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Dimensional crossover and quantum effects of gases adsorbed on nanotube bundles

M. Mercedes Calbi and Milton W. Cole
Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802

~Received 4 April 2002; published 24 September 2002!

Adsorption properties of several gases~Ne, CH4, Ar, and Xe! on the external surface of a carbon nanotube
bundle are investigated. Calculations are performed at low coverage and variable temperature, and for some
fixed temperatures as a function of coverage. Within a simple model~in the limit of very low coverage! we are
able to study the evolution of the film’s thermal properties from those of a one dimensional~1D! fluid to those
of a 2D film. In addition, grand canonical Monte Carlo simulations are performed in order to identify a
second-layer groove phase that occurs once a monolayer of atoms covers the external surface. We derive from
the simulations the isosteric heat, compressibility, and specific heat as a function of coverage. We evaluate
alternative models in order to derive quantum corrections to the classical results. We compare our findings with
those of recent adsorption experiments.

DOI: 10.1103/PhysRevB.66.115413 PACS number~s!: 68.43.2h, 61.46.1w, 64.70.2p, 68.60.2p
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I. INTRODUCTION

The nature of gas adsorption within and outside
bundles of carbon nanotubes is a burgeoning field that pr
ises to reveal novel phases of matter.1–16 Several recent ex
periments have explored the behavior of gases adsorbe
the outside of bundles, or ropes, consisting of many na
tubes having nearly parallel orientation. Our group has st
ied this system with classical computer simulation~in the
case of Ne, Ar, Kr, and Xe! and model ground-state calcula
tions purporting to describe this external surface adsorp
of classical, or nearly classical, gases.17,18Other studies, both
experimental and theoretical, have been undertaken for
behavior of quantum gases, such as hydrogen or helium
quasi-one-dimensional ~quasi-1D! models of this
environment.4–7

Figure 1 shows the potential energyV(r ) of a methane
molecule on the external surface of a nanotube bundle, c
puted ~as discussed in Sec. IV! by summing empirical
Lennard-Jones pair interactions between the molecule
the C atoms comprising the nanotube~which are actually
smeared out to form ‘‘continuum carbon’’ on a cylindric
surface!.19 The characteristic features ofV are a small region
nestled between tubes, called a ‘‘groove,’’ in which the p
tential is extremely attractive, and a more extended reg
where the potential varies only slowly along the surface. I
not surprising that the adsorption at a given tempera
~computed in Sec. IV! exhibits a 1D fluid regime, confined t
the groove, and a 2D monolayer regime as the numbe
adsorbed particles increases. The evolution of this beha
as a function of gas pressureP and temperatureT is qualita-
tively the same as that found in our simulations of the ot
gases.17,18

At least some of the extant experimental data8–15 are in
qualitative, or even quantitative, agreement with calculati
based on such simple model assumptions about the geom
~nanotubes are uniform, identical, and parallel to one
other! and interactions~pairwise additive!.20 As an example,
we state in Table I the ratio between the binding energie
the groove and on graphite in the low-density limit, obtain
from our calculations and two different experimental grou
0163-1829/2002/66~11!/115413~12!/$20.00 66 1154
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Thereby encouraged, we proceed in the present paper to
dress several aspects of this adsorption problem, which w
either ignored in our previous studies or received only c
sory attention there. One particular goal is to better und
stand how the film’s thermal properties evolve from those
an essentially 1D fluid to those of a monolayer~and eventu-
ally bilayer! film adsorbed on this bundle surface. An aspe
of this investigation is to identify and characterize
‘‘second-layer groove phase,’’ for which simulations and e
periments have provided some evidence.10,11,17,18A second
principal goal of the present study is to understand h
quantum effects alter the thermodynamic quantities of in
est. These effects are particularly important for H2, He, Ne,
and CH4 films in the present geometry.3 We emphasize tha
the potentials we use, like all semiempirical potentials,
uncertain to some degree. As an example, we may com
the well depths computed with the present parameters
those resulting from a recent selection of ‘‘best values.21

The well depth from a single graphene sheet is given
Dgraphene5(6p/5)egcsgc

2 uc , whereegc andsgc are the gas-

FIG. 1. Isopotential~kelvin units! contours for a CH4 molecule
on the external surface of a nanotube bundle. The contour ne
the groove (x5y50) corresponds toV522000 K. The gray areas
in lower left and right corners correspond to cross sections of
neighboring nanotubes containing the carbon atoms.
©2002 The American Physical Society13-1
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carbon Lennard-Jones parameters anduc is the surface den
sity of carbon atoms. The ratio of this depth computed w
the ‘‘best’’ parameters to that obtained from our paramet
is 0.8, 0.8, 1.0, 1.0, 1.1, and 1.1 for the sequence He, Ne
Kr, Xe, and H2, respectively.

