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Kinetic theory of flux-driven ripening
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~Received 24 September 2001; revised manuscript received 26 February 2002; published 4 September 2002!

The classic Lifshitz-Slezov-Wagner theory of ripening assumes that within a closed system, the total volume
of the phase undergoing ripening remains constant while the total surface area of the phase decreases. We
present here the ripening behavior in an open system in which the total surface area of the phase undergoing
ripening remains constant while the total volume of the phase is growing. We define the latter growth to be
flux-driven ripening. We compare these two types of ripening, one within a closed system and the other within
an open system, in terms of the particles’ size distribution function, the scaling behavior of the distribution, and
the rate of growth of the mean particle size.
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I. INTRODUCTION

In first-order phase transformations, ripening typically o
curs after nucleation and growth. The classic Lifshi
Slezov-Wagner~LSW! theory of ripening assumes that th
occurs in a closed system.1–3 In such a system, while the
total volume of the phase undergoing ripening is very sm
it remains constant. Because the volume or mass is
served, this is a conservative process. The driving force
LSW ripening is the reduction of surface area or surfa
energy of the phase. Thus, the total surface area of the p
decreases during ripening. Recently, in studies of the inte
cial reaction between molten solder and metal, ripening
the scallop-type intermetallic compound phase at the in
face was found to be accompanied by growth; i.e., ripen
and growth occur simultaneously. Since the volume of
compound phase increases with time, this type of ripenin
considered nonconservative. The driving force is the gain
free energy of the compound phase growth. What is v
surprising in this process is that the total surface area of
compound phase can be treated as constant during its gr
provided that we assume the scallops are hemispherical
ticles. Scallop-type growth is widely recognized in sold
reactions between eutectic SnPb and Cu.4–9 It also occurs
between Pb-free solders~such as eutectic SnAg! and Cu,10–13

and also between pure Sn and Cu.14–17 In 1996, Kim and Tu
analyzed the kinetics of the ripening of scallop-ty
growth.12 However, in their analysis, two key aspects we
ignored. The first aspect ignored was the crucial constrain
constant surface area during ripening. The second aspec
considered was the particle size distribution function.

In this paper, we present a kinetic theory of ripeni
which features constancy in surface accompanied by volu
growth. We define this as flux-driven ripening~FDR!. The
particle size distribution function of the theory has been
rived. The time-dependent behavior of the mean size par
and its growth rate are presented. We also present an a
native derivation of the classical LSW particle size distrib
tion function. Hence, we make a comparison between th
two kinds of size distribution functions; one corresponds
ripening with a constant volume but decreasing surfa
while the other corresponds to a constant surface but incr
ing volume. The different predictions as derived from the
two size distribution functions are also herein discussed.
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II. BASIC ASSUMPTIONS IN RIPENING UNDER
CONSTANT SURFACE AND GROWING VOLUME

A brief review of the reactions between molten eutec
SnPb and Cu, as well as between molten Sn and Cu, is
sented here as examples to delineate the basic assump
needed for theoretical development. Eutectic SnPb solder
a melting point of 183 °C, so the solder reaction typica
occurs at 200 °C, lasting anywhere from a few seconds
several minutes. In the case of pure Sn on Cu, since Sn m
at 237 °C, the reaction temperature is typically arou
250 °C. In these reactions, Cu6Sn5 and Cu3Sn intermetallic
compounds~IMC’s! are formed at the interfaces. The Cu6Sn5

is the dominant growth phase and has scallop-type morp
ogy. The size of the scallops can grow to several micron
diameter after a few minutes of reaction at 200 °C betwe
eutectic SnPb and Cu. On a given area of the interface,
scallops were found to grow bigger but fewer with tim
Assuming a hemispherical shape, the radius of scallops
found to obey an approximatelyt1/3 dependence of growth,t
being time. The number of scallops decreases at an app
mately t22/3 dependence.12,16 The activation energy of the
growth, measured from the growth rates occurring from 2
to 240 °C during the reaction between eutectic SnPb and
is about 0.2–0.3 eV/atom.12 On the other hand, the Cu3Sn is
a thin layer and its growth is very slow. In the solder reacti
at 200 °C for a few minutes, the formation of Cu3Sn is
hardly detectable by scanning electron microscopy.

To simplify the theoretical analysis, we make the follow
ing assumptions.~a! The presence of Cu3Sn and Pb in the
reaction is ignored for convenience in the analysis. Fig
1~a! shows a schematic diagram of the cross section of
array of hemispherical Cu6Sn5 scallops grown on Cu, repre
sented by the solid curves.~b! There is a liquid channe
between two scallops, the depth of which reaches the
surface. The width of the channel ‘‘d ’’ is assumed to be smal
as compared to the radius of scallops. We also assume
the morphology of scallops and channels is thermodyna
cally stable in the presence of molten solder. This assump
is supported by the observation that molten eutectic S
solder wets the grain boundaries of Cu6Sn5
instantaneously.18–20 The channels serve as rapid diffusio
paths for Cu to go into the molten solder to grow the sc
lops. Figure 1~b! is a scanning electron microscopic image
©2002 The American Physical Society03-1
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the top view of a group of Cu6Sn5 scallops after the solde
has been etched away. Although the scallops are separat

FIG. 1. Scalloplike morphology of Cu6Sn5 during wetting reac-
tions between molten eutectic SnPb solder and Cu. Schematic
gram of the cross section of an array of scallops on Cu.Jin is an
influx from the substrate into the melt via channels~serving for the
growth of scallops!, Jout is an outflux of copper which was not use
for building up the intermetallic compound. For small solder bum
this outflux quickly tends to zero after their saturation.~b! Scallop-
like morphology of Cu6Sn5 during wetting reactions between mo
ten eutectic SnPb solder and Cu. Scanning electron micros
~SEM! image of the top view of Cu6Sn5 scallops after 1 min reflow
at 200 °C. SEM images of the cross-sectional view of Cu6Sn5 scal-
lops have been published in Ref. 4–9.~c! Scalloplike morphology
of Cu6Sn5 during wetting reactions between molten eutectic Sn
solder and Cu. Cross-sectional transmission electron micros
~TEM! image of Cu6Sn5 scallops after 10 min reflow at 200 °C an
channels~indicated by an arrow!.
11540
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channels, they remain in close contact with each other. F
ure 1~c! is a cross-sectional transmission electron mic
scopic image of Cu6Sn5 scallops, channels, and a thin lay
of Cu3Sn on Cu. The channel, as indicated by an arrow,
a width less than 50 nm.~c! The shape of the scallops i
represented by a hemisphere. On a given interfacial area
Stotal’’ between the scallops and the Cu, the total surface a
between all hemispherical scallops and molten solder is
twice Stotal. In Fig. 1~a!, if we represent the cross section
a large hemispherical scallop by the broken half circle,
surface is 2Stotal, the same as the sum of the surfaces of
smaller scallops represented by the solid curves. We note
Fig. 1~a! is a two-dimensional diagram representing a thr
dimensional growth. Hence, while the growth increases
total volume, it does not change the total surface area of
scallops. Here, we ignore the cross-sectional area of
channels on the interface sinced is very small.~d! All the
in-flux of Cu from the Cu substrate is consumed by t
growth of the scallops. Furthermore, we assume that the
terfacial diffusion of Cu along the scallop/Cu interface is n
the rate-limiting factor of the scallop growth. This assum
tion is supported by the fact that the activation energy
scallop growth is extremely low.~e! We assume the out-flux
of Cu from the ripening zone into the bulk of the molte
solder to be negligible. This assumption is valid when t
solubility of Cu in the molten solder is very low. More dis
cussion and justification of the above assumptions on in-
and out-flux of Cu are given in Appendix A.

