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Electronic susceptibilities in systems with anisotropic Fermi surfaces

S. Fratini* and F. Guinea
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain

~Received 22 April 2002; published 23 September 2002!

The low-temperature dependence of the spin and charge susceptibilities of an anisotropic electron system in
two dimensions is analyzed. It is shown that the presence of inflection points at the Fermi surface leads,
generically, to aT ln T dependence, and a more singular behavior,x;T3/4ln T, is also possible. Applications to
quasi-two-dimensional materials are discussed.
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I. INTRODUCTION

The possible existence of quantum critical points in
phase diagrams of many materials has led to a detailed s
of the low-temperature behavior of the susceptibilities
electron systems. The critical properties of the system
determined by the energy and momentum dependence o
response function of the electron system associated with
order parameter in the ordered phase.1–3 It has been shown
that the low-temperature spin susceptibility of the isotro
electron liquid has an unexpected nonanalytic dependenc
temperature, when high-order perturbative corrections
considered.4 These corrections are irrelevant in the renorm
ization group sense,5–7 and do not modify the basic prope
ties of the electron liquid, as described by Landau’s theo
However, they can lead to unexpected power-law dep
dences in many physical quantities at low temperatures
change the order of the phase transitions.8 The origin of these
nonanalyticities in homogeneous response functions
been traced back to the special properties of 2kF scattering in
the isotropic electron liquid.9

It is well known that anisotropic Fermi surfaces can ha
regions where scattering becomes more singular than in
isotropic electron liquid, the so-called hot spots. When t
portions of the Fermi surface are flat and parallel, nest
occurs, and the susceptibilities diverge logarithmica
Rex(Q¢ ,v)} log(L/v), where Q¢ is the nesting vector. A
saddle point in the density of states leads also to logarith
divergences in two dimensions. The hot spots at the Fe
surface can be characterized by the frequency dependen
Imx(Q¢ ,v), whereQ¢ spans the hot spots. The usual behav
in a Fermi liquid is Imx(Q¢ ,v)}uvu in any dimensionD. For
an isotropic Fermi surface, if uQ¢ u52kF , one has
Im x(Q¢ ,v)}uvu(D21)/2. For D51 the imaginary part of the
2kF susceptibility approaches a constant at low frequenc
By a Kramers-Kronig transformation, it can be shown th
the real part should diverge logarithmically, leading to t
deviations from Landau’s theory which characterize a L
tinger liquid.

It is also possible to show that, whenQ¢ connects two
saddle points in an anisotropic Fermi surface~FS!,
Im x(Q¢ ,v)}uvu(D22)/2. This result implies the existence o
logarithmic divergences forD52, which have been exten
sively studied in relation to high-Tc superconductors,10 and
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lead to deviations from Landau’s theory.11 In addition to
saddle points, a generic anisotropic Fermi surface can s
inflection points~see Fig. 1!. The existence of these points
the Fermi surface, which do not require any special fine t
ing of the chemical potential, leads to12 Im x(Q¢ ,v)
}uvu(D22)/211/4. For D52, scattering between these poin
is more singular than the 2kF scattering considered prev
ously, but still not sufficient to invalidate the Fermi-liqui
theory.10,13

In the present work, we analyze scattering at inflect
points in a two-dimensional anisotropic Fermi surface. In
following section, we present the main features of t
second-order perturbative calculation, extending the met
used in Ref. 9. The main results are obtained in Sec.
while the finer details of the calculation are deferred to
Appendixes. Applications to Fermi surfaces of differe
shapes are given in Sec. IV, and Sec. V discusses the m
results of our work.

