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Phonon drag in ballistic quantum wires in the nonlinear regime

M. I. Muradov
Solid State Physics Department, A.F. Ioffe Institute, 194021 Saint Petersburg, Russia
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The acoustic phonon-mediated contribution to the drag current in the ballistic transport regime in two nearby
one-dimensional nanowires is calculated. In the nonlinear regime, where the applied bias voltageeV is greater
than the temperatureT, the threshold of the phonon-mediated drag current with respect to bias or gate voltage
is predicted. It is found that the drag current contribution from any two aligned subbands in the drive and drag
wires saturates at large bias~driving! voltage.

DOI: 10.1103/PhysRevB.66.115417 PACS number~s!: 73.63.Nm, 73.21.Hb
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I. INTRODUCTION

The purpose of the present paper is to study the pho
contribution to the drag current in the course ofballistic
~collisionless! electron transport in a nanowire due to a b
listic driving current in an nearby parallel nanowire. Early
the possibility of the Coulomb drag~CD! effect in the bal-
listic regime in quantum wires was demonstrated by Gur
ich, Pevzner, and Fenton1 and experimentally observed b
Debray and co-workers.2,3 Using the approach of Refs. 4 an
5 we consider two parallel ballistic quantum channels t
are connected to two thermal reservoirs, each being in
independent equilibrium state. As was recently shown,
though most of the heat from a current through the chann
generated in the reservoirs6 part of the heat is generated b
the current carrying nanostructure itself7 via emission of
phonons. Electrons penetrating into a biased~drive! wire
from the leads are characterized by different chemical po
tials, the situation is nonequilibrium, and the phonons
generated by the drive wire.

There has been done much experimental8 and theoretical9

work on the phonon contribution to the drag current in
two-dimensional electron-gas~2DEG! situation. As for the
phonon drag in ballistic quantum wires it has been inve
gated theoretically10 only in the linear transport regimeeV
!T, whereV is the voltage applied along the drive wire.
contrast, the aim of this paper is to investigate the nonlin
regime eV@T. Our calculations are based on physica
transparent semiclassical transport theory~Boltzmann kinetic
equations!. A fully quantum-mechanical derivation based o
the Keldysh diagrammatic approach11 yields identical results
~see the Appendix!.

The electrons in the nearby~drag! nanowire being initially
in an equilibrium absorb the ballistic phonons emitted by
drive wire and the phonon drag current is created. Simila
the CD situation here we encounter that in the course
backscattering of electrons of thelth subband in the drive
wire the phonons with quasimomentum\qz/2 equal to the
Fermi momentumpn5A2m(m2« l

(1)) @« l
(1,2) is the bottom

of the l th transverse band in the drive~1! and drag~2! wires#
of the subband are generated that in their turn are abso
by the drag wire. For brevity in what follows we omit th
superscripts~1,2!. The contribution to the current of two sub
bands having dispersion« lp5« l1p2/2m in the drive wire
0163-1829/2002/66~11!/115417~7!/$20.00 66 1154
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and«np5«n1p2/2m in the drag wire vanishes unless

eV/2.u« l2«nu,

again similar to the CD case.12 However, in the phonon drag
we encounter another inequality

eV/2.spn ,

wheres is the sound velocity. Indeed, the energy-moment
conservation leads to

\vq5«p1\qz
2«p

that can be rewritten, usingq cosuq5qz as

ucosuqu5
2ms

up1\qzu2p
,1.

Now taking into account that bothup1\qzu andp momenta
should be in the vicinity of the Fermi momentumpn
6eV/2vn (mvn5pn) we obtain the threshold condition tha
eV/2 must be greater than both the Bloch-Gru¨neisen param-
eterspn and the shift of the band bottomsu«n2« l u.