Since the growth of a scallop must occur at the expens
its neighbors, it is a ripening process. In this ripening p
cess, there are two important constraints. The first constr
is that the interface of the reaction is constant. The secon
a conservation of mass, in which all the in-flux of Cu
consumed by scallop growth. We also note that this flu
driven ripening cannot proceed forever. The growth of sc
lops reduces the number of channels among them. In
this reduces the in-flux of Cu needed for the growth. In e
periments, scallops of Cu6Sn5 were observed elongating i
the growth direction after approximately 10 min of reacti
at 200 °C. We analyze this transition behavior elsewhere;
Appendix B.

In the following section, we present first a simple mod
of growth of monosize scallops to illustrate the basic id
Second, we present a general model illustrating the distr
tional growth of different sized scallops.

III. SIMPLE MODEL FOR MONOSIZE HEMISPHERES

Strictly speaking, the monosize distribution~size distribu-
tion as Dirac’s function! is not compatible with scallop
growth since scallop growth is parasitic and dependent u
the shrinkage of neighboring scallops. Therefore, the ini
monosize distribution should be transformed into a wid
sized distribution. Yet all that is required is a narrow dist
bution function enabling us to ignore, for this specific mod
the differences among the average values of the scallop
dius, ^R&,(^R2&)1/2,(^R3&)1/3,(^1/R&)21, etc. The monosize
approximation is good for a rough estimate of average v
ues.

According to the first constraint that the interface betwe
the scallops and Cu be occupied completely by scallops
cept the thin channels, we have
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NpR2>Stotal5const, ~3.1!

where N is the number of scallops. The free surface~the
cross-sectional area of channels at the bottom! for the supply
of Cu from the substrate is

Sf ree5N2pR
d

2
5

d

R
Stotal, ~3.2!

whered is the channel width. So the free surface decrea
during the scallop growth as 1/R. The volume of the reaction
product of IMC scallops is equal to

Vi5N
2p

3
R35

2

3
StotalR. ~3.3!

According to the second constraint that all influx of C
atoms from the substrate be consumed by growing IMC s
lops due to conservation of mass, we have

niCi

dVi

dt
5JinSf ree. ~3.4!

Hereni is atomic density in IMC’s, i.e., the number of atom
per unit volume, andCi is atomic fraction of Cu in IMC’s,
which is 6/11 in Cu6Sn5. The influx is taken approximately
as

Jin52nD
S Ce1

a

RD2Cb

R
, ~3.5!

wheren is the atomic density or number of atoms per u
volume in the melt or molten solder,a5Ce2gV/RGT in
which g is the isotropic surface tension at the IMC/melt i
terface,V is the molar volume,RG is the gas constant, andT
is the temperature.Ce is the equilibrium concentration
~atomic fraction! of copper in solder at the planar interfac
between Cu6Sn5 and molten solder;Cb is equilibrium con-
centration of Cu in molten solder at the interface betwe
substrate and solder at the channel’s bottom~see Fig. 2!. In
our case 2gV/RGT'4.431027 cm andCe'0.003.

FIG. 2. Schematic dependence of the Gibbs free energy vs c
position. The Cu quasiequilibrium concentration in the melt in
vicinity of the substrate (Cb), in the intermetallic compound
Cu6Sn5 or h phase (Ci), and in the melt for stable equilibrium
with planarh phase (Ce).
11540
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First, we consider the casea/R,,Cb2Ce, so that

Jin>nD
Cb2Ce

R
. ~3.6!

Then, substituting Eqs.~3.6!, ~3.2!, and~3.3! into the balance
equation~3.4!, we obtain

niCi

2

3
Stotal

dR

dt
5nD

Cb2C

R
eS d

R
StotalD , ~3.7!

which immediately gives

R35kt, ~3.8a!

k5
9

2

n

ni

D~Cb2Ce!d

Ci
. ~3.8b!

Note that the surface tension is absent in the expression
the rate constant, despite the ‘‘ripeninglike’’ time law.

If we take n/ni'1,Ci5
6

11 , D'1025 cm2/s, d'5
31026 cm, and Cb2Ce'0.001, where the concentratio
Cb is taken for equilibrium of melt with the Cu3Sn1 phase,
the rate constantk'4310213 cm3/s. For example, for an-
nealing time t5300 s, it gives R'531024 cm, which
agrees very well with experimental data.12,16

Next, we consider what changes if we use the more c
rect expression in Eq.~3.5! for flux. In this case, the differ-
ential equation~3.7! for the R(t) dependence changes
3R2dR5k(12a/RDC)dt, whereDC5Cb2Ce.

It can be integrated if we considera/RDC as a small
parameter. Then,

kt>R31
3

2

a

DC
R2. ~3.9!

The effective exponent for growth rate then is equal to

ne f5
d ln R

d ln t
>

1

3 S 11
a

2RDCD . ~3.10!

It demonstrates the deviation from thet1/3 law. Yet these
deviations are small for sizes exceeding 1mm. For example,
if we take R51024 cm and DC50.001, we obtain
a/2RDC'0.008. Therefore, we will neglect the effect of th
a/2RDC term on the influx and will use Eq.~3.6! instead of
Eq. ~3.5!.

According to the approximate equation~3.8! and relation
~3.1!, the number of scallops should depend on time ast22/3,
as observed experimentally.12,16 It seems astonishing tha
such a naive and simple model can fit the experimental d
very well. The reason for this is an incoming flux being
rate-controlling step, determining the ripening rate duri
FDR.

