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Dimensional crossover and quantum effects of gases adsorbed on nanotube bundles
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Adsorption properties of several gagéke, CH,, Ar, and X@ on the external surface of a carbon nanotube
bundle are investigated. Calculations are performed at low coverage and variable temperature, and for some
fixed temperatures as a function of coverage. Within a simple maud#ie limit of very low coveragewe are
able to study the evolution of the film’s thermal properties from those of a one dimen&l@jdluid to those
of a 2D film. In addition, grand canonical Monte Carlo simulations are performed in order to identify a
second-layer groove phase that occurs once a monolayer of atoms covers the external surface. We derive from
the simulations the isosteric heat, compressibility, and specific heat as a function of coverage. We evaluate
alternative models in order to derive quantum corrections to the classical results. We compare our findings with
those of recent adsorption experiments.
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I. INTRODUCTION Thereby encouraged, we proceed in the present paper to ad-
dress several aspects of this adsorption problem, which were
The nature of gas adsorption within and outside ofeither ignored in our previous studies or received only cur-
bundles of carbon nanotubes is a burgeoning field that prongory attention there. One particular goal is to better under-
ises to reveal novel phases of mattef Several recent ex- stand how the film’s thermal properties evolve from those of
periments have explored the behavior of gases adsorbed @ essentially 1D fluid to those of a monolayand eventu-
the outside of bundles, or ropes, consisting of many nancally bilayen film adsorbed on this bundle surface. An aspect
tubes having nearly parallel orientation. Our group has studof this investigation is to identify and characterize a
ied this system with classical computer simulatinm the ~ “second-layer groove phase,” for which simulations and ex-
case of Ne, Ar, Kr, and Xeand model ground-state calcula- Periments have provided some evidefit€:"**A second
tions purporting to describe this external surface adsorptioRrincipal goal of the present study is to understand how
of classical, or nearly classical, gasé3®Other studies, both quantum effects alter the thermodynamic quantities of inter-
experimental and theoretical, have been undertaken for thest. These effects are particularly important for, e, Ne,
behavior of quantum gases, such as hydrogen or helium, iand CH; films in the present geometfyWe emphasize that
quasi-one-dimensional (quasi-l1) models of this the potentials we use, like all semiempirical potentials, are
environment:~’ uncertain to some degree. As an example, we may compare
Figure 1 shows the potential eneriyr) of a methane the well depths computed with the present parameters and
molecule on the external surface of a nanotube bundle, conthose resulting from a recent selection of “best valugs.”
puted (as discussed in Sec. JVby summing empirical The well depth from a single graphene sheet is given by
Lennard-Jones pair interactions between the molecule andgraphene= (67/5)€gcoac0c . Whereey, anday are the gas-
the C atoms comprising the nanotubehich are actually

smeared out to form “continuum carbon” on a cylindrical 8
surface.’® The characteristic features Wfare a small region -100
nestled between tubes, called a “groove,” in which the po- 64

tential is extremely attractive, and a more extended region
where the potential varies only slowly along the surface. It is
not surprising that the adsorption at a given temperature __
(computed in Sec. IYexhibits a 1D fluid regime, confinedto <<
the groove, and a 2D monolayer regime as the number o =, 21
adsorbed particles increases. The evolution of this behavio

N

as a function of gas pressupeand temperatur@ is qualita- 0-
tively the same as that found in our simulations of the other
gases. 8 5
At least some of the extant experimental datdare in 8 6 -4 2 0 2 4 6 8
qualitative, or even quantitative, agreement with calculations % (R)

based on such simple model assumptions about the geometiy

(nanotubes are uniform, identical, and parallel to one an- giG. 1. Isopotentialkelvin units contours for a Cii molecule
othep and interactiongpairwise additive®® As an example,  on the external surface of a nanotube bundle. The contour nearest
we state in Table | the ratio between the binding energies ifhe groove x=y=0) corresponds t/= — 2000 K. The gray areas
the groove and on graphite in the low-density limit, obtainedin lower left and right corners correspond to cross sections of two
from our calculations and two different experimental groupsneighboring nanotubes containing the carbon atoms.
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TABLE I. Ratio of binding energy of a molecule in the groove ity of this ansatz is discussed and a heuristic argument is
to that on graphite. The values from theory correspond to the limiforovided to justify its use here.
of zero coveragésingle particlg. The experimental values are ob-  Section IV presents the classical simulation results for
tained from isosteric heat values through the relatigF — Qg gst, C and the compressibilitydN/du)r, where u is the
+2kgT, assuming that the adsorbed phase behaves as a 1D syst¢Remjcal potential. Methane adsorption isotherms are pre-
in the temperature and density range explored. Experiment 1 valuegnted for several temperatures. A key question of interest is
are from Ref. 9 and Experiment 2 values from Refs. 13)(&hd 14 \yhether the hypothetical second-layer groove phase exists

(CH, and Xe. for all of the adsorbates we have considered, or just for Ne,

. . as we originally conjectured. In addressing this issue, we

Theory Experiment 1 Experiment 2 1hake contact with a growing body of experimental d&ts.

