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Phonon drag in ballistic quantum wires in the nonlinear regime
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The acoustic phonon-mediated contribution to the drag current in the ballistic transport regime in two nearby
one-dimensional nanowires is calculated. In the nonlinear regime, where the applied bias e/gliagecater
than the temperaturg the threshold of the phonon-mediated drag current with respect to bias or gate voltage
is predicted. It is found that the drag current contribution from any two aligned subbands in the drive and drag
wires saturates at large biédriving) voltage.
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. INTRODUCTION ande,,=e,+p?/2m in the drag wire vanishes unless
The purpose of the present paper is to study the phonon eVi2>|e —g,|,

contribution to the drag current in the course lullistic
(collisionless electron transport in a nanowire due to a bal-again similar to the CD caséHowever, in the phonon drag
listic driving current in an nearby parallel nanowire. Early onwe encounter another inequality
the possibility of the Coulomb dra@_D) effect in the bal-
listic regime in quantum wires was demonstrated by Gurev- eV/i2>sp,,
ich, Pevzner, and Fentbrand experimentally observed by ) )
Debray and co-worker® Using the approach of Refs. 4 and wheresis _the sound velocity. Indeed, the energy-momentum
5 we consider two parallel ballistic quantum channels thaf@nservation leads to
are connected to two thermal reservoirs, each being in an
independent equilibrium state. As was recently shown, al- hwq=eping,~ &p
though most of the heat from a current through the channel is
generated in the reservdirpart of the heat is generated by that can be rewritten, usingcosé,=d, as
the current carrying nanostructure itdelfia emission of
phonons. Electrons penetrating into a biagddve) wire 2ms
from the leads are characterized by different chemical poten- |cosq| = Ip+#q,— p<1'
tials, the situation is nonequilibrium, and the phonons are
generated by the drive wire. Now taking into account that botfip+#q,| andp momenta
There has been done much experiméraal theoreticdl ~ should be in the vicinity of the Fermi momentum,
work on the phonon contribution to the drag current in ax=eV/2v,, (mv,=p,) we obtain the threshold condition that
two-dimensional electron-ga@DEG) situation. As for the eV/2 must be greater than both the Bloch-Geisen param-
phonon drag in ballistic quantum wires it has been investi-etersp, and the shift of the band bottonhs,— g .
gated theoreticalfyf only in the linear transport regimeV In Sec. Il we calculate the spatial dependence of phonons
<T, whereV is the voltage applied along the drive wire. In that are generated by a long, uniform drive wire. The current
contrast, the aim of this paper is to investigate the nonlineainduced by these phonons in the drag wire is considered in
regime eV>T. Our calculations are based on physically Sec. lll. In the Appendix we give a brief review how results
transparent semiclassical transport the@gltzmann kinetic  obtained by our kinetic equation approach can be obtained
equations A fully quantum-mechanical derivation based on by the more complicated Keldysh methtd.
the Keldysh diagrammatic approatiyields identical results
(see the Appendjx
The electrons in the nearlfgirag nanowire being initially
in an equilibrium absorb the ballistic phonons emitted by the We assume that the length of the nanowitegs much
drive wire and the phonon drag current is created. Similar tgreater than the transverse dimensions of the wires. There-
the CD situation here we encounter that in the course ofore the spatial distributioh,(r) of the emitted by thelrive
backscattering of electrons of thth subband in the drive wire ballistic (nonequilibrium phonons with wave vectay
wire the phonons with quasimomentuln,/2 equal to the is given by the stationary Boltzmann equation
Fermi momentunmp,=+2m(u—&V) [¢(*? is the bottom
of thelth transverse band in the driy&) and drag2) wires| SVNy=TR, (D)
of the subband are generated that in their turn are absorbed
by the drag wire. For brevity in what follows we omit the where s=dw,/dq is the group sound velocity; wq is the
superscript$l,2). The contribution to the current of two sub- phonon energy, an® is the collision operator. The latter can
bands having dispersioa,pzs,+p2/2m in the drive wire  be written as

II. PHONON SPATIAL DISTRIBUTION
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1 2Ldk ) Since the initial state must be occupied and the final state
R=3 > qu|cll’(qi)| must be empty one obtains the following product of distri-
I’ bution functions in Eq(5):

X[k ng (1= Fird (Ng+ 1) = F10 (1= kg )Ng]

X 8(& k+nq,~ &1k~ R wg), (2

fF(8|k+ﬁqz_,LL_eV/2)[1_ fF(8|k_,LL+ eV/Z)]

