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Theory of polaritons in bounded spatially dispersive media
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In crystal optics with spatial dispersion there are two alternative approaches to the polariton problems
starting from either mechanical excito§IE’'s) or Coulomb excitongCE'’s), respectively. The difference
between them arises from the different treatment of that part of the polarized crystal unit interaction which is
associated with the long-range curl-free proper crystal field, generated by fictitious charges of macroscopic
dielectric polarization. In the case of the CE scheme the unpertdbyeslectromagnetic fie)denergy operator
contains that part, while in the case of the ME scheme it does not. This is the peculiarity that makes their
dispersion laws and all other characteristics, including the boundary conditions, essentially different. Both
primary conceptions are equally used in theoretical research and have their own advantages and shortcomings.
The agreement between those for infinite space has been proven by a lot of investigations, but solving the same
problem for finite media has not been done. Moreover, the majority of papers in the field use the same
boundary conditions for excitonic polarizations in both schemes. This makes them all true only for some
particular cases but, certainly, the contradictions appearing should be eliminated. The aim of this paper is the
critical analysis of the existing inconsistencies and the fitting of the solutions to the boundary-value problems
for polaritons formed from those two different types of exciton states. Partially we fill the arised recess by
making both approaches in line with the case offXkexponential Frenkel exciton model, when describing the
polarization of some bounded spatially dispersive dielectrics in the excitonic spectrum region. The light
reflection coefficient is taken as the main quantity to be fitted in both of the above calculation schemes. This
is possible only by including several exciton transport mechanisms at(tratas, forN=2) and by using the
concept of Pekar’s “missing” electromagnetic wave. With success in this particular case, we hope to induce
further investigations in the area for other exitonic models and in a general enough case, such as the case for

infinite media.
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I. INTRODUCTION (ABC's). This problem was solved by Pekay introducing

an ABC that predicts the partial excitonic polarization

For the simplest case of an infinite macroscopically ho-Per,t) turning to zero in crystal boundargsee Fig. 1
mogeneous medium the description of the spatial dispersionamely,
reduces to a dependence of the permittivity terasarot only
on the frequencyw but on the vave vectok as well® In Pex(z=0)=0 1)
addition to other well-known crystal optics phenomena it can .
raise, in principle, the order of the algebraic dispersion relalthe “first” Pekar ABC [Ref. 3]. _
tion for the polariton modes(w,k) = (ck/w)2, which deter- Although the ABC(1) is acknowledged and widely used
mines the functiork(w). In comparison with the traditional Py the overwhelming majority of theoreticians and experi-
nonspatial dispersive case this gives rise to additional rootdientalists, their justification has attracted lively debate that
corresponding to the additional light wave&LW's). As a
result, several plane monochromatic waves can exist with the vacuum xy csal
same frequency and polarization, but with different refractive
indexes. Usually it is too delicate an effect to be checked in
the optical spectrum, characterized lly<1 (I is the lattice
constant The reality of the phenomenon was shown by
Pekar? who analyzed the situation in the vicinity of excitonic
resonance in detail. Its description required developing an
extended version of light propagation through the solid.

By introducing the ALW one renounces classical birefrin-
gence theory in such a manner that the Maxwell-Fresnel
boundary condition¢MFBC's) for fields at an interface be- FIG. 1. The coordinate system and the directions of the
tween two media become insufficient to uniquely define allp-polarized incidentE,), reflected Eg), and penetratingH;) elec-
electromagnetic waves in bounded solids and should beic field amplitudes. The appearance of the additional Bysi
supplemented by some additional boundary conditions>1) is exclusively due to spatial dispersion phenomena.
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continues with each new group of investigators in the aredéion. Nevertheless, the problem studied is not a specialized
(great attention has been paid to the problem of ABC’s andspect of spatial dispersion theory. It concerns practically all
their grounding in Ref. 4; the results of the first stages ofexcitonlike states irrespective of their specific model and
those investigations are summarized in Refs. 5-8 as).wellarea of applicatiorigenuine electron excitons in a variety of
Solving the ABC problem has become more realistic becausgodels: optical phonons, vibrons, plasmons, quanta of polar-
of the appearance of real possibilities to confirm their choicdzed oscillations, etg. While the models share many proper-
experimentally. This is due to the development of nonstandties, parallel exciton transport mechanisms such as resonance
ard optical techniques, as well as to studies of different arti{@nnihilation and exchange m_eZ(;hamsms in the case of a
ficial spatially dispersive solid structurésuperlattices, and Wannier-Mott-Rashba excitd, * or those attached to
layered and confined systen?s*2 The interest in the prob- short-rangdA) and long-rangéB) interactions in the case of

