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Signature of phonon drag thermopower in periodically modulated structures
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A theory is presented to interpret the phonon drag magneto-thermopower oscillations observed in a periodi-
cally modulated two-dimensional electron gas. The thermoelectric and phonon drag tensors are obtained by
solving a Boltzmann equation driven by an anisotropic electron-phonon scattering rate reflecting the twofold
symmetry of the Fermi surface. It is shown that commensurability oscillations in the phonon drag and the
Nernst-Ettingshausen coefficients arise exclusively because of finite angle scattering events. The calculated
oscillations are found to be in phase with the magnetoresistance and their magnitude is proportional to the
electron-phonon anisotropy.
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[. INTRODUCTION mopower &) is an indirect means of probing the 2DEG. A
temperature gradient generates a nonequilibrium phonon dis-
Periodically modulated two-dimensional electron gasedribution that in turn transfers some of its momentum to the
(2DEG’s) have been intensively studied over the past decadelectrons:® Electron-phonon interactions being slow,
following the discovery, by Weisst al! of commensurabil- ~1079 s,® compared to impurity scattering;~10—30 ps,
ity magnetoresistance oscillations. The physical origin ofmomentum is rapidly scattered away. In average, the Fermi
these oscillations is now well established from COﬂCUI’I’ingSea is disp|aced in  momentum space by an amount
theoretical picture$:® Collisions between quasiballistic «(7/7) VT. Miele et al** have explicitly shown that the
eIectrons apd the superlz_atpice potential contribute to |ar9_%ction of phonon drag is equivalent to that of an effective
corrections in the conductivity. In the presence of a magnetig|eciric field directed along the temperature gradient and de-
field B applied perpendicular to the 2DEG, the resistancé,qnging only on temperature and phonon parameters. This
oscillates due to the cyclotron diameter at the Fermi Ievelresult implies thats? is independent oB, it explains the

2 el i an g uer sl et o e cataion e e mepowt
tronic heat conductivi.ty and theiffusionthermopowef. The y» and the vanishingly small Nernst-Ettingshausen coeffi-

latter was subsequently measured using a local heating tecFi'—emsxy'1 Whether the ZDEG. 'S _modulated or not is actu-
nique that allows one to study diffusion of hot electrons@!ly irelevant becaus&® remains independent @, there-
without heating the lattice. Commensurability thermopowerf0'® the phonon drag is not expected to show
oscillations were observed which were 90° out of phase Comgommensurabﬂny effects. Thl_s plctu_re has tvyo I|m|t.at|ons:
pared to the resistivity oscillations, in line with the theoreti- first, electron and phonon anisotropies combine to increase
cal expectations. the Nernst-Ettingshausen coefficiéhtand second, the dis-

This paper investigates the voltage induced by a macroPlaced electron and phonon distributions in momentum space
scopic heat current flowing across a lateral superlattice fabcannot be in equilibrium because the magnetic field only acts
ricated from a GaAgAl,Ga)As heterostructure. The differ- on electrong®
ence from Ref. 7 is that the dominant contribution to the In the following, | shall derive a solution to Boltzmann
thermopower now arises from tiphonon dragacting on the  equation driven by an anisotropic electron-phonon scattering
2DEG rather than from the diffusion of hot electrditsA rate. This anisotropy has a twofold symmetry that reflects the
series of magneto-drag thermopower oscillations wergymmetry of the Fermi surface imposed by the one-
reported® that cannot be explained within the current theo-dimensional grating. The thermoelectric and thermopower
retical framework that only extends to unmodulatedtensors are calculated with phonon anisotropy being intro-
systems? 3 We shall show that the potential modulation duced as a single phenomenological parameter. With this
lowers the symmetry of the Fermi surface and we shall calnew assumption, the standard phonon drag tH8dsyca-
culate its influence on the phonon drag acting on thepable of reproducing the commensurability oscillations seen
2DEGYM14 in S%.

The thermopoweS is defined a£=S.- VT, whereE is The paper is organized into three sections. The first one
the gradient of the electrochemical potential d is the  derives the thermoelectric tensor modified for the effects of
temperature gradient applied to the 2DEG. Thermopowethe periodic potential. The thermopower is then calculated in
measurements are realised with no net charge current flowine simple case of isotropic electron-phonon interaction. The
through the sample so that the thermoelectric current is exsecond section presents an exact solution of Boltzmann
actly compensated by a electric currginto-E-L-VT=0. equation driven by anisotropic electron-phonon scattering.
The thermopower is theB= oL, whereo andL are the Each angular harmonic contributes a corrective term to the
conductivity and the thermoelectric tensor respectively. Inthermopower, the leading term of which is given by the roots
contrast to the diffusion thermopower, the phonon drag theref a characteristic polynomial. The magnetic-field depen-
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dence of the thermopower is calculated and results are dis-

cussed in the third section.