We can understand now the crucial difference between
classical coarsening described by LSW theory and the fl
driven ripening described here. In the former the phase v
ume is almost constant at a sufficiently long time, and it
simply redistributed between grains. The driving force is
decrease of Gibbs free energy due to the decrease of

m-
3-3
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surface of the phase. In our case the surface is constant~the
total surface of hemispheres!. Indeed,

Sscallops/melt5N2pR252Stotal5const. ~3.11!

Thus, in our case, the constant interfacial area is a const
of the reaction. The driving force is the gain of Gibbs fr
energy from the increase of phase volume. This increas
possible owing to ‘‘influx’’ of Cu from the substrate. There
fore, we have flux-driven ripening in open systems. W
should note that, of course, we are not the first to treat
ening in open systems. Slezov3 treated ripening of voids by
taking into account the vacancy flux moving towards t
external boundaries in the theory of caking. Yet in that c
there were no two-dimensional constraints, and the coar
ing, even in nonhomogeneous conditions, proceeded due
decrease of surface energy.

Evidently, the monosize model is oversimplified, since
growth of scallops cannot proceed without the shrinking
neighboring scallops. Thus, we should take the size distr
tion into account.

IV. BASIC EQUATIONS

Let f (t,R) be the size distribution function, so that th
total number of grains is equal to

N~ t !5E
0

`

f ~ t,R!dR ~4.1!

and the average values are

^Rm&5
1

NE0

`

Rmf ~ t,R!dR. ~4.2!

The first constraint of constant interface takes the form

(
i 51

N

pRi
25E

0

`

pR2f ~ t,R!dR5Stotal2Sf ree>Stotal5const.

~4.3!

Surface area of channels for the copper supply is

Sf ree5E
0

`d

2
2pR f~ t,R!dR. ~4.4!

The volume of the growing IMC scallops is

Vi5(
i 51

N
2

3
pRi

35E
0

`2

3
pR3f ~ t,R!dR. ~4.5!

The second major constraint on our open system is the
servation of mass; i.e., the ‘‘influx’’ is consumed by growin
the IMC scallops,

niCi

dVi

dt
5JinSf ree. ~3.48!

We shall take the influx density by analogy with the simp
fied model@Eq. ~3.6!#, replacing only the radius by its ave
age value. Then
11540
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niCi

d

dtE0

`2

3
pR3f ~ t,R!dR

5nD
DC

E R f~ t,R!dR

E f dR

dE
0

`

pR f~ t,R!dR, ~4.6!

so that

d

dtE0

`

R3f ~ t,R!dR

E
0

`

f ~ t,R!dR

5

d

dt ( Ri
3

N

5

3( Ri
2 dRi

dt

N

5

3E
0

`

R2
dR

dt
f dR

N
5

3

2

n

ni
d

DDC

Ci
.

~4.7!

Since scallops must grow and shrink atom by atom, the
tribution function should satisfy the usual continuity equ
tion in the size space:

] f

]t
52

]

]R
~ f uR!, ~4.8!

where the velocity in the size space,uR , is simply the
growth rate of scallops with radiusR, uR5dR/dt, and is
determined by the flux density on~or out of! each individual
scallop:

dR

dt
>

2 j ~R!

niCi
. ~4.9!

In the transformations~4.7! and below, the derivativedN/dt
is omitted since it should be multiplied by the cubed rad
of disappearing scallops, which is naturally tending to ze

In classic ripening theory, when each grain is spheri
and is surrounded by infinite supersaturated solid solut
the expressions forj (R) anddR/dt are found as a quasista
tionary solution of the diffusion problem in infinite spac
around a spherical grain with fixed supersaturation^C&
2Ce at infinity:

uR5
dR

dt
5

n

ni

D

Ci

^C&2~Ce1a/R!

R
.

In our case the scallops almost touch each other~the situa-
tion being more close to the grain growth situation, but w
the constraint of constant surface and increasing total
ume!. Therefore the classical expression is not applicable
3-4
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In FDR, the diffusional transport of copper atoms throu
the channels in the reaction zone is a rate-controlling s
since the ripening, which conserves the total surface a
would be impossible without growth and growth impossib
without incoming flux. Under the constraint of constant s
face, the rate of ripening will be controlled by the incomin
flux, and this flux will be redistributed among scallops.~Of
course, it does not mean that all scallops will grow—some
them will shrink.! When the incoming flux is zero, the rip
ening among the scallops changes to the classical case
the volume is conserved. Experimentally, this happens in
reaction between molten SnPb and a thin film of Cu wh
the film is consumed.7.

Flux on ~out of! each individual scallop should be propo
tional to the difference between the average chemical po
tial of copperm in the reaction zone~we take it to be the
same everywhere— a mean-field approximation! and the
chemical potential at the curved scallop-melt interface,m`

1b/R, andb52gV:

2 j ~R!5LS m2m`2
b

RD ,

dR

dt
5

L

niCi
S m2m`2

b

RD , ~4.10!

where the parametersL,m are determined self-consistent
from the above-mentioned two constraints—of constant s
face and mass conservation. In Appendix C, we present
case when the flux on individual scallops is inversely prop
tional to its radius.

Indeed, the constant surface constraint implies

dStotal

dt
50

5
d

dt ( 2pRi
2

5( 4pRi

dRi

dt

5
4pL

niCi
S ~m2m`!( Ri2bND ,

so that

m2m`5
b

^R&
. ~4.11!

The conservation law~4.7! implies
11540
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DDC

Ci
5

( Ri
2 dRi

dt

N

5
L

niCiN
( Ri

2S b

^R&
2

b

Ri
D

5
Lb

niCi

S ( Ri
2

N^R&
2

( Ri

N
D

5
Lb

niCi

^R2&2^R&2

^R&
, ~4.12!

which immediately gives

Lb5niCi

k

9

^R&

^R2&2^R&2
, ~4.13!

so that

uR5
dR

dt
5

k

9

1

^R2&2^R&2 S 12
^R&
R D . ~4.14!

Thus in the mean-field approximation, the basic equat
for the distribution function has the following form:

] f

]t
52

k

9

^R&

^R2&2^R&2

]

]R F f S 1

^R&
2

1

RD G , ~4.15!

where the rate coefficientk is determined by the incoming
flux conditions~first of all, by the channel width!.

Equation~4.15! is the basic equation for distribution func
tion in FDR theory. It contains the unknown parameter^R&,
which is equal to the critical radius, meaning only those sc
lops with R greater than̂R&(t) can grow at the momentt.

