

g~k!2bD2
1

4p2

1

11@g~k!2b#2 Fc~1/2!

G~1/2!
112~g~k!2b!tan21S 1

g~k!2bD1C

1
1

2
ln„4p2~11~g~k!2b!2!…G D1

A2GU

p2 F 1

A2ep

e2bp

11~g~k!2b!2 1e2pg~k!tan21S 1

g~k!2bD G1O„@g~k!2b#23
…,

~5.31!
e-
-

to-
whereC50.577 216 . . . is Euler’s constant andb is given
by

b5
1

p
lnS 2

H
AUT

peD . ~5.32!

Note that only the first two terms in the above expansion
at leading order, but we need include the remaining term
order to obtain reasonable estimates of the properties o
conductance peak. Under similar conditions fork andH we
obtain an expression for* dk r imp :
e
in
he

2pE
2`

k

dk r imp5p12 tan21~2~ I 212g~k!!!,

I 215
U

8G
2

G

2U
, ~5.33!

where againI 21 determines the Kondo temperatureTk
;e2pI .

Combining this analysis with numerical work and the r
sults in Eqs.~5.30! allows us to plot in Fig. 15 the magneto
conductance for a variety of values ofH/Tk . As explained
earlier, we are able only able to compute the magne
4-28
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conductance for biases satisfyingm2,m1 . Nonetheless, we
expect the differential conductance to be roughly symme
about theV50 axis.

We see that forH@Tk the behavior of the differentia
conductance is in rough accordance with the predictions
Wingreen and Meir,9 that is, there is a peak approximate
at m22m1;H for H@Tk . However, as we have alread
noted, the peak occurs at a bias noticeably smaller thaH
while Ref. 10 finds the peak to occur exactly atH. As H is
decreased, this peak moves to smaller ratios of (m1
2m2)/H before disappearing altogether atH;Tk . For val-
ues ofH!Tk , the differential conductance does not app
ciably change from its linear response value for voltage
ases of the same order of magnitude asH. We also see that a
H is increased the width of the peak narrows and the he
of the peak approaches the value ofe2/h, indicating that
only a single spin species~in this case spin↑! is contributing
to the conductance.

We now analyze the properties of the differential cond
tance peak for values ofH@Tk . As we have already noted i
Sec. III, we expect our results to be exact in the regime
H/Tk becomes asymptotically large. In this regime the d
ferential magnetoconductance is determined solely by
spin ↑ hole scattering, which we are exactly able to det
mine: no scattering ansatz is needed here.

For H/Tk@1, we can write the scattering phases
follows:

dho
↑ ~«ho.m1!52pE

2D

k

dk8r imp
1 ~k8!

1pS 12E
2D

B

dk r imp
1 ~k! D

'p12 tan21~2~ I 212g~k!!!,

dho
↓ ~«ho.m1!52pE

2D

k

dk8r imp
1 ~k8!

1pS 12E
2D

B

dk r imp
1 ~k! D

'
3

2
p1tan21~2~ I 212b!!. ~5.34!

FIG. 15. Plot of the differential conductance in a magnetic fi
at the symmetric point. The value of the parameters used in the
areG50.05 andU510G.
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In the first of the above equations, the second integral
been neglected relative to the first, valid forH@Tk . We also
make the approximation that the spin↓ conductance varies
inappreciably from its Fermi surface value as the bias is v
ied. Thus we setk5B in the second of the equations. As th
conductance of the spin↓ species for largeeV;H@Tk is
constant, the peak maximum occurs when

dho
↑ ~«ho.m1!5p. ~5.35!

This is turn implies the condition

g~k!5I 21, ~5.36!

and so from Eq.~5.31! the bias at which the maximum
occurs is

eVmax5«1~k52A2UGI 21!

52HS 12
1

2p
tan21

1

I 212b
1¯ D ,

I 212b5
1

p
lnS H

2Tk
Ape

2 D , ~5.37!

where the ellipsis indicates that we have not written out
the terms arising from Eq.~5.31!. The half maxima of the
peak occur when

dho
↑ ~«ho.m1!5

p

2Y 3p

2
,

which in turn implies

g~k!5I 2161/2. ~5.38!

Hence the peak width equals

eDV5«1~k52A2UG~ I 2121/2!!