H, 1.43 15 1.5 Section V summarizes our results and discusses other issues,
D, 1.45 1.8 such as the potential role of heterogeneity, which is certainly
Ne 151 1.73 present, but is ignored in virtually all calculations to date.
CH, 1.43 1.76 1.34
Xe 1.41 1.74 1.37 Il. LOW-DENSITY REGIME

At very low density, one may neglect both interactions

carbon Lennard-Jones parameters apds the surface den- and quantum statistics in evaluating the film's properties.

sity of carbon atoms. The ratio of this depth computed with! his means that the physical behavior of the system reflects

the “best” parameters to that obtained from our parameterdn® dynamics of single-particles in the external field of the

is 0.8, 0.8, 1.0, 1.0, 1.1, and 1.1 for the sequence He, Ne, ABurface. Letg(E) be the surface single particle density of

Kr, Xe, and H, respectively. states, which may be derived, in principle, by solving the
In Sec. II, we consider the behavior of a film at very low Schralinger equation in this potential field. Then, the total

coverage, in which case the adsorption may be considered gsmber of adsorbed particles Biand u satisfies

a single-particle problem; this corresponds to the so-called

“H.enry's Iavy regime” of adsorptiorf? in whiph the coverage N= eﬁﬂf dE g(E)e FE=efrQ(B). )

N is proportional to the pressure, as specified by the Henry’s

law constantK=Ilimy_o(N/P). This “constant” typically ) ) ) N )

exhibits an Arrhenius dependence Bnwith characteristic ~ HereQ(p) is the single-particle partition function. For an

activation energy of the order of the heat of adsorption. As i¢deal spinles€ 3D gas, assumed to be in equilibrium with

known from analogous treatments of adsorption on planathe film, e##=pg\3P, where\; is the de Broglie thermal

surfaces, thd dependence oKy is a sensitive function of wavelength §2=2xph%m). By differentiating Eq.(2), at

the potential provided by the substrate, a subject of obvioufixed N, we obtain the quantum expression for the isosteric

interest?! We compute in this low-coverage regime the spe-heat at low density,

cific heat(per particle C/N, whereC is the heat capacity,

and the isosteric heat 5 5 [dInQ
whe gl o
B (& In P) @ N.A
Gt p N' (E) is the quantum-statistical average of the energy per

) ) particle. The quantum value of the Henry's law coefficient
Here 3~ 1=kgT. Further, in Sec. Il, we develop a simple gatisfies

“crossover potential” model, aimed at describing the film’s

behavior in the regime of crossover from 1D to 2kere, a Kuy=B\3Q(B). (4)
consequence of increasinf). The model works well in

characterizing the thermal properties of a low-coverage clas- The quantum specific heat per partiééxpressed in units

sical film, as demonstrated by consistency between the resf the Boltzmann’s constanat fixed surface areA satisfies
sults from the model and those from the “exact” simulations.

This agreement provides some justification for using the C #InQ
model to perform quantum calculations for this low-coverage — :,32( ) , (5)
regime. The primary result of this calculation is a determina- Nkg ap? NLA
tion of the quantum correction to the thermal properties com-
puted in the simulations. and from Eq.(3),
Section Il develops a phonon model for the high-density
1D fluid regime of adsorption within the groove. The treat- 1ldgy 5 C° ©
ment is a straightforward extension of the familiar Debye ks dT 2 Nkg’

model used to treat bulk solids. There is an underlying

premise that phonons are, indeed, the relevant thermal exci- Classically, one employs an alternative formulation of the
tations of a 1D fluid(since there is no crystallizatignfrom behavior of an ideal gas in the external field of the substrate.
which the thermal properties may be calculated. The reliabilThe Henry’s law constant is then
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energy increase of the system required by particles going
from the lower level to the upper level. Here, the “lower
level” is a band of single-particle states localized near the
groove and the “upper level” corresponds to states spread
across the rest of the surface.

We invoke a simple “crossover model” of the potential to
demonstrate that this is the explanation of the behavior. We
divide configuration space into two regions, giving additive
contributions to the partition function,