In Sec. II we calculate the spatial dependence of phon
that are generated by a long, uniform drive wire. The curr
induced by these phonons in the drag wire is considere
Sec. III. In the Appendix we give a brief review how resu
obtained by our kinetic equation approach can be obtai
by the more complicated Keldysh method.11

II. PHONON SPATIAL DISTRIBUTION

We assume that the length of the nanowiresL is much
greater than the transverse dimensions of the wires. Th
fore the spatial distributionNq(r ) of the emitted by thedrive
wire ballistic ~nonequilibrium! phonons with wave vectorq
is given by the stationary Boltzmann equation

s¹Nq5R, ~1!

where s5]vq /]q is the group sound velocity,\vq is the
phonon energy, andR is the collision operator. The latter ca
be written as
©2002 The American Physical Society17-1
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R5
1

V (
l l 8

E 2Ldk

2p\
WquCll 8~q'!u2

3@ f l ,k1\qz
~12 f l 8k!~Nq11!2 f l 8,k~12 f l ,k1\qz

!Nq#

3d~« l ,k1\qz
2« l 8,k2\vq!, ~2!

whereCll 8(q)5^ lueiqr'u l8& is the matrix element for phono
induced transitions,V is the volume of the channel, andWq
is the electron–phonon coupling constant, that for the de
mation potential interaction isWq5pL2q2/rvq , whereL is
the deformation potential constant, andr is the mass density
We rewrite the Boltzmann equation in the form

~s¹1Pq!Nq5Rs , ~3!

where

Pq5
1

V (
l l 8

E 2Ldk

2p\
WquCll 8~q'!u2@ f l ,k1\qz

2 f l 8,k#

3d~« l ,k1\qz
2« l 8,k2\vq! ~4!

is the polarization operator describing renormalizat
~screening! of the electron-phonon interaction~see the Ap-
pendix for details!, andRs is the source of the phonons:

Rs5
1

V (
l l 8

E 2Ldk

2p\
WquCll 8~q'!u2f l ,k1\qz

~12 f l 8k!

3d~« l ,k1\qz
2« l 8,k2\vq!. ~5!

We restrict ourselves by the low temperaturesT!spl;eV.
Therefore, seeking the solution of Eq.~3! in the form Nq
5Nq

eq1DNq @Nq
eq is the equilibrium phonon distribution

~Bose! function# we omit the termPqNq
eq . For the nonequi-

librium part DNq we do not take into account the electro
phonon interaction renormalization and therefore omit in E
~3! the polarization operator entirely. The Boltzmann equ
tion takes the form

~]x1a]y!DNq~x,y!5
Rs

sx
, a[

sy

sx
5tanwq . ~6!

We assume that the spatial distribution of the genera
phonons depends only on the transverse coordinatesx,y.

According to the approach in Refs. 4 and 5, we expr
the distribution functions in Eq.~5! as the Fermi functions
f F(« lp2m (R,L)) with shifted chemical potentialsm (R,L)5m
6eV/2; m is the quasi-Fermi level that depends on the g
voltage andV is the bias voltage.

Concerning the collision operatorRs spatial dependenc
we assume that it has nonzero values only within the na
wire. Although this quantity is discussed in detail in Ref.
we briefly discuss how phonon emission can arise. We c
sider only intraband transitions. Consider an electron hav
negative initial momentumk1\qz and propagating to the
left. This electron is described byf F(« lk1\qz

2m2eV/2).
After phonon generation the final state must be propaga
to the right (k.0), and is described byf F(« lk2m1eV/2).
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Since the initial state must be occupied and the final s
must be empty one obtains the following product of dist
bution functions in Eq.~5!:

f F~« lk1\qz
2m2eV/2!@12 f F~« lk2m1eV/2!#.

Since at low temperatures the distribution functions are u
step functions the product is unity until

« lk1\qz
,m1eV/2, « lk.m2eV/2.

These inequalities and the energy conservation law yield
the phonon generation processes will take place in the p
non frequency range7

2ms212spl
2,\vq,eV.

Herepl
2 stands for the Fermi momentum shifted byeV/2:

pl
25A2m~m2« l2eV/2!.