II. ISOTROPIC ELECTRON PHONON SCATTERING
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v(y)T

2mfo(y,¢)=— —Soul oV T

—FOy, ) 018l (VT + (VT (4)

The temperature gradient is applied along the potentiavhich has to satisfy

modulation taken a¥(y) =V, cosqy) whereq=2=/a. This

was experimentally realised by gating a 2DEG with 200-nm-

wide metal finger gates with a periodicig/=500 nm. The
electron density in the 2DEG was X40° m 2 and the
mobility 930 OOO c V™

~1. The modulation had a piezo- which has componentsr,,=

LF°=eE(y)/er (5)

whereE(y)=—dV(y)/dy is the periodic electric fieldo:,
is the unperturbed conduct|V|ty tensor of orcetn=1,2...)
=0, and oy=—0y=

electric origin®® and its amplltude calculated from the width —nw.7o, whereo,= oo /[1+ (nw 7)2]. It will also be use-

of the positive magnetoresistance, was found to \ie
=1mV. The phonon drag thermopowgy, and the Nernst-

ful to introduce the vectou,=[cosfi¢),sin(h¢)]. The cur-
rent integrals are simplified by observing that the only non

Ettingshausen coefficierg , are obtained by measuring the vanishing contributions arise from the terms in ¢gosnd
voltage drop parallel and perpendicular to the temperaturgin ¢ in the Fourier expansion &°. Inserting this expansion
gradient. The electron-phonon scattering rate responsible fanto Eq. (5) gives the Fourier coefficients of cgsand sing,

phonon drag is given By

of|  of) < m*s,A, VT L
R —_— —_—V -,
R @)

wheredf/ g, is the derivative of the Fermi-Dirac function,

m* =0.067m, is the electron effective mass, is the pho-
non velocity of the acoustic mode A, is the phonon mean
free path, andy is the velocity of an electron in state At
4 K, the 2DEG is highly degenerate henﬁtﬁ/ask may be
replaced by—&(ex—eg) in Eqg. (1). An electron on the
Fermi surface travelling with velocity(y) along the direc-
tion u; = (cos¢,sin¢g) will be subject to a phonon drag?,

—2e of
477 <9t

_ 1Y) o0S
2’77' Do

WO(o,y)= J dkk—> u;- VT,

)

where oy=ns?7/m* is the Drude conductivity, D,

=1/2v27 and

m*s, A,
So ; eTng
is the isotropic phonon drag thermopowerr is the
Fermi velocity of the unmodulated 2DEG arelis the
electron charge. The thermoelectric current is
=[3(dy/a)[3™d¢ f°(y,¢)vu, wheref® is the charge distri-
bution function solution of Boltzmann equation:

J
Lf0= v(y)ul-Vr+[v’(y)cos¢+wc]ﬁ
1 2rdep|]
+- 1—J0 ﬁ”f (V,0)=W°(y,¢). (3
w.=eB/m* is the cyclotron frequency. Equatio(B) is

and one obtains

ad 27 d
fo ?y jo Z_i)V(y)Fo(y’¢)U1:K(wcT,—1). 6)

The ratiop=eVy/ef is small (y=0.12) and, to first order
in 7, Eq. (5) has an exact solution whose oscillatory depen-
dence is given by Bessel functions of complex ordét,

ady (27d¢ eE(y)
K= 1+(w T)Zf f eF O(Y'Q'))

(qh)? Jitw, (AR I—i/0 A AR:)
1+ (wCT)2 sinh( 7/ w7)

(7l weT)

77
=7 ,
=it AAR)I-i/0 AARe)

)

whereR.=m* v /eB. Combining Eqs(4) and(6) one finds
the thermoelectric current to bp= —Syo,VT, where

1+K(we7)?
N [1-K](wr)

is the Drude conductivity tensor modified by the oscillatory
contribution from the grating. The thermoelectric tensor is
identified asL,=Syo and, recalling the conditioroE
—L,VT=0, the phonon drag thermopower follows &g
=0, L=

