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Kinetic theory of flux-driven ripening
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The classic Lifshitz-Slezov-Wagner theory of ripening assumes that within a closed system, the total volume
of the phase undergoing ripening remains constant while the total surface area of the phase decreases. We
present here the ripening behavior in an open system in which the total surface area of the phase undergoing
ripening remains constant while the total volume of the phase is growing. We define the latter growth to be
flux-driven ripening. We compare these two types of ripening, one within a closed system and the other within
an open system, in terms of the particles’ size distribution function, the scaling behavior of the distribution, and
the rate of growth of the mean particle size.
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I. INTRODUCTION II. BASIC ASSUMPTIONS IN RIPENING UNDER
CONSTANT SURFACE AND GROWING VOLUME
In first-order phase transformations, ripening typically oc-

curs after nucleation and growth. The classic Lifshitz- A brief review of the reactions between molten eutectic

L . SnPb and Cu, as well as between molten Sn and Cu, is pre-
Slezov-Wagne(LSW) theory of ripening assumes that this sented here as examples to delineate the basic assumptions

. _3 .
occurs in a closed systetn’” In sugh a.sys_tem., while the needed for theoretical development. Eutectic SnPb solder has
total volume of the phase undergoing ripening is very small, melting point of 183 °C. so the solder reaction tvoicall
it remains constant. Because the volume or mass is prea— gp ' ypically

served, this is a conservative process. The driving force oP¢CUrs at 200°C, lasting anywhere from a few seconds to

LSW ripening is the reduction of surface area or surface€Veral minutes. In the case of pure Sn on Cu, since Sn melts
energy of the phase. Thus, the total surface area of the phadk 237°C, the reaction temperature is typically around
decreases during ripening. Recently, in studies of the interfa¢0 °C. In these reactions, £3rs and CySn intermetallic
cial reaction between molten solder and metal, ripening ofompoundsIMC'’s) are formed at the interfaces. TheSu
the scallop-type intermetallic compound phase at the interis the dominant growth phase and has scallop-type morphol-
face was found to be accompanied by growth; i.e., ripenin@gy. The size of the scallops can grow to several microns in
and growth occur simultaneously. Since the volume of thediameter after a few minutes of reaction at 200 °C between
compound phase increases with time, this type of ripening i¢utectic SnPb and Cu. On a given area of the interface, the
considered nonconservative. The driving force is the gain irscallops were found to grow bigger but fewer with time.
free energy of the compound phase growth. What is veryAssuming a hemispherical shape, the radius of scallops was
surprising in this process is that the total surface area of théound to obey an approximatety’® dependence of growth,
compound phase can be treated as constant during its growii¢ing time. The number of scallops decreases at an approxi-
provided that we assume the scallops are hemispherical pamately t %3 dependenc&:'® The activation energy of the
ticles. Scallop-type growth is widely recognized in soldergrowth, measured from the growth rates occurring from 200
reactions between eutectic SnPb and*Cllt also occurs to 240 °C during the reaction between eutectic SnPb and Cu,
between Pb-free soldefsuch as eutectic SnAgnd Cul®~*® is about 0.2—0.3 eV/atorf.On the other hand, the G&n is
and also between pure Sn and ¥0!7In 1996, Kim and Tu  a thin layer and its growth is very slow. In the solder reaction
analyzed the kinetics of the ripening of scallop-typeat 200°C for a few minutes, the formation of £8n is
growth? However, in their analysis, two key aspects werehardly detectable by scanning electron microscopy.
ignored. The first aspect ignored was the crucial constraint of To simplify the theoretical analysis, we make the follow-
constant surface area during ripening. The second aspect niofg assumptions(a) The presence of G&n and Pb in the
considered was the particle size distribution function. reaction is ignored for convenience in the analysis. Figure
In this paper, we present a kinetic theory of ripeningl(a) shows a schematic diagram of the cross section of an
which features constancy in surface accompanied by volumarray of hemispherical Gy scallops grown on Cu, repre-
growth. We define this as flux-driven ripenifgDR). The  sented by the solid curvegb) There is a liquid channel
particle size distribution function of the theory has been debetween two scallops, the depth of which reaches the Cu
rived. The time-dependent behavior of the mean size particleurface. The width of the channeb® is assumed to be small
and its growth rate are presented. We also present an altems compared to the radius of scallops. We also assume that
native derivation of the classical LSW particle size distribu-the morphology of scallops and channels is thermodynami-
tion function. Hence, we make a comparison between theseally stable in the presence of molten solder. This assumption
two kinds of size distribution functions; one corresponds tois supported by the observation that molten eutectic SnPb
ripening with a constant volume but decreasing surfacesolder wets the grain boundaries of (Suy
while the other corresponds to a constant surface but increasstantaneousli?~2° The channels serve as rapid diffusion
ing volume. The different predictions as derived from thesepaths for Cu to go into the molten solder to grow the scal-
two size distribution functions are also herein discussed. lops. Figure 1b) is a scanning electron microscopic image of
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channels, they remain in close contact with each other. Fig-
ure 1(c) is a cross-sectional transmission electron micro-
scopic image of C45ny scallops, channels, and a thin layer
of CuzSn on Cu. The channel, as indicated by an arrow, has
a width less than 50 nm(c) The shape of the scallops is
represented by a hemisphere. On a given interfacial area of “
stotal” hetween the scallops and the Cu, the total surface area
between all hemispherical scallops and molten solder is just

5 oo 5 3 twice S*°@'. In Fig. 1(a), if we represent the cross section of
I ] l a large hemispherical scallop by the broken half circle, its
2R’ =) 2nR? = 25" surface is 32 the same as the sum of the surfaces of the

(e = smaller scallops represented by the solid curves. We note that

Fig. 1(a) is a two-dimensional diagram representing a three-
dimensional growth. Hence, while the growth increases the
total volume, it does not change the total surface area of the
scallops. Here, we ignore the cross-sectional area of the
channels on the interface sinéeis very small.(d) All the
in-flux of Cu from the Cu substrate is consumed by the
growth of the scallops. Furthermore, we assume that the in-
terfacial diffusion of Cu along the scallop/Cu interface is not
the rate-limiting factor of the scallop growth. This assump-
tion is supported by the fact that the activation energy of
scallop growth is extremely lowe) We assume the out-flux

of Cu from the ripening zone into the bulk of the molten
solder to be negligible. This assumption is valid when the
solubility of Cu in the molten solder is very low. More dis-
cussion and justification of the above assumptions on in-flux
and out-flux of Cu are given in Appendix A.

