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Signature of phonon drag thermopower in periodically modulated structures

Alain Nogaret
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

~Received 30 January 2002; revised manuscript received 2 May 2002; published 3 September 2002!

A theory is presented to interpret the phonon drag magneto-thermopower oscillations observed in a periodi-
cally modulated two-dimensional electron gas. The thermoelectric and phonon drag tensors are obtained by
solving a Boltzmann equation driven by an anisotropic electron-phonon scattering rate reflecting the twofold
symmetry of the Fermi surface. It is shown that commensurability oscillations in the phonon drag and the
Nernst-Ettingshausen coefficients arise exclusively because of finite angle scattering events. The calculated
oscillations are found to be in phase with the magnetoresistance and their magnitude is proportional to the
electron-phonon anisotropy.
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I. INTRODUCTION

Periodically modulated two-dimensional electron ga
~2DEG’s! have been intensively studied over the past dec
following the discovery, by Weisset al.1 of commensurabil-
ity magnetoresistance oscillations. The physical origin
these oscillations is now well established from concurr
theoretical pictures.2–5 Collisions between quasiballisti
electrons and the superlattice potential contribute to la
corrections in the conductivity. In the presence of a magn
field B applied perpendicular to the 2DEG, the resistan
oscillates due to the cyclotron diameter at the Fermi lev
2Rc , scaling with an integer number superlattice perioda
within a phase factor. This picture was extended to the e
tronic heat conductivity and thediffusionthermopower.6 The
latter was subsequently measured using a local heating t
nique that allows one to study diffusion of hot electro
without heating the lattice. Commensurability thermopow
oscillations were observed which were 90° out of phase c
pared to the resistivity oscillations, in line with the theore
cal expectations.7

This paper investigates the voltage induced by a ma
scopic heat current flowing across a lateral superlattice
ricated from a GaAs/~Al,Ga!As heterostructure. The differ
ence from Ref. 7 is that the dominant contribution to t
thermopower now arises from thephonon dragacting on the
2DEG rather than from the diffusion of hot electrons.8,9 A
series of magneto-drag thermopower oscillations w
reported10 that cannot be explained within the current the
retical framework that only extends to unmodulat
systems.11–13 We shall show that the potential modulatio
lowers the symmetry of the Fermi surface and we shall c
culate its influence on the phonon drag acting on
2DEG.9,11,14

The thermopowerS is defined asE5S•“T, whereE is
the gradient of the electrochemical potential and“T is the
temperature gradient applied to the 2DEG. Thermopo
measurements are realised with no net charge current flow
through the sample so that the thermoelectric current is
actly compensated by a electric current:j5s•E-L•“T50.
The thermopower is thenS5sÀ1L , wheres andL are the
conductivity and the thermoelectric tensor respectively.
contrast to the diffusion thermopower, the phonon drag th
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mopower (Sg) is an indirect means of probing the 2DEG.
temperature gradient generates a nonequilibrium phonon
tribution that in turn transfers some of its momentum to t
electrons.13 Electron-phonon interactions being slow,tep

;1029 s,15 compared to impurity scattering,t;10– 30 ps,
momentum is rapidly scattered away. In average, the Fe
sea is displaced in momentum space by an amo
}(t/tep)“T. Miele et al.11 have explicitly shown that the
action of phonon drag is equivalent to that of an effect
electric field directed along the temperature gradient and
pending only on temperature and phonon parameters.
result implies thatSg is independent ofB, it explains the
absence of weak localisation effects11 in the thermopower,
Syy , and the vanishingly small Nernst-Ettingshausen coe
cient Sxy .16 Whether the 2DEG is modulated or not is act
ally irrelevant becauseSg remains independent ofB, there-
fore the phonon drag is not expected to sho
commensurability effects. This picture has two limitation
first, electron and phonon anisotropies combine to incre
the Nernst-Ettingshausen coefficient,17 and second, the dis
placed electron and phonon distributions in momentum sp
cannot be in equilibrium because the magnetic field only a
on electrons.18

In the following, I shall derive a solution to Boltzman
equation driven by an anisotropic electron-phonon scatte
rate. This anisotropy has a twofold symmetry that reflects
symmetry of the Fermi surface imposed by the on
dimensional grating. The thermoelectric and thermopow
tensors are calculated with phonon anisotropy being in
duced as a single phenomenological parameter. With
new assumption, the standard phonon drag theory10 is ca-
pable of reproducing the commensurability oscillations se
in Sg.