Since at low temperatures the distribution functions are unit
whereC,,(q)=(1|€9+|I"} is the matrix element for phonon step functions the product is unity until

induced transitionsy is the volume of the channel, amil,

is the electron—phonon coupling constant, that for the defor- Elk+hg, <M TeVI2, ey>u—eVi2.

mation potential interaction M/,= mA?q% pw,, whereA is _ - _ _

the deformation potential constant, amds the mass density. | nese inequalities and the energy conservation law yield that

We rewrite the Boltzmann equation in the form the phonon generation processes will take place in the pho-
non frequency rande

(sV+1I1,)Nyg="Rs, ©)
2ms+2sp <hwg<eV.
where
Herep, stands for the Fermi momentum shifted &Yy/2:
1 1 > 2Lde c 20 ;
Q_T} = m ql II’(qL)| [ I.k+hq, ™ I’,k] pf=\/2m(,u—8|—eV/2).
X 5(8|,k+ﬁqz—8|',k—ﬁwq) 4 Our approach considers the phonon generating processes

. L o ... as taking place homogeneously inside the whole channel
is the _polarlzatlon operator des_crlblng_ renormallzatlon(wire)_ The phonons emitted from the edges of the channel
(screening of the electron-phonon interactidsee the Ap- ¢4 he generated only near specific points where the local
pendix for details andRs is the source of the phonons:  gnergy and momentum conservation laws are met. An effec-
tive interaction length £ for these processes can be

1 2Ldk . 7 o .
Rsz]_) > ﬁwq|cll’(qL)|2fl,k+hqz(1_ fi0) introduced. We assume that relative intensity of these pro-
I ™ cesses compared to uniform generation given by Gin,1]
% _ —hwy) ®) is small.
(&1 k+ha, =81k~ h@g). We assume the channels have uniform cross sections, the

origin of the system of reference being in the center of the
current-carrying(drive) wire, the drag wire being displaced
by D in x direction. Therefore we need the solution of E).
only for s,>0.

The solution of Eq(6) depends on the cross section ge-
ometry of the wire. Assuming, for simplicity, that the cross
section of the wire is a circléit is worth noting that the
Tesult does not change significantly for other geometries of
the cross sectignof the radiusk we obtain, for the coordi-
nates outside the wire cross section,

We restrict ourselves by the low temperatuiessp~eV.
Therefore, seeking the solution of E) in the form N,
=Ng%+ AN, [Ng* is the equilibrium phonon distribution
(Bosg function] we omit the termlI Ng®. For the nonequi-
librium part AN, we do not take into account the electron-
phonon interaction renormalization and therefore omit in Eq
(3) the polarization operator entirely. The Boltzmann equa
tion takes the form

Rs Sy
(dyt+ aé’y)ANq(X,y): S—, aES—:tanQDq. (6) R
X X
Ng=N&9+ ——— JR%(1+a?) — (y— ax)?
We assume that the spatial distribution of the generated s (14 az)\/ ( )= )
phonons depends only on the transverse coordinates X O[R2(1+a?)— (y— ax)?]. @

According to the approach in Refs. 4 and 5, we express

the distribution functions in Eq(5) as the Fermi functions The geometrical interpretation of this solution is physically
fF(e1p—u®Y)) with shifted chemical potentialg®)=x  transparentsee Fig. I let us draw a line having the angle
*eV/2; p is the quasi-Fermi level that depends on the gate,_ (tane= a) with thex axis through the center of the wire.
voltage andV is the bias voltage. Now consider a line parallel to the already drawn line and
Concerning the collision operat@s spatial dependence crossing the wire. The distan¢a&C| from the pointx,y out-
we assume that it has nonzero values only within the nanoside the wire and lying on the second line to the first line is
wire. Although this quantity is discussed in detail in Ref. 7, |y yx|cosg=|y—ax/\1+ &% The ® function in Eq.(7)
we briefly discuss how phonon emission can arise. We COnstates that if this distance is smaller than the raduée.,
sider only intraband transitions. Consider an electron havingnhe second line does cross the witlee result is proportional
negative initial momentunk+7q, and propagating to the tg the length of the chord cut from the second line by the
left. This electron is described b/ (e nq,~#—€VI2).  cross section; otherwise the result is zero. A similar interpre-
After phonon generation the final state must be propagatingation is valid for the other geometries of the wire cross
to the right k>0), and is described b§f (s,,—u+eV/2).  section.
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FIG. 1. Schematic representation of the cross section of th
drive wire (shaded regionand the phonon propagation direction.