V. SEMIANALYTICAL SOLUTION
FOR THE MEAN-FIELD APPROXIMATION

We shall find the analytical solution of the basic equati
~4.15!. The structure of the basic equation hints that the f
lowing variables will be more convenient thant andR:

t5bt, j5
R

~bt!1/3
~5.1!

~we will choose the most convenient value ofb a bit later!,
so that

]

]t
5bS ]

]t
2

j

3t

]

]j D ,
]

]R
5

1

t1/3

]

]j
.

Then Eq.~4.15! takes the form

t
] f

]t
5

j

3

] f

]j
2

k

9b

1

^j2&2^j&2

]

]jF f S 12
^j&
j D G .

Let us choose
3-5
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b5
k

9

1

^j2&2^j&2
. ~5.2!

Then Eq.~5.3! transforms into

t
] f

]t
5

j

3

] f

]j
2

]

]j F f S 12
J

j D G , J[^j&. ~5.3!

Furthermore, we look for a solution assuming that the
rameter is constant~does not depend on time!. In this case
Eq. ~5.3! suggests a separation of variables:

f ~t,j!5g~t!w~j!. ~5.4!

Naturally, the validity of such a separation should
checked, after finding a solution, by substituting it in t
constraints. Using Eq.~5.4!, we transform Eq.~5.3! into

d ln g

d ln t
5

d ln w

dj S j

3
211

J

j D2
J

j2
5l5const. ~5.5!

The constantl can be determined from the constraint of t
invariable interface of scallop bottoms:

Stotal5ptg~t!E
0

`

j2w~j!dj,

so that

g~t!5
1

t

Stotal

pE
0

`

j2w~j!dj

. ~5.6!

Therefore,

ln g52 ln t1const, l521. ~5.7!

We will see below in Sec. VI that in the classical LSW co
ditions l524/3. Using Eqs.~5.5! and ~5.7!, we obtain the
following differential equation for the ‘‘scaling part’’ or
‘‘time-independent part’’ of the distribution function:

d ln w

dj
5

1

j
1

324j

j223j13J
. ~5.8!

Thus,

w~h!5B0h expH E
0

h 324j

j223j13J
djJ ,

h5
R

~bt!1/3
. ~5.9!

The factorB0 may be arbitrary since it will be cancelled i
the productgw. Hence, we will take it to be unity. Thus, th
formal solution of our distribution function is
11540
-

f ~ t,R!5
B

bt

R

~bt!1/3
expH E

0

R/(bt)1/3 324j

j223j13J
djJ

5
B

t
w~h!, t5bt,h5

R

~bt!1/3
, ~5.10!

B5
Stotal

pE
0

`

j2w~j!dj

. ~5.11!

The parameter is still unknown and should be determin
from the condition of self-consistency:

J5^j&5

E jw~j!dj

E w~j!dj

. ~5.12!

The integral in Eqs.~5.9! or ~5.10! strongly depends on
the value ofJ. The denominatorj223j13J in the inte-
gral can have one real root, two real roots, or no real root
all. We have three cases to be discussed in the following

~A! If J.J* [3/4, then denominator has no real root
~B! For J5J* [3/4, we have two equal positive roots

j15j253/2. ~5.13a!

~C! For J,J* [3/4, we have two different positive
roots

j15
3

2
1A9

4
23J, j25

3

2
2A9

4
23J. ~5.13b!

In case~A!, the integral in Eq.~5.9! never diverges; it has
no singularities forj.0. Then the standard integration pro
cedure gives~Ref. 21; see pp. 82–84!

w~h!5const3
h

F S h2
3

2
D 2

13^h&2
9

4
G2

3expF 2
3

A3^h&2
9

4

arctan

h2
3

2

A3^h&2
9

4

G .

~5.14!

In case~B! a standard integration gives

w~h!50, h.S 3

2D ,
3-6
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w~h!5const3
h

S 3

2
2h D 4 expS 2

3

3

2
2hD , 0,h,S 3

2D
~5.15!

~see Fig. 3!.
In case~C!, the indefinite integral shows two singularitie

at positive rootsj1.j2.0. It should mean that nondimen
sional grain size should not exceed the lessen of these
positive roots (j2): R,j2(bt)1/3. Thus, an explicit form of
the scaling part of distribution function is the following:

w~h!50 if h.j2 ,

w~h!5const3h~j22h!(4j223)/(j12j2)

3~j12h!(324j1)/(j12j2) if h,j2 . ~5.16!

In order to find out what kind of distribution functio
should be observed, we should use a self-consistency co
tion ~5.12!. This relation can be considered as the transc
dent equation for determining the parameterJ, which in
turn determines the shape of functionw(h). The dependence
of the expression*0

`hw(h,J)dh/J*0
`w(h,J)dh on pa-

rameterJ is easily obtained by numerical integration and
demonstrated at Fig. 4. We can see that this expressio
equal to unity only for regime~B! (J53/4); for other val-
ues, it is always less than unity. Thus, regime~B! gives us a
unique asymptotical solution. For this case

^j2&2^j&250.0615, ^j&53/45jmax/2, ^j3&50.5535.

Then the parameter

FIG. 3. Scaling partw(h), h5R/(bt)1/3 of the size distribution
f (t,R)5g(t)w(h) in the FDR model for case~B! (J5J* 5,j
.53/4), for which a self-consistency condition is satisfie
*0

`hw(h,J)dh/*0
`w(h,J)dh5J.
11540
o

di-
n-

is

b5
k

930.0615
5

k

0.5535
. ~5.17!

Hence, average cube of grain size is equal to

^R3&5^j3&bt5kt, ~5.18!

which coincides with the result of the monosize model, b
for the averaged cube.

The averaged size will be

^R&5^j&~bt!1/35
3

4 S k

0.5535
t D 1/3

50.913~kt!1/3.

~5.19!

Thus, the asymptotical size distribution during FDR satisfi
the universal scaling expression~5.15!, different from the
LSW case. The rate of ripening and growth is determined
the incoming flux conditions.

VI. ALTERNATIVE DERIVATION OF THE LSW
ASYMPTOTIC SOLUTION

For a direct comparison, it is interesting to apply t
above approach to the case of classical coarsening in a th
dimensional closed system~LSW case!. We present an alter
native derivation of the LSW distribution function and sol
tions below. The equation for the size distribution function
well known:

] f

]t
52a0

]

]R F f

R S ^C&2Ce2
a

RD G , a05
n

ni

D

Ci
. ~6.1!

For the late stage of coarsening, the mass conservation e
tion is

niCiVi1n^C&~V2Vi !5nC0V, ~6.2!