The paper is organized into three sections. The first
derives the thermoelectric tensor modified for the effects
the periodic potential. The thermopower is then calculated
the simple case of isotropic electron-phonon interaction. T
second section presents an exact solution of Boltzm
equation driven by anisotropic electron-phonon scatteri
Each angular harmonic contributes a corrective term to
thermopower, the leading term of which is given by the ro
of a characteristic polynomial. The magnetic-field depe
©2002 The American Physical Society02-1
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dence of the thermopower is calculated and results are
cussed in the third section.

II. ISOTROPIC ELECTRON PHONON SCATTERING

The temperature gradient is applied along the poten
modulation taken asV(y)5V0 cos(qy) whereq52p/a. This
was experimentally realised by gating a 2DEG with 200-n
wide metal finger gates with a periodicitya5500 nm. The
electron density in the 2DEG was 2.431015 m22 and the
mobility 930 000 cm2 V21 s21. The modulation had a piezo
electric origin,19 and its amplitude, calculated from the wid
of the positive magnetoresistance, was found to beV0
51 mV. The phonon drag thermopowerSyy and the Nernst-
Ettingshausen coefficientSyx are obtained by measuring th
voltage drop parallel and perpendicular to the tempera
gradient. The electron-phonon scattering rate responsible
phonon drag is given by11

] f k

]t U
ph

5
] f k

0

]«k
(
l

m* slLl

tep
l vk

“T

T
, ~1!

where] f k
0/]«k is the derivative of the Fermi-Dirac function

m* 50.067m0 is the electron effective mass,sl is the pho-
non velocity of the acoustic model, Ll is the phonon mean
free path, andvk is the velocity of an electron in statek. At
4 K, the 2DEG is highly degenerate hence] f k

0/]«k may be
replaced by2d(«k2«F) in Eq. ~1!. An electron on the
Fermi surface travelling with velocityv(y) along the direc-
tion u15(cosf,sinf) will be subject to a phonon dragW0,

W0~f,y!5E
0

`

dkk
22e

4p2

] f

]tU
ph

52
n~y!

2p

s0S0

D0
u1•“T,

~2!

where s05nse
2t/m* is the Drude conductivity, D0

51/2nF
2t and

S052(
l

m* slLl

etep
l T

is the isotropic phonon drag thermopower,nF is the
Fermi velocity of the unmodulated 2DEG ande is the
electron charge. The thermoelectric current isj
5*0

a(dy/a)*0
2pdf f 0(y,f)nu1 wheref 0 is the charge distri-

bution function solution of Boltzmann equation:

Lf 05H n~y!u1•“ r1@n8~y!cosf1vc#
]

]f

1
1

t F12E
0

2p df

2p G J f 0~y,f!5W0~y,f!. ~3!

vc5eB/m* is the cyclotron frequency. Equation~3! is
mathematically identical to that governing the resistiv
problem previously solved by Beenakker;2 therefore, only
key steps of the calculation will need to be recalled here
function F0(y,f) is introduced as
12530
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2p f 0~y,f!52
n~y!t

D0
S0u1s1

0
“T

2F0~y,f!s1S0@vct~¹T!x1~¹T!y#, ~4!

which has to satisfy

LF05eE~y!/«F ~5!

whereE(y)52dV(y)/dy is the periodic electric field.sn
0

is the unperturbed conductivity tensor of ordern (n51,2...)
which has componentssxx5syy5sn and sxy52syx5
2nvctsn wheresn5s0 /@11(nvct)2#. It will also be use-
ful to introduce the vectorun5@cos(nf),sin(nf)#. The cur-
rent integrals are simplified by observing that the only n
vanishing contributions arise from the terms in cosf and
sinf in the Fourier expansion ofF0. Inserting this expansion
into Eq.~5! gives the Fourier coefficients of cosf and sinf,
and one obtains

E
0

a dy

a E
0

2p df

2p
n~y!F0~y,f!u15K~vct,21!. ~6!