II. THE METHOD

We consider a system of two-dimensional~2D! fermions
interacting through a generic isotropic short-ranged effec
potential U(q), assuming that long-range interactions a
screened. For the sake of simplicity, we shall also assu
that the interaction only affects electrons of opposite sp
which is a reasonable approximation when the momen
dependence ofU(q) is weak. It was shown in Refs. 4 and
that while the lowest-order (}U) perturbative corrections
are well behaved, higher-order corrections can lead to
anomalous behavior in the low-energy properties of
Fermi liquid. To be more precise, the uniform spin susce

FIG. 1. Examples of Fermi surfaces in two spatial dimensio
Left: circular, all wave vectors of modulus 2kF are sources of en-

hanced scattering. Right: anisotropic, wave vectors such asQ̃ con-
necting two inflection points give rise to anomalous scattering~con-
tinuous arrow!, while the rest of the FS gives rise to a behavi
similar to the isotropic case~dashed arrow!.
©2002 The American Physical Society04-1



,
e
th

of
hi
-
in
u
n

ou

-
in
ac
fe

le
ho
ec

an

um
n

ac
th
d

te
-

de

and
e of

y
mi
(

to

tors
,
ole

lly

is
ce
n
ad-

ith

on

pes.

e
en-

he

per-

p to
y

m

S. FRATINI AND F. GUINEA PHYSICAL REVIEW B66, 125104 ~2002!
bility of a 2D electron system shows a linearT dependence
which contradicts the usual Sommerfeld expansion in pow
of (T/EF)2. Such anomalous behavior was traced back to
peculiarities of 2kF scattering, i.e., the occurrence
particle-hole pairs lying on opposite sides of the FS. T
special wave vector plays a key role in theq-dependent sus
ceptibility of electronic systems already in the noninteract
case, with the appearance of a square-root singularity aro
2kF , which is directly related to the jump in the occupatio
number. If one considers theuniform susceptibility, though,
the singularities associated with 2kF scattering can only
show up indirectly through the excitation of avirtual
particle-hole pair, which explains the absence of anomal
corrections at lowest order in the interaction strength.

In the general~noncircular! case, among all the wave vec
tors connecting opposite sides of the FS, the inflection po
play a special role due to the flatness of the Fermi surf
~the extreme case being that of a perfectly flat FS, or per
nesting, which leads to strong instabilities!. According to the
previous discussion, the second-order diagrams which
to nonstandard behavior are those containing a particle-
bubble whose transferred momentum can match the sp
valueQ̃. Such diagrams are depicted in Fig. 2. Diagrams~a!
and~b! are vertex corrections. They have opposite signs
cancel in the case of a perfectlyq-independent interaction
potential: the fermion propagators involved are the same
both diagrams, the only difference being in the moment
carried by the interaction. To be specific, with the notatio
of Fig. 2, diagram~a! is proportional toU(Q̃)2, while dia-
gram ~b! involves some momentum average of the inter
tion, and there is no reason for a perfect cancellation in
general case. Diagram~c! is a self-energy correction, an
will be considered separately.

III. UNIFORM SUSCEPTIBILITIES

After integration over Matsubara frequencies, the ver
correction ~a! of Fig. 2 in the zero-frequency, zero
momentum limit reads

x~T!5E d2p

~2p!2

d2Q

~2p!2
U~Q!2D~jp!

3D~jp1Q!L~jp1Q2jp ,Q!, ~1!

where the Lindhard function in two space dimensions is
fined as

L~ iV,Q!5E d2k

~2p!2

n~jk!2n~jk1Q!

iV1jk2jk1Q
~2!

FIG. 2. The second-order diagrams yielding the leading te
perature dependence of the susceptibility.
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and14 D(j)5b/4 cosh2(bj/2). SuchD functions, which con-
strain momenta to lie within a shell of thickness;T from
the Fermi surface, are strongly temperature dependent,
are responsible for the leading temperature dependenc
the susceptibility. Indeed, in Eq.~1! we have omitted terms
proportional toD(jp1Q)n(jp) coming from the poles of the
Lindhard function, which are lessT dependent since the
receive contributions mainly from regions far from the Fer
surface. Taking advantage of time-reversal symmetryjk
5j2k), we can write

L~Djp ,Q!5E d2k

~2p!2
n~jk!F 1

Djp2Djk
2

1

Djp1Djk
G ,

~3!