FIG. 4. Dependence of the rati
*0

`hw(h,J)dh/J*0
`w(h,J)dh on parameterJ/J* for the FDR

case (J* 53/4). This ratio is equal to unity~self-consistency con-
dition! only for regime~B!: J/J* 51.
3-7
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Vi5E
0

`4

3
pR3f ~ t,R!dR!V, ^C&→Ce, ~6.3!

and ni , Ci , and Vi are, respectively, the atomic densit
atomic fraction, and volume of the new phase undergo
coarsening in the matrix phase ofn, ^C&~initially C0,! and
V2Vi ~initially V), respectively. The constraint of the co
stant new phase volume is

Vi5E
0

`4

3
pR3f ~ t,R!dR>

n~C02Ce!

niCi
V5const. ~6.4!

Equation~6.4! is the only constraint on the LSW size distr
bution function since the system is closed. In other word

d

dtE0

`

R3f dR5052a0E
0

`

R3
]

]R F f

R S ^C&2Ce2
a

RD GdR.

~6.5!

Using the zero boundary conditions forf (R), we obtain the
supersaturation as

D[^C&2Ce5a
E f dR

E R f dR

5
a

^R&
, ~6.6!

which means that in the LSW case the critical radius is s
ply an average one.

The condition of Eq.~6.6! transforms Eq.~6.1! into

] f

]t
52A

]

]R F f

R S 1

^R&
2

1

RD G , A5
n

ni

Da

Ci
. ~6.7!

Using new variablest5At,j5R/(At)1/3 and solving for a
solution with separation of variables,f 5g̃(t)w̃(j), we ob-
tain

d ln g̃

d ln t
5

d ln w̃

dj S j

3
2

1

^j&

1

j
1

1

j2D 2S 2

j3
2

1

^j&

1

j2D 5l

5const. ~6.8!

To find the parameterl, we should use the constraint o
constant volume~instead of constant surface in the FD
case!:
11540
g

-

g̃~t!
4p

3
t4/3E j3w̃~j!dj5

n

ni

D0

Ci
V, ~6.9!

which means that

g̃~t!5const3t24/3, l52
4

3
. ~6.10!

Using Eq.~6.10! in Eq. ~6.8!, we obtain

d ln w̃

dj
5

2

j
13

1/̂ j&22j2

j323j/^j&13
. ~6.11!

Thus,

w̃~h!5h2expH E
0

h 3J̃26j2

j323J̃j13
djJ , J̃[

1

^j&
.

~6.12!

The formal solution for the LSW distribution function is

f ~ t,R!5
BLSW

~At!4/3

R2

~At!2/3
expH E

0

R/(At)1/3 3J̃26j2

j323J̃j13
djJ

5
BLSW

t4/3
w̃~h!,

t5At,h5
R

~At!1/3
, BLSW5

n

ni

D0

Ci
V

4

3
pE

0

`

j3w̃~j!dj

.

~6.13!

The parameterJ̃ should be found from the following
condition:

1

J̃
5^j&5

E
0

`

jw̃~j,J̃!dj

E
0

`

w̃~j,J̃!dj

. ~6.14!

To solve this equation, we need to know the explicit form
the function. As in the FDR case, we have three possibili
and three corresponding explicit forms found by stand
integration.
~A! J̃,J̃* [~3/2!2/3, single, negative root:

j152AJ̃* $@11A12~J̃/J̃* !3#1/31@12A12~J̃/J̃* !3#1/3%,

w~h!5h2S 11
h

uj1u D
(3J̃26j1

2)/2j1
2
13/uj1u)S 3/uj1u

h21j1h13/uj1u
D (6j1

2
118/uj1u13J̃)/[2(2j1

2
13/uj1u)]

expH 3uj1uS 3/Uj1U2j1
21

3

2
J̃ D

~3/uj1u12j1
2!A3/uj1u2j1

2/4
Farctan

h2uj1u/2

A3/uj1u2j1
2/4

1arctan
uj1u/2

A3/uj1u2j1
2/4

G J . ~6.15!
3-8
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~B! J̃5J̃* [(3/2)2/3 (j15j25AJ̃* , j3522AJ̃* ): w(h)50,h.( 3
2 )1/3,

w~h!5

h2e1expS 2
1

12h/AJ̃*
D

S 11
h

2AJ̃*
D 7/3S 12

h

AJ̃*
D 11/3, h,S 3

2
D 1/3

. ~6.16!

~C! For J̃.J̃* [(3/2)2/3, we have two different positive and one negative root:j152AJ̃cos(f/3),

j2522AJ̃cos(f/31p/3), j3522AJ̃cos(f/32p/3), cos(f)523/2J̃3/2 (j1.j2.0, j3,0); w(h)50,h.j2;

w~h!5h2S 12
h

j1
D (3J̃26j1

2)/[( j12j2)(j12j3)] S 12
h

j2
D (3J̃26j2

2)/[( j22j3)(j22j1)] S 11
h

uj3u D
(3J̃26j3

2)/[( j32j1)(j32j2)]

, h,j2 .

~6.17!
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Substituting expressions~6.15!–~6.17! into Eq. ~6.14! for a

wide region ofJ̃ values, we can check@by numerical calcu-
lation of integrals in Eq.~6.14!# that this equation is satisfie

strictly for J̃5J̃* [(9/4)1/3. For all other values the prod

uct J̃*jw̃(j,J̃)dj/*w̃(j,J̃)dj is less than unity.

It means that only regime~B!, with ^j&51/J̃* 5( 2
3 )2/3

and the distribution, given by Eq.~6.16!, is self-consistent.
Thus, the critical size changes with time as

Rcr5^R&5^j&At1/35S 4

9

n

ni

Da

Ci
t D 1/3

,

which is the same as the classical LSW result. The size
tribution function presented in Eq.~6.16! is the same as the
asymptotic LSW expression.

Thus, the method developed here for FDR can be app
to the LSW case as well. It serves as a check of its valid
However, the shortcoming of this method is the use of
meric integration~though very simple!. Nevertheless, its
positive feature as demonstrated by the alternative deriva
of LSW results is that only two approximations are used
constant volume and separation of variables.

VII. DISCUSSION

The results of previous sections can be discussed br
as follows.