The ratioh5eV0 /«F is small (h50.12) and, to first order
in h, Eq. ~5! has an exact solution whose oscillatory depe
dence is given by Bessel functions of complex order,20,21

K5
D0

11~vct!2 E
0

a dy

a E
0

2p df

2p

eE~y!

«F
F0~y,f!

5
h2

4

~ql !2

11~vct!2

Ji /vct~qRc!J2 i /vct~qRc!

sinh~p/vct!

~p/vct!
2Ji /vct~qRc!J2 i /vct~qRc!

,

~7!

whereRc5m* nF /eB. Combining Eqs.~4! and~6! one finds
the thermoelectric current to be:j52S0s1“T, where

s15s1S 11K~vct!2 2@12K#~vct!

@12K#~vct! @12K#
D ~8!

is the Drude conductivity tensor modified by the oscillato
contribution from the grating. The thermoelectric tensor
identified asL15S0s1 and, recalling the conditions1E
2L1“T50, the phonon drag thermopower follows asS1
5s1

21L15S01.
This result demonstrates that the periodic modulation

no effect on thephonon drag thermopower. The lack of os-
cillatory dependence suggests that some ingredient ma
missing in the initial assumptions. For instance, the form
tion of Brillouin minizones due to the periodicity of the su
perlattice potential is assumed to have no effect on the s
tering rate. The folding of energy dispersion curves fractu
the Fermi surface into a complex pattern of arcs of cir
exhibiting twofold symmetry as shown in Fig. 1. Such
anisotropy will be passed onto the electron-phonon inter
tion since it depends strongly on the density of availa
states on the Fermi surface. In particular, the scattering
increases dramatically for transitions between opposite ed
of the Fermi surface where the density of states is diverg
2-2
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~Kohn anomalies!. Kohn anomalies are, for example, we
known for enhancing the phonon drag thermopower aro
10 K.8 Figure 1 shows that longitudinal (K2 ,K3 ,K4) and
transverse transitions (K4) involve phonons with different
wavevectors suggesting some degree of angular anisot
will be present in the electron-phonon scattering. The Fe
density of states will remain largely unaffected by the ma
netic field, since Landau levels are not formed. The indep
dence of the electron-phonon anisotropy on the magn
field may therefore be assumed.22 These considerations sug
gest that the scattering rate can be expanded according
angular harmonics as

Sa5S0Fa0

2
1 (

n51

`

an cos~nf!1bn sin~nf!G . ~9!

III. ANISOTROPIC ELECTRON-PHONON SCATTERING

The new driving termW(y,f) is obtained by substituting
Sa @Eq. ~9!# into Eq. ~2!:

W~y,f!52
n~y!

2p

s0S0

D0
H a0

2
u1"“T1

1

2
$cosf~a2~¹T!x

1b2~¹T!y!1sinf@b2~¹T!x2a2~¹T!y#%

1
1

2 (
n52

`

cos~nf!@~an111an21!~¹T!x

1~bn112bn21!~¹T!y#1sin~nf!@~bn111bn21!

3~¹T!x2~an112an21!~¹T!y#J . ~10!

One may seek the solution ofLf (y,f)5W(y,f) as the sum
of the partial electronic responses to each angular harm
in W(y,f). Using the linearity of the Liouville operator

FIG. 1. Schematic view of the Fermi surface in the presence
a small 1D potential modulation.K1 ,...,K4 label the acoustic-
phonon-mediated transitions for which the scattering rate dive
~Kohn anomalies!.
12530
d
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f (y,f)5 f 1
01 f 11(n52

` f n . It follows that each harmonic
contributes independently to the thermoelectric current,
thermoelectric and the thermopower tensors.

