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Electronic susceptibilities in systems with anisotropic Fermi surfaces
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The low-temperature dependence of the spin and charge susceptibilities of an anisotropic electron system in
two dimensions is analyzed. It is shown that the presence of inflection points at the Fermi surface leads,
generically, to a In T dependence, and a more singular behayier,T3in T, is also possible. Applications to
quasi-two-dimensional materials are discussed.
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[. INTRODUCTION lead to deviations from Landau’s thedryln addition to
saddle points, a generic anisotropic Fermi surface can show
The possible existence of quantum critical points in theinflection points(see Fig. 1 The existence of these points at
phase diagrams of many materials has led to a detailed studie Fermi surface, which do not require any special fine tun-
of the low-temperature behavior of the susceptibiliies ofing of the chemical potential, leads fo Im X(é,w)
electron systems. The critical properties of the system are|w|(P~2)/2*Y4 For D=2, scattering between these points
determined by the energy and momentum dependence of thig& more singular than thek2 scattering considered previ-
response function of the electron system associated with theusly, but still not sufficient to invalidate the Fermi-liquid
order parameter in the ordered phaselt has been shown theory'013
that the low-temperature spin susceptibility of the isotropic  In the present work, we analyze scattering at inflection
electron liquid has an unexpected nonanalytic dependence #®ints in a two-dimensional anisotropic Fermi surface. In the
temperature, when high-order perturbative corrections arfollowing section, we present the main features of the
considered. These corrections are irrelevant in the renormal-S€cond-order perturbative calculation, extending the method

ization group sens®’ and do not modify the basic proper- used in Ref. 9. The main results are obtained in Sec. IlI,

ties of the electron liquid, as described by Landau’s theory‘."’h”e the finer details of the calculation are deferred to the

However, they can lead to unexpected power-law deloerﬁ\ppendixes. Applications to Fermi surfaces of different

dences in many physical quantities at low temperatures, O§hapes are given in Sec. IV, and Sec. V discusses the main

change the order of the phase transitidiiie origin of these results of our work.
nonanalyticities in homogeneous response functions has
been traced back to the special propertiesigf &cattering in Il. THE METHOD

the isotropic electron quuia. _ _ We consider a system of two-dimensioriaD) fermions
It is well known that anisotropic Fermi surfaces can havéjneracting through a generic isotropic short-ranged effective

regions where scattering becomes more singular than in ﬂ}?otential U(q), assuming that long-range interactions are

isotropic electron liquid, the so-called hot spots. When tWOg.aaned. For the sake of simplicity, we shall also assume

portions of the Fermi surface are flat and parallel, nesting ¢ the interaction only affects electrons of opposite spins,
occurs, and the susceptibilities diverge logarithmically,yhich is a reasonable approximation when the momentum
Rex(Q,w)x*log(A/w), where Q is the nesting vector. A dependence dfi(q) is weak. It was shown in Refs. 4 and 9
saddle point in the density of states leads also to logarithmighat while the lowest-orders(U) perturbative corrections
divergences in two dimensions. The hot spots at the Fermire well behaved, higher-order corrections can lead to an
surface can be characterized by the frequency dependence giomalous behavior in the low-energy properties of the
Imx(Q,w), whereQ spans the hot spots. The usual behaviorFermi liquid. To be more precise, the uniform spin suscepti-
in a Fermi liquid is Imy(Q, ») «| | in any dimensiorD. For

an isotropic Fermi surface, if|Q|=2ks, one has

Im x(Q, )| w|®~ D2 ForD=1 the imaginary part of the

2kg susceptibility approaches a constant at low frequencies.