In Sec. II, we consider the behavior of a film at very lo
coverage, in which case the adsorption may be considere
a single-particle problem; this corresponds to the so-ca
‘‘Henry’s law regime’’ of adsorption,22 in which the coverage
N is proportional to the pressure, as specified by the Hen
law constantKH5 limN→0(N/P). This ‘‘constant’’ typically
exhibits an Arrhenius dependence onT, with characteristic
activation energy of the order of the heat of adsorption. A
known from analogous treatments of adsorption on pla
surfaces, theT dependence ofKH is a sensitive function of
the potential provided by the substrate, a subject of obvi
interest.21 We compute in this low-coverage regime the sp
cific heat ~per particle! C/N, whereC is the heat capacity
and the isosteric heat

qst52S ] ln P

]b D
N

. ~1!

Hereb215kBT. Further, in Sec. II, we develop a simp
‘‘crossover potential’’ model, aimed at describing the film
behavior in the regime of crossover from 1D to 2D~here, a
consequence of increasingT). The model works well in
characterizing the thermal properties of a low-coverage c
sical film, as demonstrated by consistency between the
sults from the model and those from the ‘‘exact’’ simulation
This agreement provides some justification for using
model to perform quantum calculations for this low-covera
regime. The primary result of this calculation is a determin
tion of the quantum correction to the thermal properties co
puted in the simulations.

Section III develops a phonon model for the high-dens
1D fluid regime of adsorption within the groove. The trea
ment is a straightforward extension of the familiar Deb
model used to treat bulk solids. There is an underly
premise that phonons are, indeed, the relevant thermal e
tations of a 1D fluid~since there is no crystallization!, from
which the thermal properties may be calculated. The relia

TABLE I. Ratio of binding energy of a molecule in the groov
to that on graphite. The values from theory correspond to the l
of zero coverage~single particle!. The experimental values are ob
tained from isosteric heat values through the relation«052qst

12kBT, assuming that the adsorbed phase behaves as a 1D sy
in the temperature and density range explored. Experiment 1 va
are from Ref. 9 and Experiment 2 values from Refs. 13 (H2) and 14
(CH4 and Xe!.

Theory Experiment 1 Experiment 2

H2 1.43 1.5 1.5
D2 1.45 1.8
Ne 1.51 1.73
CH4 1.43 1.76 1.34
Xe 1.41 1.74 1.37
11541
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ity of this ansatz is discussed and a heuristic argumen
provided to justify its use here.

Section IV presents the classical simulation results
qst , C and the compressibility (]N/]m)T , wherem is the
chemical potential. Methane adsorption isotherms are p
sented for several temperatures. A key question of intere
whether the hypothetical second-layer groove phase ex
for all of the adsorbates we have considered, or just for
as we originally conjectured. In addressing this issue,
make contact with a growing body of experimental data.10,11

Section V summarizes our results and discusses other iss
such as the potential role of heterogeneity, which is certa
present, but is ignored in virtually all calculations to date

II. LOW-DENSITY REGIME

At very low density, one may neglect both interactio
and quantum statistics in evaluating the film’s properti
This means that the physical behavior of the system refl
the dynamics of single-particles in the external field of t
surface. Letg(E) be the surface single particle density
states, which may be derived, in principle, by solving t
Schrödinger equation in this potential field. Then, the to
number of adsorbed particles atT andm satisfies

N5ebmE dE g~E!e2bE5ebmQ~b!. ~2!

HereQ(b) is the single-particle partition function. For a
ideal spinless23 3D gas, assumed to be in equilibrium wit
the film, ebm5blT

3P, wherelT is the de Broglie therma
wavelength (lT

252pb\2/m). By differentiating Eq.~2!, at
fixed N, we obtain the quantum expression for the isoste
heat at low density,

qst5
5

2b
2^E&5

5

2b
1S ] ln Q

]b D
N,A

. ~3!

^E& is the quantum-statistical average of the energy
particle. The quantum value of the Henry’s law coefficie
satisfies

KH5blT
3Q~b!. ~4!

The quantum specific heat per particle~expressed in units
of the Boltzmann’s constant! at fixed surface areaA satisfies

C

NkB
5b2S ]2ln Q

]b2 D
N,A

, ~5!

and from Eq.~3!,

1

kB

dqst

dT
5

5

2
2

C

NkB
. ~6!

Classically, one employs an alternative formulation of t
behavior of an ideal gas in the external field of the substr
The Henry’s law constant is then

it
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DIMENSIONAL CROSSOVER AND QUANTUM EFFECTS . . . PHYSICAL REVIEW B 66, 115413 ~2002!
KH
cl5bE dr e2bV(r )5bZ~b!. ~7!

Z(b) is a classical single-particle configuration integ
and the integration domain is a~somewhat arbitrarily de-
fined! volume near the substrate. The classical isost
heat differs from the quantum expression because the q
tum mean energy is replaced by the classical ene
(3/2b)1^V&cl ,

qcl5
1

b
2^V&cl5

1

b
1

d ln Z

db
. ~8!