Our approach considers the phonon generating proce
as taking place homogeneously inside the whole chan
~wire!. The phonons emitted from the edges of the chan
can be generated only near specific points where the l
energy and momentum conservation laws are met. An ef
tive interaction length L for these processes can b
introduced.7 We assume that relative intensity of these p
cesses compared to uniform generation given by min@L/L,1#
is small.

We assume the channels have uniform cross sections
origin of the system of reference being in the center of
current-carrying~drive! wire, the drag wire being displace
by D in x direction. Therefore we need the solution of Eq.~6!
only for sx.0.

The solution of Eq.~6! depends on the cross section g
ometry of the wire. Assuming, for simplicity, that the cro
section of the wire is a circle~it is worth noting that the
result does not change significantly for other geometries
the cross section! of the radiusR we obtain, for the coordi-
nates outside the wire cross section,

Nq5Nq
eq1

2Rs

sx~11a2!
AR2~11a2!2~y2ax!2

3Q@R2~11a2!2~y2ax!2#. ~7!

The geometrical interpretation of this solution is physica
transparent~see Fig. 1!: let us draw a line having the angl
ws (tanws5a) with thex axis through the center of the wire
Now consider a line parallel to the already drawn line a
crossing the wire. The distanceuACu from the pointx,y out-
side the wire and lying on the second line to the first line
uy2axucosws5uy2axu/A11a2. The Q function in Eq. ~7!
states that if this distance is smaller than the radiusR ~i.e.,
the second line does cross the wire! the result is proportiona
to the length of the chord cut from the second line by t
cross section; otherwise the result is zero. A similar interp
tation is valid for the other geometries of the wire cro
section.
7-2
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III. PHONON DRAG CONTRIBUTION
TO THE DRAG CURRENT

Now in thedrag wire due to an electron-phonon intera
tion we have f n5 f n

F1D f n , with D f n satisfying the
equation1

v
]D f n

]z
5I @ f n#, ~8!

where v5]«n /]p is the electron velocity andI @ f # is the
electron-phonon collision term. Forp.0 (p,0), respec-
tively, the solution of this equation is

D f n~z!5~z6L/2!
1

v
I @ f n#. ~9!

The boundary condition isD f @p.0 (p,0)#50 at z
57L/2. The current then is given by

J5e
1

V (
n,p

E dAvD f n5e(
n
E dxdy

A E
0

`2Ldp

2p\
I @ f n#.

~10!

Here the integration is over the cross sectionA of the drag
wire. The electron-phonon collision term is

I @ f n#5(
n8

E dp8

2p\E dq'

~2p!2 WquCnn8~q'!u2$@ f n8p8~12 f np!

3~Np82p11!2 f np~12 f n8p8!Np82p#d~«np2«n8p8

1\vp82p!1@ f n8p8~12 f np!Np2p82 f np~12 f n8p8!

3~Np2p811!#d~«np2«n8p82\vp2p8!%. ~11!

In Nq and vq we indicate explicitly only the longitudina
component of quasimomenta of phonons. The first and
ond terms in Eq.~11! describe theNp8-p phonon generation
in the electron transition«n8p8→«np and absorption of the
phononNp8-p via the electron transition«np→«n8p8 respec-
tively. The third and fourth terms describe absorption of
phononNp-p8 («n8p8→«np) and generation («np→«n8p8) of
the phononNp-p8 . In what follows the notationNq stands
only for the nonequilibrium part of the phonon distribution

FIG. 1. Schematic representation of the cross section of
drive wire ~shaded region! and the phonon propagation direction
11541
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Eq. ~7! since the equilibrium part yields zero. For the curre
induced in thedrag wire by the phonons emitted by thedrive
wire we obtain

J5e(
n,n8

E dxdy

A E
0

`2Ldp

2p\ E
2`

` dp8

2p\E dq'

~2p!2

3WquCnn8~q'!u2@ f n8p82 f np#$Np8-pd~«np2«n8p8

1\vp8-p!1Np-p8d~«np2«n8p82\vp-p8!%. ~12!