III. PHONON DRAG CONTRIBUTION
TO THE DRAG CURRENT

Now in thedrag wire due to an electron-phonon interac-

tion we have fn=f,f+Afn, with Af, satisfying the
equatiort

IAT,

v =I[f,], (8)

wherev =de,/dp is the electron velocity andl[ f] is the

electron-phonon collision term. Fg>0 (p<0), respec-
tively, the solution of this equation is
1
fo(2)=(z= L/2);I[fn]. 9

The boundary condition isAf[p>0 (p<0)]=0 at z
=FL/2. The current then is given by

s dxdy [#2Ld
1=e3;3 .[dAvAf e})f X %f p
(10

Here the integration is over the cross sectidrof the drag
wire. The electron-phonon collision term is

-y [

dq,

(_qulcnn (qJ_)lz{[fnrpl(l— fnp)

X(Np/,p"‘ 1)_fnp(l_fn’p’)Np’fp]‘S(Snp_Sn’p’
+ﬁa)pr_p)+[fnrpr(1_fnp)Np_pr_fnp(l_fnrpr)
X(Np—p’+1)]5(8np_8n’p’_ﬁwp—p’)}- (11)

In Ny and w, we indicate explicitly only the longitudinal

component of quasimomenta of phonons. The first and se

ond terms in Eq(11) describe theN, ., phonon generation
in the electron transitior,,,,—&,, and absorption of the
phononN,,_, via the electron transitioa,,— &, respec-

tively. The third and fourth terms describe absorption of the

phononN,_,: (&npr—&np) and generatione,,—&epr,r) Of
the phononN,_,.. In what follows the notatioN, stands
only for the nonequilibrium part of the phonon distribution in
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Eq. (7) since the equilibrium part yields zero. For the current
induced in thedrag wire by the phonons emitted by tloeive
wire we obtain

dxdy (=2Ldp (= dq
J=e ZJ f 2mh —3027Tﬁ (27:)2
n,n
><qucnn/((-.h)lz[fn/p'_fnp]{Np’-p‘s}(snp_‘Sn’p’
+ﬁwpr_p)+Np_pr5(8np_8nrpr_ﬁwp_pr)}. (12)

Here the distribution function, -y are equilibrium Fermi
funcuonsfF(snp u). Assuming that the angle dependence
ds involved only through the phonon distribution we can take
an average over the cross section of the drag wire and inte-
grate over the angleg,:

dxdy [ q,dq, d
R ) (22 9edN

2R 1 2 /2
:(Zﬂ)zsﬂf qd%Rsfopdpfo dqof_wzdcpq
] D
X\/l—(pSIngD—

R

sin (pq> . (13

Since the distance between the centers of the wires is
assumed to be much bigger than the radius of each wire,

R 1
—<
D L
we see that only small angles contribute to the integral:

R R
B(p sincp—l)<sin<pq=<pq<5(p sinp+1).

D 2

R

7 R
2D

Therefore, the result
(RID)(p sing+1) _
J' deg\/ 1—| psing—

is proportional to thdsolid) angleR/D of the cross section
of the drag wire relative to the drive wire. This factor simply
reflects the fact that phonons emitted by the drive wire
should pass through the drag wire:

Pq

(R/ID)(1—p sing)

dxdy( q.dq,
TR 2m? degNg= yp SququR (14

In what follows we consider only intraband phonon emission

and absorption processes, i.e., we patn’ andl=I". In-

éertlng this expression into Eq12) and taking into account
energy conservation laws

5(8np_8npl+ﬁwpr,p) 5(8|k+p17p_8|k_ha)pr,p)