C / Nk,

Z(B)= d2r e—B[Vg+(1/2)ar2]

groove

, I ) | . I . I . — B[V i+ (1/2)k 2]
0 200 400 600 800 1000 +Ls f i dy e ~t'm md, (11)

ono
T (K)
The first integral is a 2D integral over the groove region,
FIG. 2. The low-density specific heat, in units of the Boltz- where we assume the potential energy to be of harmonic
mann’s constant, for CH Full curve is the classical specific heat type. The second integral evaluates the contribution from the
obtained from Eq(9) and the potential energy shown in Fig. 1. monolayer region over the external surface of the tubes, as-
Thin curve is the classical specific heat derived from the modekuming a harmonic potential along the direction perpendicu-
crossover potential. Dashed curve is the quantum specific heat frofay to the surfacel  is the length of this regiofa fraction of
Egs.(5) and(15). 2R, Rbeing the radius of the tubesver which the mono-
layer states can extend. We estimate reasonable values for
o Vi) each constant in the modéfadius of the groove region
KH‘BI dre”0=pZ(B). (D 1A Vy=—2028 K, a=4800 K/A, V,,= —1050 K, ky,
=6000 K/A?, andL.=18 A) from the full potential of Fig.
Z(pB) is a classical single-particle configuration integral 1. Using this model partition function, we obtain the results
and the integration domain is @omewhat arbitrarily de- shown in Fig. 2 as a thin line. The position and shape of the
fined volume near the substrate. The classical isosteripeak in Fig. 2 agree well with the “exact” results. This im-
heat differs from the quantum expression because the quapties that the model has the key physical ingredient, which is
tum mean energy is replaced by the classical energythe crossover from 1D to 2D regimes. We observe that the

(3128) +(V)el, peak temperature<220 K) is significantly less than the en-
ergy difference between monolayer and groove potentials
1 1 dinz —\ ~
Ger=—=—(V)g=—=+ ——. ®) (Vm—Vy=1000 K).
B B dg However, we note qualitative differences between the

“exact” and model curves at both low and higfis. These
The classical specific heat is given by differences come from the deviation of the full potential
from the model's assumed harmonic shape. First, we con-
Cq 3. ,0InZ sider the linear region of variation & at low T. This be-
Nks 2 Py ©) havior may be derived from perturbation theory, assuming
that there is a “small” quartic term in the potential,
For reference, we present the analytical results in the ApdV, which may be expressed in terms of appropriate coef-
pendix for the limiting case of motion in 1D with a quadratic ficientsa;,
transverse confining potential

SV(x,y)=a;x?y’+a(x*+y?). (12
I,2
> (10 The classical energy shiiE is just the expectation value
of the perturbatiofevaluated with the harmonic potential,
wherer2=x?+y? and thez axis is the usual cylindrical sym- Eq. (10)]; this leads t6* SE=(a,+ 6a,)/(«)2. This quar-
metry axis, coincident with the groove site. tic correction toE gives rise to the terms proportional Tan
The full line in Fig. 2 depicts the classical specific heat inthe specific heat, which are observed in Fig. 2 at low T, i.e.,
the limit of zero coverage computed from the potential enthe regime T<100 K) where the quartic terms are ad-
ergy shown in Fig. 1. One observes that the behavior crossesjuately described by the perturbation theory. At very high
over from the 1D valug5/2, as shown in the Appendiat T, the deviation ofC/(Nkg) from the 2D value(2) occurs
low T to a value near the 3D valu@/2, sincey motion is  because of the largg behavior of the full potential, which
included at highT. However, there appears a dramatic peakiies below the harmonic approximation.
at intermediatél =200 K. Such a peak is typical of the spe-  The simple crossover model potential is thus seen to yield
cific heat of two-level systems; the peak arises due to tha specific heat that agrees qualitatively with the numerical

V(I‘)=V0+a
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FIG. 3. Effective potential energy M{(x) (dashed curveob-
tained by solving the Schrodinger equation for the ,Qiotion
perpendicular to the surface at each positioon the surface. The

full curve is a fit to this potential using the functional form
of Eq. (13). The largest value that can take depends on the param-

eters of the model potential. For example, we obtain 21 dis-

results(without fitting the parameteysHence, we conclude Crete levels for Ch 11 for Ne, and 3 for bl With_this
that the model contains the essential ingredients possessgBCtrum, we can factoriZg(p) in the following way:

by the “true” potential. We now use the simple model po- L

tential in.a.mother way to deduce the quantum expression for Q(B)= }\_[Qf(ﬂ)+Q+(ﬁ)]Qy(lg), (15)
the specific heat and other thermal properties at veryNow T

To do the quantum calculation accurately requires a determ_livhereL/)\T is the sum of the free particle states along the

nation of the density of states in this inhomogeneous env'airection,Qy(,B) comes from the contribution of the discrete

States in a potential well along the direction perpendicular to
the surface(here assumed to be a harmonic oscillator’s

FIG. 4. Isosteric heat and quantum corrections for,@Hthe
three cases plotted in Fig. 2.

ronment. Our alternative method involves a further set o
approximations, which obviates solving the full 3D Schro
dinger equatior{SE). An exact solution is not necessary, in

e ) S . spectruny:
our opinion, given the uncertainty in the poten¥dlr) and a
satisfactory character of the simple crossover model poten- 1
tial. To obtain the energy spectrum, we solve the SE with an Qy(B)= > e nBhoy= e (16)
n 1-e P

adiabatic approximation, which has been shown to predict

banq structures for He atoms on grapRitén this approxi-. and[Q_(B)+Q,(B)] is the partition function of all the
mation, we first solve the SE for adatom motion perpendiCugates in the effective potential along thdirection. The first

lar to the surface at each poi¥) on the surface. The eigen- term (Q_) comes from the discrete states\ia;(x)
value for thisy motion becomes an effective potential energy