This result demonstrates that the periodic modulation has
no effect on thgphonon drag thermopowefhe lack of os-
cillatory dependence suggests that some ingredient may be
missing in the initial assumptions. For instance, the forma-
tion of Brillouin minizones due to the periodicity of the su-
perlattice potential is assumed to have no effect on the scat-
tering rate. The folding of energy dispersion curves fractures
the Fermi surface into a complex pattern of arcs of circle
exhibiting twofold symmetry as shown in Fig. 1. Such an
anisotropy will be passed onto the electron-phonon interac-

—[1-K](wc7)

[1-K] 8

o1=0

mathematically identical to that governing the resistivitytion since it depends strongly on the density of available

problem previously solved by BeenakKetherefore, only

states on the Fermi surface. In particular, the scattering rate

key steps of the calculation will need to be recalled here. Ancreases dramatically for transitions between opposite edges

function F(y, ¢) is introduced as

of the Fermi surface where the density of states is divergent
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f(y,¢)=fg+fl+2§:2fn. It follows that each harmonic
contributes independently to the thermoelectric current, the
+3n/a thermoelectric and the thermopower tensors.

' The partial responses to the driving terms in ¢oand
sing were solved in Sec. I. The distribution functidf,
corresponding the first term in E¢L0), is obtained by re-
placing VT—(ag/2)VT in Eq. (4). In the same wayf

K, -
Mr\/\ is obtained by substituting VT—(a,(VT)y

1 » Fermisurface +b,(VT)y,by(VT)—ay(VT)y) in Eq. (4. The ther-
\/\IKJ/ \/ Tst Brilouin zone mopower contribution from the first two terms in E40) is

found to be

apta, b2

R s,

3ma Si=— : (12)

b, qp—az

S . The electronic response to harmonics 2 is governed by
FIG. 1. Schematic view of the Fermi surface in the presence of 1
a small 1D potential modulatiorK,... K, label the acoustic- ¢ (4 v(y) 90So {cognd)
n H

phonon-mediated transitions for which the scattering rate diverges 2m Do 2

(Kohn anomaties K[(@ns 1+ 81 (YTt (Bys 1~ by 1) (VT), ]

(Kohn anomalies Kohn anomalies are, for example, well .

known for enhancing the phonon drag thermopower around +sinNG)[(Dn41+bn-1)(VT)y

10 K28 Figure 1 shows that longitudinakg,K3,K,) and —(ans1—an-1)(VT)y I} (12
transverse transitionsK(;) involve phonons with different
wavevectors suggesting some degree of angular anisotro&\(
will be present in the electron-phonon scattering. The Fermi
density of states will remain largely unaffected by the mag-
netic field, since Landau levels are not formed. The indepen- v(y)T P

dence of the electron-phonon anisotropy on the magnetic 27"fn(y'd’)z_D—OSOUH"nVT ~nSoFn(Y, ),
field may therefore be assum&dThese considerations sug-

gest that the scattering rate can be expanded according to U\ﬁqere

angular harmonics as

function F, is defined as

a - ani1tan bpi1—bno
Si=S) 2+ 3 a,co8ng)+bysinng) . (9 L Al IR
n=1 2\bpythby oy —agiitan

1. ANISOTROPIC ELECTRON-PHONON SCATTERING with the condition that

The new driving termV/(y, ¢) is obtained by substituting
S, [Eq. (9)] into Eq. (2): CF eE(y) 1 [n+1du,_q

L 20,|N—=1 0o
Wiy, g)=— "X 900120 or i L rcos(av) ] ’
y'¢ - 20 D0 2 1 2{ (b( 2 X n—-1 (?un+l

| +mW} oVT' (n=2). (14)
+by(VT)y)+sing[by(VT)—ax(VT)yl}

17 Substitution(13) removes all spatial harmonics other than
+§Z cogngd)[(aps1tan_1)(VT), the fundamental frequency in the functidf),. One may
n=2 therefore seek solutions of E¢L4) in the form: F(y, $)
+ (b 1= b 1)(VT),]+SiNNG)[(byy 1+ by 1) =(plve)2 7 W, @ M)t cc?! nserting this expan-

sion into Eq.(14) gives a recursion formula generating the

entire set of¥,,
X(VT)X_(an+1_an—1)(VT)y]]- (10)