where we have definedDjk5jk1Q2jk . As was pointed out
in the preceding section, the most singular contributions
Eq. ~1! come from regions where the momentumQ flowing
through the Lindhard functionL connects parts of the FS
which are almost parallel, since this makes the denomina
in Eq. ~3! small on large regions ofk space. Otherwise stated
the scattering processes taking place within a particle-h
pair are enhanced around special wave vectorsQ̃ due to the
peculiar geometry of the FS. In the case of a spherica
symmetric FS, any momentumQ̃ of modulus 2kF is a source
of enhanced scattering, but the deviation from parallelism
quadraticas we move in the direction tangent to the surfa
~see Fig. 1, left!. More singular is the case of inflectio
points occurring when the curvature of the FS vanishes, le
ing to acubic, or evenquartic dispersion~see Fig. 1, right!,
which is a quite generic phenomenon when dealing w
electrons on a lattice.

In the following sections, we shall present the calculati
of the leadingT dependence of the diagram~a! in the sim-
plest circular case as well as for more complex FS sha
The result for diagram~b! can obtained by replacingU(Q)
by U(p2k) in Eq. ~1!. This can only lead to a change in th
prefactors, but will not alter the leading temperature dep
dence of the susceptibility. The self-energy diagram~c! has a
different structure, and will be analyzed at the end of t
section.

A. Isotropic Fermi surface

By choosing an appropriate coordinate system, the dis
sion relation around any point on a spherical FS~and, generi-
cally, about nonspecial points of an anisotropic FS! can be
expanded as

jk /v5ky1akx
2 , ~4!

v being the Fermi velocity at that particular point~that we
shall identify asQ̃/2), and a.0 being related to the FS
curvature. The above expression is assumed to be valid u
a momentum cutoffL which is larger than that imposed b
the finite temperatureD functions.15 Introducingq5Q2Q̃,
we can write

jk1Q /v52~ky1qy!1a~kx1qx!
2, ~5!

-

4-2
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where we have used the propertyjk1Q̃5jÀk ~reflection sym-
metry!. We now change variables to

k'5ky1akx
2 , ~6!

ki5kx1qx/2,

such thatjk5vk' and

jk1Q /v52k'2q'12aki
21~3/2!aqi

2 . ~7!

Apart from the constant shiftqx/2 introduced for later con-
venience, this new coordinate system is locally equivalen
polar coordinates, which would be the natural choice wh
dealing with a perfectly symmetric FS. We shall focus on
first term in Eq.~3!, which is independent ofq' , and there-
fore turns out to be the most singular. Omitting unimporta
multiplicative factors, we have for the real part ofL,

L5
21

v E dk'n~vk'!E
2L

L

dki
1

A22k'1Bki
2

5
21

vAB
E dk'n~vk'!

u~A22k'!

AA22k'

~8!

with A52p'22api
2 andB52a ~theu function ensures tha

the integral is real!. In the second term of Eq.~8! we have
performed theki integration by pushing the momentum cu
off to infinity. The main point is that the former expressio
can now be integrated by parts to give a furtherD constraint
on k' :9

L5
1

AB
E

2L

A/2

dk'AA22k'D~vk'!1•••, ~9!

where the ellipsis stands for terms that are not confined to
region near the FS. By inspection of the results forA
@T/v, A!2T/v, and A'0, respectively, we see that th
D(vk') function behaves qualitatively asd(vk'1T).
Therefore, to study the temperature dependence of the
ceptibility we can replace the previous expression by

L;
AA/21T/v

vAa
, ~10!

where there is an implicitu function of the argument of the
square root. We are left with a tractable expression for
real part of the Lindhard function, which we shall use
evaluate the two-loop diagram of Fig. 2~a!.