. ‘29 . .
lem can also be explained by the continuous attraction of th& Fr_enkel-He!Ier-%arcus excitdft;” or optical phonor(vi-
Pekar problem as a “guinea pig” for critical ar@r) self- brational exciton~" etc. We would remind the reader that

critical testing and the approval of new or modified calcula-ME includes only exchangelike mechanisi#s while the
tional methods that are periodically proposed in moderr=E includes both the exchan@®) and resonances) mecha-
crystal optics with spatial dispersidh.And, last but not NiSms, which is the peculiarity that makes their dispersion
least, the reason behind the undiminished interest in thi&Wws and all other characteristics, including the boundary
problem is that in spite of a vast number of works that haveronditions, essentially different. -

been published in forty five years, still much controversy ~Since, certainly, the observable quantities must not de-
remains concerning the correct form of the ABC. Just the?€nd on different starting points of the calculation, some
same might be said about ALW physics and other problem§F'bJEf°t"_’e. sources of the con'tlnually appearing |nco'n5|s.ten-
of spatially dispersive media as a whole. One can find som§i€S in fitting them must be given. To clear up the situation

of the most intense arguments on the subject for the last tef§t US consider the dipole-allowdd, exciton states in cubic
years in Refs. 14—19. crystals ofO,, symmetry. Folk=0 they are threefold degen-

Thus it is clear that further studies will be essentially €rate in both models. But their behavior ket 0, which is

complicated and inconsistent without the elimination of con-Important to account for ALW spatial dispersive effects, dif-
tradictions that have accumulated over recent years. One &¢rs essentially. For ME the degenerate states are split pro-
the controversies that has also arisen due to the presence oP@rtionally to (1)? and in the general case remain nonpolar-
boundary is connected to the problem of fitting two ap_lzed. In the same situation for CE_ there arise two transverse
proaches that are well known in crystal optics with spatialPands and a longitudinal one split by a finite quantity.
dispersion alternative approachésmsed on the concepts of This is the well-known checked experimental effect of the
mechanical excitonéME’s) and Coulomb exciton$CE’s), “longitudinal-transverse” splitting of the polariton branches.
respectively to the theoretical formation of the polaritonic The above-mentioned controversy arose, in fact, when some
spectrum in finite media. It is always a danger for experi-investigators tried to use the usual ABQ) formulated
mentalists that compare the experimental data to the differeffitially“ for ME's in the CE scheme. This might be because
theories. This is why the problem is the central focus in suctPf the lack of a correct form of ABC's for the CE that is so
fundamental monographs as Refs. 4, 5, and 20. In addition tBopular and generally acknowledged as Hq.is for ME's.
the questions relating to the basis, they contain the concref is known that for the particular case when the “annihila-
results of well-known investigations of the problem in infi- tion” channel of the Coulomb exciton moving prevails over
nite media(the necessary summary of those researches, witifhe exchange” one, the contradiction may be removed by
some generalizations, are discussed briefly in the preambl&formulation of the ABQ1) to the form
of Sec. I). At the same time the particular solution of the
problem for bounded media is underlined there, as its ab- Pedz=0)=0 (2)
sence leads to essential disagreement in the computation of
identical physical quantities using alternative approaéhes. (the “second” Pekar ABQ, whereP.(r,t) is the reduced
The achievement of the necessary agreement is the main obxcitonic polarization defined in detail in Ref.[dee below,
jective of this paper. Eqg. (B7b)]. Another particular case is in Ref. 30. But the
A number of attempts using different models of excitonsessential restriction of those cases induces one to restrict the
have been made in order to remove contradictions that aridenits of experimental research or to resort to somewhat veri-
when trying to solve the problef,however, they all failed.  similar but not proven postulatés.
Their analysis has led us to the conclusion of the impossibil- The questions we hope to solve in the paper presented are
ity for a solution with a single excitonic transport mechanismas follows.
only. One needs to take into consideration several such Does the ABC have the form of Eql) or (2) or some
mechanisms simultaneous(gt least two—one that is com- other form in the case when both transport channels bring
mon for CE’s and ME's, and another that makes the distinceomparative contributions to its energy?
tion between them In this paper we do that by unifying the How, in this case, is the agreement of both approaches in
concept of the universal enougiN)-exponential excitonic construction of unique polaritonic states in bounded media
modef? and that of Pekar’s “missing” wavé&* Here we con-  achieved?
fine ourselves to the theoretical aspects of the problem, leav- As was mentioned above, for all investigations on ALW
ing the prospects of practical calculations to a later publicaphysics the ABC’s are the source of different difficulties and
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ambiguities. So we should briefly explain our position inthe appropriate constitutive equations are formulated based
connection with the methods taken to solve the above proben the two-exponential excitonic model. In Sec. Ill we com-
lem. We confined ourselves to Pekar’s original fd¢aat  pare and fit the boundary problem solutions obtained, respec-
correct formulations of ABC’s should not be a product of tively, in the ME and CE schemes for polariton state forma-
some phenomenological guesses but must follow uniquemon. We also give the correct form of the light reflection
from the concrete microscopic construction of the materiaindex for exciton resonance region in crystals@y, sym-
(constitutivé Maxwell equations. This position was upheld Metry. Section IV provides a summary and discussion of the
in all his further investigations on ALW physics and convinc- Main results. The generalization of the Ewald's method is
ingly grounded by comparison with other possible ap_presented in Appendix A. In Appendix B the procedure of the