Since the growth of a scallop must occur at the expense of
its neighbors, it is a ripening process. In this ripening pro-
cess, there are two important constraints. The first constraint
is that the interface of the reaction is constant. The second is
a conservation of mass, in which all the in-flux of Cu is
consumed by scallop growth. We also note that this flux-
driven ripening cannot proceed forever. The growth of scal-
lops reduces the number of channels among them. In turn
this reduces the in-flux of Cu needed for the growth. In ex-
periments, scallops of GBn; were observed elongating in
the growth direction after approximately 10 min of reaction
at 200 °C. We analyze this transition behavior elsewhere; see
Appendix B.

In the following section, we present first a simple model

FIG. 1. Scalloplike morphology of G&ns during wetting reac-  0f growth of monosize scallops to illustrate the basic idea.
tions between molten eutectic SnPb solder and Cu. Schematic di&econd, we present a general model illustrating the distribu-
gram of the cross section of an array of scallops on Guis an  tional growth of different sized scallops.
influx from the substrate into the melt via chann@lerving for the
growth of scallopl J,, is an outflux of copper which was not used !l SIMPLE MODEL FOR MONOSIZE HEMISPHERES
for building up the intermetallic compound. For small solder bumps
this outflux quickly tends to zero after their saturati@in). Scallop-

) ; ) ; tion as Dirac’s functioh is not compatible with scallop
like morphology of CySry during wetting reactions between mol- rowth since scallop growth is parasitic and dependent upon
ten eutectic SnPb solder and Cu. Scanning electron microscop[%

) i _ e shrinkage of neighboring scallops. Therefore, the initial
(SEM) image of the top view of GySry scallops after 1 min reflow o, oqi76 distribution should be transformed into a wider-
at 200 °C. SEM images of the cross-sectional view of &y scal-

lops have been published in Ref. 448) Scalloplike morphology sized distribution. Yet all that is required is a narrow distri-

of CusSny during wetting reactions between molten eutectic Snl:,bbutlon function enabling us to ignore, for this specific model,

solder and Cu. Cross-sectional transmission electron microscot e differences among the average values of the scallop ra-

pe 2\\1/2 (/p3\\1/3 -1 ;
(TEM) image of CySry scallops after 10 min reflow at 200 °C and US, <R>(<R >) ((R%) ™ ((LR) 7, gtc. The monosize
channelsiindicated by an arrow approximation is good for a rough estimate of average val-

ues.

_ According to the first constraint that the interface between
the top view of a group of Gy scallops after the solder the scallops and Cu be occupied completely by scallops ex-
has been etched away. Although the scallops are separated &gpt the thin channels, we have

Strictly speaking, the monosize distributiize distribu-
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FIG. 2. Schematic dependence of the Gibbs free energy vs com-
position. The Cu quasiequilibrium concentration in the melt in the

vicinity of the substrate €°), in the intermetallic compound
CugSns or 5 phase C;), and in the melt for stable equilibrium
with planar# phase C°).

N7R?=S'°=const, (3.1

where N is the number of scallops. The free surfatke
cross-sectional area of channels at the boxtfamthe supply
of Cu from the substrate is

Sfree: NZWRé — éstotal,

5~ R (3.2
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First, we consider the case R< <CP—C®, so that

cb-ce

in—
J"=nD =

(3.6

Then, substituting Eq$3.6), (3.2), and(3.3) into the balance
equation(3.4), we obtain

n C: Estotald_R:nD
'3 dt R

cbt-c (6§
e
R

_Stotal) , (37)

which immediately gives

R=kt, (3.83
~9nD(C’-C9s 380
Tan T 6 (3.8
Note that the surface tension is absent in the expression for
the rate constant, despite the “ripeninglike” time law.

If we take n/nj=1C;=5, D=~10°cn?/s, 6~5
X 1076 cm, and CP—C®~0.001, where the concentration
CP is taken for equilibrium of melt with the G&n, phase,
the rate constarit~4x10 3 cm?/s. For example, for an-
nealing timet=300s, it givesR~5x10"% cm, which
agrees very well with experimental dafat®
Next, we consider what changes if we use the more cor-

where 6 is the channel width. So the free surface decreasesect expression in Eq3.5) for flux. In this case, the differ-

during the scallop growth asR/ The volume of the reaction
product of IMC scallops is equal to

V.=N 2_WR3:zst0'[a|R
I 3 "

3 (3.3

According to the second constraint that all influx of Cu

ential equation(3.7) for the R(t) dependence changes to
3R?dR=k(1— a/RAC)dt, whereAC=CP"—C¢.

It can be integrated if we consider/RAC as a small
parameter. Then,

3
Kt=R3+ = —_R2

5Ach: (3.9

atoms from the substrate be consumed by growing IMC scal-

lops due to conservation of mass, we have

.Gy i _ gingree (3.4
1~ dt " "

The effective exponent for growth rate then is equal to

ef

dinR 1 o
= ( . (3.10

“dmnt -3\t 2rac

Heren; is atomic density in IMC’s, i.e., the number of atoms It demonstrates the deviation from th&® law. Yet these

per unit volume, andC; is atomic fraction of Cu in IMC's,
which is 6/11 in CySr. The influx is taken approximately
as

(Ce+E -CP
, R
J"=—nD—m—,

= (3.5

deviations are small for sizes exceedingh. For example,
if we take R=10"%cm and AC=0.001, we obtain
al2RAC~0.008. Therefore, we will neglect the effect of the
al2RAC term on the influx and will use Eq3.6) instead of
Eqg. (3.5).