We now perform the remaining integrals in Eq.~1! in the
following order:dq' ,dp' , thendpi anddqi . The first in-
tegral is trivial, sinceq' enters only inD(jp1Q). Moreover,
jp1Q is linear inq' @cf. Eq. ~7!# so that the integration jus
gives 1/v. Thep' integral can also be performed straightfo
wardly, and we are left with an expression of the form
12510
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v3Aa
E dqi E dpiAT/v2api

2

;
LŨ2

v3Aa
E dpiAT/v2api

2;
LŨ2

v4a
T, ~11!

where again we have neglected unimportant multiplicat
factors and definedŨ5U(Q̃). Within our treatment, we
have recovered the result that the spin susceptibility of
isotropic 2D Fermi liquid is intrinsically linear in
temperature.9 For a circular FS, this can be written as

x~T!5x01x1T. ~12!

Incidentally, our calculation suggests that the lo
temperature correction to the susceptibility is positive,
agreement with Refs. 9 and 16–18.

B. Anisotropic FS with inflection points

In the vicinity of an inflection point, the dispersion rela
tion can be written as

jk /v5ky2bkx
31gkx

4 , ~13!

where b and g can be chosen to be positive. A change
variables similar to Eq.~6! of the preceding section leads t

L5
21

v E dk'n~vk'!E dki
1

A22k'1Bki
21Cki

4
~14!

with A52p'23bqipi
222gpi

4 , B53bqi , andC52g. The
ki integral can be rewritten in the form

I 5
1

C1/4~A22k'!3/4E dx

11ax21x4
~15!

with a5(B/AC)/AA22k'. We shall be interested in th
region close to the edge (k'.A/2), wherea is large and
positive. We can then drop the quadratic term and perfo
the integration:

I 5
1

@bqi~A22k'!#1/2
. ~16!

This can be integrated by parts indk' to give

L5
1

Abqi
E

A/22b2qi
2/g

A/2

dk'AA22k'D~vk'!1•••, ~17!

where the ellipsis stands for a term which is not confin
close to the FS~the limits of integration account for the
condition a*1). Provided that theD function lies entirely
inside the domain of integration, i.e.,

qi.qmin5A gT

b2v
, ~18!

the result takes the form
4-3
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L;
AA/21T/v

vAbqi
. ~19!

The region of phase space we have just identified is the
that gives the leading temperature dependence in the sus
tibility. Indeed, fork' outside the range of integration con
sidered above~implying a&1), the result of the integra
~15! is I;(A22k')23/4 instead of Eq.~16!, leading to a
weaker~linear! temperature dependence in the final res
The same holds if we consider a negativeqi (a,0).

The calculation now follows the same lines as in the p
vious case. Theq' integration yields a factor 1/v, and thep'

integration can be performed by replacingD(vp');d(p'

2T/v)/v, which gives

x;Ũ2E
qmin

L

dqi E
2L

L

dpi

AT/v2bqipi
22gpi

4

v3Abqi

;
Ũ2T

bv4 Eqmin

L dqi

qi
52

Ũ2

bv4
T lnS gT

vb2L2D . ~20!

Taking into account the scattering from the regions of the
far from the inflection points, whose behavior is given by E
~12!, the susceptibility reads

x~T!5x01x1T2x18T ln T. ~21!

Once again, the sign of the correction is such that the s
ceptibility increases with temperature. However, the con
bution coming from the other diagram~b! has opposite sign
As a rule of thumb, one can argue that the overall ver
correction is positive if the effective interaction is peak
aroundQ̃ and negative otherwise@it vanishes when the mo
mentum dependence ofU(q) is flat, since in that case th
two diagrams perfectly cancel#.

C. Special inflection points

The previous analysis assumes the existence of a ge
inflection point along the Fermi surface. This is a situati
that can be achieved, in an anisotropic system, for a fi
range of values of the filling or the chemical potential. The
points are characterized by the absence of a quadratic ter
the expansion of the dispersion relation around the Fe
surface presented in Eq.~13!. For certain values of the pa
rameters, however, which require a fine tuning of the filli
or the chemical potential, the cubic coefficientb or the quar-
tic oneg in Eq. ~13! can be zero as well. Two such situatio
are schematically shown in Fig. 3.