The classical specific heat is given by

Ccl

NkB
5

3

2
1b2

]2ln Z

]b2
. ~9!

For reference, we present the analytical results in the
pendix for the limiting case of motion in 1D with a quadrat
transverse confining potential

V~r !5V01a
r 2

2
, ~10!

wherer 25x21y2 and thez axis is the usual cylindrical sym
metry axis, coincident with the groove site.

The full line in Fig. 2 depicts the classical specific heat
the limit of zero coverage computed from the potential e
ergy shown in Fig. 1. One observes that the behavior cro
over from the 1D value~5/2, as shown in the Appendix! at
low T to a value near the 3D value~3/2, sincey motion is
included! at highT. However, there appears a dramatic pe
at intermediateT'200 K. Such a peak is typical of the sp
cific heat of two-level systems; the peak arises due to

FIG. 2. The low-density specific heat, in units of the Bolt
mann’s constant, for CH4. Full curve is the classical specific he
obtained from Eq.~9! and the potential energy shown in Fig.
Thin curve is the classical specific heat derived from the mo
crossover potential. Dashed curve is the quantum specific heat
Eqs.~5! and ~15!.
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energy increase of the system required by particles go
from the lower level to the upper level. Here, the ‘‘lowe
level’’ is a band of single-particle states localized near
groove and the ‘‘upper level’’ corresponds to states spr
across the rest of the surface.

We invoke a simple ‘‘crossover model’’ of the potential
demonstrate that this is the explanation of the behavior.
divide configuration space into two regions, giving additi
contributions to the partition function,

Z~b!5E
groove

d2r e2b[Vg1(1/2)ar 2]

1LsE
mono

dy e2b[Vm1(1/2)kmy2] . ~11!

The first integral is a 2D integral over the groove regio
where we assume the potential energy to be of harmo
type. The second integral evaluates the contribution from
monolayer region over the external surface of the tubes,
suming a harmonic potential along the direction perpendi
lar to the surface.Ls is the length of this region~a fraction of
2pR, R being the radius of the tubes! over which the mono-
layer states can extend. We estimate reasonable value
each constant in the model~radius of the groove region
'1 Å, Vg522028 K, a54800 K/Å2, Vm521050 K, km
56000 K/Å2, andLs518 Å) from the full potential of Fig.
1. Using this model partition function, we obtain the resu
shown in Fig. 2 as a thin line. The position and shape of
peak in Fig. 2 agree well with the ‘‘exact’’ results. This im
plies that the model has the key physical ingredient, which
the crossover from 1D to 2D regimes. We observe that
peak temperature ('220 K) is significantly less than the en
ergy difference between monolayer and groove potent
(Vm2Vg'1000 K).

However, we note qualitative differences between
‘‘exact’’ and model curves at both low and highT’s. These
differences come from the deviation of the full potent
from the model’s assumed harmonic shape. First, we c
sider the linear region of variation ofC at low T. This be-
havior may be derived from perturbation theory, assum
that there is a ‘‘small’’ quartic term in the potentia
dV, which may be expressed in terms of appropriate co
ficientsai ,

dV~x,y!5a1x2y21a2~x41y4!. ~12!

The classical energy shiftdE is just the expectation value
of the perturbation@evaluated with the harmonic potentia
Eq. ~10!#; this leads to24 dE5(a116a2)/(ab)2. This quar-
tic correction toE gives rise to the terms proportional toT in
the specific heat, which are observed in Fig. 2 at low T, i
the regime (T,100 K) where the quartic terms are a
equately described by the perturbation theory. At very h
T, the deviation ofC/(NkB) from the 2D value~2! occurs
because of the largey behavior of the full potential, which
lies below the harmonic approximation.

The simple crossover model potential is thus seen to y
a specific heat that agrees qualitatively with the numer

l
m
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M. MERCEDES CALBI AND MILTON W. COLE PHYSICAL REVIEW B66, 115413 ~2002!
results~without fitting the parameters!. Hence, we conclude
that the model contains the essential ingredients posse
by the ‘‘true’’ potential. We now use the simple model p
tential in another way to deduce the quantum expression
the specific heat and other thermal properties at very lowN.
To do the quantum calculation accurately requires a dete
nation of the density of states in this inhomogeneous e
ronment. Our alternative method involves a further set
approximations, which obviates solving the full 3D Schr¨-
dinger equation~SE!. An exact solution is not necessary,
our opinion, given the uncertainty in the potentialV(r ) and a
satisfactory character of the simple crossover model po
tial. To obtain the energy spectrum, we solve the SE with
adiabatic approximation, which has been shown to pre
band structures for He atoms on graphite.25 In this approxi-
mation, we first solve the SE for adatom motion perpendi
lar to the surface at each point~x! on the surface. The eigen
value for thisy motion becomes an effective potential ener
Ve f f(x). As in the conventional treatment of diatomic mo
ecules~focusing on the electronic ground state!, we assume
that the lowest state for the adatom’sz motion is the only
energy needed for the ‘‘slower’’ degree of freedom, i.e. m
tion along the surface. Figure 3 shows the resulting effec
potential as well as a fit to this potential of the followin
form,

U~x!5Vm1
V0

cosh2~x/a!
. ~13!