Here the distribution functionsf (n,n8) are equilibrium Fermi
functions f F(«np2m). Assuming that the angle dependen
is involved only through the phonon distribution we can ta
an average over the cross section of the drag wire and i
grate over the angleswq :

E dxdy

pR2 E q'dq'

~2p!2 dwqNq

5
2R

~2p!2spE qdq'RsE
0

1

rdrE
0

2p

dwE
2p/2

p/2

dwq

3A12S r sinw2
D

R
sinwqD 2

. ~13!

Since the distance between the centers of the wire
assumed to be much bigger than the radius of each wire

R

D
!1,

we see that only small angles contribute to the integral:

R

D
~r sinw21!,sinwq.wq,

R

D
~r sinw11!.

Therefore, the result

E
2 ~R/D !(12r sin w)

~R/D !(r sin w11)
dwqA12S r sinw2

D

R
wqD 2

5
p

2

R

D

is proportional to the~solid! angleR/D of the cross section
of the drag wire relative to the drive wire. This factor simp
reflects the fact that phonons emitted by the drive w
should pass through the drag wire:

E dxdy

pR2 E q'dq'

~2p!2 dwqNq5
1

4p

R

s

R

DE qdq'Rs . ~14!

In what follows we consider only intraband phonon emiss
and absorption processes, i.e., we putn5n8 and l 5 l 8. In-
serting this expression into Eq.~12! and taking into accoun
energy conservation laws

d~«np2«np81\vp82p!d~« lk1p82p2« lk2\vp82p!

5
m

\sup2p8u
d~k2p!dS q2

«np82«np

\s D , ~15!

that allow the integration overk ~andq), we obtain

e

7-3
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J5e
LmL4

8Dr2p3~s\!7 (
nl

E
0

`

dpE
2`

`

dp8@ f np82 f np#

3
Pnl~p,p8!

up2p8u $ f lp8~12 f lp!Q~«np82«np2sup2p8u!

1 f lp~12 f lp8!Q~«np2«np82sup2p8u!%. ~16!

Here we introduced notations

Pnl~p,p8!5
~«np82«np!

4

fn~p,p8!
UCnS 1

\s
fn~p,p8! D U2

3UCl S 1

\s
fn~p,p8! D U2

, ~17!

fn~p,p8!5A~«np82«np!
22s2~p2p8!2. ~18!

Now taking into account that the phonons are emitted
electrons having a negative initial momentum†the nonequi-
librium functions f l ,p are Fermi functions shif-
ted by eV/2.0 chemical potentials, i.e., f lp5 f lp

L

for p.0 and f lp5 f lp
R for p,0 „f L5 f F(«2@m2eV/2#…,

f R5 f F(«2@m1eV/2#)…‡ and that the integrals vanish unle
the Fermi functionsf and 12 f under the integral overlap
one can conclude thatp8, satisfying 2`,p8,2p22ps,
ps5ms, contributes to the current. To avoid further conf
sion about the drag current direction note that we cons
eV.0, and therefore the first term on the right-hand side
Eq. ~16! survives. Otherwise, ifeV,0 only the second term
in this equation will contribute to the current and due
f np82 f np the current will change the sign.

We consider the caseT!\vq,eV, under these condi
tions electron distribution functions can be replaced by
step functions and we obtain

J5e
LmL4

8Dr2p3~s\!7 (
nl

E
0

`

dpE
p12ps

`

dp8@Q~pn2p8!

2Q~pn2p!#
Pnl~p,2p8!

p1p8
Q~p2pl

2!Q~pl
12p8!,

~19!

where

pn5A2m~m2«n!, pn
65A2m~m2«n6eV/2!.

We obtain the nonzero result for the current in Eq.~19! only
if the following inequalities are met

pl
12pl

2.2ps , pl
2,pn,pl

1 . ~20!

The last inequality is equivalent to

eV/2.u«n2« l u5u«nlu.

AssumingeV/2!pn
2/2m,u«nlu!pn

2/2m the first inequality in
Eq. ~20! can be simplified too, and we may summarize t
inequalities by stating that the drag current is generated
vided the bias voltage exceeds the threshold given by
11541
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eV/2.max$spn ,u«nlu%.