By a Kramers-Kronig transformation, it can be shown that

the real part should diverge logarithmically, leading to the
deviations from Landau’s theory which characterize a Lut-

tlnger liquid. . > FIG. 1. Examples of Fermi surfaces in two spatial dimensions.
It is also possible to show that, whe® connects tWo | eft. gircular, all wave vectors of moduluskg are sources of en-

Saddl(f points in an anisotropic Fermi surfacés), hanced scattering. Right: anisotropic, wave vectors sudd esn-

Im x(Q,w) | w|(P~2"2 This result implies the existence of necting two inflection points give rise to anomalous scattefiog-

logarithmic divergences fob =2, which have been exten- tinuous arrow, while the rest of the FS gives rise to a behavior

sively studied in relation to high superconductor, and  similar to the isotropic cas@dashed arrow
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4Q and* A (&)= Bl4 cosR(B&2). SuchA functions, which con-
strain momenta to lie within a shell of thicknessT from

a) b) <) @
: ' the Fermi surface, are strongly temperature dependent, and
are responsible for the leading temperature dependence of
the susceptibility. Indeed, in Eql) we have omitted terms

proportional toA (&, o)n(&,) coming from the poles of the

FIG. 2. The second-order diagrams yielding the leading temLindhard function, which are les$ dependent since they

perature dependence of the susceptibility. receive contributions mainly from regions far from the Fermi
surface. Taking advantage of time-reversal symmetfy (

bility of a 2D electron system shows a linekidependence, =§_), we can write
which contradicts the usual Sommerfeld expansion in powers
of (T/Eg)?. Such anomalous behavior was traced back to the d2k 1 1
peculiarities of X scattering, i.e., the occurrence of L(Afp’Q):f (zw)gn(fk) Agp—Agk_AngrAgk ’
particle-hole pairs lying on opposite sides of the FS. This 3
special wave vector plays a key role in ttpelependent sus-
ceptibility of electronic systems already in the noninteractingwhere we have definefié, = &, o— &« . As was pointed out
case, with the appearance of a square-root singularity arourid the preceding section, the most singular contributions to
2kg, which is directly related to the jump in the occupation Eq. (1) come from regions where the moment@nflowing
number. If one considers theniform susceptibility, though, through the Lindhard functioh connects parts of the FS
the singularities associated withk2 scattering can only which are almost parallel, since this makes the denominators
show up indirectly through the excitation of wirtual in Eq. (3) small on large regions dfspace. Otherwise stated,
particle-hole pair, which explains the absence of anomalouthe scattering processes taking place within a particle-hole
corrections at lowest order in the interaction strength. pair are enhanced around special wave vedpdue to the

In the generalnoncirculay case, among all the wave vec- peculiar geometry of the FS. In the case of a spherically
tors connec'qng opposite sides of the FS, the mflectl(_)n po'mgymmetric FS, any momentu@ of modulus X is a source
play a special role due to the flatness of the Fermi surfacgf enhanced scattering, but the deviation from parallelism is

previous discussion, t_he second-order dl_a_grams Wh_'Ch leatlints occurring when the curvature of the FS vanishes, lead-
to nonstandard behavior are those containing a partlcle—ho_lI g to acubic, or evenquartic dispersion(see Fig. 1, right
bubbl(i whose transferred momentum can match the speciglich is a quite generic phenomenon when dealing with
valueQ. Such diagrams are depicted in Fig. 2. Diagrdms electrons on a lattice.

and(b) are vertex corrections. They have opposite signs and |n the following sections, we shall present the calculation
cancel in the case of a perfecttyindependent interaction of the leadingT dependence of the diagrafa) in the sim-
potential: the fermion propagators involved are the same implest circular case as well as for more complex FS shapes.
both diagrams, the only difference being in the momentunrhe result for diagrantb) can obtained by replacing (Q)
carried by the interaction. To be specific, with the notationsypy U(p—k) in Eq. (1). This can only lead to a change in the
of Fig. 2, diagram(a) is proportional toU(Q)?, while dia-  prefactors, but will not alter the leading temperature depen-
gram (b) involves some momentum average of the interac-dence of the susceptibility. The self-energy diagfairhas a
tion, and there is no reason for a perfect cancellation in thelifferent structure, and will be analyzed at the end of the
general case. Diagrarnt) is a self-energy correction, and section.