The reason for this choice of model potential is that
shape is appropriate, as seen in the figure, and the spec
is known for this functional form, as given by26

en52
\2

2ma2 F1

2
A8mV0a2

\2
112S n1

1

2D G 2

;

n50,1,2, . . . . ~14!

FIG. 3. Effective potential energy Ve f f(x) ~dashed curve! ob-
tained by solving the Schrodinger equation for the CH4 motion
perpendicular to the surface at each positionx on the surface. The
full curve is a fit to this potential using the functional form
of Eq. ~13!.
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The largest value thatn can take depends on the param
eters of the model potential. For example, we obtain 21 d
crete levels for CH4, 11 for Ne, and 3 for H2. With this
spectrum, we can factorizeQ(b) in the following way:

Q~b!5
L

lT
@Q2~b!1Q1~b!#Qy~b!, ~15!

whereL/lT is the sum of the free particle states along thz
direction,Qy(b) comes from the contribution of the discre
states in a potential well along the direction perpendicula
the surface~here assumed to be a harmonic oscillato
spectrum!:

Qy~b!5(
n

e2nb\vy5
1

12e2b\v
, ~16!

and @Q2(b)1Q1(b)# is the partition function of all the
states in the effective potential along thex direction. The first
term (Q2) comes from the discrete states inVe f f(x):

Q2~b!5(
n

e2ben. ~17!

The contributionQ1 from the continuum density of state
is modeled by scaling the continuum spectrum of a unifo
system in a constant potential of depthVm by the length of a
unit cell d ~here equal to the horizontal separation betwe
the nanotubes!:

Q1~b!5e2bVm
d

lT
. ~18!

With these ingredients, the thermodynamic properties can
computed and compared with the corresponding class
quantities, as obtained above from the original potential. T
dashed line in Fig. 2 shows the quantum result forC. In this
case, the low-T behavior corresponds to a quantum 1D r
gime characterized by the excitation of only the low-lyin
states inVe f f . Note that the zero-temperature limit is 0.5,
expected for a quantum 1D system. Deviation from that lim

FIG. 4. Isosteric heat and quantum corrections for CH4 in the
three cases plotted in Fig. 2.
3-4
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DIMENSIONAL CROSSOVER AND QUANTUM EFFECTS . . . PHYSICAL REVIEW B 66, 115413 ~2002!
occurs whenT comes within an order of magnitude of th
transverse excitation energy in the groove ('90 K for CH4).
This behavior differs markedly from the classical result
Fig. 2. Figure 4 shows the corresponding results for the is
teric heat. At zeroT, the classical result~full and thin lines!
corresponds to the minimum of the potential in the groo
while the quantum result is the ground-state energy«0 in that
potential. Another important distinction at low temperature
that quantum results imply an increase of the isosteric h
with T, whereas classically a decrease is expected. We
serve thatqst52«012kBT whenT,50 K and it reaches its
maximum value whenC/(NkB)55/2 @Eq. ~6!# at T
'100 K. As shown in the Appendix, at lowT the difference
between quantum and classical heats isdqst52/b2\v,
where\v is the zero-point energy in the groove. At highT,
the temperature dependence ofqst is given bykBT/2, which
corresponds to 2D motion confined by a transverse harm
potential. Figures 5~a! and 5~b! display the results forC and
qst in the case of Ne. We notice that the crossover occur
a much lowerT('100 K) for Ne than for CH4.

In closing this section concerning low density, we no
that the first-order correction due to quantum statistics can
determined in a straightforward way, permitting an asse
ment of its importance in the analysis. To do this, one
pands the exact equation relatingN andm, assuming that the
fugacity ebm is small; this is the usual way to develop

FIG. 5. ~a! Same as Fig. 2 for Ne.~b! Same as Fig. 4 for Ne.
11541
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quantum virial expansion for translationally invariant sy
tems. The result in the present case is

N5Q~b!ebm@16 f ~N,b!•••#. ~19!

The first term leads to the classical regime addressed ab
the ‘‘correction’’ term f ~negative/positive for fermions
bosons! in brackets becomes

f ~N,b!5N
Q~2b!

Q2~b!
5

rlT

A2
S 12e2b

12e22bD 2

. ~20!