The partial responses to the driving terms in cosf and
sinf were solved in Sec. I. The distribution functionf 1

0,
corresponding the first term in Eq.~10!, is obtained by re-
placing “T→(a0/2)“T in Eq. ~4!. In the same way,f 1
is obtained by substituting “T→(a2(¹T)x
1b2(¹T)y ,b2(¹T)x2a2(¹T)y) in Eq. ~4!. The ther-
mopower contribution from the first two terms in Eq.~10! is
found to be

S15
S0

2 S a01a2 b2

b2 a02a2
D . ~11!

The electronic response to harmonicsn>2 is governed by

Lf n~y,f!52
n~y!

2p

s0S0

D0

1

2
$cos~nf!

3@~an111an21!~¹T!x1~bn112bn21!~¹T!y#

1sin~nf!@~bn111bn21!~¹T!x

2~an112an21!~¹T!y#%. ~12!

A function Fn is defined as

2p f n~y,f!52
n~y!t

D0
S0unsn

0
“T82snS0Fn~y,f!,

where

“T85
1

2 S an111an21 bn112bn21

bn111bn21 2an111an21
D ~13!

with the condition that

LFn5
eE~y!

«F

1

2sn
H n11

n21

]un21

]f

1
n21

n11

]un11

]f J sn
0
“T8 ~n>2!. ~14!

Substitution~13! removes all spatial harmonics other tha
the fundamental frequency in the functionFn . One may
therefore seek solutions of Eq.~14! in the form: Fn(y,f)
5(h/nF)(m52`

1` Cmei (qy1mf)1cc.21 Inserting this expan-
sion into Eq.~14! gives a recursion formula generating th
entire set ofCm ,

amCm5Cm112Cm211bm , ~15!

where

f

es
2-3
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am5
2

ql
~ imvct112dm,0!,

bm5
n11

4
@dm,n21~Vx2 iVy!2dm,2~n21!~Vx1 iVy!#

1
n21

4
@dm,n11~Vx2 iVy!2dm,2~n11!~Vx1 iVy!#,

n52,3..., m5...22,21,0,11,12... . ~16!

A vector is introduced which is defined asV[sn
0
“T8/sn .

Mirlin and Wölfle observed20,21 that equations of the type o
Eq. ~15!, albeit with no driving term (bm50), are satisfied
by Bessel functions of complex order. The solutions of E
~15! ~with bm50! are: Cm5( i )mJm2 i (12dm,0)/vct(qRc).
These may be computed in the form of continued fraction23
es

i-

to
n

12530
.

i
J12

J2
5

21

a11
1

a21
1

a3¯

, 2 i
J11

J1
5

21

a211
1

a221
1

a23¯

~17!

where the shorthand notationJ16[J16 i /(vct)(qRc) and J6

[J6 i /(vct)(qRc) is being used.21 If electron-phonon interac-

tion has a twofold symmetry, the Fourier coefficients ina2
and b2 dominate in the Fourier expansion~9!. In the first
instance, one may neglect the contribution of higher angu
harmonics@Eqs. ~4!, ~8!, etc.# and solve Eq.~15! driven by
the second harmonic only. This approach limits the num
of fitting parameters to two~one if b250! In these condi-
tions, V will have non zero components ifn53 ~n51 is
already accounted for!. Equation~16! shows thatbm will be
finite for m562 and64. The solutions of Eq.~15! therefore
take the form
C1

C0
5

21

a11
12b2 /C1

a21
1

a31
12b4 /C3

a41¯

,
C21

C0
5

11

a211
11b22 /C21

a221
1

a231
11b24 /C23

a241¯

. ~18!
s

y

Simplifications occur by observing that, form50, Eq. ~15!
gives C215C1 . Second, coefficients with negative valu
of m are eliminated using:a2m5am* and b2m52bm* .
Third C3 (C23) relates toC0 and C1 via C35(a1a2

11)C11a2C02b2 @C235(a1* a2* 11)C12a2* C0

2b2* #. These manipulations reduce Eqs.~18! to a system of
two equations with two complex unknownsC0 andC1 .