Vei(X). As in the conventional treatment of diatomic mol- -
ecules(focusing on the electronic ground statee assume Q-(B)=2 e Fen, 17
that the lowest state for the adatonzsmotion is the only "

energy needed for the “slower” degree of freedom, i.e. MO- 0 contributionQ . from the continuum density of states
tion along the surface. Figure 3 shows the resulting effectives o qeled by scaling the continuum spectrum of a uniform
potential as well as a fit to this potential of the following system in a constant potential of dejh by the length of a
form, unit cell d (here equal to the horizontal separation between

the nanotubes
Y
U(X)=Vy+ ——r—. (13) d
cost(x/a) Q.(B)= e’BVmA—. (18)

T
The.reason fo_r this choice (.jf modgl potential is that theyy;y, these ingredients, the thermodynamic properties can be
;hape IS appropriate, as seen in the f!gure, and the SpeCtrLEBmputed and compared with the corresponding classical
is known for this functional form, as given By quantities, as obtained above from the original potential. The

5 dashed line in Fig. 2 shows the quantum resultGoin this

R |1 [BmVga? 1 1) case, the lowF behavior corresponds to a quantum 1D re-
€= oma?| 2 52 tl-{n+ 2/ gime characterized by the excitation of only the low-lying
states inV¢ss. Note that the zero-temperature limit is 0.5, as

n=0,12.... (14 expected for a quantum 1D system. Deviation from that limit
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800 ———————————————————— FIG. 6. Speed of sound for GHn the groove as a function of
[ ] reduced density at different values of reduced temperature
T =Tlegq-
700[;
I quantum virial expansion for translationally invariant sys-
600 tems. The result in the present case is
F 500l N=Q(B)e’H[1=f(N,B)---]. (19
[ The first term leads to the classical regime addressed above;
200l the “correction” term f (negative/positive for fermions/
L boson$ in brackets becomes
I N B B _a-b\?2
3005 100 200 300 400 f(N B):NQ(ZB) _ p)‘T( 1-e ) (20)
) T (K) Q%p) V2l1-e®

Hereb= BA w. The factor preceding the expression in paren-
theses is analogous to quantum statistical correction terms
o ) found in 2D and 3D expansions. We observe that the classi-
occurs whenT comes within an order of magnitude of the a1 approximation used earlier is appropriate when the inter-
transverse excitation energy in the grooved0 K for CHy).  particle spacing exceeds; (the same constraint as that
This behavior differs markedly from the classical result ingnd in the analogous 2D and 3D problenighe factor in

Fig. 2. Figure 4 shows the corresponding results for the isosparentheses in Eq. 20 is always less than 1, so it helps the
teric heat. At zerdr, thg plassical resulfull and 'thin lines  qtatistical expansion to converge, especially at Higlthen
corresponds to the minimum of the potential in the groovehe factor becomes 1/4. The reason for this reduced statistical
while the quantum result is the ground-state eneigin that  correction is simply that the crowding in phase space, the
potential. Another important distinction at low temperature ISorigin of effects of quantum statistics, is reduced by a
that quantum results imply an increase of the isosteric heafyreading among the many transverse states that are excited
with T, whereas classically a decrease is expected. We oQghenh<1. Finally, we note that statistical corrections to the
serve thatjs;= — o+ 2kgT whenT<50 K and it reaches its noninteracting classical gas are relatively more important in
maximum value whenC/(Nkg)=5/2 [Eq. (6)] at T 1p than in higher dimension®. The reason is that these
~100 K. As shown in the Appendix, at loWthe difference  ;qrrections appear as products of density =Rd At a given

between quantum and classical heatséty=2/8—fw, 71 therefore, the effect of statistics appears at a lowar a
wherefiw is the zero-point energy in the groove. At high system of lowem (all other things being equal
the temperature dependencegqf is given bykgT/2, which

corresponds to 2D motion confined by a transverse harmoni i

potential. Figures @) and 3b) display the results fo€ and fil. PHONONS IN THE HIGH-DENSITY GROOVE PHASE

gs¢ in the case of Ne. We notice that the crossover occurs at The quasi-1D fluid within the groove represents a differ-

a much lowerT(~100 K) for Ne than for CH. ent kind of a system in many ways. One is that the low-lying
In closing this section concerning low density, we noteexcitations of the system are expected to be phonons, even in

that the first-order correction due to quantum statistics can btéhe absence of a crystékhich is assumed in the usual deri-

determined in a straightforward way, permitting an assessvation of phonons in terms of an expansion in displacements

ment of its importance in the analysis. To do this, one ex{from equilibrium). Such phonons must exist as longitudinal,

pands the exact equation relatiNgand i, assuming that the long-wavelength excitations of this system, derived from

fugacity e’ is small; this is the usual way to develop a elasticity theory or quantum hydrodynami@s in the liquid-