Hereb5b\v. The factor preceding the expression in pare
theses is analogous to quantum statistical correction te
found in 2D and 3D expansions. We observe that the cla
cal approximation used earlier is appropriate when the in
particle spacing exceedslT ~the same constraint as tha
found in the analogous 2D and 3D problems!. The factor in
parentheses in Eq. 20 is always less than 1, so it helps
statistical expansion to converge, especially at highT when
the factor becomes 1/4. The reason for this reduced statis
correction is simply that the crowding in phase space,
origin of effects of quantum statistics, is reduced by
spreading among the many transverse states that are ex
whenb,1. Finally, we note that statistical corrections to t
noninteracting classical gas are relatively more importan
1D than in higher dimensionsD. The reason is that thes
corrections appear as products of density andlT

D . At a given
T, therefore, the effect of statistics appears at a lowerT in a
system of lowerD ~all other things being equal!.

III. PHONONS IN THE HIGH-DENSITY GROOVE PHASE

The quasi-1D fluid within the groove represents a diffe
ent kind of a system in many ways. One is that the low-lyi
excitations of the system are expected to be phonons, eve
the absence of a crystal~which is assumed in the usual der
vation of phonons in terms of an expansion in displaceme
from equilibrium!. Such phonons must exist as longitudin
long-wavelength excitations of this system, derived fro
elasticity theory or quantum hydrodynamics~as in the liquid-

FIG. 6. Speed of sound for CH4 in the groove as a function o
reduced density at different values of reduced tempera
T* 5T/egg .
3-5
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M. MERCEDES CALBI AND MILTON W. COLE PHYSICAL REVIEW B66, 115413 ~2002!
helium case!.27 Their speed for a nearly classical system c
be derived from the classical equation of state,mc2

5(dP/dr)T . Such data appear in Fig. 6. One observe
minimum in c at a density corresponding to the incipie
condensation atT50.

We analyze the behavior using the Debye model, app
to a fluid of densityr and sound speedc. The Debye wave
vector and frequency arekD5pr and vD5ckD , respec-
tively. The conventional 3D treatment is changed to acco
modate the 1D density of states, which is a constant be
vD :

N~v!5
L

pc
Q~v2vD!. ~21!

HereQ(x) is the Heaviside unit step function. The resultin
thermal energy per unit length is

E

L
5

1

pcb2\
E

0

xm
dx

x

ex21
. ~22!

The upper limit to the integral arises from the Debye f
quency cutoff,xm5b\vD . At high T, xm!1, this expres-
sion yields the 1D version of the law of Dulong and Pe
C→NkB ; there is an energy ofkBT per atom in this limit. At
low T, instead, the specific heat is linear inT:

C

NkB
5

p2kBT

3\vD
. ~23!

A more realistic model would yield a different numeric
coefficient, but the linear dependence ofC on T is a robust
prediction of the phonon model. The prediction in the highT
limit is also robust, within the harmonic expansion.

One may develop a concrete realization of this behav
from the usual phonon theory. In its simplest form, we e
ploy a model in which only nearest neighbors interact. In t
case, the ground state corresponds to a lattice constaa
equal to the minimum in the pair potential. The conventio
theory yields a dispersion relation

vq52v0sinS qa

2 D , v05Ak

m
. ~24!

The force constantk is just the second derivative of the pa
potential, evaluated at its minimum~if the adsorbate is no
compressed!. If we assume a Lennard-Jones interacti
U(r )54«@(s/r )122(s/r )6#, then the uncompressed forc
constant isk0528/3(9«/s2). This yields a speed of soun
c5av05aAk0 /m, which depends in an explicit way on th
specific system’s parameters.

How important are the quantum corrections to the eq
tion of state of the system? One measure of this is the rati
the system’s ground-state zero-point energy~per atom! Ezp
to its potential energy (e); this ratio is zero for a classica
system. From the phonon model, we may evaluateEzp by
summing\wq/2 over all of the phonon modes within th
Brillouin zone (uqu,p/a). The result of this calculation is
11541
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Ezp5S 2

p D\v0 . ~25!

Hence, the ratio of interest is

Ezp

e
53S 24/3

p2 D L* . ~26!

HereL* 5h/(sAme) is the de Boer quantum parameter a
the numerical coefficient is about 0.8. Thus, the ratio ofEzp
to e is about 1.6 for H2, 0.2 for CH4, and 0.05 for Xe,
assuming ‘‘typical’’ values of the interaction paramete
This number is indicative of the relative importance of qua
tum effects at lowT; the range ofT over which quantum
effects are relevant is of order this ratio timese. The fully
classical regime is thusT exceeding 60 K, 35 K, and 15 K
for H2 , CH4, and Xe, respectively.

The preceding discussion pertains to the longitudi
phonons in the groove. There are, in addition, transve
phonons associated with motion perpendicular to the gro
axis. We show here how these become important at h
density, indicative of an incipient instability of the 1D stat
The transverse modes~two polarizations for each wave vec
tor! can be derived in the usual way by taking account
coupled motion of the adsorbate, as affected by the prese
of the potential confining the particles within the groo
(ar 2/2). Consider a mode polarized in thex direction and
assume small-amplitude displacements$xi% so that the inter-
particle force can be expanded about the equilibrium spac
a; for a given pair, the potential energy is thus shifted by

V~Dx!2V05V8FDx2

2a G5 f
Dx2

2
. ~27!