One may seek the solution 8ff (y, ) =W(y, $) as the sum am¥m=Ymi1=¥m-1+Bm, (15
of the partial electronic responses to each angular harmonic
in W(y,¢). Using the linearity of the Liouville operator, where
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am=a(imwcr+ 1-5mo)

n+1 . )
Bm:T[gm,nfl(Vx_ 'Vy) - 5m,7(n71)(vx+ |Vy)]

n-1 ) )
+ T[ém,nJrl(Vx_ |Vy) - 5m,7(n+1)(vx+ 'Vy)]!

n=23.., m=...—2—-10+1+2.... (16
A vector is introduced which is defined &= 0V T'/o,,.
Mirlin and Wadlfle observed®?!that equations of the type of

Eq. (15), albeit with no driving term g,,=0), are satisfied

PHYSICAL REVIEW B 66, 125302 (2002

17)
where the shorthand notatimiEJlii,(wCT)(q R;) andJ.
=J.i/(w,7(dR) is being used! If electron-phonon interac-
tion has a twofold symmetry, the Fourier coefficientsain
and b, dominate in the Fourier expansidf). In the first
instance, one may neglect the contribution of higher angular
harmonics Egs. (4), (8), etc] and solve Eq(15) driven by
the second harmonic only. This approach limits the number
of fitting parameters to twdgone if b,=0) In these condi-
tions, V will have non zero components if=3 (n=1 is

by Bessel functions of complex order. The solutions of Eq.gjready accounted farEquation(16) shows thais,, will be

(15 (with Bm=0) are: Wn=(1)"Im—i1-s, )w(ARe)-

finite for m= =2 and=*4. The solutions of Eq15) therefore

These may be computed in the form of continued fractfdns. take the form

v, 1-B, 1w, ' W, 118 IV, :
CY1+ 1 a_q 1
@t S ¥ LBt
3 ayte -3 a_g4+

Simplifications occur by observing that, far=0, Eq. (15

sequence of ratios continuing beyoad («_4) is common

givesW_,=%,. Second, coefficients with negative valuesto both equations. The sequence of equatid is then

of m are eliminated usinga_,=ay, and B_,=—Brn,.
Third V5 (V¥ _3) relates toV, and ¥, via V3=(aqia,
TVt ayVo— B [V_3=(ala;+1)¥;—a3 ¥,
— B3 1. These manipulations reduce E¢8) to a system of
two equations with two complex unknowns, and¥, .

Once V¥, is known, the thermoelectric current immedi-

ately follows from

j= fadyFWd(ﬁF 19
jJ=—onS vale 2m n(Y,@)v(y)ur. (19
The Fermi velocity  v(y)=wvegy1+ ycosQy)=ve
+ve(7/2) cosfly) +O(77) is well approximated by its two
leading terms sincegy<1. Equation(19) is then easily inte-
grated, and | find

772
Ix=— O'nSOT R W¥,],

) (20)

. Y
jy=+0nSog- MV 4],

substituted into Eq(18) which, after some algebra, reduces
to a nonlinear system iy and ¢ :

W2+ BWi+iyWoW,— 6V, —ipVo+ k=0,
2y w2 . @D
Wi+ BiVo—iyWoW,—6¥+ip Vot k=0,

whereea,, «a;, B, Bi...Z;, Z; are the real and imaginary
parts of

a=ajar+1,
B=—liayJ, 13_),
y=aztaplas,
8=B,[1+aZ], (22)
p=Bal Bl az+ ayZ],

x=p3Z,

It should be remarked that E(f) cannot be used here due to
the coupling to higherr{>1) harmonics. This is the reason
why the current must be calculated frobh rather than from 8, has been replaced using the fact that, rier3, Eq. (16)
W¥,.%2! Considering Eqs(17) and (18), one notes that the givesB,=0.58,. The real and imaginary parts , a;, 3,

1
Z= E{(3+ aragz)— B(3ai+ aza)l ay}.
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Bi ...k, k; are obtained by summing and subtracting each+J;_J,)/J,J_ andR_=i(J;,J_—
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J;-J4)/3,.J_ which are

coefficient and its complex conjugate. This operation wherconveniently evaluated from the series expansion of the

applied to J;_/J_ produces two termsR,=(J;,J_

(— DX (v+ pu+2k+1)

Bessel product®

k
4

1 \vte *
J”(Z)JM(Z):(EZ 2 Tk D KF DT g Tk DR 23
| find
1 2k
L - (1T D0 |
Jied -0 d4 == o 2 Tl r K DT (—iwrr ke DTk Dkt LK Heen) = (kFilwen], (24

from whichR_ andR_ are identified as

d
R,=— m'ﬂ(JJFJ,)