Once C1 is known, the thermoelectric current immed
ately follows from

j52snS0E
0

a dy

a E
0

2p df

2p
Fn~y,f!n~y!u1 . ~19!

The Fermi velocity n(y)5nFA11h cos(qy)>nF
1nF(h/2)cos(qy)1O(h2) is well approximated by its two
leading terms sinceh!1. Equation~19! is then easily inte-
grated, and I find

j x52snS0

h2

4
Re@C1#,

~20!

j y51snS0

h2

4
Im@C1#.

It should be remarked that Eq.~6! cannot be used here due
the coupling to higher (n.1) harmonics. This is the reaso
why the current must be calculated fromC1 rather than from
C0 .2,21 Considering Eqs.~17! and ~18!, one notes that the
sequence of ratios continuing beyonda4 (a24) is common
to both equations. The sequence of equations~17! is then
substituted into Eq.~18! which, after some algebra, reduce
to a nonlinear system inc0 andc1 :

a rC1
21b rC0

21 ig iC0C12d rC12 ir iC01k r50,
~21!

a iC1
21b iC0

22 ig rC0C12d iC11 ir rC01k i50,

wherea r , a i , b r , b i ...Zr , Zi are the real and imaginar
parts of

a5a1a211,

b52 ia2~J12 /J2!,

g5a21ab/a2 ,

d5b2@11aZ#, ~22!

r5b2@b/a21a2Z#,

k5b2
2Z,

Z5
1

2
$~31a2a3!2b~3a11a3a!/a2%.

b4 has been replaced using the fact that, forn53, Eq. ~16!
givesb450.5b2 . The real and imaginary partsa r , a i , b r ,
2-4
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b i ...k r , k i are obtained by summing and subtracting ea
coefficient and its complex conjugate. This operation wh
applied to J12 /J2 produces two termsR15(J11J2
ei
f

u

h
-
it

12530
h
n
1J12J1)/J1J2 andR25 i (J11J22J12J1)/J1J2 which are
conveniently evaluated from the series expansion of
Bessel product:24
Jn~z!Jm~z!5S 1

2
zD n1m

(
k50

` ~21!kG~n1m12k11!S 1

4
z2D k

G~n1k11!G~m1k11!G~n1m1k11!k!
. ~23!

I find

J11J26J12J152
1

qRc
(
k51

` ~21!kG~2k11!S 1

2
qRcD 2k

G~ i /vct1k11!G~2 i /vct1k11!G~k11!k!
@~k2 i /vct!6~k1 i /vct!#, ~24!
are
t

e

ion
ult

ed
m-

-

from which R1 andR2 are identified as

R152
d

d~qRc!
ln~J1J2!

;
1

qRc
2

cos~2qRc!sgn~B!

cos2~ uqRcu2p/4!1sinh2@p/~2vct!#
,

uqRcu@1 ~25!

and

R25
2

ql H sinh~p/vct!/~p/vct!

J1J2
21J

;
sinh~p/vct!sgn~B!

cos2~ uqRcu2p/4!1sinh2@p/~2vct!#
2

2

ql
,

uqRcu@1. ~26!

The Bessel functions are well approximated by th
asymptotic expansion sinceuqRcu@1 holds in the range o
r

magnetic fields where the commensurability oscillations
observed. Using Eq.~23!, it is easy to verify that the produc
J1J2;(2/puqRcu)$cos2(uqRcu2p/4)1sinh2@p/(2vct)#% must
be an even function ofB, which is the reason for taking th
modulus ofqRc . a r , a i , b r , b i ...Zr , Zi are listed in Ap-
pendix A. Either equation in Eqs.~21! may be viewed as a
second degree polynomial inC0 with roots depending on
C1 . These roots are calculated analytically in one equat
and then eliminated by substitution into the other. The res
is a characteristic polynomial inC1 whose coefficients are
all real and are listed in Appendix B:

c4C1
41c3C1

31c2C1
21c1C11c050 ~27!