2«1~k52A2UG~ I 2111/2!!,

5
H

2p S tan21
1

I 212 1
2 2b

2tan21
1

I 211 1
2 2bD 1¯ .

~5.39!

Finally, we can estimate the peak height. The peak maxim
will be characterized by the maximal conductance of the s
↑ electrons (e2/h) together with the associated conductan
of the spin↓ electrons. The latter will vary only slightly from
its Fermi surface value as already discussed. Hence
height of the peak is given by

Gmax5
e2

h F11sin2S 1

2
dho

↓ ~«5«F! D G
5

e2

h S 3

2
2

~ I 22b!

A4~ I 212b!211
D . ~5.40!

The results for the location and width of the differenti
conductance peak are similar to those found by Moore
Wen17 to characterize the location and width of peaks a

lot
4-29
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pearing in the equilibrium Bethe ansatz impurity density
states for the Kondo model. In the large-H limit, the impurity
density of states as found in the Bethe ansatz then evide
shares certain properties with the nonequilibrium spec
density of states defined from the dot correlator Im^dd†&, but,
however,17 makes no prediction as to the height of the d
ferential conductance peak. We in general do not expect
height of the peak in the Bethe ansatz impurity density
states to be related to the height of the spectral density
ing from Im^dd†&. We already know that no such relationsh
exists atH50 ~see Sec. V B 1!, and there is no reason t
expect it to appear at finiteH.

In Fig. 16 we plot how peak characteristics evolve w
increasingH. For comparison, we plot both the asympto
forms @Eqs. ~5.36!–~5.38!# for the peak characteristic
against the exact results. We see that the location of the p
slowly approacheseV52H with increasingH. This ap-
proach will be logarithmic inH as

eVmax

H
11;

1

2p

1

I 212b
, ~5.41!

and b; ln(H). Similarly, the height of the peak approach
e2/h, but again logarithmically inH. We note that the
asymptotic forms reproduce the exact results with rema

FIG. 16. Plots describing the evolution of the differential co
ductance peak with increasing magnetic field. In the top panel
plot of the location of the peak while the middle panel records
peak height and the bottom panel gives the peak width. The pa
eters used areU50.75/pD ~D being the bandwidth! and G
5U/12.
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able accuracy even in the regionH;Tk , where the assump
tions of their derivation do not necessarily hold.

VI. CONCLUDING REMARKS

Computing transport properties in a strongly interacti
system is a difficult challenge. In this paper we have attac
the problem by combining a Landauer-Buttiker approach
gether with data from integrability. We have thus been a
to provide a description of the scattering states in the the
that has led to several successes. We have verified the Fr
sum rule and provided a quantitative description of the lin
response conductance atT50 both in and out of a magneti
field. Our most striking result has, however, been the co
putation of the finite-temperature linear-response cond
tance scaling curve. This result is predicated upon an ac
rate description of the scattering states away from the Fe
surface. As such, we have also been able to compute
out-of-equilibrium current, again both in and out of a ma
netic field. In particular, we have provided a quantitati
description of the differential magnetoconductance. Giv
the nature of our construction of the scattering states,
believe our computation of this latter quantity to becom
exact in the large-field limit.

While our technique bears a degree of resemblance to
successful, exact treatment of interacting quantum H
edges,24 the technical complexity of the two-lead Anderso
model has prevented us from finding a definitive solution
the problem in all regimes. However, we have still been a
to use integrability to find extremely good approximations
the exact results in the cases of greatest experimental in
est. The situation here is not altogether different from the
of form factors in calculating correlation functions: althoug
the techniques of integrability do not~yet! generically lead to
closed-form expressions, they are nevertheless a br
through, providing excellent approximations which are va
from the lowest energies through crossover regimes. Th
approximations are far different from the standard, me
field ones, for they contain all the crucial features of lo
dimensional, strong interactions. In particular, the resu
presented here represent an improvement on previous
proximate methods found in the literature. The quality of o
approach can be gauged from the excellent reproduc
~with no fitting parameter! of the NRG finite-temperature
linear-response curve of Costiet al. It is unlikely other ana-
lytical techniques could do the same.