1 cog2qR.)sgr(B)
qR. coS(|qR;|— m/4)+sint[ 7/ (2wT)]

lqR[>1 (25
and

2 [sinh( 7/ wer)/ (7] weT)

- ql J,J_
sinh(7r/ w.7)sgn B) 2
" co(|qRy| — 7/4) + sintf[ 7/ (2w.7)]  ql
|gR:[>1. (26)

magnetic fields where the commensurability oscillations are
observed. Using E(23), it is easy to verify that the product
J,J_~(2l7|qR.|){cof(|qR|— m/4) + sint{ 7/ (2w.7) ]} must

be an even function dB, which is the reason for taking the
modulus ofqR;. «,, «i, B;, Bi-.-Z;, Z; are listed in Ap-
pendix A. Either equation in Eq$21) may be viewed as a
second degree polynomial M, with roots depending on
WV, . These roots are calculated analytically in one equation
and then eliminated by substitution into the other. The result
is a characteristic polynomial i, whose coefficients are
all real and are listed in Appendix B:

C4q,?+ C3\I’i+ Czqfi'f‘ Cl\I’l+ CO:O (27)

SinceV is a nonlinear function oW T, the tensor notation
will, in general, be invalid for expressing quantities derived
from it. However most experiments are concerned with tem-
perature gradients applied either alongr y but not along
both directionsimultaneouslyin this specific case, the ther-

The Bessel functions are well approximated by theirmoelectric current componenisandj, [Eqgs.(20)] may still
asymptotic expansion sindgR.|>1 holds in the range of be presented in the tensor form:

7’ [ R{W[(VT),=1,(VT)y=0]}

L3=03Sy—~

The corresponding thermopower contribution is
S;=0; L3, (29

4 | —Im{¥[(VT),=1,(VT),=0]}

Re{W [ (VT),=0,VT),=1]}

MWL (VT),=0(VT), =17} @8

appropriateness to our type of polynomial. The model pa-
rameters consider a unit temperature gradient alongythe
axis:[(VT),=0,(VT),=1]. b, is set to zero, thus indicating

and the total thermopower is given by the sum of contribu-that the principal axes of anisotropy in Fig. 1 correspond to

tions (11) and (29) is S=S;+S;.

IV. RESULTS AND DISCUSSION

thex andy axes. Numerical results show that E87) admits

two real and two complex roots. Real roots imply that no
current will flow parallel to the temperature gradient, a
physically meaningless proposition. The physical answer is

The roots of Eq(27) are calculated numerically for each given by the complex root for which the thermoelectric ten-

value of B. A polynomial root-finder implementing the Hes- sor satisfies Osanger symmetry rules. The symmetry of the
senberg methddwas used for its robust convergence and itsroot is itself determined by the coefficients of the polyno-
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4 . ' .
T=4K
sl V0=1mV
. n =2.45x10"°m™
O} s
2 1=35.6ps
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o
’
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>
E
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w

B (T)

FIG. 2. Top panel: theoreticalfull line) and experimental
(dashed lingmagnetoresistance of a lateral superlattice with period
a=500 nm. The Drude resistan¢46() was calculated from the
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T r T r small fraction ofSy. As shown in Fig. 2, the shape of the
peaks inS, is different, in particular the last oscillation is
strongly attenuated in the theoretical trace. At vanishing
y magnetic fields, both the thermopower and the resistance
show a peak not observed in the experimental data. This is
because our description does not account for the channeling
of open electron orbits that gives the positive magnetoresis-
tance at low magnetic field. In order to investigate the sen-
sitivity of phonon drag to the smoothness of the interface, we
have measured the thermopower after scribing the sample
surface between the heater and the Hall bar. The presence of
0 " L . L PR . the cut was found to dampen the amplitude of the oscilla-
tions very strongly. This outlines the importance of having a
large mean free path for phonon modes travelling parallel to
the sample surfacg.
In summary, commensurability oscillations in the phonon
drag thermopower of periodically modulated structures were
shown to arise from the anisotropy of the electron-phonon
interaction. The contribution of higher scattering harmonics
(n>2) was neglected because it decays a$.1Their effect
could nevertheless be calculated along similar lines but this
would only be useful if the spectrum of Fourier harmonics
was known. In agreement with Ref. 17, our results show that
) ) . ) both electron ¢+ 0) and phonon anisotropy,b,+0) are