FIG. 5. (a) Same as Fig. 2 for Néb) Same as Fig. 4 for Ne.
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helium casg?’ Their speed for a nearly classical system can 2

be derived from the classical equation of statac® Ezp=(;)ﬁwo- (25
=(dP/dp)t. Such data appear in Fig. 6. One observes a

minimum in ¢ at a density corresponding to the incipient Hence, the ratio of interest is

condensation at =0.

We analyze the behavior using the Debye model, applied Ezp (
to a fluid of densityp and sound speed The Debye wave € 3
vector and frequency arkp=mp and wp=ckp, respec-
tively. The conventional 3D treatment is changed to accomHere A* =h/(o\/me) is the de Boer quantum parameter and
modate the 1D density of states, which is a constant belowhe numerical coefficient is about 0.8. Thus, the ratic
Wp to € is about 1.6 for H, 0.2 for CH,, and 0.05 for Xe,
assuming “typical” values of the interaction parameters.
This number is indicative of the relative importance of quan-
tum effects at lowT; the range ofT over which quantum
effects are relevant is of order this ratio timesThe fully
Here®(x) is the Heaviside unit step function. The resulting classical regime is thu§ exceeding 60 K, 35 K, and 15 K

24/3
A*. 26)

L
N(a))Z%@(w—wD). (21

thermal energy per unit length is for H,, CH,, and Xe, respectively.
The preceding discussion pertains to the longitudinal
E 1 X X phonons in the groove. There are, in addition, transverse
- > J' < (22 phonons associated with motion perpendicular to the groove
mcphlo  ei—1 axis. We show here how these become important at high

density, indicative of an incipient instability of the 1D state.
The transverse modéivo polarizations for each wave vec-
tor) can be derived in the usual way by taking account of
coupled motion of the adsorbate, as affected by the presence
of the potential confining the particles within the groove
(ar?/2). Consider a mode polarized in tixedirection and
assume small-amplitude displacemefxg so that the inter-

The upper limit to the integral arises from the Debye fre-
quency cutoff X,,= Bhwp. At high T, x,,<1, this expres-
sion yields the 1D version of the law of Dulong and Petit,
C—NKkg; there is an energy &g T per atom in this limit. At
low T, instead, the specific heat is linearin

i = @ (23) particle force can be expanded about the equilibrium spacing
Nkg 3fiwp a; for a given pair, the potential energy is thus shifted by
A more realistic model would yield a different numerical Ax2 sz
coefficient, but the linear dependence®@fn T is a robust V(AX)—Vo=V'| 5 a5 (27)
prediction of the phonon model. The prediction in the high-
limit is also robust, within the harmonic expansion. Here, V, is the equilibrium spacing potential, prime means

One may develop a concrete realization of this behavioderivative with respect to the interparticle spacing, evaluated
from the usual phonon theory. In its simplest form, we em-at spacinga, and Ax is the difference in the; values of
ploy a model in which only nearest neighbors interact. In thisadjacent particles. The quantifyis an effective force con-
case, the ground state corresponds to a lattice conatantstant associated with this coupling<0 in a highly com-
equal to the minimum in the pair potential. The conventionalpressed phase. Assuming only nearest-neighbor interactions,
theory yields a dispersion relation the equation of motion for a mode of wave vectpcan be

solved, yielding the transverse spectrum
k
. wo= \/% (24)

The force constarit is just the second derivative of the pair
potential, evaluated at its minimufif the adsorbate is not
compressed If we assume a Lennard-Jones interaction
U(r)=4e[(a/r)¥*—(o/r)®], then the uncompressed force
constant isky=283(9¢/0?). This yields a speed of sound
c=awg=avky/m, which depends in an explicit way on the
specific system’s parameters. f< —Mowld= — ald (29)
How important are the quantum corrections to the equa- ! '

tion of state of the system? One measure of this is the ratio ofhis condition is equivalent to the energy minimum condi-
the system’s ground-state zero-point enefggr atom E,,  tion, which favors a periodic structure if the density becomes
to its potential energyd); this ratio is zero for a classical high, so that the repulsive forces become too large. The pre-
system. From the phonon model, we may evaluatg by  ceding equation represents an instability criterion, but one
summingfw,/2 over all of the phonon modes within the expects it to be a lower-density regime of dynamical stability
Brillouin zone (q|<m/a). The result of this calculation is  but energetic metastability. We have explored this problem in