We first consider the case when the cubic term in
dispersion relation parallel to the Fermi surface vanishesb
50), which is realized in thet2t8 Hubbard model in a
square lattice~see pointG in the top panel of Fig. 3!, or in
simple tight-binding models on the triangular lattice, for i
stance. The susceptibility becomes more anomalous tha
the generic case discussed previously, as can be seen b
ting b→0 in Eq. ~20!. One has, respectively,A52p'

23gqi
2pi

222gpi
4 and B53gqi

2 . The conditiona*1 now
corresponds toA22k'&gqi

4 , which modifies the limits of
12510
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integration in Eq.~17!. Repeating the same arguments
before withqmin5(T/gv)1/4, we obtain

L5
AA/21T/v

vAgqi
~22!

leading to

x52
Ũ2

v3 S T

vgD 3/4

lnS T

gvL4D . ~23!

The other possibility is that the quartic term vanishesg
50), which can occur in a tight-binding model wit
orthorombic symmetry, considering two different hoppin
parameterstaÞtb ~see pointD in the bottom panel of Fig. 3!.
In that case, however, not onlyg but all the even coefficients
in the dispersion relation vanish. This leads to perfect nes

FIG. 3. Top: Fermi surfaces for different fillings in an anis
tropic 2D system with tetragonal symmetry. CurveA has eight in-
flection points~only two are shown,I 1 andI 2). The set of all these
points define a curve which goes from pointM to point M 8 of the
Brillouin zone ~broken curve!. The inflection points merge in pair
when the Fermi surface is given by curveB. At point G in curveB,
the cubic term in the dispersion relation parallel to the Fermi s
face vanishes. The Fermi surface labeledC has no inflection points.
Bottom: Fermi surfaces for different fillings in an anisotropic 2
system with orthorhombic symmetry. CurvesA andC correspond to
Fermi surfaces with four inflection points. Only one such point
each curve is shown,I 1 and I 2. The set of all these points define
curve that goes from pointM to point M 8 of the Brillouin zone
~broken curve!. The quartic term in the dispersion relation paral
to the Fermi surface changes sign when going fromM to M 8. Thus,
there is a Fermi surface, schematically depicted as curveB, where
this quartic term vanishes, at pointD.
4-4
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ELECTRONIC SUSCEPTIBILITIES IN SYSTEMS WITH . . . PHYSICAL REVIEW B66, 125104 ~2002!
between opposite branches of the Fermi surface, giving
to a much more singular behaviorx(T); ln T.

D. Self-energy correction

After integration over Matsubara frequencies, which n
requires some more attention due to the presence of
fermion lines of equal argument~a double pole in the
complex-plane integrals!, the anomalous part of the sel
energy correction~c! of Fig. 2 can be reduced to the form

x;Ũ2TE d2Qd2pd2k
D~jk!D~jp!

~Djp2Djk!2
~24!

with Djk5jk1Q2jk . TheQ integration is now restricted to
the region close to~within T/v of! Q̃. We shall not go
through all the calculations of the self-energy diagra
which can be performed following the same lines of the p
vious sections. The results for the temperature depend
are analogous to those given by Eqs.~12!, ~21! and~23!. This
can be understood by noting that although the denomin
in Eq. ~24! is more singular than that of Eq.~3!, the addi-
tional anomalies that it carries with it are canceled by
explicit T factor in front of Eq.~24!, leading to the same
temperature dependence as the vertex correction. Its sig
also the same as the vertex diagram~a!.

The results of this section are summarized in Table I.