Our work raises two kinds of questions. The first
whether higher-order approximations can be devised in
present problem, akin to taking higher-energy intermedi
states into account in form-factor calculations of correlat
functions. More precisely, is it possible to develop further t
description of the fermions in terms of the integrable sta
found in Eq. ~2.52!? The other, more practical question
whether similar calculations can be performed in other m
els of interest and so obtain excellent approximations of o
of-equilibrium transport properties based upon the exact
lution of the thermodynamics and the proper identification
scattering states.

a
e
m-
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APPENDIX A: PRACTICAL COMPUTATION
OF DENSITY AND ENERGY FUNCTIONALS

Here we present equations for the energy and den
functionals that are more amenable to numerical analy
The original density equations are given by

rp~k!1rh~k!

5
1

2p
1

D~k!

L
1g8~k!E dl a1~g~k!2l!sp~l!,

sp~l!1sh~l!52
x8~l!

p
1

D̃~l!

L

2E dl8a2~l82l!sp~l8!

2E dk a1~l2g~k!!rp~k!. ~A1!

Expressing these equations in terms of the Fourier transf
of s~l! gives us

rp~k!1rh~k!

5
1

2p
1

D~k!

L
1g8~k!E dv

2p
e2 ivg~k!e2uvu/2sp~v!,

sp~v!1sh~v!52
x8~v!

p
1

D̃~v!

L

2e2uvusp~v!

2E dk eivg~k!e2uvu/2rp~k!. ~A2!

Solving for sp(v) and substituting into the right-hand sid
~RHS! of both of the above equations gives
12530
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rp~k!1rh~k!5
1

2p
1

D~k!

L
2g8~k!E dl sh~l!s~l2g~k!!

2g8~k!E dv

2p
e2 ivg~k!S x8~v!

p
2

D̃~v!

L
D

3
1

2 cosh~v/2!

32g8~k!E dk8rp~k8!R~g~k!2g~k8!!,

sp~l!1sh~l!

52
x8~l!

p
1E dl8R~l82l!

x8~l8!

p
1

D̃~l!

L

2E dl8R~l82l!
D̃~l8!

L
1E dl8sh~l8!R~l82l!

2E dk rp~k!s~l2g~k!!, ~A3!

whereR(l) ands(l) are given by

R~l!5
1

2p E dv
e2 ivl

11euvu ,

s~l!5
1

2 cosh~pl!
5

1

2p E dv
e2 ivl

2 cosh~w/2!
. ~A4!

We can further simplify the first of the equations in Eqs.~A3!
by using the relations

2
x8~l!

p
5E dk

dv

~2p!2 e2 iv~l2g~k!!e2uvu/2;

D̃~2!5E dk
dv

2p
D~k!e2 iv~l2g~k!!e2uvu/2. ~A5!

Then

rp~k!1rh~k!

5S 1

2p
1

D~k!

L
1g8~k!E dk8R~g~k!2g~k8!!

3S 1

2p
1

D~k8!

L D D2g8~k!E dl sh~l!s~l2g~k!!

2g8~k!E dk8rp~k8!R~g~k!2g~k8!!,
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sp~l!1hh~l!5E dkS D~k!

L
1

1

2p D s~l2g~k!!

1E dl8sh~l8!R~l82l!

2E dk rp~k!s~l2g~k!!. ~A6!

These forms of the equations are better behaved numeri
as
th
n
e

he
s

ng

e
ng

12530
lly

E dl R~l!5
1

2
, ~A7!

while

E dl an~l!51. ~A8!
Hence, when we go to solve these equations iteratively, successive iterations grow increasingly small as (1/2)n, whereas before
we would not necessarily expect convergence.

We can now derive new equations for the energy functional. As in Eq.~2.34!, we find

dE5LE dk~«1~k!drp~k!2«2~k!drh~k!!1LE dl~«1~l!dsp~l!2«2~l!dsh~l!!

5LE dkS k2
H

2 D drp~k!12LE dl x~l!dsp~l!. ~A9!

But now from Eqs.~A6! we have

drp~k!1drh~k!52g8~k!E dl dsh~l!s~l2g~k!!2g8~k!E dk8drp~k8!R~g~k!2g~k8!!,

drp~l!1drh~l!5E dl8dsh~l8!R~l82l!2E dk drp~k8!s~l2g~k!! ~A10!