According to the approximate equati¢®.8) and relation
(3.1), the number of scallops should depend on time &S,
as observed experimentalf§*® It seems astonishing that

wheren is the atomic density or number of atoms per unitsuch a naive and simple model can fit the experimental data

volume in the melt or molten soldety=C®2yQ/RsT in

very well. The reason for this is an incoming flux being a

which v is the isotropic surface tension at the IMC/melt in- rate-controlling step, determining the ripening rate during

terface () is the molar volumeR is the gas constant, afid
is the temperatureC® is the equilibrium concentration

FDR.
We can understand now the crucial difference between the

(atomic fraction of copper in solder at the planar interface classical coarsening described by LSW theory and the flux-

between CgSrs and molten solderC® is equilibrium con-

driven ripening described here. In the former the phase vol-

centration of Cu in molten solder at the interface betweerume is almost constant at a sufficiently long time, and it is

substrate and solder at the channel’s bot{see Fig. 2 In
our case 30 /RgT~4.4x10 ' cm andC®~0.003.

simply redistributed between grains. The driving force is a
decrease of Gibbs free energy due to the decrease of total
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surface of the phase. In our case the surface is con@tent d (=2 5
total surface of hemisphenesndeed, n;C; afo §7TR f(t,R)dR
Sscallopdmelt: NZWRZZZStOtaIZCOHSt. (3‘1]) AC "
Thus, in our case, the constant interfacial area is a constraint =nb 5,[ TRI(LR)AR, (4.6
of the reaction. The driving force is the gain of Gibbs free Rf(t,R)dR
energy from the increase of phase volume. This increase is —
possible owing to “influx” of Cu from the substrate. There- f fdR

fore, we have flux-driven ripening in open systems. We
should note that, of course, we are not the first to treat ripyg that
ening in open systems. SleZoweated ripening of voids by
taking into account the vacancy flux moving towards the o d
external boundaries in the theory of caking. Yet in that case af R3f(t,R)dR — 2 Ri3
there were no two-dimensional constraints, and the coarsen- 0 _at

ing, even in nonhomogeneous conditions, proceeded due to a °°f tR)dR N
decrease of surface energy. 0 (t,
Evidently, the monosize model is oversimplified, since the
growth of scallops cannot proceed without the shrinking of 2 ,dR;
neighboring scallops. Thus, we should take the size distribu- 32 R dt
tion into account. =N
IV. BASIC EQUATIONS » dR
Q 3 f Rzade
Let f(t,R) be the size distribution function, so that the _ o _3n DAC
total number of grains is equal to N 2n G
o (4.7
N(t)= fo F(LR)R (4.1 Since scallops must grow and shrink atom by atom, the dis-
tribution function should satisfy the usual continuity equa-
and the average values are tion in the size space:
1 ©
<Rm>=—f R™f(t,R)dR. 4.2 ot d
NJo P SR (fur), (4.9

The first constraint of constant interface takes the form where the velocity in the size spaceg, is simply the

N . growth rate of scallops with radiuR, ug=dR/dt, and is
D mR2= J 7R2f(t,R)dR= Stotal - gfree= gotal — congt, determined by the flux density dor out of) each individual
i=1

0 scallop:
4.3
Surface area of channels for the copper supply is d_RE LR) (4.9
dt niCi ' '
)
S”ee:f EZ’ITRf(t,R)d R. (4.9 In the transformation$4.7) and below, the derivativdN/dt
0 is omitted since it should be multiplied by the cubed radius
The volume of the growing IMC scallops is of disappearing scallops, which is naturally tending to zero.

In classic ripening theory, when each grain is spherical

N » %D and is surrounded by infinite supersaturated solid solution,
Vi=2 §77Ri3=f §7TR3f(t,R)dR. (4.5  the expressions foi(R) anddR/dt are found as a quasista-
=1 0 tionary solution of the diffusion problem in infinite space

The second major constraint on our open system is the cor@mli”d a spherical grain with fixed supersaturati@)
servation of mass; i.e., the “influx” is consumed by growing — C® at infinity:
the IMC scallops, 4R

- (C)—(C®+alR)
Tdt - R

Ur R

n D
n G

av
n,C,—— =Jingfree (3.4)

dt

In our case the scallops almost touch each ofttex situa-
We shall take the influx density by analogy with the simpli- tion being more close to the grain growth situation, but with
fied model[Eg. (3.6)], replacing only the radius by its aver- the constraint of constant surface and increasing total vol-

age value. Then ume. Therefore the classical expression is not applicable.
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In FDR, the diffusional transport of copper atoms through ,dR,
the channels in the reaction zone is a rate-controlling step, 1n DAC 2 R —— dt
since the ripening, which conserves the total surface area, > ) c N
would be impossible without growth and growth impossible ' '
without incoming flux. Under the constraint of constant sur- L B B
face, the rate of ripening will be controlled by the incoming “hCN E Ri (@— ﬁ)
flux, and this flux will be redistributed among scallog©f t '
course, it does not mean that all scallops will grow—some of 2 R2 2 R
them will shrink) When the incoming flux is zero, the rip- LB
ening among the scallops changes to the classical case; i.e., :nAC, N(R) N
the volume is conserved. Experimentally, this happens in the
reaction between molten SnPb and a thin film of Cu when _ LB (R —(R)? 41
the film is consumed. nC (R .12
Flux on (out of) each individual scallop should be propor- . . . .
tional to the difference between the average chemical poter)(yh'Ch immediately gives
tial of copperu in the reaction zonéwe take it to be the K (R)
same everywhere— a mean-field approximatiamd the LB=nCiz —, (4.13
chemical potential at the curved scallop-melt interfage, 9 (R)—(R)?
+ BIR, and B=2yQ): so that
B u =d—R=E;(1—@> (4.19
—j(R):L(M_Moc—§>a Tdt 9(R)—(R2IT R '

Thus in the mean-field approximation, the basic equation
for the distribution function has the following form:
L B
H:E(“_“m_§>’ (4.10 itk (R a