Here,V0 is the equilibrium spacing potential, prime mea
derivative with respect to the interparticle spacing, evalua
at spacinga, and Dx is the difference in thexi values of
adjacent particles. The quantityf is an effective force con-
stant associated with this coupling;f ,0 in a highly com-
pressed phase. Assuming only nearest-neighbor interact
the equation of motion for a mode of wave vectorq can be
solved, yielding the transverse spectrum

v t
2~q!5v1

21S 4
f

mD sin2S qa

2 D , v1
25

a

m
. ~28!

At q50, the frequency is just that (v1) of single particles in
the external potential. However, the finiteq frequency is
lower if the adsorbate is compressed. At the zone bound
v is a minimum in this case. There arises, therefore, an
stability when

f ,2mv1
2/452a/4. ~29!

This condition is equivalent to the energy minimum con
tion, which favors a periodic structure if the density becom
high, so that the repulsive forces become too large. The
ceding equation represents an instability criterion, but o
expects it to be a lower-density regime of dynamical stabi
but energetic metastability. We have explored this problem
3-6
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recent work by comparing the energies of alternative str
tures on the external surface of the bundle.18 We concluded
that the transition in question occurs from the groove to
three-stripe phase. An alternative possibility,28 a two-stripe
phase~two parallel chains of atoms!, was less favored in the
Lennard-Jones interaction case we have considered.

We have made a quantitative comparison with the pho
instability scenario in one case, i.e., CH4 in a groove. In that
case, the transition to the three-stripe phase occurs at
compression in lattice constant, according to theT50 calcu-
lations. The instability condition above corresponds to a f
ther compression of the lattice constant by 20%. Hence,
1D phase becomes metastable~relative to the three-stripe
phase! at considerably lower density, preempting t
instability-driven transition.

In the limit of small compression, we may neglect t
term in Eq.~28! proportional tof. In that case, the transvers
motion reduces to that of independent particles. The resul
effect on the thermal properties of the adsorbate coinc
with that of single particles, i.e., the low-density limit, di
cussed in the Appendix.

IV. COVERAGE DEPENDENT ADSORPTION:
GRAND CANONICAL MONTE CARLO SIMULATIONS

As in our previous studies,17,18we use the grand canonica
Monte Carlo simulations to investigate the adsorption beh
ior of CH4 on the external surface of a bundle. The poten
energy experienced by the adsorbate particles in that re
is modeled by summing the contributions from two adjac
nanotubes, by adding Lennard-Jones two-body interact
~with distance sgc53.56 Å, and energy parametersegc
567.2 K) between the adsorbate particle and the nanotu
carbon atoms. The dimensions of the simulation cell are
to be 17 Å in thex direction ~which corresponds to the
center-to-center distance between the tubes!, 10 sgg along
thez direction~tube’s axis direction!, and 40 Å for the height
of the box along they direction. The details of our mode
assumptions and the simulation method can be found in
17.

Figure 7 shows the resulting CH4 adsorption isotherms a
various temperatures. Since the length of the cell in thz
direction is 10sgg , the saturation number of atoms in
single line ~closed packed! is ^N&59. The phase behavio
evolves with m in the same manner observed for oth
gases,17,18 starting with a line of atoms in the groove at ve
low pressure. At lowT, a step~not noticeable for the tem
peratures shown in the figure! appears to a so-called ‘‘three
stripe’’ phase, consisting of two additional lines of atom
parallel to that in the groove. At higher pressure, a mo
layer (̂ N&'45, five lines! is formed over the external sur
face. Once it completes, there appears some evidence
transition to a second-layer groove phase (^N&' 54!, i.e., a
single line of atoms formed above the monolayer phase
the new groove region. This phase was observed in our
vious simulations in the case of Ne, Ar, and Kr and a
experimentally in the recent work of Migone an
co-workers.10,11 Subsequent transitions to bilayer and thre
layer phases are observed as the pressure increases.
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In Fig. 8 we display the evolution of the density project
onto the transversex-y plane atT590 K as the coverage
increases, starting at the monolayer phase. We observe
formation of the second-layer groove, a dilute second-la
three-stripe phase, and the completion of the second la
The variation of potential along the second layer surface
still large enough to gives rise to the appearance of a th
layer groove. After that, the adsorbate surface has consi
ably flattened at this point, causing the subsequent film to
much less structured.