will be considered separately.

nesting, which leads to strong instabilitiedccording to the agoee Fig. 1, left More singular is the case of inflection

A. Isotropic Fermi surface

IIl. UNIFORM SUSCEPTIBILITIES . . . .
By choosing an appropriate coordinate system, the disper-

After integration over Matsubara frequencies, the vertexsion relation around any point on a spherical(66d, generi-
correction (a) of Fig. 2 in the zero-frequency, zero- cally, about nonspecial points of an anisotropic) E&n be

momentum limit reads expanded as
d’p d?Q &lv=k,+ak?, (4)
XM= [ =2 "2 uerac | ChmhTEe
(2m)* (2m) v being the Fermi velocity at that particular poifthat we
XA(&ps oL (€pro—&p.Q), (1)  shall identify asQ/2), anda>0 being related to the FS

) o ) ) ) curvature. The above expression is assumed to be valid up to
where the Lindhard function in two space dimensions is dez momentum cutoff\ which is larger than that imposed by

fined as the finite temperaturd functions®® Introducingq=Q— Q,
e can write
L0 Q>:J d’k_ n(£)—n(&cro) P
) (2m)? iQ+&—ékio §k+Q/U:_(ky+Qy)+a(kx+qx)2, (5)
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where we have used the propeély. 5= §_y (reflection sym- 02
metry). We now change variables to X~ 3—\/_ dq”J’ dpyNT/v— asz
vya
k, =ky+aks, (6) A2 A D2
~ 3\/5f dpVT/v—apf~ —a T, (11)
k=Kt Q/2, v v
where again we have neglected unimportant multiplicative
such that§,=vk, and factors and defined) =U(Q). Within our treatment, we
have recovered the result that the spin susceptibility of an
ékrglv= —kL—qL+2akf+(3/2)aqﬁ_ (7) isotropic 2D Fermi liquid is intrinsically linear in

temperaturé.For a circular FS, this can be written as
Apart from the constant shift,/2 introduced for later con-
venience, this new coordinate system is locally equivalent to X(T)=xot+ xaT. (12)
polar coordinates, which would be the natural choice Wherincidentally our calculation suggests that the low-
dealing with a perfectly symmetric FS. We shall focus on theiemperature correction to the susceptibility is positive, in

first term in Eq.(3), which is independent af, , and there- agreement with Refs. 9 and 16—18.
fore turns out to be the most singular. Omitting unimportant

multiplicative factors, we have for the real partlof B. Anisotropic FS with inflection points

In the vicinity of an inflection point, the dispersion rela-

-1 A 1 . .
L= _j dkln(vkL)f dkj—————— tion can be written as
v -A 'A-2k, +BK
&lv=ky—bIC+gks, (13)
-1 O(A—2k,) .
= —f dk n(vk, ) —F/—— (8) whereb and g can be chosen to be positive. A change of
v\B VA—2k, variables similar to Eq(6) of the preceding section leads to

with A=2p, — 2apﬁ andB=2a (the 6 function ensures that -1 1
the integral is real In the second term of Ed8) we have L= Tf dkLn(UkL)J' dk”A K +BILCK (14)
performed thek; integration by pushing the momentum cut- e { [

off to infinity. The main point is that the former expression ith A=2pl—3bqupﬁ—29 pﬁ B=3bq, andC=2g. The
ginkft:)g/v be integrated by parts to give a furtheconstraint k integral can be rewritten in the form

1 dx
I= (15
1 (A2 1/4, 3/4f 24 4
L=\/—§J dk, VA= 2k, A(vk, )+, 9) CT(A=2k )™ 1+ax™+x
- with a=(B/\/C)/A—2k,. We shall be interested in the
where the ellipsis stands for terms that are not confined to thg d'on close 10 the edgek(=~A/2), Whe(ea is large and
region near the FS. By inspection of the results for positive. Wg can then drop the quadratic term and perform
>T/v, A<—Tlv, andA=0, respectively, we see that the the integration:
A(vk,) function behaves qualitatively ag(vk, +T).