For simplicity we consider the case of aligned subbands,
we put«nl50. Then the result depends on the paramete

a5eV/4spn ,

and we discriminate between two regions ofa determined by
a,1 anda.1. In the first region 1/2,a,1 we obtain

J5J0(
n

S vn

s D 2E
1

2a

dt~2a2t !T~ t !, ~21!

where we introduced

J052e
2Lm5L4

p3Dr2\7 , ~22!

T~ t !5
t4

At221
UCnS 2pn

\
At221D U2UClS 2pn

\
At221D U2

.

~23!

In the second regiona.1 (eV/2.2spn) we obtain

J5J0(
n

S vn

s D 2H E
1

a

dtt1E
a

2a

dt~2a2t !J T~ t !. ~24!

Assuming the following model dependence forCn :

uCn~q!u25
1

@11q2R2#2 , ~25!

in Fig. 2 we plot the drag current versus the voltage appl
along the drive nanowire for differentpn values p1R/\
53.33 andp2R/\55. Near the thresholda21/2!1 we ob-
tain, assuming 2a21!(\/2pnR)2 so that the argument o
the functionCn is small andCn;1,

J52e
4A2Lm5L4

3Dr2p3\7 S vn

s D 2S eV

2spn
21D 3/2

, 1,
eV

2spn
~,2!,

~26!

i.e. at the threshold the current increases nonlinearly with
applied voltage. This dependence is illustrated by the sm
inlet in Fig. 2 since it can be noted only in very small vicin
ity near the threshold. However, the second derivative of
drag current with respect to the bias voltage diverges as

FIG. 2. Drive voltage dependence of the phonon contribution
the drag current for different values ofpn .
7-4
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d2J

dV2 ;
1

AeV/2spn21

at the threshold for any new subbandn, this fact can be
instrumental for the experimental investigation of the phon
drag.

At large bias voltagesa@1 ~taking into account
2pnR/\.1) we obtain from Eq.~24! that the current satu
rates at the value

J5J0S vn

s D 2 5p

32

\

2pnR
. ~27!

Therefore the phonon drag current is a steplike function
the bias voltage. New subbands will contribute to the dra
the voltage is increased.

Assuming the parameterseV/4spn>1 ~for s.3
3105 cm/s,\/pn.0.531026 cm this means voltagesV
; mV), pnR/\.1, L.2 mm, D;0.1 mm, L;8 eV, and
m50.07m0 we obtain the following estimation for the con
tribution of any subband to the phonon-mediated drag c
rent:

J;3•10212A.

IV. CONCLUSION

We note three essential differences between the pho
drag and the Coulomb drag in the nonlinear regimeeV@T.
First, there is the existence of the thresholdeV/2
.max$spn ,u«nlu% ~that can be achieved changing either t
bias voltage or the gate voltage!.

Second, the weak dependenceJ;1/D on the distanceD
between the centers of the drive and drag wires rather
the exponential one in the CD case. On the other hand,
that the distance dependence of the phonon drag curre
our case is stronger than the distance dependence of the
non drag between two 2DEG layers.8

Third, in contrast to the CD case the phonon drag curr
saturates at largeeV@spn . The current is a steplike functio
of the bias voltage since the bias voltage increasing will
volve new subbands in the phonon drag. The width of e
step can be estimated asDV;spn /e, the height as
J0(vn /s)2@\/(pnR)#.

The piezoelectric coupling coefficient for GaAs havin
the cubicTd symmetry can be written as

Wq5
p

rvq
F4peb

e G2

@F~uq ,wq!#2,

whereb is the piezoelectric constant,e is the dielectric sus-
ceptibility, andF is a function of angles. The estimations f
GaAs (b5105 Gaussian units,e512, L58 eV, r55
g/cm3, ands533105 cm/s) show that the piezoelectric in
teraction is the dominating one for frequenciesvq
<1011 s21.