. [da
0g=2weSINn >

f a
1+ 4—) sir?| =
m

2 2_ @

wf(a)= wi=—. (29

At g=0, the frequency is just thaty;) of single particles in

the external potential. However, the finite frequency is
lower if the adsorbate is compressed. At the zone boundary,
w IS a minimum in this case. There arises, therefore, an in-
stability when
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recent work by comparing the energies of alternative struc- 200 T T
tures on the external surface of the buntfi&Ve concluded | =T =60K
that the transition in question occurs from the groove to the [ ==T=70K
three-stripe phase. An alternative possibifftya two-stripe 150} :} - ?gOKK .

phase(two parallel chains of atomswas less favored in the
Lennard-Jones interaction case we have considered. A i
We have made a quantitative comparison with the phonon 22 1gg
instability scenario in one case, i.e., £ a groove. In that \% i
case, the transition to the three-stripe phase occurs at 10%
compression in lattice constant, according to Te0 calcu- 50k
lations. The instability condition above corresponds to a fur- i
ther compression of the lattice constant by 20%. Hence, the L
1D phase becomes metastalftelative to the three-stripe 0 o -
phas¢ at considerably lower density, preempting the -10 -8 -6 -4 -2 1
instability-driven transition. Log P (atm)
In the limit of small compression, we may neglect the
term in Eq.(28) proportional tof. In that case, the transverse  FIG. 7. CH, adsorption isotherms at several temperatures. Satu-
motion reduces to that of independent particles. The resultingation capacity of the groove occurs @i)=9. The monolayer
effect on the thermal properties of the adsorbate coincidegoverage igN)~45.
with that of single particles, i.e., the low-density limit, dis-
cussed in the Appendix. In Fig. 8 we display the evolution of the density projected
onto the transversg-y plane atT=90 K as the coverage
increases, starting at the monolayer phase. We observe the
formation of the second-layer groove, a dilute second-layer
three-stripe phase, and the completion of the second layer.
As in our previous studie¥;'®we use the grand canonical The variation of potential along the second layer surface is
Monte Carlo simulations to investigate the adsorption behavstill large enough to gives rise to the appearance of a third-
ior of CH, on the external surface of a bundle. The potentiallayer groove. After that, the adsorbate surface has consider-
energy experienced by the adsorbate particles in that regicibly flattened at this point, causing the subsequent film to be
is modeled by summing the contributions from two adjacentmuch less structured.
nanotubes, by adding Lennard-Jones two-body interactions We consider now the formation of the second-layer
(with distance o4c=3.56 A, and energy parameter, groove phase for three different gases of increasing size: Ne,
=67.2 K) between the adsorbate particle and the nanotube€H,, and Xe. Figure 9 shows its respective isotherms for
carbon atoms. The dimensions of the simulation cell are sdligh coverage. The arrows point the appearance of the
to be 17 A in thex direction (which corresponds to the Ssecond-layer groove. Table Il displays the values of the pres-
center-to-center distance between the tub&6 oyq along  sure from the isotherms at which this phase occurs in com-
the z direction(tube’s axis directioy) and 40 A for the height parison with the experimental valubsjndicating a very
of the box along they direction. The details of our model good agreement. To identify this phase we also show the
assumptions and the simulation method can be found in Regorresponding density contour§ig. 10 and the com-
17. presibility dN/du (Fig. 11) calculated from the number fluc-
Figure 7 shows the resulting GHdsorption isotherms at tuation in the simulations:
various temperatures. Since the length of the cell in zhe
direction is 10044, the saturation number of atoms in a dN  ((AN)?)
single line(closed packedis (N)=9. The phase behavior — =
evolves with u in the same manner observed for other du keT
gases,” 8 starting with a line of atoms in the groove at very
low pressure. At lowT, a step(not noticeable for the tem- Here ((AN)?) is the variance in the number of particles in
peratures shown in the figyrappears to a so-called “three- the simulation(at fixedx andT). For the smallest atom Ne,
stripe” phase, consisting of two additional lines of atomsthere occurs a peak neé)~80, which corresponds to the
parallel to that in the groove. At higher pressure, a mono{best-definefl second-layer groove phase. Then, transitions
layer (N)~45, five lines is formed over the external sur- in the second layefthree-stripe phase and completion of the
face. Once it completes, there appears some evidence ofsgcond laygrcause the appearance of a second broader peak
transition to a second-layer groove phagl)~ 54), i.e.,, a  at(N)~100-110, but they cannot be distinguished individu-
single line of atoms formed above the monolayer phase, imlly. For CH,, there is a smaller peak ne@\)~ 60 (second-
the new groove region. This phase was observed in our prdayer groove, but it merges with the peak corresponding to
vious simulations in the case of Ne, Ar, and Kr and alsothe second-layer transitior{ |}~ 70). Something similar
experimentally in the recent work of Migone and happens in the case of Xe. The peak starts with the second-
co-workers®!! Subsequent transitions to bilayer and three-layer groove transition{(N)~55), but it immediately con-
layer phases are observed as the pressure increases. tinues with the bilayer transitior{ )~ 80).