77 () R (gl

where the parametells,u are determined self-consistently where the rate coefficierk is determined by the incoming

from the above-mentioned two constraints—of constant surflux conditions(first of all, by the channel width

face and mass conservation. In Appendix C, we present the Equation(4.15 is the basic equation for distribution func-

case when the flux on individual scallops is inversely proportion in FDR theory. It contains the unknown paramete},

tional to its radius. which is equal to the critical radius, meaning only those scal-
Indeed, the constant surface constraint implies lops with R greater thaqR)(t) can grow at the momerit

dR

V. SEMIANALYTICAL SOLUTION
dSotal - FOR THE MEAN-FIELD APPROXIMATION

=0
dt We shall find the analytical solution of the basic equation

(4.15. The structure of the basic equation hints that the fol-

gt E 277Ri2 lowing variables will be more convenient thamand R:
=> 47R —— dR r=bt, &= R (5.9)
| dt (bt)*?
4wl (we will choose the most convenient valuelof bit latey,
“nG | (a2 R=BN), so that

& 3) o_1d

so that at "\gr 379€]" IR BIE
Then Eq.(4.15 takes the form
] @ S I — ]
It 30¢  9b (g2)—(£)2 9E &)
The conservation law4.7) implies Let us choose
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b_k 1 5.2 fUR B R fR/(bt)l/S 3-4¢ d
=9 e (5.2 (t,R)= bt( )mex ——————dé

(&) —(&)? 0 £2— 3¢+ 35
Then Eq.(5.3 transforms into B
q.(5.3 =—e(n), r=btn= By (5.10
of & of (9[ . E) =—(6) 5.3
Tor 3 € € gl T8 ' glotal
Furthermore, we look for a solution assuming that the pa- B= =, ' (5.1
rameter is constardoes not depend on timeln this case TFJ'O Ep()dé

Eq. (5.3 suggests a separation of variables:

_ The parameter is still unknown and should be determined
f(r,.6)=9(m)e(§). (54 from the condition of self-consistency:

Naturally, the validity of such a separation should be
checked, after finding a solution, by substituting it in the

constraints. Using Eq5.4), we transform Eq(5.3) into f co(£)dg

E=(f)= " (5.12
= f p(§)dé
2

— —=A=const. (5.5
3

ding ding/¢ E
dinr  dg (5_ 3

The integral in Eqs(5.9) or (5.10 strongly depends on
The constank can be determined from the constraint of thethe value of=. The denominatog®— 3¢+ 3% in the inte-
invariable interface of scallop bottoms: gral can have one real root, two real roots, or no real roots at
all. We have three cases to be discussed in the following.

total _ “ o2 (A) If E>E*=3/4, then denominator has no real roots.
ST =mrg(7) Jo £e(8)ds, (B) For 2=E*=3/4, we have two equal positive roots
so that &=§,=3/2. (5.1339
g(r)— 1 steta! (5.6 roo(tcs:) For E<E*=3/4, we have two different positive
f §2¢(§)d§
—3+ 2 3= —3 2 32. (5.13
Therefore, §1—§ \/Z =, 52—5 \/Z =. (5.13b
Ing=—In7+const, \=-1. (5.7

In case(A), the integral in Eq(5.9) never diverges; it has
We will see below in Sec. VI that in the classical LSW con- no singularities foE>0. Then the standard integration pro-
ditions A = —4/3. Using Eqs(5.5 and(5.7), we obtain the cedure givegRef. 21; see pp. 82—-84
following differential equation for the “scaling part” or
“time-independent part” of the distribution function:

n
¢(7)=consiX 3.2 912
ding 1 3-4¢ (
=t . 5.8 n- +3<77>——}
dé & 2-3z+3E =9 2 4
Thus, _E
3
p{ 7 3_4§ ><exp — arCtaﬁ—
@(7)=Bonex f o a= 46,
0 £2-3&+3E 3<77>_Zr 3<77>__
R 59 (5.19
= :
(bt)*? In case(B) a standard integration gives

The factorBy may be arbitrary since it will be cancelled in
the producige. Hence, we will take it to be unity. Thus, the (7)=0 - E
formal solution of our distribution function is oL =12
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77 FIG. 4, Dependence of the ratio
FIG. 3. Scaling parts(7), 7=R/(bt)¥3 of the size distribution o 7¢(7.E)d7/E[g¢(#7,E)dy on parameteE/=* for the FDR
f(t,R)=g()¢(7) in the FDR model for caséB) (E=E*=<¢ case E*=3/4). Thls ratio is equal to unityself-consistency con-
>=3/4), for which a self-consistency condition is satisfied: dition) only for regime(B): Z/E* =1.
Jone(nE)dnl[ge(nE)dn=E.

k k
7 3 3 b= 5%0.0615 0.5535 (5.179
e(n)=consX———zexp[ —5—|, 0O< 77<(—) S
(3 ) 3 2 Hence, average cube of grain size is equal to
2 2
(5.19 (R =(£)bt=kt, (5.18
(see Fig. 3 which coincides with the result of the monosize model, but

for the averaged cube.

In case(C), the indefinite integral shows two singularities The averaged size will be

at positive roots£;>&,>0. It should mean that nondimen-
sional grain size should not exceed the lessen of these two 3 K 13
positive roots £,): R<&,(bt)Y3. Thus, an explicit form of <R>=<§>(bt)1’3=—(—5t> =0.913 k)3,
the scaling part of distribution function is the following: 410.553

(5.19
e(n)=0if p>§&,, Thus, the asymptotical size distribution during FDR satisfies
the universal scaling expressidh.19, different from the
o(77)=CONsiX 7(£,— )@~ IE—&) LSW case. The rate of ripening and growth is determined by

the incoming flux conditions.
X (&— )tV i p<g,. (516
VI. ALTERNATIVE DERIVATION OF THE LSW
In order to find out what kind of distribution function ASYMPTOTIC SOLUTION
should be observed, we should use a self-consistency condi- . . L .
tion (5.12. This relation can be considered as the transcen- For a direct comparison, it is mterestlng to_ apply the
dent equation for determining the parameEs which in above approach to the case of classical coarsening in a three-

. . dimensional closed systethSW casg¢. We present an alter-
turn determines the shape of functi . The dependence . R AR ;
of the expressionfwmp(pn :)dn/:(}(lz)(ﬂ W)dnpon pa- native derivation of the LSW distribution function and solu-
0 y e ~J 0 y

X X ) Ty ) ._tions below. The equation for the size distribution function is
rameterZ is easily obtained by numerical integration and IS\ el known-
demonstrated at Fig. 4. We can see that this expression IS '
equal to unity only for regiméB) (E =3/4); for other val- of P
ues, it is always less than unity. Thus, regifBg gives us a i —aoﬁ

unique asymptotical solution. For this case

a (6.1

fore-g].