M sk—p)s| g Zne—Cne

that allow the integration ovek (andq), we obtain
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_e8Dpz7T§(Sh)7 < o p . p [ np’ np]
Pai(p,p’) )
><|I;)_—p/|{flp’(l_flp)®(8np’_<9np_s|p_p |) 400
+f|p(1_flp’)(Snp_snp’_slp_p,b}- (16) 200
Here we introduced notations
’ (Snp/—Snp)4 1 , 2 2SPI/e ZSPZ/e v
Pr(P.p')= =258 Co| 2 ba(P.P") . .
én(p,p") S FIG. 2. Drive voltage dependence of the phonon contribution to
1 2 the drag current for different values pf, .
>< C| h_d)n(p!p,)) ’ (17)
S eVi2>maxsp,,|enl}.
bo(P.P') = (Enp — Enp)2—S2(P—P')2. (18  Forsimplicity we consider the case of aligned subbands, i.e.,

we pute,;=0. Then the result depends on the parameter

Now taking into account that the phonons are emitted by
electrons having a negative initial moment{ithe nonequi-
librium  functions f,, are Fermi functions shif- and we discriminate between two regionsaofietermined by
ted by eV/2>0 chemical potentials, ie.,f,=fl, o<1 anda>1. In the first region 1/2 «<1 we obtain
foRr pF>0 and fi,=ff5 for p<0 (f*=f"(e—[u—eVI2)), ),
ff=1"(e—[ u+eV/2]))] and that the integrals vanish unless _ Un @
the Fermi functions and 1-f under the integral overlap, ‘]_‘]02,:‘ (?) dt(2a—0T(), (21)
one can conclude that’, satisfying —o<p’'<-—p—2ps, )
p.=ms contributes to the current. To avoid further confu- Where we introduced

a=eV/dsp,,

sion about the drag current direction note that we consider oL mPA4
eV>0, and therefore the first term on the right-hand side of Jo=—€—3—>57, (22
Eq. (16) survives. Otherwise, i€V<0 only the second term 7 Dph

in this equation will contribute to the current and due to " 5 5
L i i p p

frp = fap thg current will change the sign. ) T(t)= C, n\/m C "1
We consider the casé<fwy<eV, under these condi 2—1 % 3

tions electron distribution functions can be replaced by the (23)

step functions and we obtain

2 2

In the second regiom>1 (eV/I2>2sp,) we obtain

J LmA4 2 ood J‘oc d ,[®( /) 2 )
—e—— — a @
8Dp2m(sh)’ 4 o p ot 20, p Ph—P J=Jo> (v—;> {f dtt+f dt(2a—t)}T(t). (24
n 1 a
Pnl(pl_p,) — + ’ ) .
—(pn—p)]Wﬁ)(p—m )O(p; —p’), Assuming the following model dependence @ :

19 |Cn( )|2_; (25
where n'd [1+9°R7]*

. in Fig. 2 we plot the drag current versus the voltage applied
Pa=\2M(p—en),  Pp=\2m(u—e,*eVi2). along the drive nanowire for differenp,, values p,R/%

=3.33 andp,R/% =5. Near the threshold — 1/2<1 we ob-
tain, assuming @—1<(#/2p,R)? so that the argument of
the functionC,, is small andC,,~1,

P =P >2ps, P <Pa<p . (20) 4\/§Lm5A4(

We obtain the nonzero result for the current in ELp) only
if the following inequalities are met

vp| 2 1 eV )
5 <_23F3n(< )s
(26)

i.e. at the threshold the current increases nonlinearly with the
AssumingeV/2<p2/2m,|e,|<p3/2m the first inequality in  applied voltage. This dependence is illustrated by the small
Eq. (20) can be simplified too, and we may summarize theinlet in Fig. 2 since it can be noted only in very small vicin-
inequalities by stating that the drag current is generated prdty near the threshold. However, the second derivative of the
vided the bias voltage exceeds the threshold given by drag current with respect to the bias voltage diverges as

eV 3/2
2sp, 1) ’

The last inequality is equivalent to =€ 3Dp2mh’

eVi2>|e,—g||=|enl-

115417-4



PHONON DRAG IN BALLISTIC QUANTUM WIRES IN . .. PHYSICAL REVIEW B 66, 115417 (2002

d2J 1 the contribution of the piezoelectric coupling is smaller than
—_— the considered deformation potential coupling contribution.
dV?  Jevizsp,—1 Let us finally briefly discuss the temperature dependence

of the phonon drag current. In the nonlinear regimeeV
at the threshold for any new subband this fact can be ~sp the drag current does not depend on the temperature.
instrumental for the experimental investigation of the phononrhe temperature dependence in the linear response regime
drag. eV<T was investigated in Ref. 10. Under the condition
At large bias voltagesa>1 (taking into account 2p D/#>1 it was found that the phonon drag current with
2p,R/A>1) we obtain from Eq(24) that the current satu- increasing temperature evolves from a power-law depen-

rates at the value dence to an exponential dependence and then in a region of
) relatively high temperature§>sp, becomes temperature
v\ “5m independentif 2 p,R/A~1).
J=Jo| —| == . 27
s/ 32 2p.R
ACKNOWLEDGMENTS

Therefore the phonon drag current is a steplike function of
the bias voltage. New subbands will contribute to the drag ifI
the voltage is increased.