We consider now the formation of the second-lay
groove phase for three different gases of increasing size:
CH4, and Xe. Figure 9 shows its respective isotherms
high coverage. The arrows point the appearance of
second-layer groove. Table II displays the values of the p
sure from the isotherms at which this phase occurs in co
parison with the experimental values,11 indicating a very
good agreement. To identify this phase we also show
corresponding density contours~Fig. 10! and the com-
presibility dN/dm ~Fig. 11! calculated from the number fluc
tuation in the simulations:

dN

dm
5

^~DN!2&
kBT

. ~30!

Here ^(DN)2& is the variance in the number of particles
the simulation~at fixedm andT). For the smallest atom Ne
there occurs a peak near^N&'80, which corresponds to th
~best-defined! second-layer groove phase. Then, transitio
in the second layer~three-stripe phase and completion of t
second layer! cause the appearance of a second broader p
at ^N&'100–110, but they cannot be distinguished individ
ally. For CH4, there is a smaller peak near^N&'60 ~second-
layer groove!, but it merges with the peak corresponding
the second-layer transition (^N&'70). Something similar
happens in the case of Xe. The peak starts with the sec
layer groove transition (^N&'55), but it immediately con-
tinues with the bilayer transition (^N&'80).

FIG. 7. CH4 adsorption isotherms at several temperatures. S
ration capacity of the groove occurs at^N&59. The monolayer
coverage iŝ N&'45.
3-7
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FIG. 8. Evolution of the CH4 density with P,
at T590 K. From top to bottom, in the left col-
umn: monolayer phase (P50.8531022 atm),
second-layer groove phase (P50.1731021

atm), and second-layer three-stripe phaseP
50.2031021 atm). In the right column: bilayer
phase (P50.3031021 atm), third-layer groove
phase (P50.3731021 atm), and multilayer
phase (P50.5231021 atm).
as
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FIG. 9. Different gases’ isotherms showing the formation of
second-layer groove phase, occurring at points indicated by arr
11541
Another quantity that should show the phase transitions
the coverage increases is the isosteric heat. Figure 1~a!
shows the isosteric heat as a function of linear coverage c
puted from adsorption isotherms of the different gases. T
regionrsgg,1 is the groove-filling region. Once the groov
is filled, the isosteric heat decreases abruptly due to the h
energy difference between this site and the surface site.

s.

TABLE II. Common logarithm of the pressure~atm! at which
the second-groove phase appears. The experimental values are
Ref. 11.

T (K) This work Experiment

Ne 25 21.9
CH4 70 23.4 23.2
Xe 112 22.4 22.6
3-8
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following decrease is observed at the monolayer complet
but before that a small increase strongly suggests the p
ence of the second layer groove.

In Tables III and IV, we compare the isosteric heat valu
corresponding to the first-groove phase and the monola
phase with the available experimental results from two d
ferent groups. We observe that the agreement is quite g

In Fig. 12~b! we compare the whole coverage depende
of the isosteric heat for Ar derived from our simulations w
the experimental results.13 We observe that the general tren
is qualitatively similar.

Figure 13 shows the specific heat as a function of cov
age for Kr and Ar calculated from the simulations data.
both cases, a notable increase is observed near the com
tion of the groove and a smaller one is present at the en
the monolayer completion, most possibly due to the prese
of the second-groove phase. The low-density value (N,5)
agrees reasonably well with the low-density limit calcu
tions of Sec. II for those gases and temperatures.

FIG. 10. Density contours projected onto thex-y plane showing
the second-layer groove phase for different gases. From top to
tom: Ne (T528 K, P50.06 atm), CH4 (T590 K, P
50.017 atm), and Xe (T5112 K, P50.005 atm).
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V. SUMMARY AND CONCLUSIONS

Our calculations have yielded classical and quantum
havior of diverse gases adsorbed on the external surface
nanotube bundle. The present results for thermal prope
are to be supplemented, in general, by contributions fr

FIG. 11. Compressibility as a function of coverage for differe
gases and coverages beyond the first layer. The curves are g
for the eye.

FIG. 12. ~a! Reduced isosteric heat as a function of coverage
Ne, CH4, and Xe atT* '0.75; egg535.6 K ~Ne!, 161 K (CH4),
and 221 K~Xe!. ~b! Same as~a! but for Ar (egg5 120 K!. The dots
represent experimental results from Ref. 13.

ot-
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gases adsorbed in other sites, i.e., the interstitial channe
endohedral positions, if these are accessible to the adsor
The degree to which this is the case appears to be very
sitive to sample preparation and purification technique. E
dence in the tables given here provides some tentative
port for the belief that a significant fraction of these sampl
area is ordered and clean. Yet Fig. 12~b! shows a qualitative
discrepancy, presumably attributable to heterogeneity.