Therefore, to study the temperature dependence of the sus- | = ! . (16)
ceptibility we can replace the previous expression by [ba(A—2k,)]"?
This can be integrated by parts dtk, to give
Al2+Tlv L0 ? P 109
- N (10 1 (A2

L dk, VA— 2k, A(vk,)+---, (17)

o Voo wa-vafrs
where there is an implicig function of the argument of the
square root. We are left with a tractable expression for thavhere the ellipsis stands for a term which is not confined
real part of the Lindhard function, which we shall use toclose to the FSthe limits of integration account for the
evaluate the two-loop diagram of Fig(e2 condition @=1). Provided that the\ function lies entirely
We now perform the remaining integrals in H@) in the  inside the domain of integration, i.e.,
following order:dq, ,dp, , thendp; anddq;. The first in-

tegral is trivial, sinceg, enters only inA(¢,, ). Moreover, B gT

ép+o is linear ing, [cf. Eq.(7)] so that the integration just 0= Amin= b2y’ (18)
gives 14. Thep, integral can also be performed straightfor-

wardly, and we are left with an expression of the form the result takes the form
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VA2+T/
L~ Te e (19
v qu

The region of phase space we have just identified is the one
that gives the leading temperature dependence in the suscep-
tibility. Indeed, fork, outside the range of integration con-
sidered abovegimplying @<1), the result of the integral
(15) is 1 ~(A—2k,) % instead of Eq.(16), leading to a
weaker (linean temperature dependence in the final result.
The same holds if we consider a negatgye(a@<0).

The calculation now follows the same lines as in the pre-
vious case. The, integration yields a factor &/ and thep,
integration can be performed by replaciddvp, )~ d(p,
—T/v)/v, which gives

~ (A A \Tlv—bgpf-gp|
XWszq_dqudm 9P

1)3 qu
02T (A d VE T
- a2 n(—g ) (20
bv* Jamin 9| by vb2A?

Taking into account the scattering from the regions of the FS
far from the inflection points, whose behavior is given by Eq.
(12), the susceptibility reads

FIG. 3. Top: Fermi surfaces for different fillings in an aniso-
X(M=xo+x1T—x1TInT. (2D tropic 2D system with tetragonal symmetry. Curiéhas eight in-
flection points(only two are shownl; andl,). The set of all these
Once again, the sign of the correction is such that the susoints define a curve which goes from poMtto pointM’ of the
ceptibility increases with temperature. However, the contri-Brillouin zone (broken curvg The inflection points merge in pairs
bution coming from the other diagrath) has opposite sign. when the Fermi surface is given by curBeAt point G in curveB,
As a rule of thumb, one can argue that the overall vertexhe cubic term in the dispersion relation parallel to the Fermi sur-
correction is positive if the effective interaction is peakedface vanishes. The Fermi surface labe@has no inflection points.
around@ and negative otherwigét vanishes when the mo- Bottom: Fermi surfaces for different fillings in an anisotropic 2D

mentum dependence &f(q) is flat, since in that case the system with orthorhombic symmetry. Curv&sndC correspond to
two diagrams perfectly candel ’ Fermi surfaces with four inflection points. Only one such point in

each curve is shown; andl,. The set of all these points define a
o _ _ curve that goes from poin¥l to point M’ of the Brillouin zone
C. Special inflection points (broken curve The quartic term in the dispersion relation parallel