IV. EXAMPLES

A. Superconducting cuprates

It is often assumed that a tight-binding model on a squ
lattice with nearest-neighbor~t! and next-nearest-neighbo
(t8) hopping reproduces well the band structure of the l
ered cuprates:

«~k!522t~coskx1cosky!24t8coskxcosky , ~25!

wheret8/t'20.25. This case corresponds roughly to the
set of Fermi surfaces in Fig. 3. The dispersion relation ab
has a saddle point at a dopingdVHS corresponding to a
chemical potentialEVHS524ut8u. The curvature of the
Fermi surface along the diagonals becomes negative
higher dopingdc , where the chemical potential isEc5

TABLE I. Temperature dependence of the uniform susceptibi
of an anisotropic 2D Fermi liquid. The linear contribution is alwa
present, and is due to the portions of the Fermi surface away f
the inflection points. The relative magnitude of the regular a
anomalous contributions depends on the degree of flatness o
Fermi surface. The special caseb50 corresponds to inflection
points falling on particular symmetry lines of the Brillouin zon
and requires a fine tuning of the chemical potential~see text!.

Fermi surface geometry x(T)

Circular x01x1T
Inflection points~generic! x01x1T2x18T ln T
Special inflection (b50) x01x1T2x3/4T

3/4ln T
Nesting, saddle points x01x08ln T
12510
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28ut8u116ut8u3/t2. For fillings such thatEc<EF<EVHS, the
Fermi surface has eight inflection points. From these valu
and the previous analysis, one can obtain a qualitative
ture of the temperature dependence of the susceptibili
when the electron density is in this range.

~i! For T*ut8u, the susceptibility is determined byt only.
As the doping is close to half filling, we expectx(T)
}uTu0, the result for perfect nesting.

~ii ! For T&ut8u andT*uEF2EVHSu, the same behavior a
in ~i! should be observed.

~iii ! For T&ut8u and T*uEF2Ecu, the susceptibility is
dominated by contribution from the area near the spe
point discussed in Sec. III C. Hence,x(T)}uTu3/4ln T.

~iv! For T&ut8u, T&uEF2Ecu, andT&uEF2EVHSu, the
contributions from the saddle point and from the spec
point above are absent. Thus,x(T)}uTu ln(T), because of the
presence of the inflection points.

We can make the estimates of the crossover region in
T-doping plane more precise from the doping dependenc
the coefficient of the cubic termb in Eq. ~13!. Expanding
around the saddle point, we obtainb}uEF2EVHSu. Hence,
the crossover between regions~ii ! and ~iv! takes place at a
temperatureT* }uEF2EVHSu. Performing a similar calcula-
tion around the situationEF5Ec , we haveb}AuEF2Ecu,
so that the crossover temperature isT* }(Ec2EF)2. For fill-
ings EF;Ec but with no inflection points in the Fermi sur
face, we obtain a crossover to thex(T)}uTu behavior due to
2kF scattering, with a crossover temperatureT* }uEF2Ecu.
The different regimes are schematically shown in Fig. 4.

Taking realistic numbers for the dispersion relation, o
analysis predicts anomalous low-temperature behavior in
the region betweendVHS and dc , corresponding to the
strongly overdoped region which is experimentally acc
sible. This shows that nonstandard behavior of the phys
properties should be expected even in a regime which
usually believed to be well described by the normal Ferm
liquid theory.

B. Quasi-1D organic compounds

Organic conductors are often very anisotropic due to
planar structure of their molecules. For example, the salt

m
d
the

FIG. 4. Correspondence between the different shapes of
Fermi surface discussed in the text and fillings for the high-Tc su-
perconductors.
4-5
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the family (TM)2X (TM5TMTTF,TMTSF and X
5 inorganic anion! are all isostructural and can be viewed
two-dimensional arrays of weakly coupled 1D chains, sin
the electronic overlaps in the transverse direction are
times smaller than in the chain direction~the transfer inte-
grals in the third direction are 500 times smaller and can
neglected; see, for instance, Ref. 19!. The band structure is
well represented as

«~k!522tacos~kaa!22tbcos~kbb! ~26!