Solving for dsp /drh and substituting into Eq.~A9! leaves us with

«1~k!1«2~k!5k2
H

2
22E dl x~l!s~l2g~k!!1E dl «1~l!s~l2g~k!!2E dk8g8~k8!«2~k8!R~g~k!2g~k8!!,

«1~l!1«2~l!52x~l!22E dl8R~l2l8!x~l8!1E dl8«1~l8!R~l2l8!1E dk g8~k!«2~k!s~g~k!2l!. ~A11!
the
APPENDIX B: COMPUTING SCATTERING VIA THE
IMPURITY ENERGY

In this appendix we compute the scattering phase of
electronic excitations through examining the impurity e
ergy. To do so we will relate the impurity energy to th
impurity momentum and then use the already establis
relations in Sec. II. In doing so, we will bring out subtletie
in defining the impurity energy for the purposes of derivi
scattering phases.

To determine the impurity energy of the excitations, w
play a game similar to that used previously in derivi
«(k)/«(l). The total impurity energy has the form@from Eq.
~2.10!#

Eimp52E dl sp~l!~2G~l!!2E dk rp~k!d~k!,

~B1!

where G(l)5Red (x(l)1iy(l)). Hence the bulk energy is
given by
e
-

d

Ebulk5E2
1

L
Eimp5LE dl sp~l!2S x~l!1

G~l!

L D
1LE dk rp~k!S k2

H

2
1

d~k!

L D . ~B2!

We can thus derive equations for the bulk energy of
excitations:

«bulk
1 ~k!1«bulk

2 ~k!5k2
H

2
1

d~k!

L

2E dl «bulk
2 ~l!a1~l2g~k!!,

«bulk
1 ~l!1«bulk

2 ~l!

52S x~l!1
G~l!

L D2E dl8«bulk
2 ~l8!a2~l82l!

1E dk g8~k!«bulk
2 ~k!a1~g~k!2l!. ~B3!
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When we add particles to the system, we want to add th
relative to the Fermi surface as determined by the host
tem ~in other words, we add them far from the impurity!. In
light of this, we have another constraint determining the
cationsQ andB of the two Fermi surfaces:

«bulk~k5B!5«bulk~l5Q!50. ~B4!

Of course, any bulk quantity will not distinguish between
Fermi surface set as above or a Fermi surface determine

«~k5B!5«~l5Q!50. ~B5!

The difference between the two amounts to 1/L corrections.
However, this difference is important if one is looking
impurity quantities. See in contrast Ref. 28 in the context
the Kondo problem.

We are now in a position to relate the impurity energy
the impurity density of states. Differentiating the above lea
to

]k«bulk
1 ~k!1]k«bulk

2 ~k!

511
d8~k!

L
2g8~k!E dl ]l«bulk

2 ~l!a1~l2g~k!!,

]l«bulk
1 ~l!1]l«bulk

2 ~l!

52S x8~l!1
G8~l!

L D2E dl8]l8«bulk~l8!a2~l82l!

1E dk ]k«bulk
2 ~k!a1~g~k!2l!. ~B6!

Writing

]«bulk5]«2
1

L
]« imp , ~B7!

where« imp is the 1/L contribution to the energy of the exc
tation, and comparing to Eq.~2.19! leads to the relations

]l« imp~l!52]lpimp~l!52ps imp~l!,

]k« imp~k!52]kpimp~k!522pr imp~k!. ~B8!

Hence, for spin↑ electrons, the scattering phase is given

de
↑52« imp~k!2« imp~l!. ~B9!

Moreover, we have

« imp~l!522pE
l

Q̃
s imp~l!,

« imp~k!522pE
2D

k

r imp~k!, ~B10!

allowing us to prove the Friedel sum rule. Note that the
relationships only hold due to our choice in defining t
Fermi surface as in Eq.~B4!.
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APPENDIX C: DIRECT COMPUTATION
OF THE SCATTERING PHASE

It is possible to provide another derivation of the Fried
sum rule that involves a direct computation of the scatter
phase~as opposed to working through the mediating agen
the impurity densities!. For ~purely technical! simplicity we
restrict ourselves to the case of a vanishing magnetic fi
where there are no realk’s in the ground state.

As we discussed in Sec. II, the computation of an elect
scattering phase involves the phases of ak particle and al
hole. As we work in the zero-field limit, thek-particle phase
is zero and we can focus solely upon the phase of thel hole.
To this end, we consider the bulk density of thela’s,
sbulk(l). In the ground state,sbulk(l) obeys the equation

sbulk~l!1E
Q

`

dl8a2~l2l8!sbulk~l8!52
1

p
x8~l!.