IV. COVERAGE DEPENDENT ADSORPTION:
GRAND CANONICAL MONTE CARLO SIMULATIONS

(30
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Another quantity that should show the phase transitions as
the coverage increases is the isosteric heat. Figufe) 12
r shows the isosteric heat as a function of linear coverage com-
100 ] puted from adsorption isotherms of the different gases. The
I regionpoyy<1 is the groove-filling region. Once the groove
is filled, the isosteric heat decreases abruptly due to the high
ZA | energy difference between this site and the surface site. The
V 50 -
TABLE Il. Common logarithm of the pressuf@tm) at which
—+Ne, T=28K the second-groove phase appears. The experimental values are from
~—CH,, T=90K Ref. 11.
3 —Xe, T=112K|1
T (K This work Experiment
% 3 =] 1 0 P
Log P (atm) Ne 25 -1.9
CH, 70 —-34 —-3.2
FIG. 9. Different gases’ isotherms showing the formation of the Xe 112 —-2.4 -2.6

second-layer groove phase, occurring at points indicated by arrows
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> 61 @ FIG. 11. Compressibility as a function of coverage for different
gases and coverages beyond the first layer. The curves are guides
3 for the eye.
0 3 6 9 12 15
A) V. SUMMARY AND CONCLUSIONS
X
Our calculations have yielded classical and quantum be-
havior of diverse gases adsorbed on the external surface of a
121 ® nanotube bundle. The present results for thermal properties
@ are to be supplemented, in general, by contributions from
o S
z © @ 25r
~ ; —Ne, T=265K
> 6 ® ! -~ CH, T=120K
[ — Xe, T=165K
3 :
0 3 6 9 12 15
x (A)

FIG. 10. Density contours projected onto thg plane showing
the second-layer groove phase for different gases. From top to bot-
tom: Ne (T=28K, P=0.06atm), CH(T=90K, P
=0.017 atm), and XeT=112 K, P=0.005 atm).

following decrease is observed at the monolayer completion,
but before that a small increase strongly suggests the pres-
ence of the second layer groove.

In Tables Il and IV, we compare the isosteric heat values
corresponding to the first-groove phase and the monolayer
phase with the available experimental results from two dif-
ferent groups. We observe that the agreement is quite good.

In Fig. 12b) we compare the whole coverage dependence
of the isosteric heat for Ar derived from our simulations with
the experimental resultS.We observe that the general trend
is qualitatively similar.

Figure 13 shows the specific heat as a function of cover-
age for Kr and Ar calculated from the simulations data. In
both cases, a notable increase is observed near the comple-
tion of the groove and a smaller one is present at the end of
the monolayer completion, most possibly due to the presence
of the second-groove phase. The low-density vaNe<b)

9/ €4

(b)

% 2 4 6 8 10
POgq
. — GCMC
15_ . . Expt

POy

FIG. 12. (a) Reduced isosteric heat as a function of coverage for

agrees reasonably well with the low-density limit calcula-ne cH, and Xe atT*~0.75; €49=35.6 K (Ne), 161 K (CH,)

tions of Sec. Il for those gases and temperatures.

and 221 K(Xe). (b) Same aga) but for Ar (e54= 120 K). The dots

represent experimental results from Ref. 13.
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TABLE lII. Isosteric heatqs /€44 at a typical first-groove cov- 6
erage. Experiment 1 values are from Refs. 8 {CHnd 10(Xe). i — Kr, T=7125K
Experiment 2 values are taken from Refs.(23) and 14 (CH). I H -- A, T=6750K

i

T (K) €gq (K) This work Experiment 1 Experiment 2

Ar 90 120 13.9 15.2
CH, 90 161 12.4 10.3 13.5
Xe 110 221 12.4 125

gases adsorbed in other sites, i.e., the interstitial channel and
endohedral positions, if these are accessible to the adsorbate.
The degree to which this is the case appears to be very sen- ) I N S H O T S B
sitive to sample preparation and purification technique. Evi- © 10 20 30 40 50 €0 70
dence in the tables given here provides some tentative sup- <N>
port fF’r the belief that a Significar]t fraction of these §amples’ FIG. 13. Heat capacity derived from classical simulations as a
area is ordered and clean. Yet Fig.(2shows a qualitative  ction of coverage for Ar af =67.5 K (dashed curyeand Kr at
discrepancy, presumably attributable to heterogeneity. T=71.25 K (full curve).