assuming an orthorombic structure with lattice parame
b'2a. This case corresponds to the bottom set of Fe
surfaces in Fig. 3. The parametertb;10–30 meV sets the
scale below which the FS is modulated in theb direction, so
that the predicted enhancement of susceptibilities due to
flection points should be observable at and below room t
perature. The value of the anisotropy ratiot5tb /ta is large
enough to ensure that the system is well described b
Fermi-liquid picture down to very low temperatures. The fi
ing factorr is fixed by charge transfer and varies from co
pound to compound, ranging from 1/2 to 1 hole per TM s
The Fermi surface has two Van Hove singularities atEF5
6EVHS562t(12t), and four inflection points in the whole
interval 0,uEFu,EVHS. Takingt50.1, this corresponds to
the region of fillings 0.3,r,1.7. In the absence of highe
harmonics in Eq.~26!, EF50 corresponds to half-filling (r
51), and the Fermi surface has perfect nesting, as«(k)
5«(k1Q), whereQ5(p,p) ~hopping between more dis
tant neighbors will suppress this effect!. The points in the
phase diagram where the topology of the Fermi surf
changes, leading to different behaviors of the electronic s
ceptibility, are sketched in Fig. 5.

In the (TM)2X compounds, the spin susceptibility show
a sizable increase in the metallic phase up to room temp
ture ~see, e.g., Fig. 8 of Ref. 19!, which cannot be explained
by the ‘‘standard’’ Fermi-liquid theory~the latter predicts
variations on the scale of the Fermi temperature!. On the
other hand, the presence of enhanced scattering close t
flection points could well be the underlying mechanism
this anomalous temperature dependence, and should be
into account when studying the low-temperature phase t
sitions of such compounds.

Following the same procedure used in the preceding
tion, the electron susceptibility will undergo a succession
crossovers upon varying the filling, which can be achiev
either by anion substitution or by applying pressure to
samples.

FIG. 5. Correspondence between the different shapes of
Fermi surface discussed in the text and fillings for compounds
the family (TM)2X.
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V. CONCLUSIONS

We have performed a second-order perturbative calc
tion to analyze the corrections to the Fermi-liquid behav
in anisotropic interacting electronic systems in two dime
sions, which arise from the existence of points in the Fe
surface where scattering is enhanced.20 Besides the exten
sively studied case of a saddle point, we have analyze
detail the influence of inflection points, which do not requ
any special fine tuning of the chemical potential or the fi
ing. The presence of these points enhances the anoma
dependence on temperature, which arise from 2kF scattering
in isotropic Fermi surfaces.9 We find that the corrections tha
were linear inuTu change intouTu lnuTu. The absence of sym
metries also implies the lack of cancellation between diff
ent diagrams, so that these anomalies should be observ
both the spin and charge susceptibilities.

For special fillings, more singular behavior is expected.
the case of systems with tetragonal or hexagonal symme
when the Fermi surface is close to these fillings, the corr
tions to the susceptibilities go asuTu3/4lnuTu, showing that the
existence of nonintegerT dependences does not need to v
late Landau’s model for the low-energy excitations of
Fermi liquid.

We have also discussed the possible crossovers betw
the different regimes analyzed, and the experimental con
quences that they may lead to. In the case of the super
ducting cuprates, anomalous susceptibilities should appe
the strongly overdoped region, above the dopingdVHS char-
acterized by Van Hove singularities in the density of stat
On the other hand, all of the organic conductors of the fam
(TM) 2X should fall in the region of fillings where anoma
lous corrections to the susceptibility are important.
course, the analysis presented here should also apply to o
classes of quasi-two-dimensional systems~heavy-fermion
materials, Sr2RuO4, electrically doped 2D organic films
other organic conductors, etc!.