~i! In Sec. III, under the assumption of an approximat
monosize distribution, the growth of the average scallop s
satisfies thet1/3 law, with the growth constant being pract
cally independent of surface tension. It does not mean
ripening does not proceed during growth. On the contra
the growth is parasitic due to the constraint of a const
bottom interface and close proximity of hemispherical sc
lops. It means that in this case the ripening is driven not b
decrease of surface energy~it remains constant! but by a gain
of bulk free energy due to the chemical reaction to fo
IMC’s.
11540
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fly
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~ii ! In Secs. IV and V, when we take the size distributi
into account but remain in the framework of the ‘‘mean-fie
approximation’’~neglecting the difference of the melt com
position in different places of the reaction zone!, the rate of
the size distribution widening@Eqs. ~5.10!, ~5.15!, and
~5.17!# appears to depend on the incoming flux. More p
cisely, it appears to depend on the product of the melt di
sivity, channel width, and difference of equilibrium comp
sitions between the melt with IMC’s and the melt with th
substrate@Eq. ~3.8b!#. The lesser is this product, the slower
the size distribution widening and average size growth. C
cerning the parameters in the product, we note that the ch
nel width is not precisely known so far. It may have a wid
distribution depending on the orientation relationship of t
two neighboring scallops. But as can be seen in Fig. 1~c!, it
can exceed substantially the width of a large-angle gr
boundary. Another parameter of concern is the difference
equilibrium concentrations. If the melt is in contact with pu
copper~in the early stage of the reaction!, this concentration
difference is about 3.7 at %. Then, if the melt is in conta
with Cu3Sn1 ~at the later stage!, the difference is about 0.1
at %.

~iii ! We would like to point out that the proposed analys
for flux-driven ripening is far from being complete. We hav
treated scallops as preserving their hemispherical shape
ing the flux-driven ripening. As we know from experiment
it is not true for long annealing~reflow! time—say, over 1 h
at 200 °C for eutectic SnPb on Cu; the scallops will beco
elongated. The hemispherical shape in our model is inte
lated with the mean-field approximation. If we take into a
count the different compositions of melt at different di
tances from the substrate, the growth rate in different pla
of the same scallop will be different—and the shape w
change. We intend to study such a ‘‘gradient’’ model in t
near future.

~iv! In Sec. VI, when the proposed method is applied
the classical coarsening case, it gives results in good ag
ment with the LSW theory. Using the same method to a
lyze the LSW ripening and flux-driven ripening, we condu
3-9



x

A. M. GUSAK AND K. N. TU PHYSICAL REVIEW B 66, 115403 ~2002!
TABLE I. Comparison of physical differences between LSW and FDR models.

LSW FDR

Closed system Open system
Constant volume, decreasing surface Constant surface, increasing volume
Driving force, reduction of surface energy Driving force, gain of bulk free energy
One constraint~constant volume! Two constraints~constant surface area, volume growth rate proportional to influ!

Number of grains decreasing ast21 Number of grains decreasing ast22/3

^R&35kLSWt, the rate constantkLSWis proportional

to surface tensionkLSW5
4

9

n

ni

Da

Ci

^R3&5kt, the rate constantk is independent of surface tension,

^R&35~0.913!3kt,k5
9

2

n

ni

D~Cb2Ce!d

Ci
de
ss
t

co

re
on
t

wth

g is
n of

th
ize
.
op-
on
a direct comparison of them in Tables I and II.
~v! For a detailed check of FDR theory, an accurate

termination of the size distribution is needed. Both cro
section images and plain-view images are required. From
plain-view images, the distribution functionf (S) of scallops
on the bottom surface can be determined, which can be
verted into the size distribution according tof (R)
5 f (S)dS/dR52ApS f(S).

~vi! We believe that the general idea of a flux-driven
distribution of sizes in open systems has wider applicati
rather than merely the FDR. For example, it may apply
flux-driven grain growth and flux-driven precipitation.
11540
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s

o

VIII. CONCLUSION

We have presented a theory of three-dimensional gro
and ripening in open systems with two-dimensional~2D!
constraint of the constant surface. In this case the ripenin
driven not by a decrease of surface energy but by a gai
bulk free energy due to a chemical reaction. The grow
kinetics and size distribution have been predicted. The s
distribution is controlled by the condition of incoming flux
The theory gives a reasonable kinetic description of scall
type intermetallic compound formation during the reacti
between molten solder and solid copper.
TABLE II. Comparison of mathematical differences between LSW and FDR models.

LSW FDR

*R3f (R)dR>const *R2f (R)dR>const

2j~R!5nD

^C&2Ce2
a

R

R
, a5

2gV

RGT
Ce,

2j~R!5LSm2m`2
b

RD,b52gV

dR

dt
5AF1RS 1

^R&
2

1

RDG, A5
n

ni

Da

Ci

dR

dt
5

k

9

^R&

^R2&2^R&2 S 1

^R&
2

1

RD,
k5

9
2

n

ni

D~Cb2Ce!d

Ci

]f

]t
52A

]

]RF f

RS 1

^R&
2

1

RDG, A5
n

ni

Da

Ci

]f

]t
52

k

9

1

^R2&2^R&2

]

]RFfS12
^R&
R DG

Formal solution~our form! Formal solution

f~t,R!5
BLSW

~At!4/3

R2

~At!2/3
expH*0

R/(At)1/3 3J̃26j2

j323J̃j13
djJ f ~ t,R!5

B

bt

R

~bt!1/3
expH*0

R/(bt)1/3 324j

j323j13J
djJ 5

B

t
w~h!

Explicit solution Explicit solution

w~h!5

h2e1expS2
1

12h/AJ*
D

S 11
h

2AJ*
D 7/3S 12

h

AJ*
D 11/3,

w~h!5
h

~
3
2 2h!4

expS2
3

3
22hD,

h,( 3
2 )1/3 0,h,3/2

h5R/(At)1/3

h5R/(bt)1/3, b5
k

0.5535
3-10
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APPENDIX A: ASSUMPTIONS ABOUT INFLUX
AND OUTFLUX OF CU IN THE REACTION ZONE

We assume that the influx of Cu supplied by the inter
cial diffusion of Cu from the bottom of scallops to the cha
nels ~or/and Sn diffusion in opposite direction! is not a lim-
iting step of the scallop growth. When all Cu atoms in t
influx are taken from the bottom of the scallops and supp
by the interfacial diffusion along the interface between
Cu and scallops, conservation of mass implies

Jlateral2pRd int>Jin2pR
d

2
. ~A1!

Hered is the channel width,d int is the width of the interfa-
cial boundary between scallops and Cu~its width about 0.5
nm!, Jlateral andJin are the flux densities of Cu, respective
along the interface and along the channel into the melt.
can estimate the influx density~per unit area! as

Jin>nD
Cb2Ce

R
, ~A2!

wheren is the atomic density of molten solder,D is the Cu
diffusivity in molten solder,Cb is the equilibrium concentra
tion of Cu in molten solder, contacting directly with C
~without IMC in between!, Ce is the equilibrium concentra
tion of Cu in molten solder, contacting with IMC’s along th
flat interface, andR is the average size of hemispherical sc
lops taken here as an estimate for the dimension of the r
tion ~diffusion! zone.