~C1!

Following the discussion in Ref. 37, the key quantity in t
following will be the shift of this distribution when a particl
or a hole is created at rapidityL. To study this quantity, we
go back to the discrete form of the Bethe ansatz equatio
which read

2pJa1 (
b51

M

u2~la2lb!522Lx~la!. ~C2!

If a hole is made atL, the rapidities shiftla→la
(1) and the

above equation becomes

2pJa1 (
b51

M

u2~la
~1!2lb

~1!!2u2~la
~1!2L!522Lx~la

~1!!.

~C3!

Setting

sbulk~la!@la
~1!2la#[

1

L
F~lauL!, ~C4!

it easily follows using the equation forsbulk(l) in Eq. ~1!
that

F~luL!1E
Q

`

dl8a2~l2l8!F~l8uL!52
1

2p
u2~l2L!,

~C5!

whereu2(x)52 tan21(x)2p. To proceed, it is convenient to
introduce the integral operatorsK̂ and L̂ defined by

K̂„f ~l!…[2E
Q

`

dl8a2~l2l8! f ~l8! ~C6!

and

~ Î 2K̂ !~ Î 1L̂ !5 Î . ~C7!

From Eq.~C7! and the fact that
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a2~l!5
1

2p

d

dl
u2~l!,

it follows that

F~luL!5E
L

`

dl8L~l,l8!. ~C8!

A similar formula with a minus sign would hold if a particl
were created in lieu of a hole atL. One can representL̂ as a
power series if one wishes:

L~l,l8!52a2~l2l8!1E
Q

`

dl9a2~l2l9!a2~l92l8!

1¯ ~C9!

Hence, in particular,L(l,l8)5L(l8,l).
Now consider the impurity density of states,s imp . It

obeys

s imp~l!1E
Q

`

dl8a2~l2l8!s imp~l8!5D̃~l!, ~C10!

from which it follows that

E
Q

`

dl s imp~l!52
1

2p
f~Q!1E

Q

`

dl F~luQ!D̃~l!,

~C11!

having setf(l)[22 Red @x(l)1iy(l)# and where we have
used thatf(`)50. As

nd52E
Q

`

dl s̃ imp~l!, ~C12!

we find

nd52
1

p
f~Q!12E

Q

`

dl D̃~l!F~luQ!, ~C13!

the key formula of this appendix. The RHS of the abo
equation is highly suggestive: the first term is proportiona
the bare scattering phase of the electron while the sec
term represents the dressing of the bare phase that re
from the nontrivial ground state of the system.

To complete this section we now explicitly demonstra
the Friedel sum rule. To do so we first imagine scattering
unperturbed ground state through the impurity. The en
scattering phase is then

(
b51

M

f~lb!. ~C14!

Now we imagine scattering the ground state plus h
through the impurity with a resultant total phase

2f~L!1 (
b51

M

f~lb
1 !. ~C15!

The difference of the two defines the scattering phase of
electron:
12530
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del52f~L!12pE
Q

`

dl8F~l8uL!D̃~l8!. ~C16!

Comparing Eq.~C13! with Eq. ~C16! shows that withL
5Q we arrive atdel5pnd52pnd↑/↓ , the Friedel sum rule
in the particular case when the magnetic field vanishes.

APPENDIX D: WIENER-HOPF ANALYSIS
AT THE SYMMETRIC POINT

1. Alternative equation for «1
„k…

We first solve the equation governing«1(k), the energy of
excitations in lead 1 relative to the Fermi surface. To do
we cast it in a different form than found in Eq.~5.7!. For
simplicity, we assume thatm1 is zero. However, finitem1
does not change the expression for«1 providedm1!D.

Now «1(k) is the energy associated with adding or r
moving ak excitation. Thus imagine removing ak0,B. This
induces a change in the densitiesr(k) ands~l!. At the sym-
metric point, the unperturbed densities have the form@see
Eq. ~6!#

r~k!5ro~k!2g8~k!E
2`

B

dk8r~k8!R~g~k!2g~k8!!,

s~l!5so~l!2E
2`

B

dk r~k!s~l2g~k!!, ~D1!

while the perturbed densitiesr1(k) and s1(l) due to the
hole atk0 are

r1~k!5ro~k!2
1

L
d~k2k0!2g8~k!