Assuming the parameterseV/4sp,=1 (for s=3
X 10° cm/sf/p,=0.5x10 % cm this means voltages/
~ mV), p,R/A=1,L=2 um, D~0.1 um, A~8 eV, and
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. Kozub, and S. V. Gantsevich for discussions. The author is
pleased to acknowledge the support for this work by the
Russian National Fund of Fundamental Rese&@iant No.
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m=0.07my we obtain the following estimation for the con- APPENDIX: DIAGRAMMATIC DERIVATION
tribution of any subband to the phonon-mediated drag cur- OF THE NONLINEAR PHONON DRAG
rent:

One can express the drag current also as an integral over
J~3-10 ?A. the transferred phonon momentupin an electron-electron
interaction. In the screened Hartree-Fock approximation for

the phonon self energy we obtain, for the current in the drag
IV. CONCLUSION

wire,

We note three essential differences between the phonon e do Ldq
drag and the Coulomb drag in the nonlinear regené>T. J=—— N — o a
First, there is the existence of the threshok/2 2% ) 2m 2w e
>maxsp,,leq|} (that can be achieved changing either the IDR |2
bias voltage or the gate voltage K w R A 0w.q,

. X311 =1, , —1I —
Second, the weak dependente 1/D on the distanc® quztanhz—_l_ (Mg, " Mog,] le(w,q,)]?’

between the centers of the drive and drag wires rather than (A1)

the exponential one in the CD case. On the other hand, note

that the distance dependence of the phonon drag current Wihere according to usual notatiok*, TIR, ITA(II{ I15)

our case is stronger than the distance dependence of the ptare Keldysh, retarded, and advanced components of the po-

non drag between two 2DEG layéts. larization operator for the nonequilibrium drivequilibrium
Third, in contrast to the CD case the phonon drag currendrag wire, D(Ffw,qz is the summed oven, retarded compo-

saturates at IargeV>spn. The currentis a steplike function nent of the(free) phonon Green’s function, anelis the di-

of the bias voltage since the bias voltage increasing will inelectric function describing the screening by the Coulomb
volve new subbands in the phonon drag. The width of eaclind phonon interactions. This form demonstrates that the
step can be estimated adV-~sp,/e, the height as drag current is a convolution of the spontaneous polariza-
Jo(vn/8)?[A/(PaR)]. tions within each quantum wire. We include the electron—

The piezoelectric coupling coefficient for GaAs having phonon coupling constants in@R. Polarization operators
the cubicT4 symmetry can be written as

5 Hf)’qz—Ziq-rEp: Slw+ep-q—ep)fip(1—fip-q)

m |4mep )
=5 | T | [F(0q. 991"

P®q +f|p7q(1_flp)]v (A2)
whereg is the piezoelectric constan,is the dielectric sus- T
ceptibility, andF is a function of angles. The estimations for 1‘[5(4:2 — P—d p+_0, (A3)
GaAs (3=10° Gaussian units,e=12, A=8 eV, p=5 p @TEp-qEpT!
glcn?, ands=3x10° cm/s) show that the piezoelectric in- A = (IR )* (Ad)
teraction is the dominating one for frequencies, ®,q ®,q

<10's L involve nonequilibrium electron distribution functions. Here
Frequencies of transmitted phonons in the phonon draghe spin summation is impliedIg involves equilibrium dis-
arewq>2s/(f/p,), i.e., are greater than ¥0s™*. Therefore,  tribution functions and is restricted >0 [cf. Eq. (10)].
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According to our convention we insert into Eq#2) and 2
(A3) shifted Fermi distribution function§“'R. Since in the J= Joz ( ) 8m(2p,D/h)
equilibrium there is an identity

Jadww-l— J‘zadw(Za—wﬁ |DR(w)|?.
0 a

(A10)

R A
q =T, — 1 q)coth

we can rewrite Eq(Al) as

Here a=eV/(4sp,) and DR(w) is the dimensionless pho-

_ €[ de Ldg, i non Green function

2) 27 277[

. . . L w—eV R(a)= quL 1+q°
1o 0,q,111-0,0,11Dow,q, ta”h——ta”h— (2m)? (0+i0)2—1-¢?