Frequencies of transmitted phonons in the phonon d
arevq.2s/(\/pn), i.e., are greater than 1012 s21. Therefore,
11541
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the contribution of the piezoelectric coupling is smaller th
the considered deformation potential coupling contributio

Let us finally briefly discuss the temperature depende
of the phonon drag current. In the nonlinear regimeT!eV
;spn the drag current does not depend on the temperat
The temperature dependence in the linear response re
eV!T was investigated in Ref. 10. Under the conditio
2pnD/\@1 it was found that the phonon drag current wi
increasing temperature evolves from a power-law dep
dence to an exponential dependence and then in a regio
relatively high temperaturesT@spn becomes temperatur
independent~if 2 pnR/\;1).
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APPENDIX: DIAGRAMMATIC DERIVATION
OF THE NONLINEAR PHONON DRAG

One can express the drag current also as an integral
the transferred phonon momentumqz in an electron-electron
interaction. In the screened Hartree-Fock approximation
the phonon self energy we obtain, for the current in the d
wire,

J52
e

2 (
nl

E dv

2p

Ldqz

2p
P0v,qz

K

3H Pv,qz

K tanh
v

2T
2@Pv,qz

R 2Pv,qz

A #J uD0v,qz

R u2

ue~v,qz!u2
,

~A1!

where according to usual notationsPK, PR, PA(P0
K ,P0

R)
are Keldysh, retarded, and advanced components of the
larization operator for the nonequilibrium drive~equilibrium
drag! wire, D0v,qz

R is the summed overq' retarded compo-

nent of the~free! phonon Green’s function, ande is the di-
electric function describing the screening by the Coulo
and phonon interactions. This form demonstrates that
drag current is a convolution of the spontaneous polar
tions within each quantum wire. We include the electro
phonon coupling constants intoDR. Polarization operators

Pv,q
K 522ip(

p
d~v1« lp2q2« lp!@ f lp~12 f lp2q!

1 f lp2q~12 f lp!#, ~A2!

Pv,q
R 5(

p

f lp2q2 f lp

v1« lp2q2« lp1 i0
, ~A3!

Pv,q
A 5~Pv,q

R !* ~A4!

involve nonequilibrium electron distribution functions. He
the spin summation is implied.P0

K involves equilibrium dis-
tribution functions and is restricted top.0 @cf. Eq. ~10!#.
7-5
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According to our convention we insert into Eqs.~A2! and
~A3! shifted Fermi distribution functionsf L,R. Since in the
equilibrium there is an identity

Pv,q
K 5~Pv,q

R 2Pv,q
A !coth

v

2T
,

we can rewrite Eq.~A1! as

J52
e

2E dv

2p

Ldqz

2p
@P0,v,qz

K P2,v,qz

K

2P0,2v,qz

K P1,2v,qz

K #uD0v,qz

R u2S tanh
v

2T
2tanh

v2eV

2T D ,

~A5!

where we neglected the screening of the interaction and
e51. In the end of this section we briefly discuss when
screening can be neglected.

In Eq. ~A5! we introduced the restricted to 0,p,q op-
erator

P1,v,q
K 522ip (

0,p,q
d~v1« lp2q2« lp!

3@ f lp
L ~12 f lp2q

R !1 f lp2q
R ~12 f lp

L !#. ~A6!

In P2,v,q
K the sum is restricted byq,p,0 and the replace

mentsR→L, L→R are made.
In the linear response caseeV!T Eq. ~A5! can be written

in the form formally coinciding with the formula derived i
Ref. 9 for the phonon-mediated drag in the 2DEG situati

J52
e2V

T E dv

2p

Ldqz

2p

Im P0,v,qz

R Im P1,v,qz

R

sinh2v/2T
uD0v,qz

R u2.

~A7!

Here in P1
R the summation is restricted by 0,p,q. This

case has been considered in a slightly different manne
Ref. 10, and corresponding results can be restored.

Let us concentrate on the nonlinear regimeeV@T, i.e.,
the case of low temperatures. First, we note that the dif
ence of tanhv/2T and tanh(v2eV)/2T in Eq. ~A5! imposes
the constraint

0,v,eV.