3E
2`

B

dk8r1~k8!R~g~k!2g~k8!!,

s1~l!5so~l!2E
2`

B

dk r1~k!s~l2g~k!!, ~D2!

whereL is the system size. Rewritingr1 as

r1~k!→r1~k!2
1

L
d~k2k0!,

yields

r1~k!5ro~k!1
1

L
g8~k!R~g~k0!2g~k!!

2g8~k!E
2`

B

dk8r1~k8!R~g~k!2g~k8!!,

s1~l!5so~l!1
1

L
s~l2g~k0!!2E

2`

B

dk r1~k!s~l2g~k!!.

~D3!

And so changes in the density, apart from thed(k2k0)/L
term already scaled out, are governed by
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dr~k![L~r1~k!2r~k!!

5g8~k!R~g~k0!2g~k!!

2g8~k!E
2`

B

dk8dr~k8!R~g~k!2g~k8!!,

ds~l![L~s1~l!2s~l!!

5s~l2g~k0!!2E
2`

B

dk dr~k!s~l2g~k!!.

~D4!

The energy of the excitation can be expressed in terms odr
andds:

2«1~k0!52S k02
H

2 D1E dk~k2H/2!dr~k!

12E dl x~l!ds~l!,

52F ~k02H/2!22E dlx~l!s~l2g~k0!!G
1E dk dr~k!

3Fk2
H

2
22E dlx~l!s~l2g~k!!G ; ~D5!

We see that«1(k0) depends now only upondr. That this
form for «1(k0) is equivalent to the equations in Sec. III o
Appendix A can be shown using the technology found
Appendix C.

ProvidedB,0, we can introduce a change of variabl
that simplifies matters:

r~z![2
r~k!

g8~k!
, z[g~k!, k,0. ~D6!

At energies not far in excess of the Kondo temperature
have

~k2H/2!22E dl x~l!s~l2g~k!!'
A2UG

p
e2pg~k!2

H

2
.

~D7!

The above then simplifies to

dr~z!52R~z2g~k0!!1E
b

`

dz8dr~z8!R~z2z8!,

b5
B2

2UG
,

2«1~k0!52FA2UG

p
e2pg~k0!2

H

2 G
1E dzdr~z!FA2UG

p
e2pz2

H

2 G ,

12530
e

52
A2UG

p
@e2pg~k0!2dr~v5 ip!#

1
H

2
@12dr~v50!#, ~D8!

where in the last line we have expressed«1(k) in terms of
the Fourier transform ofdr. It is to the equation fordr that
we actually apply the Wiener-Hopf analysis.

The expression for«1(k) is valid provided we have re
moved a particle, i.e.,g(k0).b or k,B. If we instead add a
particle atk.B or g(k0),b, we obtain in a similar fashion
the following description of«1(k):

dr~z!5R~z2g~k0!!1E
b

`

dz8dr~z8!R~z2z8!,

b5
B2

2UG
,

«1~k0!5
A2UG

p
~e2pg~k0!1dr~v5 ip!!

2
H

2
~11dr~v50!!. ~D9!

2. Review of the Wiener-Hopf analysis

We so review the technique as presented in Ref. 28
equations of the general form

f ~z!5E
A

`

dz8 f ~z8!h~z2z8!1g~z!. ~D10!

Writing f 6(z)5 f (z)u(6z7A), the Fourier transform of the
above equation yields

f 1~v!1 f 2~v!5 f 1~v!h~v!1g~v!, ~D11!

where Fourier transforms are defined by

a~v!5E dv eivza~z!. ~D12!

The key step in the analysis is writing 12h(v) as a product
of functionsG6, which are analytic in the upper and lowe
planes, respectively:

12h~v!5
1

G1~v!G2~v!
. ~D13!

We can then write Eq.~D11! as

e2 ivA
f 1~v!

G1~v!
1e2 ivAf 2~v!G2~v!5g~v!G2~v!e2 ivA.

~D14!

Given e2 ivAf 6(v) is analytic in the upper and lower half
planes, applying the operators
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6
1

2p i E dv8
1

v82~v6 id!
~D15!

to Eq. ~D14! yields solutions for bothf 1 and f 2:

f 1~v!5G1~v!
eivA

2p i E dv8
1

v82~v1 id!

3g~v8!G2~v8!e2 iv8A,

f 2~v!52
eivA

G2~v!