The previous analysis assumes the existence of a genefi the Fermi surface changes sign when going fdrto M". Thus,
inflection point along the Fermi surface. This is a situationthere is a Fermi surface, schematically depicted as cBruehere
that can be achieved, in an anisotropic system, for a finitd"is quartic term vanishes, at poibt
range of values of the filling or the chemical potential. These
points are characterized by the absence of a quadratic term | .
the expansion of the dispersion relation around the Fermip€fore withqyin=

ptegration in Eq.(17). Repeating the same arguments as
(T/gv)Y4 we obtain

surface presented in E¢L3). For certain values of the pa- ————
rameters, however, which require a fine tuning of the filling L= M (22)
or the chemical potential, the cubic coefficiénor the quar- v \/Eq”
tic onegin Eq. (13) can be zero as well. Two such situations ,
are schematically shown in Fig. 3. leading to
We first consider the case when the cubic term in the -, ”
dispersion relation parallel to the Fermi surface vanislies ( __ U_(l) n T 23)
=0), which is realized in thé—t’ Hubbard model in a X v3\vg guA?)’

square latticgsee pointG in the top panel of Fig. 3 or in

simple tight-binding models on the triangular lattice, for in-  The other possibility is that the quartic term vanishgs (
stance. The susceptibility becomes more anomalous than 2 0), which can occur in a tight-binding model with
the generic case discussed previously, as can be seen by lgithorombic symmetry, considering two different hopping
ting b—0 in Eqg. (20. One has, respectivelyA=2p,  parameters,#t, (see poinD in the bottom panel of Fig.)3
—3gqfpf—2gp] andB=3gqf. The conditiona=1 now  In that case, however, not onfybut all the even coefficients
corresponds td\—2klsgqﬁ, which modifies the limits of in the dispersion relation vanish. This leads to perfect nesting
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TABLE |. Temperature dependence of the uniform susceptibility T i)

of an anisotropic 2D Fermi liquid. The linear contribution is always

present, and is due to the portions of the Fermi surface away frony e e e S S St

the inflection points. The relative magnitude of the regular and /

M /| .

anomalous contributions depends on the degree of flatness of th B /

Fermi surface. The special ca®e=0 corresponds to inflection iy 7\ ii) P4

points falling on particular symmetry lines of the Brillouin zone, ,’ \ Il

and requires a fine tuning of the chemical poten(sale text superconductivity / iV) \\ ,I

anlf

Fermi surface geometry x(T) 0 underdoped overdoped doping

Circular XotxiT 8VHS : ! 8c

Inflection points(generig¢ XotxiT—xi;TInT "Iflsifn

Special inflection k=0) Yo+ X1 T— x3aT¥4nT

Nesting, saddle points XotxoInT FIG. 4. Correspondence between the different shapes of the
Fermi surface discussed in the text and fillings for the Higlsu-
perconductors.

between opposite branches of the Fermi surface, giving rise

to a much more singular behavig(T)~InT. —8|t’|+16]t’|3/t. For fillings such thaE . <Eg<E,ys, the
Fermi surface has eight inflection points. From these values,

D. Self-energy correction and the previous analysis, one can obtain a qualitative pic-

After integration over Matsubara frequencies, which noWture of the temperature dependence of the susceptibilities,

. . hen the electron density is in this range.
requires some more attention due to the presence of twd ¢ , Do .
fe?mion lines of equal argumenfa doubleppole in the ® ForTz_|t |,_the susceptibility !s_determmed thonly.
complex-plane integrals the anomalous part of the self- As the doping is close to half filling, we expegt(T)

0 B
energy correctioric) of Fig. 2 can be reduced to the form x|T_|_ , the result for perfect nesting. .
9y ) g (i) ForT=<|t'| andT=|E—Eyyd, the same behavior as

B A(EDA(E,) in (i) should be observed.
X~U2Tf d?Qd?pd?k p2 (24) (i) For T=<|t'| and T=|Ex—E,|, the susceptibility is
(Aép—AEY dominated by contribution from the area near the special

miha . iy
with Ag=& . o— & . TheQ integration is now restricted to POiNt discussed in Sec. Il C. Hence(T)~<|T[*4nT.