For the late stage of coarsening, the mass conservation equa-
(£2)—(£)?=0.0615, (£)=3/4=£ad2, (£3)=0.5535. tion is

n G

Then the parameter n,C;V;+n{C)(V—V;)=nCyV, (6.2
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RS LT e n Ao

Vizf §7TR f(t,R)dR<V, (C)—CS¢, (6.3 g(T)?T j & (p(g)dgzn_gvl (6.9
0 i Ci

andn,, C;, andV; are, respectively, the atomic density, Which means that
atomic fraction, and volume of the new phase undergoing

coarsening in the matrix phase of (C)(initially C,,) and g(r)=constx 743 \=-—. (6.10
V-V, (initially V), respectively. The constraint of the con- 3
stant new phase volume is Using Eq.(6.10 in Eq. (6.8), we obtain
=4 n(Co—C* ¢ —2&°
vizf —szf(t,R)dRE(O—)VZCOHSt- (6.9 dine _2 3 W -2 . (6.11)
03 n;C; dé & £-3¢/(8)+3
Equation(6.4) is the only constraint on the LSW size distri- Thys,
bution function since the system is closed. In other words, . 3a—6§2 1
~ 2 ot = _
d (= - PR o e(n)=n eXp{fom } f:‘(=w.
—_— 3 == — 3— — — e_ _ —o=
dtJo R°fdR=0 aOJO R aR[R(<C> C R) dR. (6.12
(6.5 The formal solution for the LSW distribution function is
Using the zero boundary conditions fbfR), we obtain the ) ~ 5
supersaturation as HLR)= Bisw R ox fR/(At)l’3 32—-6¢ dé
f fdR T (AYB(AY?B 0 £-35¢+3
o
— _Cce— =
A=(C) a Ry’ (6.6  Brsw
RfdR = FQD( 7).,
which means that in the LSW case the critical radius is sim- n ﬂ
ply an average one. R n; C;
The condition of Eq(6.6) transforms Eq(6.1) into T=At 9= (T)m Bisw=73——
o~
= d
o, aff(1 1] nDa 3WJO§¢(§)§
- ARRI® R/ “nC (6.7 (6.13
Using new variables=At,é=R/(At)Y3 and solving for a The parameter= should be found from the following
solution with separation of variables=g(7)#(¢), we ob-  condition:
tain S
~ ~ 1 jo §p(£,5)d¢
‘(ﬂﬂ:‘wﬂ(g_ihé)_(é_i%): == 614
nr o dg ¢ g & (¢ = fo o(£5)dé
=const. (6.9

To solve this equation, we need to know the explicit form of
To find the parametek, we should use the constraint of the function. As in the FDR case, we have three possibilities
constant volume(instead of constant surface in the FDR and three corresponding explicit forms found by standard
case: integration.

(A) E<E*=(3/2)?3, single, negative root:

= VEHIL V1= (BB - V1= (BB,

p | GE-6eD2e 3 304 (6£3+18/£| +3E)/[2(262+ 31 £4)]
()= 772( 1+ ﬁ> 2—)
& n°+ & n+ 3]
3l 3¢ —§2+3‘)
! Yost 27 n—|&)/2 |€4]12
exp > >—| arctan 5 arctar=——=— (6.195
(3N &,|+28) V3l &) - €714 V3I&| - &la 3/\&,| - &14
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B) E=Er=(327° (6= 6= VE", &= —2VE"): o()=0.>()™,

nelex

1
p( 1—77/\/é—*
3

(6.1

3 1/3
e(n)= )

77 1173’ 77<(5
1+ | [

2\ E* ‘/é*
(C) For E>E*=(3/2®, we have two different positve and one negative roo§:1=2\/Ecos(¢/3),
£,= — 2\Ecos@3+ m3), &= —2\Ecos@3—m3), cosg)=—3I2E32 (£,>£,>0, £5<0); o(n)=0> &y

m

, 7| BE-6E)II(E- &) (&) 7| BE 6812 &) (&2 0] 7 | BE-68)1(&— (= &)]
)= (1—— (1——) 1+—) . <&
em=mil=g fz B 7=t
(6.17
|
Substituting expression®.15—(6.17) into Eq. (6.14 for a (ii) In Secs. IV and V, when we take the size distribution

lation of integrals in Eq(6.14)] that this equation is satisfied app'rpximatiqu”(neglelcting thfe r:Jlifferem;e of Q’th;] melt co;n-
. =S 113 _ position in different places of the reaction zonthe rate o
stnc;ly fgr . _£9/4):' Fo_r all-other valu.es the prod the size distribution widenindEgs. (5.10, (5.15, and
uct ZJép(&,E)dE/[e(&,E)dE is less than unity. (5.17] appears to depend on the incoming flux. More pre-
It means that only regiméB), with (£)=1/2*=(5)?® cisely, it appears to depend on the product of the melt diffu-
and the distribution, given by Ed6.16), is self-consistent. sivity, channel width, and difference of equilibrium compo-
Thus, the critical size changes with time as sitions between the melt with IMC’s and the melt with the
substratéEq. (3.8 ]. The lesser is this product, the slower is
the size distribution widening and average size growth. Con-
' cerning the parameters in the product, we note that the chan-
nel width is not precisely known so far. It may have a width
which is the same as the classical LSW result. The size didistribution depending on the orientation relationship of the
tribution function presented in E@6.16) is the same as the two neighboring scallops. But as can be seen in Fg), 1t
asymptotic LSW expression. can exceed substantially the width of a large-angle grain
Thus, the method developed here for FDR can be appliedoundary. Another parameter of concern is the difference of
to the LSW case as well. It serves as a check of its validityequilibrium concentrations. If the melt is in contact with pure
However, the shortcoming of this method is the use of nucopper(in the early stage of the reactigrithis concentration
meric integration(though very simplg Nevertheless, its difference is about 3.7 at%. Then, if the melt is in contact
positive feature as demonstrated by the alternative derivatiowith CuzSn; (at the later stage the difference is about 0.1
of LSW results is that only two approximations are used—at %.