1

2p i E dv8
1

v82~v2 id!

3g~v8!G2~v8!e2 iv8A. ~D16!

3. Determination of dr

Applying the above analysis to Eq.~D8!, appropriate to
the case of removing a particle,z.b (k,B), we have

dr1~v!52eivb
G1~v!

2p i E dv8
eiv8~zo2b!

v82~v1 id!

3R~v8!G2~v8!,

G6~v!5A2p
S 7 iv1d

2pe D 7 iv/2p

GS 1

2
7

iv

2p D ,

12R~v!5
1

G1~v!G2~v!
,

b5
1

p
lnS 2

H
AUG

pe D . ~D17!

If v50, we can continue thev8 contour into the upper hal
plane about the branch cut ofG2(v) while picking up the
pole atv850:

dr~v50!5211
1

p3/2E
0

`

dv8
sin~2pv8!

v8 S v8

e D 2v8

3GS 1

2
1v8De22pv8@g~k0!2b#. ~D18!

With v5 ip, we find instead

dr~v5 ip!5e2pg~k0!

1e2pb
1

pA2e
E

0

`

dv8
sin~2pv8!

v82
1

2

S v8

e D 2v8

3GS 1

2
1v8De22pv8@g~k0!2b#. ~D19!
12530
If we now instead add a particle atk.B or g(k0),b, we
obtain from the Wiener-Hopf analysis of Eq.~D9! the fol-
lowing equations:

dr~v50!

5
1

Ap
E

0

` dv8

v8
e2pv8@g~k0!2b#

tan~pv8!

G~ 1
2 1v8!

S v8

e D v8
,

dr~v5 ip!

5
e2pb

A2e
E

0

` dv8

v81 1
2

e2pv8@g~k0!2b#
tan~pv8!

G~ 1
2 1v8!

S v8

e D v8
.

~D20!

4. Determination of d„k…Ä2p* dk r imp

The impurity density of states,r imp(k), obeys an equation
of the form

r imp~z!5E
b

`

dz8r imp~z8!R~z2z8!1
1

2

1

cosh~p~z2I 21!!
,

r imp~z![2
r imp~k!

g8~k!
, z5g~k!, ~D21!

providedB,0, i.e., H!AUG. As we are interested in the
scattering phase, we want to compute

d~k!52pE
2`

k

dk8r imp~k8!. ~D22!

If z.b, appropriate for when we are computing the phase
a hole,d(k) becomes

d~k!52pE dv

2p

2 ie2 ivg~k!

v2 id
r1~v!. ~D23!

In this case Wiener-Hopf gives the solution ofr1(v) as

r imp
1 ~v!5

eivbG1~v!

2p i E dv8
1

v82~v1 id!

3ro~v8!G2~v8!e2 iv8b,

ro~v!5
eivI 21

2 cosh
v

2

. ~D24!

Provided we assumeH.Tk or roughly, equivalently,I 21

.b, this simplifies to
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d~k!52 tan21~2@ I 212g~k!# !1p2
1

p2 E
0

`

dv

3
e22pv~g~k!2b!

v
sin~2pv!S v

e D 2v

GS 1

2
1v D

3E
0

`

dv8
e22pv8~ I 212b!

v81v
sin~pv8!

3S v8

e D 2v8
GS 1

2
1v8D . ~D25!

If, on the other hand, we are interested in the phase o
added particle~i.e., z,b!, we computed(k) via

d~k!52pE
2`

k

dk8r imp~k8!

52p22pE
2`

g~k!

dzr imp~z!

52p22pE dv

2p

e2 ivg~k!

2 iv1d
r2~v!. ~D26!
.

nc

h-

an

12530
n

The Wiener-Hopf analysis then yields forr2(v)

r imp
2 ~v!52

eivb

2p iG2~v!
E dv8

1

v82~v2 id!

3ro~v8!G2~v8!e2 iv8b. ~D27!

This gives the scattering phase as

d~k!5
3p

2
2sin21

„tanh~p~g~k!2I 21!!…

1
1

2p
PE dv

e2pv~g~k!2b!

v

tan~pv!

G~ 1
2 1v!

S v

e D v

3PE dv8
e22pv8~ I 212b!

v82v
sin~pv8!

3S v8

e D 2v8
GS 1

2
1v8D , ~D28!

whereP indicates the principal value of the integral is to b
taken.
.
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