. - = (iv) For T=<|t'|, T<|Er—E(, and T<|Eg—Eyynd, the
the region close tdW|th|_n Tl of) Q. We shall not go contributions from the saddle point and from the special
through all the calculations of the self-energy diagram

which can be performed following the same lines of the pre-pomt above are absent. Thyg(T)«|T|In(T), because of the

vious sections. The results for the temperature dependen&gesence of the inflection points.

. . We can make the estimates of the crossover region in the
are analogous to those given by E(2), (21) and(23). This : . ;
can be understood by noting that although the denominat [-doping plane more precise from the doping dependence of

in Eq. (24) is more singular than that of Eq3), the addi- Yhe coefficient of the cubic terrb in Eq. (13). Expanding

tional anomalies that it carries with it are canceled by thearound the saddle point, we obtatnc|E¢—Eyyd. Hence,

explicit T factor in front of Eq.(24), leading to the same th?ncg?zfl?r\gi gféw‘ieg re?loél:)rfﬁp:ﬂ(:]v) ;asli?;grlag;ciﬁ:}
temperature dependence as the vertex correction. Its sign H% P d th F ,VES'_E hg N
also the same as the vertex diagréan tion around the situatiofEr=E., we havebe J|Er—E,

The results of this section are summarized in Table 1. SO that the crossover temperaturd fs<(E; — Eg)®. For fill-
ings Er~E_ but with no inflection points in the Fermi sur-

face, we obtain a crossover to t€T)«|T| behavior due to
2ke scattering, with a crossover temperatliex|Eg— E|.
A. Superconducting cuprates The different regimes are schematically shown in Fig. 4.

It is often assumed that a tight-binding model on a square Taki.ng rea_listic numbers for the dispersion relatipn, our
lattice with nearest-neighbaft) and next-nearest-neighbor analysis predicts anomalous low-temperature behavior in all

(t") hopping reproduces well the band structure of the Iay—the region betweerﬁVH_S and .50’ _correspc_)nding to the
ered cuprates: strongly overdoped region which is experimentally acces-

sible. This shows that nonstandard behavior of the physical
(k)= —2t(cosk,+ cosk,) — 4t’cosk,cosk,, (25 properties should be expected even in a regime which is

) usually believed to be well described by the normal Fermi-
wheret'/t~—0.25. This case corresponds roughly to the topiquid theory.

set of Fermi surfaces in Fig. 3. The dispersion relation above
has a saddle point at a dopingj,4s corresponding to a
chemical potentialE,ys=—4|t'|. The curvature of the
Fermi surface along the diagonals becomes negative at a Organic conductors are often very anisotropic due to the
higher doping 6., where the chemical potential E.= planar structure of their molecules. For example, the salts of

IV. EXAMPLES

B. Quasi-1D organic compounds
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V. CONCLUSIONS

-a——— inflection points

L L . - We have performed a second-order perturbative calcula-
o £ 1 Pl 2 filling tion to analyze the corrections to the Fermi-liquid behavior
VS /_ VS in anisotropic interacting electronic systems in two dimen-
(TNGX sions, which arise from the existence of points in the Fermi
surface where scattering is enhané@desides the exten-
FIG. 5. Correspondence between the different shapes of thsively studied case of a saddle point, we have analyzed in
Fermi surface discussed in the text and fillings for compounds otletail the influence of inflection points, which do not require
the family (TM),X. any special fine tuning of the chemical potential or the fill-
ing. The presence of these points enhances the anomalous
the family (TM),X (TM=TMTTF,TMTSF and X  dependence on temperature, which arise frdg &cattering
= inorganic aniom are all isostructural and can be viewed asin iSOtrOpiC Fermi Surface%We find that the corrections that
two-dimensional arrays of weakly coupled 1D chains, sincevere linear in|T| change intgT|In[T|. The absence of sym-
the electronic overlaps in the transverse direction are 10netries also implies the lack of cancellation between differ-
times smaller than in the chain directi¢the transfer inte- €nt diagrams, so that these anomalies should be observed in
grals in the third direction are 500 times smaller and can b&oth the spin and charge susceptibilities.