(A5) xCW(2pya,)CP(-2p,qy), (ALY

where we neglected the screening of the interaction and put
e=1. In the end of this section we briefly discuss when the
screening can be neglected.

In Eqg. (A5) we introduced the restricted to<0p<q op-
erator

where C*? stand for matrix elements of phonon-induced
Ctransitions in the drive and drag wire. Note that in this ap-
proach the product of the matrix elements depends on the
spatial displacemer® of the centers of the wires. This de-
pendence is determined independently of the shapes of the
channels and is described by ap§f) provided R<D,
leq —2im E dotep_q—ep) where R is the maximal transverse length of the w#e
0=p=q Further calculations can be made if one specifies the matrix
x[f}p(l—fﬁ) q)+f|Ff; o(1- fL)].  (A6) elements depending on the shape of the channel. If we model
them according to Eq25) our results are restored except for
In 115, , the sum is restricted by<p<0 and the replace- that the threshold is determined wilt?/(2p,D)2<1 accu-
mentsR—L, L—R are made. racy. The threshold is the consequence of the factfgtv)
In the linear response cas&<T Eq. (A5) can be written  for o<1 is exponentially decreasing function of the param-
in the form formally coinciding with the formula derived in eterD/R. For w>1 DR(w) can be reduced 16

Ref. 9 for the phonon-mediated drag in the 2DEG situation:
2

ImII§,, o IMIIT R )= — @ , ——
- d_deqZ ijq lqulD |2 D((,()) 4[1+R§(w2_1)]2{|J0(Dd w l)
T )27 27 sinffw/2T Ow,q,
(A7) +No(DgVw?—1)}, (A12)

Here in HR the summation is restricted by<Op<<q. This
case has been considered in a slightly different manner 'ﬂ1
Ref. 10, and corresponding results can be restored.

Let us concentrate on the nonlinear regime>T, i.e.,
the case of low temperatures. First, we note that the dlffer
ence of tankw/2T and tanh—eVW)/2T in Eq. (A5) imposes

where Jo(x) is the Bessel function anbly(x) is the Neu-
ann functlori13 In the last equation we introduced the di-
mensionless paramete®;=2p,R/% and Dy=2p,D/%.
Therefore, for 1/Z «<1 the current is given by

2
the constraint J= JOE ( ) 817(2an/h) dw(2a »)|DR(w)|?,
O<w<eV. (A13)
Under this condition the terrﬂKHK does not contribute, the ity DR(w) given by Eq.(A12) [cf. Eq.(21)]. Fora>1 we
polarization operatoHO » 1S equal to have
2
1_[0 ©,a, |q ®(w Un|2pn qz|) (A8) J= ‘]OE( )Bw(zanlﬁ)

provided w<p?/2m and the produclI{TI§ in the case of

aligned subbands in the two wir@g=p, is reduced to % jadww-f- fzadw(za—w)} IDR(w)|?
m2|_2 1 a
I = ~ — 7~ ©(eVi2—)8(w—v|2p,— ;) (A14)
z
+w—eV-o]. (A9) again withDR®(w) from Eq. (A12) [cf. Eq. (24)].

Let us discuss when the screening can be neglected. In the
Then after inserting the product into E@\5) we obtain two-subband approximation the dielectric function is
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_ _ R R _ R R 2
e(0,0,)=[1— (DR+U(g)ITRI[1— (DR+ U(q,)TIT] U(an)z%z, (A16)
—(DR+U(q,))2MRITE. d

Here the first term on the right-hand side includes the m_vvhere we assumed thi> 1. The polarization operator at

trawire D?s andU(q,) [for the first(f) and second wirg¢s)], @~eVcan be estimated as

while DR andU(q,) in the last term stand for interwir@ho- ) Spﬁ
non and Coulompinteractions. We note that the dielectric IMR=— m im+2 In[ 2me\} :

function with q,=2p, enters the final expression for the "

phonon drag current and assume that the intrawire phono'ﬁherefgre we obtain the following restriction to neglect the
interaction is smaller than the Coulomb intrawire interaction.SCreening:

(A17)

Then (omitting also the small interwire termsve are left 2 2
with ML Pty (A18)
pofi RS | 2me '

_r1_ R12
€(®,2pn) =[1=U(2py) IT7]". (A15) Otherwise the phonon drag current will be reduced by the
The intrawire Coulomb interaction can be estimated as  factor |e(eV,2p,)|2.
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