4nDa \B

Rer=(R)=(&)At*= (5 nct

constant volume and separation of variables. (iii) We would like to point out that the proposed analysis
for flux-driven ripening is far from being complete. We have
VII. DISCUSSION treated scallops as preserving their hemispherical shape dur-

ing the flux-driven ripening. As we know from experiments,

The results of previous sections can be discussed briefli is not true for long annealingeflow) time—say, over 1 h
as follows. at 200 °C for eutectic SnPb on Cu; the scallops will become

(i) In Sec. Ill, under the assumption of an approximatelyelongated. The hemispherical shape in our model is interre-
monosize distribution, the growth of the average scallop sizéated with the mean-field approximation. If we take into ac-
satisfies the!® law, with the growth constant being practi- count the different compositions of melt at different dis-
cally independent of surface tension. It does not mean thatances from the substrate, the growth rate in different places
ripening does not proceed during growth. On the contrarypf the same scallop will be different—and the shape will
the growth is parasitic due to the constraint of a constanthange. We intend to study such a “gradient” model in the
bottom interface and close proximity of hemispherical scal-near future.
lops. It means that in this case the ripening is driven not by a (iv) In Sec. VI, when the proposed method is applied to
decrease of surface ener@iyremains constapbut by a gain  the classical coarsening case, it gives results in good agree-
of bulk free energy due to the chemical reaction to formment with the LSW theory. Using the same method to ana-
IMC's. lyze the LSW ripening and flux-driven ripening, we conduct
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TABLE |. Comparison of physical differences between LSW and FDR models.

LSW FDR
Closed system Open system
Constant volume, decreasing surface Constant surface, increasing volume
Driving force, reduction of surface energy Driving force, gain of bulk free energy
One constrainfconstant volumge Two constraintgconstant surface area, volume growth rate proportional to influx
Number of grains decreasing &s' Number of grains decreasing 85>
(R)®=K-"{, the rate constark-S"s proportional (R%=kt, the rate constark is independent of surface tension,
b e
4 n Da - 3, 93 nD(C-C%o
ioRLSW=_ _ 7 R»’=(0.913°kt, k=5 — —————
to surface tensiok on C (R*=( 7 c
a direct comparison of them in Tables | and Il. VIIl. CONCLUSION

(v) For a detailed check of FDR theory, an accurate de-
termination of the size distribution is needed. Both cross- We have presented a theory of three-dimensional growth
section images and plain-view images are required. From thend ripening in open systems with two-dimensioi2D)
plain-view images, the distribution functidi{S) of scallops  constraint of the constant surface. In this case the ripening is
on the bottom surface can be determined, which can be comiriven not by a decrease of surface energy but by a gain of
verted into the size distribution according td(R) bulk free energy due to a chemical reaction. The growth
=f(S)dSYdR=2\7Sf(S). kinetics and size distribution have been predicted. The size

(vi) We believe that the general idea of a flux-driven re-distribution is controlled by the condition of incoming flux.
distribution of sizes in open systems has wider applicationg he theory gives a reasonable kinetic description of scallop-
rather than merely the FDR. For example, it may apply totype intermetallic compound formation during the reaction
flux-driven grain growth and flux-driven precipitation. between molten solder and solid copper.

TABLE Il. Comparison of mathematical differences between LSW and FDR models.

LSW FDR
SR3f(R)dR=const JR?f(R)dR=const
C)—cC* ¢ j(R)=L A =2
. D< >_ _ﬁ 72,}/‘0’ . _]( )_ M_Mw_ﬁrﬁ_ 7()
—j(R=n —R O CRTT
dR_[1(1 1|} nDa R k (R (1 1)
aAR® R} “ag @ o@_mE R R
_yn D(C°-C95
T
of alflf1 1 nDa Jf K 1 P (R
—=A—|=|=—=|, A=—— A S S P P U4
a RR(R R n G t  9(R)—(RZR R
Formal solution(our form) Formal solution
Bisw R? qgts 35 —6& B R v 3—4¢ B
f(t,R)= X wWr _——_> ¢ f(t,R)= — ——exp JROV" —— > _qgf=—
R~ g™ (ap2s p{ ° £#-3E+3 T Oy
Explicit solution Explicit solution
1 7 3
2,1 —
e exF’(—~> e(n)= ex —)
1-9lVEX G-n* 3
e(n)= s , |
1+ — [1-—
( ZVE*) ( VE*>
7<(3)"? 0<p<3/2
n=RI(A)M _ 3o K
7=RI(bY"", b=z
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APPENDIX A:  ASSUMPTIONS ABOUT INFLUX f D™MdC=(1-Cj)—.Us, (A6)
AND OUTFLUX OF CU IN THE REACTION ZONE <) 40

We assume that the influx of Cu supplied by the interfa-Where
cial diffusion of Cu from the bottom of scallops to the chan- b e
nels (or/and Sn diffusion in opposite directipis not a lim- Uen ED c-C (A7)
iting step of the scallop growth. When all Cu atoms in the SR R

influx are taken from the bottom of the scallops and supplied _ o
by the interfacial diffusion along the interface between theVVe note that the difference of upper and lower limits of the