neglected; see, for instance, Ref).18he band structure is  For special fillings, more singular behavior is expected. In
well represented as the case of systems with tetragonal or hexagonal symmetry,

when the Fermi surface is close to these fillings, the correc-
tions to the susceptibilities go #E|*4n|T|, showing that the
existence of nonintegér dependences does not need to vio-
. . . . late Landau’s model for the low-energy excitations of a
assuming an orthorombic structure with lattice parameters. . liquid.
b~2a. Th|s case corresponds to the bottom set of Fermi We have also discussed the possible crossovers between
surfaces in F'g: 3. The parametegy 10_.30 meV sets the the different regimes analyzed, and the experimental conse-
scale below which the FS is modulated in thdirection, so _quences that they may lead to. In the case of the supercon-
nducting cuprates, anomalous susceptibilities should appear in
Mhe strongly overdoped region, above the dopdygs char-
acterized by Van Hove singularities in the density of states.
Bn the other hand, all of the organic conductors of the family
(TM),X should fall in the region of fillings where anoma-
lous corrections to the susceptibility are important. Of
‘course, the analysis presented here should also apply to other
classes of quasi-two-dimensional systeffieavy-fermion
materials, SfIRuQ,, electrically doped 2D organic films,
other organic conductors, @tc

Finally, let us point out that the breakdown of the Som-
: ) merfeld expansion for the spin susceptibility suggests that
=1), and the Fermi surface has perfect nestinge@e  he free energyr itself has a nonanalytic dependence®n
=e(k+Q), whereQ=(m,m) (hopping between more dis- e the high-order interactions K2 scattering are taken
tant neighbors will suppress this effecThe points in the i1 account. If, as was proposed in Refs. 16,21, and 22, and
phase diagram where the topology of the Fermi surfacmerically verified in Ref. 23, the role of temperature and
changes, leading to different behaviors of the electronic susyagnetic field is interchangeable in the functional form of
ceptibility, are sketched in Fig. 5. F(T,H), one can conclude that the anomalolidepen-

In the (TM),X compounds, the spin susceptibility Shows yences calculated here for the susceptibility are also expected
a sizable increase in the metallic phase up to room temperags he specific-heat coefficient=C/T.

ture (see, e.g., Fig. 8 of Ref. 19which cannot be explained
by the “standard” Fermi-liquid theory(the latter predicts ACKNOWLEDGMENTS
variations on the scale of the Fermi temperatu@n the

other hand, the presence of enhanced scattering close to in- \We are thankful to R. Markiewicz and M. A. H. Vozme-
flection points could well be the underlying mechanism ofdjano for helpful discussions. This work was financially sup-
this anomalous temperature dependence, and should be takgérted by MEC(Spain through Grant No. PB96-0875, and

into account when studying the low-temperature phase tranthe European Union through Grant No. FMRXCT980183.
sitions of such compounds.

' Following the same prc_)c'e_dure. used in the precedmg sec- APPENDIX A: INELECTION POINTS

tion, the electron susceptibility will undergo a succession of IN THE t—t’ MODEL

crossovers upon varying the filling, which can be achieved

either by anion substitution or by applying pressure to the We shall determine here the parameters of the dispersion
samples. relation(13) in the case of a tight-binding model on a square

nesting

e(k)=—2t,cogk,a)— 2t coq k,b) (26)

flection points should be observable at and below room te
perature. The value of the anisotropy ratie t, /t, is large
enough to ensure that the system is well described by
Fermi-liquid picture down to very low temperatures. The fill-
ing factorp is fixed by charge transfer and varies from com-
pound to compound, ranging from 1/2 to 1 hole per TM site
The Fermi surface has two Van Hove singularitiesEat=
+Eyps= £2t(1— 7), and four inflection points in the whole
interval 0<|Eg|<Eyns. Taking 7=0.1, this corresponds to
the region of fillings 0.3Xp<<1.7. In the absence of higher
harmonics in Eq(26), Ez=0 corresponds to half-fillingd
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lattice with nearestt) and next-nearestt() neighbor hop- ' [E—E 12 t!
ping. Let us focus to the doping levels closedg the point v=4tu®? b= T , S EE —. (A4
where the inflection points of the Fermi surface merge in 12 4tu