Under this condition the termP2
KP0

K does not contribute, the
polarization operatorP0,2v

K is equal to

P0,2v,qz

K 522i
mL

qz
Q~v2vnu2pn2qzu! ~A8!

providedv!pn
2/2m and the productP1

KP0
K in the case of

aligned subbands in the two wirespn5pl is reduced to

P1,2v
K P0,2v

K 52
4m2L2

qz
2 Q~eV/22v!Q~v2vnu2pn2qzu!

1@v→eV2v#. ~A9!

Then after inserting the product into Eq.~A5! we obtain
11541
ut
e

:

in

r-

J5J0(
n

S vn

s D 2

8p~2pnD/\!

3H E
0

a

dvv1E
a

2a

dv~2a2v!J uDR~v!u2.

~A10!

Here a5eV/(4spn) and DR(v) is the dimensionless pho
non Green function

DR~v!5E dq'

~2p!2

11q'
2

~v1 i0!2212q'
2

3C(1)~2pnq'!C(2)~22pnq'!, ~A11!

where C(1,2) stand for matrix elements of phonon-induce
transitions in the drive and drag wire. Note that in this a
proach the product of the matrix elements depends on
spatial displacementD of the centers of the wires. This de
pendence is determined independently of the shapes o
channels and is described by cos(qxD) provided R!D,
where R is the maximal transverse length of the wire~s!.
Further calculations can be made if one specifies the ma
elements depending on the shape of the channel. If we m
them according to Eq.~25! our results are restored except f
that the threshold is determined with\2/(2pnD)2!1 accu-
racy. The threshold is the consequence of the fact thatDR(v)
for v,1 is exponentially decreasing function of the para
eterD/R. For v.1 DR(v) can be reduced to10

DR~v!52
v2

4@11Rd
2~v221!#2 $ iJ0~DdAv221!

1N0~DdAv221!%, ~A12!

where J0(x) is the Bessel function andN0(x) is the Neu-
mann function.13 In the last equation we introduced the d
mensionless parametersRd52pnR/\ and Dd52pnD/\.
Therefore, for 1/2,a,1 the current is given by

J5J0(
n

S vn

s D 2

8p~2pnD/\!E
1

2a

dv~2a2v!uDR~v!u2,

~A13!

with DR(v) given by Eq.~A12! @cf. Eq. ~21!#. For a.1 we
have

J5J0(
n

S vn

s D 2

8p~2pnD/\!

3H E
1

a

dvv1E
a

2a

dv~2a2v!J uDR~v!u2,

~A14!

again withDR(v) from Eq. ~A12! @cf. Eq. ~24!#.
Let us discuss when the screening can be neglected. In

two-subband approximation the dielectric function is
7-6
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e~v,qz!5@12~D f
R1U f~qz!!P f

R#@12~Ds
R1Us~qz!Ps

R#

2~DR1U~qz!!2P f
RPs

R.

Here the first term on the right-hand side includes the
trawire D f s

R andU(qz) @for the first~f! and second wire~s!#,
while DR andU(qz) in the last term stand for interwire~pho-
non and Coulomb! interactions. We note that the dielectr
function with qz52pn enters the final expression for th
phonon drag current and assume that the intrawire pho
interaction is smaller than the Coulomb intrawire interactio
Then ~omitting also the small interwire terms! we are left
with

e~v,2pn!5@12U~2pn!PR#2. ~A15!

The intrawire Coulomb interaction can be estimated as
n

an

an

nd

11541
-

on
.

U~2pn!.
e2

LRd
2 , ~A16!

where we assumed thatRd@1. The polarization operator a
v;eV can be estimated as

PR.2
mL

2pn\p F ip12 lnH 8pn
2

2meVJ G . ~A17!

Therefore we obtain the following restriction to neglect t
screening:

e2m

pn\

1

Rd
2 lnH pn

2

2meVJ !1. ~A18!

Otherwise the phonon drag current will be reduced by
factor ue(eV,2pn)u2.
d
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