To estimate the flux along the interface substrate/gr
bottom, we will use a quasistationary approximation for t
diffusion at the interface. Let

J~r !52nintD
int

dC

dr
2prd int ~A3!

be the lateral flux at distancer from the center. Further we
will neglect ~for a rough estimation! the differences betwee
the atomic density in different phases and at the interf
(nint). Due to the consumption of copper by the growi
IMC’s, the substrate’s surface moves in opposite direction
influx @‘‘down’’ in Fig. 1 ~a!# with a velocityUS . The inter-
facial layer between each scallop and the substrate m
with the same velocity in the same direction~otherwise the
interface would become ‘‘curved’’!. In this direction every
thin slice of area 2prdr obtains per unit time an additiona
number of copper atoms,n(12Ci)2prdrU S . Then conser-
vation of matter in quasistationary conditions implies
11540
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J~r !1n~12Ci !2prdrU S5J~r 1dr !. ~A4!

This simple differential equation gives us

J~r !5pn~12Ci !USr 2. ~A5!

Substituting Eq.~A5! into Eq. ~A.3!, we obtain one more
simple differential equation for the concentration, which a
ter integration gives

E
C(0)

C(R)

D intdC5~12Ci !
R2

4d int
US , ~A6!

where

US'
d

R
D

Cb2Ce

R
. ~A7!

We note that the difference of upper and lower limits of t
integral cannot exceed the homogeneity rangeDC.

The left-hand side of Eq.~A.6! in the limiting case
C(R)2C(0)5DC is often called an integrated Wagner di
fusivity D intDC.22,23 Since an IMC has a narrow homogen
ity composition range, it is more convenient to express
integrated diffusivity in terms of the chemical potentialm or
Gibbs free energy per atom,g, and a self-diffusivityD* of
Cu in the interface~we neglect the Sn self-diffusivity!:

E
DC

D intdC>E
DC

@~12C!D* 10#
C~12C!

kBT

d2g

dC2
dC

>D*
Ci~12Ci !

2

kBT S gi 112gi

Ci 112Ci
1

gmelt2gi

Ci2Ce D
.~12Ci !

R2

4d int
US . ~A8!

Here Ci 11 and gi 11 are respectively, the copper atom
fraction and Gibbs free energy per atom for the substrate~Cu
or Cu3Sn).

From Eqs.~A7! and~A8! we obtain a condition for diffu-
sivity at the interface not to be the rate-limiting step of FD
Its explicit form depends on whether we consider the s
strate phase as Cu or Cu3Sn. If the substrate is copper, the

D* .
d~Cb2Ce!

4Ci~12Ci !d
int

kBT

S gCu2gi

12Ci
1

gmelt2gi

Ci2Ce D D

5
d~Cb2Ce!

4d int

RGT

~2Dgh
f !

D, ~A9a!

where the formation energy of theh phase24

Dgh
f 5~27139.410.315 92T! J/mol, Cb2Ce>0.037.

If the substrate is Cu3Sn(«), then
3-11
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D* .
d~Cb2Ce!

4Ci~12Ci !d
int

kBT

S ge2gi

Ce2Ci
1

gmelt2gi

Ci2Ce D D.

~A9b!

Using the formation energy of the« phase, Dgf5
(28479.610.318 36T) J/mol,24 we obtain for the coppe
self-diffusivity at the interfaceD* .1027 cm2/s, which is a
rather restrictive condition. It may be that it is a reason w
sometimes a wavy interface between scallops and substra
observed~higher in the center of a scallop and lower at t
channel positions!.

Concerning outflux, we have assumed that it is negligib
It is related to the assumption that all Cu atoms, dissolve
molten solder, feed the growing IMC scallops. If the amou
of molten solder is small, it will become saturated with C
very quickly, and the saturation timet5H2/D is about 10 s
for a solder bump with a diameter ofH50.01 cm. In this
case our assumption is good. On the other hand, if the mo
solder is unlimited, the problem is complicated. The bala
equation can be modified in the following way:

niCi

dVi

dt
5JinSf ree2JoutStotal. ~A10!

HereVi is the volume of growing IMC’s,Sf ree is the area of
channels between scallops at the bottom, andStotal is the
total area of substrate. The outflux can be estimated acc
ing to standard expression

Jout5nCeS D

pt D
1/2

expS 2
R2

4Dt D , ~A11!

where we takeR as a characteristic dimension of the reacti
zone. For real experimental data (D'1025 cm2/s, R
5several micrometers,t55 –15 min) the ratioR2/4Dt is
very small, so the exponent is almost unity.Sf ree can be
estimated as (d/R)Stotal.

For the assumption of negligible outflux to be valid, it
necessary that

JoutStotal!JinSf ree. ~A12!

The left-hand side~total outflux! decreases witht21/2 depen-
dence. The right-hand side decreases inversely proporti
to the squared scallop size, which~according to experimenta
data and our analysis! grows by at1/3 law. Thus, the total
influx decreases with time by thet22/3 law, which is faster
than outflux, due to ripening and the respective decreas
the channel total length. Therefore, at some moment the
flux can approximately equalize the influx. In this case
growth of IMC’s can substantially slow down—it will be
suppressed by the diffusion into a nonsaturated melt.
condition in Eq.~A12! can be easily transformed to

R2!
Cb2Ce

Ce
~pDt !1/2d. ~A13!

As we have given in Sec. III,
11540
y
is

.
in
t

en
e

rd-

al

of
t-

e

e

R5~kt!1/3, where k5
9

2

n

ni
D

Cb2Ce

Ci
d. ~A14!

Substituting Eq.~A14! into Eq. ~A13!, we obtain the condi-
tion for neglecting the outflux:

t!S Cb2Ce

Ce D 2S 2ni

9n D 4S Ci

CeD 4

p3
d2

D
~A15a!

or, in other terms,

R!S 2pni

9n DCi~Cb2Ce!

~Ce!2
d. ~A15b!

For Cb2Ce51023, Ce5331023, and d5531026 cm,
Eq. ~A15b! givesR!231024 cm, t!20 s, which is too re-
strictive for FDR applications. Yet, by varying the param
eters, we can obtain reasonable numbers.