pairs on the diagonals of the Brillouin zone, leading to the
most singular corrections to the susceptibility. It is then natu-
ral to rewrite the dispersion relation in a basis rotated by

APPENDIX B: INFLECTION POINTS
IN THE t,—t, MODEL

45°:
&= —A4t(cosp cosq) +4t’ (cogp—sirfq)—Eg, (Al)

wherep=(k+k,)/2 andq=(k,—ky)/2. The Fermi surface
crosses the diagonafhjE0) at a momentunpg given by
Er 4t cospe+4t’cogpe. The dispersion relation can
then be expanded as

E=A(p—pp)+Bg*+Cq* (A2)

with A=4(tsinpe—t'sin2pg), B=2tcogp—4t’, and C
= (4/3)[t' — (t/8)cospe]. The topology of the Fermi surface
changes at two well-defined doping levels.

(1) The curvature changes sign at a dopifyg 5. given
by the conditionB=0. The corresponding Fermi energy is
E.=—8t'+16(t')%t? and the coordinates of the inflection
point are f.,q.)=(arccos2'/t,0), corresponding to point
G of Fig. 3.

(2) Van Hove singularities arise at a dopiAgys given by
Eyus= —4t’ (M points in Fig. 3.

Inflection points appear in all the region of dopings

Syns< 6< ., following the dashed curve of Fig. @op

pane). The consequences on the physical properties of the

system are summarized in Fig. 4.

Dispersion around inflection point§he equation of the
Fermi surface is£=0, which implicitly defines a function
p=p(q). Putting the second derivatiy&'(q) =0 yields the
coordinates [0y,0o) of the inflection points. Fob~ §;, set-
ting u=1—4(t'/t)?, we can write

EF_EC
Po=Pc+ T Qo=

12
Er—E
FEc (A3)
12ut’

We shall now derive the parameters of E43) for a
tight-binding model on an orthorombic lattice, with aniso-
tropic hopping ¢=t,/t,<<1). Let us rewrite for simplicity
the dispersion relatiof26) as

§=— (B1)

with k=k,a, p=ky,b, and v=E¢/2t. The equation of the
Fermi surface isk=arccos(- v— rcosp). The number of
electrons per site is approximately given by
=27 larccos v). The Fermi surface has two Van Hove
singularities atEyys= *=2t(1—17), and 4 inflection points
for any 0<|Eg|<Eyus. At half-filling (Er=0), the two
branches of the open Fermi surface are perfectly nested. The
physical consequences of the changes in the Fermi-surface
topology occurring at those special fillings are sketched in
Fig. 5.

Dispersion around inflection point8y settingk”(p)=0
we find that the inflection points are located at

k T2V
s =alcco$ —v— .
2 0 1— 2

(B2)
For filling levels close tor=0 (half-filling), the location

of the inflection points describes a straight line of slope

—7/y1—17 in the (k,p) plane(see bottom panel of Fig.)3
After a rotation of the coordinate axes, we obtain an equation
of the form(13) with

v=2tJ1— 12,

2t [ cosk+ 7 cosp+ v]

TV

Po= arcco{

-V

VT2

N 24(1— p?)3¥2°
(B3)

b

r
- 61— 1?2 9=

so that the trajectory of the inflection points is parabolicThe approach to the perfect nesting situation at half-filling is

aroundG. By expanding aroundp(,q), we obtain an equa-
tion of the form(13) with

signaled by a vanishing, the coefficient of the quartic term
in the dispersion relation.
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