We have explored the problem of dimensional crossover
by studying adsorption along two distinct thermodynamic  gyr computational methods used in this paper are rela-
paths: constant (variableN) and variableT (very lowN). ey straightforward, i.e., mostly extensions of those used
At very low coverage, the effective dimensionality increasesy our previous simulation studies. Hence, we have found
progressively withl because the adsorbed molecules migratgey surprises in the results. One of the most intriguing find-
over aT-dependent phase space, beginniaglow T) with  jngs s that the second-layer groove phase is present in the
the groove and ending with monolayer and even 3D regimegotherms(dramatically so in the compressibilityor all of
at higherT. Qualitatively similar evolution was investigated the systems studied, consistent with experiments of the
some years ago in the case of He isotopes on graphite. \jigone group. Equally encouraging is the agreement re-
that case, th& dependence of the dimensionalialculated  ported in the preceding section between these calculations
and measuredreflects the energy dependence of the waveéyng experimentally observed thermodynamic quantities.
functions’ spatial localization. The more conventional sych consistency is initially surprising, in view of the sim-
method of studying dimensional crossover is to assess thgified potential models. One concludes that the interaction
variation with coverage of film structure and thermal prop-gtrengths are adequately transferable from the graphite ad-
erties. This is the route followed in the adsorption isothermsqrption problem. Such behavior is not consistent with some
measurements. Evidently, one can principle) explore the  model calculations in which either curvature-induced distor-
N-T plane along any path. An interesting question that wejon of the physisorption potential or sensitivity of the poten-
have not explored is how the effective dimensionality of thejg| to the nanotubes’ conductivity is present.
film varies at higheiT or N than is reported here, yielding a
more complete characterization of the effective dimensional-
ity. We note that specific heat and isotherm experiments pro- ACKNOWLEDGMENTS
vide complementary information, so that both experiments We wish to acknowledge Mary Jo Bojan, Bill Steele,
are worth carrying out’ To our knowledge, no specific-heat Silvina Gatica, Milen Kostov, Aldo Migone, J. G. Dash, Karl
measurements have yet been undertaken for gas adsorptigehnson, Oscar Vilches, and Michel Bienfait for stimulating
on nanotubes. This situation is probably temporary, becausgiscussions. We are grateful to the Petroleum Research Foun-
the very high specific area found in nanotube samples shouldation of the American Chemical Society, the Army Re-
yield very high total heat capacities, with a relatively small search Office, and the Fundasiéntorchas for their support.
background correction at low. This argument suggests that
measurement and interpretation@fN,T) data are likely to APPENDIX: 1D MOTION
be fruitful and convenient.

In the limiting case of motion in 1D with a quadratic
TABLE IV. Isosteric healys;/eqq at a typical monolayer cover-  transverse confining potential
age. Experiment 1 values are from Refs. 8 (CHnd 10 (Xe).
Experiment 2 values are taken from Refs.(AB) and 14 (CH and r2

Xe). V(N=Vo+as, (A1)

T(K) €qq (K) This work Experiment 1 Experiment 2 \yharer2=x2+y2 and thez axis is the usual cylindrical sym-
metry axis, the classical configuration integral satisfies

Ar 90 120 10.0 10.1
CH, 90 161 9.3 9.0 8.3 ool

w
Xe 110 221 8.6 9.9 8.5 2(8)= = Vo (A2)

Ba

115413-10



DIMENSIONAL CROSSOVER AND QUANTUM EFFECS . .. PHYSICAL REVIEW B 66, 115413 (2002

From Egs.(8) and (9), classical values of the thermal vari- A generalization of this expression to include all transverse

ables in this quasi-1D limit are states, within the harmonic approximation, leads to correc-
tion to Q by a factor (e~ #"*)~2, Without these factors,
qc1= _V01 C 1

Co 5 NkgT 2°
Nkg 2’ 2

Ust=—5 —€o»
Mei=Vot+ Eln e E 1

(re) u=zo+ 5IN(pN).

where (r?)=2/(ap) is the mean-square particle displace-
ment perpendicular to the axis. The analogous quasi—ll%al
guantum values are given by assuming that the temperatu
is sufficiently low, so that only the lowest transverse vibra-
tion is present, for which the energy ég=V,+# w, where

Note that the quantum isosteric heat exceeds the classical
ue by an amoundqg; given, in the present approximation,
[)%/ 80st=0Jst— Qo= 2/B—hw. This is, as expected, the dif-
ference in energy associated with the quantized harmonic
motion inx andy directions. We discuss in Sec. Ill the more
w=+a/m,

general case where other transverse degrees of freedom are

In this caseg(E) =G (E—eo)O(E~eo), whereGi(X)  gycited. The present result applies to the Bwegime,
=(L/Am)ym/2x. This is the 1D density of states for a hy- wheref 0> 2/B.

pothetical system wi.th no tr.a_nsverse.degrees of freedom. Ngte added in proodD. G. Narehood, J. V. Pearce, and P.
Then, the single-particle partition function is E. Sokol (private communicationhave found evidence of
this dimensional crossover in tfledependence values of the
Q(B):Eefﬁeo_ (A3) hydrogen diffusion coefficient, deduced from quasielastic
N neutron scattering data.
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