Cu and scallops, conservation of mass implies integral cannot exceed the homogeneity radge.
The left-hand side of Eq(A.6) in the limiting case

\ateral it in C(R)—C(0)=AC is often called an integrated Wagner dif-
J 2mRT=JT27RS. (A1) fusivity D™AC.?22 Since an IMC has a narrow homogene-
_ ity composition range, it is more convenient to express the
Here & is the channel widths'™™ is the width of the interfa-  integrated diffusivity in terms of the chemical potentialor
cial boundary between scallops and (s width about 0.5  Gibbs free energy per atorg, and a self-diffusivityD* of
nm), J'aeral andJ™" are the flux densities of Cu, respectively, Cu in the interfacdéwe neglect the Sn self-diffusivily
along the interface and along the channel into the melt. We

can estimate the influx densifper unit arepas f D‘”‘dczf [(1-C)D* +0]C(1—C) @
_ ch—ce AC ~Jac keT  dc?
J"=nD R (A2)

L Ci(1-C)*[ gi+17Gi . Imer Ui
wheren is the atomic density of molten soldéd, is the Cu =D kT Ci.1-C, * C._ce
diffusivity in molten solderCP is the equilibrium concentra- :
tion of Cu in molten solder, contacting directly with Cu R2
(without IMC in betweely, C€ is the equilibrium concentra- >(1—Ci)—_mUS. (A8)
tion of Cu in molten solder, contacting with IMC’s along the 45

flat interface, andR is the average size of hemispherical scal-

lops taken here as an estimate for the dimension of the reac- Here i+, andg; ., are respectively, the copper atomic
tion (diffusion) zone. fraction and Gibbs free energy per atom for the subst@te

To estimate the flux along the interface substrate/grai®’ CtsSn). . - )
bottom, we will use a quasistationary approximation for the ~From Egs(A7) and(A8) we obtain a condition for diffu-
diffusion at the interface. Let sivity at the interface not to be the rate-limiting step of FDR:

Its explicit form depends on whether we consider the sub-
—dC . strate phase as Cu or £€3n. If the substrate is copper, then
J(r)=— nimD'”‘WZ ar &M (A3
s(CP-c?) ksT

be the lateral flux at distanaefrom the center. Further we D* = D

will neglect (for a rough estimationthe differences between 4Ci(1-Cj)0"™ [ dcu— i N Imert— Ji

the atomic density in different phases and at the interface 1-C C,—C®

(nirt). Due to the consumption of copper by the growing

IMC'’s, the substrate’s surface moves in opposite direction to 5(CP—C® RgT

influx [“down” in Fig. 1(a)] with a velocityUg. The inter- = 45" (—Agh D, (A9a)
7

facial layer between each scallop and the substrate moves

with the same velocity in the same directitstherwise the  \yhere the formation energy of the phasé*

interface would become “curved’ In this direction every

thin slice of area Zrdr obtains per unit time an additional  Ag' =(—7139.4+0.31594) J/mol, C°—C®=0.037.
number of copper atomg(1—C;)2wrdrUg. Then conser- K

vation of matter in quasistationary conditions implies If the substrate is GiBn(e), then
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5(CP—C®) kgT 9n_ cbP-ce

: D. R=(kt)™3,  where k=5 —D——
4C(1-C)o™ [ 9=0i  Gnei 0 2me G
CE_Ci Ci—Ce

*

5. (Al4)

Substituting Eq(A14) into Eq. (A13), we obtain the condi-
(A9b)  tion for neglecting the outflux:

Using the formation energy of the: phase, Agf=

(—8479.6+0.318 3@) J/mol2* we obtain for the copper cb—ce\?(2n\4 c \* .2
self-diffusivity at the interfacé®* >10"" cn¥/s, which is a t< s (g_n) - 7r35 (Al5a)
rather restrictive condition. It may be that it is a reason why C C

sometimes a wavy interface between scallops and substrate is
observedhigher in the center of a scallop and lower at the©r, in other terms,
channel positions

Concerning outflux, we have assumed that it is negligible. 270\ C,(CP—C®)
It is related to the assumption that all Cu atoms, dissolved in <( ') !
molten solder, feed the growing IMC scallops. If the amount on
of molten solder is small, it will become saturated with Cu
very quickly, and the saturation tinte=H2/D is about 10 s For C°—C®=10"3, C®=3x10 3, and §=5x10 % cm,
for a solder bump with a diameter #f=0.01 cm. In this Eq. (A15b) givesR<2X 10™% cm, t<20 s, which is too re-
case our assumption is good. On the other hand, if the moltestrictive for FDR applications. Yet, by varying the param-
solder is unlimited, the problem is complicated. The balanceeters, we can obtain reasonable numbers.
equation can be modified in the following way: Thus, for a molten solder saturated with cop(er which
experiments are usually madéhe FDR should apply and it
has predicted the average sizes, which coincide with experi-
mental data. For an unsaturated melt, the FDR model may
not apply or be marginal. The above condition gives unrea-
HereV; is the volume of growing IMC'sS""® is the area of  sonably small times, after which the FDR should be sup-
channels between scallops at the bottom, 8¢ is the  pressed. Thus, we can conclude that the saturation of a melt
total area of substrate. The outflux can be estimated accordr negligible outflux is a necessary condition for the obser-
ing to standard expression vation of FDR.

o 5. (A15D)

nC ﬂ :Jinsfree_JoutStotal (AlO)
I I dt .

1/2 2
Jout=nc* —) exy{ - H)’ (A11) APPENDIX B: TRANSITION FROM HEMISPHERICAL

t
m SCALLOPS TO ELONGATED SCALLOPS

where we takdR as a characteristic dimension of the reaction
zone. For real experimental dataD£10 °cmé/s, R
=several micrometerst=5-15 min) the ratioR?/4Dt is
very small, so the exponent is almost uni§/'®® can be
estimated as{/R) St

For the assumption of negligible outflux to be valid, it is
necessary that

Elongated scallops are observed at the later stages of the
reaction, when ripening practically stops. At least one of the
general reasons for this is presented below. As we show here
the rate of Gibbs free energy release, which is proportional to
the rate of volume change, depends on timé¢ &§ in FDR.