SinceC1 is a nonlinear function of“T, the tensor notation
will, in general, be invalid for expressing quantities deriv
from it. However most experiments are concerned with te
perature gradients applied either alongx or y but not along
both directionssimultaneously. In this specific case, the ther
moelectric current componentsj x and j y @Eqs.~20!# may still
be presented in the tensor form:
L35s3S0

h2

4 S Re$C1@~¹T!x51,~¹T!y50#% Re$C1@~¹T!x50,~¹T!y51#%

2Im$C1@~¹T!x51,~¹T!y50#% 2Im$C1@~¹T!x50,~¹T!y51#%
D . ~28!
pa-
e

to

no
a

r is
n-
the
o-
The corresponding thermopower contribution is

S35s1
21L3 , ~29!

and the total thermopower is given by the sum of contrib
tions ~11! and ~29! is S5S11S3 .

IV. RESULTS AND DISCUSSION

The roots of Eq.~27! are calculated numerically for eac
value ofB. A polynomial root-finder implementing the Hes
senberg method25 was used for its robust convergence and
-

s

appropriateness to our type of polynomial. The model
rameters consider a unit temperature gradient along thy
axis:@(¹T)x50,(¹T)y51#. b2 is set to zero, thus indicating
that the principal axes of anisotropy in Fig. 1 correspond
thex andy axes. Numerical results show that Eq.~27! admits
two real and two complex roots. Real roots imply that
current will flow parallel to the temperature gradient,
physically meaningless proposition. The physical answe
given by the complex root for which the thermoelectric te
sor satisfies Osanger symmetry rules. The symmetry of
root is itself determined by the coefficients of the polyn
2-5
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ALAIN NOGARET PHYSICAL REVIEW B 66, 125302 ~2002!
mial. It may be shown thatc4 , c2 , andc0 are even functions
of B while c3 andc1 are odd functions ofB.26 It follows that
real part the root, givingLxy , is antisymmetric with respec
to B, as expected. The sign of the imaginary part is chose
thatLxy andLyy have opposite sign whenB.0 and the same
sign whenB,0.

The theoretical thermopowerSyy is plotted together with
the experimental trace in the lower panel of Fig. 2 wher
the top panel compares the theoretical and experimenta
sistance. Comparing the experimental peak positions in
top and bottom panels shows that the phonon drag t
mopower oscillates in phase with the resistance. One n
an anti-symmetric component in the experimental th
mopower. Now considering the theoretical trace, commen
rability thermopower oscillations arise because of the ani
ropy in the scattering. The magnitude of these oscillation
proportional toa2 : if the principal scattering axis is alon
thex axis (a2.0) Syy oscillates in phase withRyy and out of
phase otherwise. The isotropic thermopower was evalu
as S0;220mV/K using a phonon mean free path equal
the etched sample length,L51 mm. The vertical fit to the
experimental thermopower then gavea25a0540620 indi-
cating that the magnitude of the oscillations is a relativ

FIG. 2. Top panel: theoretical~full line! and experimental
~dashed line! magnetoresistance of a lateral superlattice with per
a5500 nm. The Drude resistance~460V! was calculated from the
values of t and ns and a hall bar aspect ratio of 20; no fittin
parameter was used in the theoretical curve. Bottom panel: the
ical ~full line! and experimental~dashed line! phonon drag ther-
mopower of the same lateral superlattice. The fitting parameter
the thermopower amplitude area05a2540620 (b250).
12530
so
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small fraction ofS0 . As shown in Fig. 2, the shape of th
peaks inSyy is different, in particular the last oscillation i
strongly attenuated in the theoretical trace. At vanish
magnetic fields, both the thermopower and the resista
show a peak not observed in the experimental data. Th
because our description does not account for the channe
of open electron orbits that gives the positive magnetore
tance at low magnetic field. In order to investigate the s
sitivity of phonon drag to the smoothness of the interface,
have measured the thermopower after scribing the sam
surface between the heater and the Hall bar. The presen
the cut was found to dampen the amplitude of the osci
tions very strongly. This outlines the importance of having
large mean free path for phonon modes travelling paralle
the sample surface.27