Thus, for a molten solder saturated with copper~for which
experiments are usually made!, the FDR should apply and i
has predicted the average sizes, which coincide with exp
mental data. For an unsaturated melt, the FDR model m
not apply or be marginal. The above condition gives unr
sonably small times, after which the FDR should be su
pressed. Thus, we can conclude that the saturation of a
or negligible outflux is a necessary condition for the obs
vation of FDR.

APPENDIX B: TRANSITION FROM HEMISPHERICAL
SCALLOPS TO ELONGATED SCALLOPS

Elongated scallops are observed at the later stages o
reaction, when ripening practically stops. At least one of
general reasons for this is presented below. As we show
the rate of Gibbs free energy release, which is proportiona
the rate of volume change, depends on time ast22/3 in FDR.
For a columnar growth it depends on time ast21/2 ~if we
neglect any 2D ripening among the columns!. It is evident
that since the time dependence on ‘‘22/3’’ is sharper than ‘‘
21/2,’’ at some moment FDR growth will become less f
vorable than columnar growth. A detailed analysis will
given elsewhere.

APPENDIX C: ALTERNATIVE SCHEME OF FDR FOR
THE CASE WHEN THE FLUX ON INDIVIDUAL

GRAIN IS INVERSELY PROPORTIONAL TO ITS RADIUS.

We derived the size distribution of scallops during FD
for the case when the flux of copper on an individual grain
proportional to the difference of the average chemical pot
tial in the reaction zone and the chemical potential in
vicinity of the curved scallop/melt interface. Here we w
present a theory for the case when the liquid solution
enough space to form a quasistationary copper distribu
around each hemispherical grain, so that instead of
~4.10! we have
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2 j ~R!5
L̃

R S m2m`2
b

RD ,
dR

dt
5

1

niCi

L̃

R S m2m`2
b

RD ,

~C1!

where the parametersL,m are determined self-consistent
from the above-mentioned two constraints of constant s
face and mass conservation.

Indeed, the constant surface constraint implies

dStotal

dt
50

5
d

dt ( 2pRi
2

5( 4pRi

dRi

dt

5
4pL̃

niCi
S ~m2m`!N2b(

1

Ri
D ,

so that

m2m`5b K 1

RL . ~C2!

The mass conservation constraint implies

1

2

n

ni
d

DDC

Ci
5

( Ri
2 dRi

dt

N

5
L̃b

niCi
S K 1

RL ^R&21D , ~C3!

which immediately gives

L̃b5niCi

k

9

1

K 1

RL ^R&21

, ~C4!

so that

uR5
dR

dt
5

k

9

1

K 1

RL ^R&21

1

R S K 1

RL 2
1

RD . ~C5!

Then, in the mean-field approximation, the basic equation
the distribution function has the following form:

] f

]t
52

k

9

1

K 1

RL ^R&21

]

]R F f

R S K 1

RL 2
1

RD G , ~C6!

where the rate coefficientk is determined by the incoming
flux conditions.

Equation ~C6! is the basic equation for the distributio
function in our alternative scheme of FDR theory. It conta
the unknown parameter^1/R&, which is equal to the inverse
11540
r-

r

s

critical radius, meaning only those scallops withR.@^1/R&
3(t)#21 can grow at the momentt.

To find an asymptotical solution of the basic equati
~C6!, we use the following variables:t5bt, j5R/(bt)1/3,

b5
k

9

1

K 1

j L ^j&21

. ~C7!

Then Eq.~C7! transforms into

t
] f

]t
5

j

3

] f

]j
2

]

]j F f

j S Ĵ2
1

j D G , Ĵ[ K 1

j L . ~C8!

Furthermore, we look for a solution assuming a separa
of variables:

f ~t,j!5g~t!w~j!. ~C9!

d ln g

d ln t
5

d ln w

dj S j

3
2Ĵ

1

j
1

1

j2D 2S 2

j3
2Ĵ

1

j2D 5l5const.

~C10!

The constant can be determined from the constraint of
invariable interface of scallop bottoms:

g~t!5
1

t

Stotal

pE
0

`

j2w~j!dj

. ~C11!

Therefore,

ln g52 ln t1const, l521. ~C12!

Then in full analogy with Secs V and VI, one obtains th
formal solution

f ~ t,R!5
B

bt

R2

~bt!2/3
expH E

0

R/(bt)1/3 3Ĵ25j2

j323Ĵj13
djJ

5
B

t
w~h!, t5bt, h5

R

~bt!1/3
, ~C13!

B5
Stotal

pE
0

`

j2w~j!dj

. ~C14!

The parameterĴ is still unknown and should be dete
mined from the condition of self-consistency:

Ĵ5 K 1

h L 5

E 1

h
wdh

E wdh
. ~C15!

We have three cases

~A! For Ĵ,Ĵ* [(3/2)2/3, the denominator has a single
negative root.
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~B! For Ĵ5Ĵ* [(3/2)2/3, we have one negative and tw
equal positive roots.

~C! For Ĵ.Ĵ* [(3/2)2/3, we have two different positive
and one negative root.

Calculations, similar to those of Sec. VI, show that on

one valueĴ5Ĵ* [(3/2)2/3 satisfies a self-consistency co
dition and provides the following distribution, more simil
to LSW, but with different exponents:

FIG. 5. Scaling partw(h),h5
R

(bt)1/3
of size distribution

f (t,R)5g(t)w(h) in the alternative scheme of FDR model f

case B (Ĵ5Ĵ* 5,j.215(3/2)2/3), for which a self-consistency
condition is satisfied.
11540
y
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r

w~h!50, h.S 3

2D 1/3

,

w~h!5

h2e2/3expS 2
2/3

12h/AĴ*
D

S 11
h

2AĴ*
D 17/9S 12

h

AĴ*
D 28/9, h,S 3

2
D 1/3

.

~C16!

The plot ofw(h) againsth is shown in Fig. 5.
Thus, regime~B! gives us a unique asymptotical solutio

For this case

K 1

j L ^j&21>0.0665,̂j&50.814,̂ j3&>0.6.

The ratio of mean-squared deviation and mean size
about 0.20. Then, the parameterb5k/(930.0665)5k/0.6.
Hence, the average cube of grain size is equal to

^R3&5^j3&bt5kt,

which coincides with the result of the monosize model, b
for the averaged cube. The averaged size will be

^R&5^j&~bt!1/3>0.814S k

0.6
t D 1/3

.

Thus, again, as in Sec. IV, the ripening rate is determined
the influx condition, but the size distribution is differen
with r 2 behavior for small sizes. Also it is different from th
LSW distribution due to the constraint of constant surfa
area.
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