For a columnar growth it depends on time tas’? (if we

neglect any 2D ripening among the columnk is evident
Joutgtotal ¢ jingfree (A12) that since the time dependence on 2/3” is sharper than “

—1/2,” at some moment FDR growth will become less fa-

The left-hand sidétotal outfluy decreases with™ > depen-  vorable than columnar growth. A detailed analysis will be

dence. The right-hand side decreases inversely proportiongiven elsewhere.

to the squared scallop size, whi@ccording to experimental

data and our analysigrows by at*® law. Thus, the total

influx decreases with time by the %3 law, which is faster ~ APPENDIX C: * ALTERNATIVE SCHEME OF FDR FOR

than outflux, due to ripening and the respective decrease of THE CASE WHEN THE FLUX ON INDIVIDUAL
the channel total length. Therefore, at some moment the oufRAIN IS INVERSELY PROPORTIONAL TO ITS RADIUS.

flux can approximately equalize the influx. In this case the e derived the size distribution of scallops during FDR

growth of IMC's can substantially slow down—it will be for the case when the flux of copper on an individual grain is
suppressed by the diffusion into a nonsaturated melt. Thgroportional to the difference of the average chemical poten-

condition in Eq.(A12) can be easily transformed to tial in the reaction zone and the chemical potential in the
b e vicinity of the curved scallop/melt interface. Here we will
R?< Cc°-C (wDt)L25 (A13) present a theory for the case when the liquid solution has
ce ' enough space to form a quasistationary copper distribution
around each hemispherical grain, so that instead of Eq.
As we have given in Sec. lll, (4.10 we have
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critical radius, meaning only those scallops wih-[ ( 1/R)

, L B\ dR 1 L !
—j(R)=§ Y Yol - L =1k X(t)]™* can grow at the momerit
M (1) To find an asymptotical solution of the basic equation
(C6), we use the following variables:'=bt, £é=R/(bt)*3,
where the parametells,u are determined self-consistently
from the above-mentioned two constraints of constant sur- :E 1 (C7)
face and mass conservation. 9/1 '
Indeed, the constant surface constraint implies E (6)—1
dSotal Then Eq.(C7) transforms into
——=0
dt of gof aff(. 1] - /1 ce
d T3 aEle\ 7] P\ ©9
T > 27R?
Furthermore, we look for a solution assuming a separation
dRrR, of variables:
=> 4TR -
f(r,6)=9(7)e(§). (C9
47{( 1
- e man-pz 2 ding e (¢ o1 1) (2 1)
n;C; R; dinr_ dE |3 H§+§2 2 _52 =\=const.
so that (C10
1 The constant can be determined from the constraint of the
,u—,ux=B<§>. (C2) invariable interface of scallop bottoms:
The mass conservation constraint implies g(T):% Ocst0tal | 1
2
d
s de_R| WJO p(§)d¢
1n 6DAC _ bodt
> n_. c N Therefore,
~ Ing=—In7+const, \=-1. (C12
B 1
- niCi(<§><R>_1)’ (€3 Then in full analogy with Secs V and VI, one obtains the
formal solution
which immediately gives A
2 RI(by)Y3 3E —5&2
~ k 1 f(t,R)=—~ ——-ex —F—d
L=nCig a7 (C4) bt (bt) 0 E-35¢&+3
<§><R>_l ° (m) bt R (C13
=—¢(n), 7=bt, n=—7"p,
so that T (bt)¥3
dR Kk 1 1//1 1 Gotal
U"=4t 9717 R\\R/ R/ (CH) B=—r———. (C14
<§><R>—l w [ “Eoeras

Then, in the mean-field approximation, the basic equation for

the distribution function has the following form: The parameteE is still unknown and should be deter-

mined from the condition of self-consistency:

af  k 1 a|f(/1 1 ce 1
a-e/1_ _aRRI\R R (©9 | <oty
R/ (R-1 B-(1)=17
R = Py A (C1H
where the rate coefficierkk is determined by the incoming f ed7

flux conditions.

Equation (C6) is the basic equation for the distribution ~ \We have three cases
function in our alternative scheme of FDR theory. It contains  (A) For E<E*=(3/2)??, the denominator has a single,
the unknown parametéd/R), which is equal to the inverse negative root.
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>

7

FIG. 5. Scaling parte(7n),n=

R
(bt)ll3
f(t,R)=g(m)e(n) in the alternative scheme of FDR model for

case B E=E*=<&>"1=(3/2)?9), for which a self-consistency
condition is satisfied.

(B) For = = E* =(3/2)%3 we have one negative and two

equal positive roots.

(C) For £>E*=(3/2)?3, we have two different positive

and one negative root.

of size distribution

PHYSICAL REVIEW B 66, 115403 (2002

1/3
¢(n)=0, 77>(§> .

20213 213
nPe?exp - ———
1-nINE* 3\ 13
o= 1779 . \ 2 <\5|
1+ 1-
B JE

(C16

The plot of ¢( %) againsty is shown in Fig. 5.
Thus, regimgB) gives us a unique asymptotical solution.
For this case

<1
E> (€)—1=0.0665(&)=0.814(£%)=0.6.

The ratio of mean-squared deviation and mean size is
about 0.20. Then, the parameter k/(9x0.0665)=k/0.6.
Hence, the average cube of grain size is equal to

(R%=(&%)bt=Kkt,

which coincides with the result of the monosize model, but
for the averaged cube. The averaged size will be

k 1/3
(R)=(§>(bt)1’350.81l<a3t> :

Thus, again, as in Sec. 1V, the ripening rate is determined by

Calculations, similar to those of Sec. VI, show that only the influx condition, but the size distribution is different,

one valueZ = 5 * =(3/2)?3 satisfies a self-consistency con- with r2 behavior for small sizes. Also it is different from the
dition and provides the following distribution, more similar LSW distribution due to the constraint of constant surface

to LSW, but with different exponents:

area.
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