Finally, let us point out that the breakdown of the Som
merfeld expansion for the spin susceptibility suggests t
the free energyF itself has a nonanalytic dependence onT,
once the high-order interactions (2kF scattering! are taken
into account. If, as was proposed in Refs. 16,21, and 22,
numerically verified in Ref. 23, the role of temperature a
magnetic field is interchangeable in the functional form
F(T,H), one can conclude that the anomalousT depen-
dences calculated here for the susceptibility are also expe
in the specific-heat coefficientg5C/T.
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APPENDIX A: INFLECTION POINTS
IN THE tÀt8 MODEL

We shall determine here the parameters of the disper
relation~13! in the case of a tight-binding model on a squa
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lattice with nearest~t! and next-nearest (t8) neighbor hop-
ping. Let us focus to the doping levels close todc , the point
where the inflection points of the Fermi surface merge
pairs on the diagonals of the Brillouin zone, leading to t
most singular corrections to the susceptibility. It is then na
ral to rewrite the dispersion relation in a basis rotated
45°:

j524t~cosp cosq!14t8~cos2p2sin2q!2EF , ~A1!

wherep5(kx1ky)/2 andq5(kx2ky)/2. The Fermi surface
crosses the diagonal (q50) at a momentumpF given by
EF524t cospF14t8cos2pF . The dispersion relation can
then be expanded as

j5A~p2pF!1Bq21Cq4 ~A2!

with A54(t sinpF2t8sin 2pF), B52t cospF24t8, and C
5(4/3)@ t82(t/8)cospF#. The topology of the Fermi surface
changes at two well-defined doping levels.

~1! The curvature changes sign at a dopingd5dc given
by the conditionB50. The corresponding Fermi energy
Ec528t8116(t8)3/t2 and the coordinates of the inflectio
point are (pc ,qc)5(arccos 2t8/t,0), corresponding to point
G of Fig. 3.

~2! Van Hove singularities arise at a dopingdVHS given by
EVHS524t8 (M points in Fig. 3!.

Inflection points appear in all the region of doping
dVHS,d,dc , following the dashed curve of Fig. 3~top
panel!. The consequences on the physical properties of
system are summarized in Fig. 4.

Dispersion around inflection points. The equation of the
Fermi surface isj50, which implicitly defines a function
p5p(q). Putting the second derivativep9(q)50 yields the
coordinates (p0 ,q0) of the inflection points. Ford'dc , set-
ting u5124(t8/t)2, we can write

p05pc1
EF2Ec

4tu3/2
, q05S EF2Ec

12ut8
D 1/2

~A3!

so that the trajectory of the inflection points is parabo
aroundG. By expanding around (p0 ,q0), we obtain an equa-
tion of the form~13! with
y

12510
n
e
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y

e

v54tu3/2, b5
t8

t S EF2Ec

12t8
D 1/2

, g5
t8

4tu3/2
. ~A4!

APPENDIX B: INFLECTION POINTS
IN THE taÀtb MODEL

We shall now derive the parameters of Eq.~13! for a
tight-binding model on an orthorombic lattice, with anis
tropic hopping (t5tb /ta!1). Let us rewrite for simplicity
the dispersion relation~26! as

j522ta@cosk1t cosp1n# ~B1!

with k5kaa, p5kbb, and n5EF/2t. The equation of the
Fermi surface isk5arccos(2n2t cosp). The number of
electrons per site is approximately given byr
52p21arccos(2n). The Fermi surface has two Van Hov
singularities atEVHS562t(12t), and 4 inflection points
for any 0,uEFu,EVHS. At half-filling ( EF50), the two
branches of the open Fermi surface are perfectly nested.
physical consequences of the changes in the Fermi-sur
topology occurring at those special fillings are sketched
Fig. 5.

Dispersion around inflection points. By settingk9(p)50
we find that the inflection points are located at

p05arccosS tn

12n2D , k05arccosS 2n2
t2n

12n2D .

~B2!

For filling levels close ton50 ~half-filling!, the location
of the inflection points describes a straight line of slo
2t/A12n2 in the (k,p) plane~see bottom panel of Fig. 3!.
After a rotation of the coordinate axes, we obtain an equa
of the form ~13! with

v52tA12n2, b5
t

6A12n2
, g52

nt2

24~12n2!3/2
.

~B3!

The approach to the perfect nesting situation at half-filling
signaled by a vanishingg, the coefficient of the quartic term
in the dispersion relation.
t.
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