0.4 0.2 0.0 0.2 0.4 required for the phonon drag thermopower to exhibit a
magnetic-field dependence.

values of r and ng and a hall bar aspect ratio of 20; no fitting osov. | also thank EPSRC and the Royal SocigfK) for
parameter was used in the theoretical curve. Bottom panel: theoresupport.

ical (full line) and experimenta(dashed ling phonon drag ther-
mopower of the same lateral superlattice. The fitting parameters to
the thermopower amplitude asg=a,=40+20 (b,=0).

mial. It may be shown that,, c,, andc, are even functions
of B while c; andc; are odd functions oB.?® It follows that
real part the root, giving.,,, is antisymmetric with respect
to B, as expected. The sign of the imaginary part is chosen so
thatL,, andL, have opposite sign wheB>0 and the same
sign whenB<0.

The theoretical thermopowe;, is plotted together with
the experimental trace in the lower panel of Fig. 2 whereas
the top panel compares the theoretical and experimental re-
sistance. Comparing the experimental peak positions in the
top and bottom panels shows that the phonon drag ther-
mopower oscillates in phase with the resistance. One notes
an anti-symmetric component in the experimental ther-
mopower. Now considering the theoretical trace, commensu-
rability thermopower oscillations arise because of the anisot-
ropy in the scattering. The magnitude of these oscillations is
proportional toa,: if the principal scattering axis is along
thex axis (a,>0) S, oscillates in phase witRy, and out of
phase otherwise. The isotropic thermopower was evaluated
as S;~220,V/K using a phonon mean free path equal to
the etched sample length,=1 mm. The vertical fit to the
experimental thermopower then gasg=a,=40= 20 indi-
cating that the magnitude of the oscillations is a relatively
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APPENDIX A
The coefficients of Eqg21) are

2
[1-2(wc7)%],

2
Olr:1+ a

2 2
o= (a> 3w,T,

ﬁr:$[2(wcT)R++R],

Bi:$[2(")c7)R_R+]a

2l %ip %R
ql) 2727

'Yr: 2 2

Oy

—(2 2 YR R
Yi= a( w7+ 5 R-— >Ry,

(nyAl)

(A2)

(A3)

(Ad)

(A5)

(A6)
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2 APPENDIX B

3+
ql

1
Zr:i

1
(1-6(w.7)?) — (a){[swcr(u o)

The coefficients of the characteristic polynomid&q.

(27)] are
+ai]R++(3—3aiwCT+ar)R_}}, (A7)
Ca=(Brai—Biar)*= (e v+ aiv) (Bryve + Bivi), ®1

C1([2)? 1
Zi—§[<—> 5wCT—(a)[(3wcr(l+ar)+a)R_

al C3=(Br e+ Bivi) (¥ 6+ vi6) +2a,p(Bry: + Bivi)
—(3—3ajo. 7t a )R], (A8) +2Bipi(aryi +aiyi)
+(Brai_:8iar){2(:8i 5r_:8r5i)+(pr7i+pi7r)};
5I’:VX[1+ a,Z,— aiZi]+Vy[arZi + ain], (Ag) (BZ)

6=Vl ayZi+Z,]-V,[1+ o, Z,— a;Z;], (ALO)
’ ’ ’ N ‘ szz(lgrai_Biar)(ﬁr"i_BiKr)+(Bi5r_:8r5i)2

pr:%R_—%Fh.-F % [V(Z,—2w.7Z;) —(Bipit Brpr)(piaitprar) = (Brye+ Bivi) (vr Ky
"_r5i i5r r i ir_2rrr5r
V(24 2007Z0)], (A11) +yiki) = (Br 6t Bid) (prvit pive) = 2(Brpry
+ Bipividi), (B3)
-=—&R —ﬁR +| = [V (Z+2 Z)
a 2" 2 \d AT T C1=(Brpr+ Bipi) (p; 6+ pi6) + 2y, k¢ (Brpr + Bipi)
—Vy(Z—2wc7Zi)], (A12) +2Bivi(price + piki) T (Brki— Bix ) 2(8i 6, — B 6))
ke =Z(Vi=V5)+2Z,V,Vy, (A13) +(pryvitpivet (B4)
Ki:Zi(Vi_V)zl)_ZZTVXVY‘ (A14) COE(BrKi_IBiKr)Z_(KrPr+KiPi)(ﬁrPr"'BiPi)- (BS)
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