In summary, commensurability oscillations in the phon
drag thermopower of periodically modulated structures w
shown to arise from the anisotropy of the electron-phon
interaction. The contribution of higher scattering harmon
(n.2) was neglected because it decays as 1/n2. Their effect
could nevertheless be calculated along similar lines but
would only be useful if the spectrum of Fourier harmoni
was known. In agreement with Ref. 17, our results show t
both electron (hÞ0) and phonon anisotropy (a2 ,b2Þ0) are
required for the phonon drag thermopower to exhibit
magnetic-field dependence.
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APPENDIX A

The coefficients of Eqs.~21! are

a r511S 2

ql D
2

@122~vct!2#, ~nyA1!

a i5S 2

ql D
2

3vct, ~A2!

b r5
1

ql
@2~vct!R11R2#, ~A3!

b i5
1

ql
@2~vct!R22R1#, ~A4!

g r5S 2

ql D1
a i

2
R11

a r

2
R2 , ~A5!

g i5S 2

ql D ~2vct!1
a i

2
R22

a r

2
R1 , ~A6!

d

et-

to
2-6
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Zr5
1

2 H 31S 2

ql D
2

~126~vct!2!2S 1

ql D $@3vct~11a r !

1a i #R11~323a ivct1a r !R2%J , ~A7!

Zi5
1

2 H S 2

ql D
2

5vct2S 1

ql D @~3vct~11a r !1a!R2

2~323a ivct1a r !R1#J , ~A8!

d r5Vx@11a rZr2a iZi #1Vy@a rZi1a iZr #, ~A9!

d i5Vx@a rZi1a iZr #2Vy@11a rZr2a iZi #, ~A10!

r r5
Vx

2
R22

Vy

2
R11S 2

ql D @Vx~Zr22vctZi !

1Vy~Zi12vctZr !#, ~A11!

r i52
Vx

2
R12

Vy

2
R21S 2

ql D @Vx~Zi12vctZr !

2Vy~Zr22vctZi !#, ~A12!

k r5Zr~Vx
22Vy

2!12ZiVxVy , ~A13!

k i5Zi~Vx
22Vy

2!22ZrVxVy . ~A14!
s.

tt

.

n

. J

12530
APPENDIX B

The coefficients of the characteristic polynomial@Eq.
~27!# are

c4[~b ra i2b ia r !
22~a rg r1a ig i !~b rg r1b ig i !,

~B1!

c3[~b rg r1b ig i !~g rd r1g id i !12a rr r~b rg r1b ig i !

12b ir i~a rg r1a ig i !

1~b ra i2b ia r !$2~b id r2b rd i !1~r rg i1r ig r !%,

~B2!

c2[2~b ra i2b ia r !~b rk i2b ik r !1~b id r2b rd i !
2

2~b ir i1b rr r !~r ia i1r ra r !2~b rg r1b ig i !~g rk r

1g ik i !2~b rd i1b id r !~r rg i1r ig r !22~b rr rg rd r

1b ir ig id i !, ~B3!

c1[~b rr r1b ir i !~r rd r1r id i !12g rk r~b rr r1b ir i !

12b ig i~r rk r1r ik i !1~b rk i2b ik r !$2~b id r2b rd i !

1~r rg i1r ig r !%, ~B4!

c0[~b rk i2b ik r !
22~k rr r1k ir i !~b rr r1b ir i !. ~B5!
ys.
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