We have explored the problem of dimensional crosso
by studying adsorption along two distinct thermodynam
paths: constantT ~variableN) and variableT ~very low N).
At very low coverage, the effective dimensionality increas
progressively withT because the adsorbed molecules migr
over aT-dependent phase space, beginning~at low T) with
the groove and ending with monolayer and even 3D regim
at higherT. Qualitatively similar evolution was investigate
some years ago in the case of He isotopes on graphite.29 In
that case, theT dependence of the dimensionality~calculated
and measured! reflects the energy dependence of the wa
functions’ spatial localization. The more convention
method of studying dimensional crossover is to assess
variation with coverage of film structure and thermal pro
erties. This is the route followed in the adsorption isothe
measurements. Evidently, one can~in principle! explore the
N-T plane along any path. An interesting question that
have not explored is how the effective dimensionality of t
film varies at higherT or N than is reported here, yielding
more complete characterization of the effective dimension
ity. We note that specific heat and isotherm experiments p
vide complementary information, so that both experime
are worth carrying out.30 To our knowledge, no specific-hea
measurements have yet been undertaken for gas adsor
on nanotubes. This situation is probably temporary, beca
the very high specific area found in nanotube samples sh
yield very high total heat capacities, with a relatively sm
background correction at lowT. This argument suggests th
measurement and interpretation ofC(N,T) data are likely to
be fruitful and convenient.

TABLE III. Isosteric heatqst /egg at a typical first-groove cov-
erage. Experiment 1 values are from Refs. 8 (CH4) and 10~Xe!.
Experiment 2 values are taken from Refs. 13~Ar! and 14 (CH4).

T ~K! egg ~K! This work Experiment 1 Experiment 2

Ar 90 120 13.9 15.2
CH4 90 161 12.4 10.3 13.5
Xe 110 221 12.4 12.5

TABLE IV. Isosteric heatqst /egg at a typical monolayer cover
age. Experiment 1 values are from Refs. 8 (CH4) and 10 ~Xe!.
Experiment 2 values are taken from Refs. 13~Ar! and 14 (CH4 and
Xe!.

T ~K! egg (K) This work Experiment 1 Experiment 2

Ar 90 120 10.0 10.1
CH4 90 161 9.3 9.0 8.3
Xe 110 221 8.6 9.9 8.5
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Our computational methods used in this paper are r
tively straightforward, i.e., mostly extensions of those us
in our previous simulation studies. Hence, we have fou
few surprises in the results. One of the most intriguing fin
ings is that the second-layer groove phase is present in
isotherms~dramatically so in the compressibility! for all of
the systems studied, consistent with experiments of
Migone group. Equally encouraging is the agreement
ported in the preceding section between these calculat
and experimentally observed thermodynamic quantit
Such consistency is initially surprising, in view of the sim
plified potential models. One concludes that the interact
strengths are adequately transferable from the graphite
sorption problem. Such behavior is not consistent with so
model calculations in which either curvature-induced dist
tion of the physisorption potential or sensitivity of the pote
tial to the nanotubes’ conductivity is present.
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APPENDIX: 1D MOTION

In the limiting case of motion in 1D with a quadrati
transverse confining potential

V~r !5V01a
r 2

2
, ~A1!

wherer 25x21y2 and thez axis is the usual cylindrical sym
metry axis, the classical configuration integral satisfies

Z~b!5
2pL

ba
e2bV0. ~A2!

FIG. 13. Heat capacity derived from classical simulations a
function of coverage for Ar atT567.5 K ~dashed curve! and Kr at
T571.25 K ~full curve!.
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From Eqs.~8! and ~9!, classical values of the thermal var
ables in this quasi-1D limit are

qcl52V0 ,

Ccl

NkB
5

5

2
,

mcl5V01
1

b
lnS rlT

p

lT
2

^r 2&
D ,

where ^r 2&52/(ab) is the mean-square particle displac
ment perpendicular to the axis. The analogous quasi
quantum values are given by assuming that the tempera
is sufficiently low, so that only the lowest transverse vib
tion is present, for which the energy is«05V01\v, where
v5Aa/m.

In this case,g(E)5G1(E2«0)Q(E2«0), whereG1(x)
5(L/\p)Am/2x. This is the 1D density of states for a hy
pothetical system with no transverse degrees of freed
Then, the single-particle partition function is

Q~b!5
L

l
e2b«0. ~A3!
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A generalization of this expression to include all transve
states, within the harmonic approximation, leads to corr
tion to Q by a factor (12e2b\v)22. Without these factors,

C

NkBT
5

1

2
,

qst5
2

b
2«0 ,

m5«01
1

b
ln~rl!.

Note that the quantum isosteric heat exceeds the clas
value by an amountdqst given, in the present approximation
by dqst5qst2qcl52/b2\v. This is, as expected, the dif
ference in energy associated with the quantized harmo
motion inx andy directions. We discuss in Sec. III the mo
general case where other transverse degrees of freedom
excited. The present result applies to the low-T regime,
where\v@2/b.

Note added in prood.D. G. Narehood, J. V. Pearce, and
E. Sokol ~private communication! have found evidence o
this dimensional crossover in theT dependence values of th
hydrogen diffusion coefficient, deduced from quasielas
neutron scattering data.
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