proaches to the problefBecause of the success the entirelocal reformulation of the basic integral constitutive equa-

procedure had in fitting ME and CE schemes, its fundamentions is given.
tals are presented in this paper in the semiclassical version of
polariton theory applied to the nonlocal optics of reflection Il. BASIC EQUATIONS
and transmission of light in the vicinity of definite, namely, e .
Frenkel exciton polarization, described for the bounded spa- 1€ general term “exciton” refers to any nonconducting
tially dispersive media by a universal enough and exactlf'tate of a crystal that is charactenzgd by one continuous
soluble generalized exponential modI. quantum numbek and whose energy is separated from the
Another aspect of the ABC problem is connected to thed™ound state by an energy gaphis definition contains the
well-known mathematical fact that if instead of differential Main Specificity required for understanding most of the re-
equations, the equivalent integral ones are considered, théit!ts of special dispersion theory, and incorporates the differ-
no boundary conditionéBC's) are required at all. So it is, €Nt quasiparticles listed in the Introduction. ,
certainly, with the ideal and material Maxwell equations that When the field part of the energy, transported by an exci-
are used as often in differentidbcal) form as in the integral N inside the crystal, is of the same order as the energy
(nonloca) one. Therefore it is not surprising that the last ransported purely by the electromagnetic wave, the mixed
approach is also under intensive study and developing i§Xciton-electromagnetic waves become the real states of the
crystal optics with spatial dispersidf-3¢So in the paper we SyStem. The corresponding quasiparticles are called polari-

present constitutive equations based on exponential excitonfens (light or photoexcitonsand are usually treated in the
models?>3%-41 However, this does not substitute the ap- framework of the two alternative approaches, based on the
proach based on Maxwell-Pekar BC's, but serves rather as #Pncepts  of ~mechanical and Coulomb(in  other

addition to it, and all the above described problems remaiterminology—mechanical and Scheinge) excitons, re-

but can be reformulated in a slightly different form. This is SPECtVely. , ,
so because for solving the problem of reflection and trans- 1he difference between ME's and CE's ensues from the

mission of waves in a local term one really needs to usdlifferent treatment of the long-range interaction between the
some BC, in particular the MFBC added by ABC of ALW polarized crystz_il units. This interaction may be described via
theory. Solving the same problem on the basis of a propelf!€ Macroscopic part of the proper crystal flelithe Ewald's
nonlocal treatment makes the BC approach unnecessang’régendes feld ), i.e., by the curl-free nonretarded poten-
However, when constructing nonlocal polarization an ap- &l Coulomb fieldE’, generated by fictitious charges of
propriate Green functiorof the bounded media one needs to Macroscopic dielectric polarizatid?

know the wave functions and the proper boundary conditions

for Schralinger excitons, which is connected with the same VXE'=0, ()
problem of choosing the above alternative approaches as
starting points. Also, for every concrete realization of a so- V-E'=—-47V-P. 4)

lution to the polariton problem based on a nonlocal term, one
usually comes to wave matching conditions that may alway$n the case of the CE scheme the unperturbed energy opera-
be compared, confronted, and even presented in a ford®r contains this part, while in the case of the ME scheme it
analogous to BC's of appropriate locally formulated theory. does not. So the basic equation from which the unique po-
In this paper we starad hocfrom integral constitutive lariton states should be formed depends on the way of split-
equations which need no BC's. However, in order to com+ing the total crystal Hamiltoniafi into an unperturbed part
pare the obtained results with the majority of those in othefj0 anq the part describing the crystal-field interactiof:
papers on ALW physicgéheoretical as well as experimental
performed on a local term, in Appendix B we reformulate
our basic equations in an equivalent differential form with _
microscopically formulated ABC’s. The last discussion on H+ Hi(?ltE(Epr) for CE, (5b)
the ABC problem’™*° shows that it is also very useful to
“translate” each of the integral methods to ABC terms in WhereE, is the intensity of the smooth part of the perturbing
order to understand which physical situation it correspondééeld, connected with the intensity of the total macroscopic
to. electric field in the medi& by the relation
The remainder of this article is organized as follows. In
Sec. Il the main concepts of CE’s and ME'’s are defined and E=E,+E'". (6)

o RO-+ANL(E) for ME, (53)
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As a consequence of different splittings of the Hamil- (here and below we mark the second rank tensors in Carte-
tonian(5), for infinite media the dispersion law of CE’s dif- sian coordinates with a hatin this scheme the correspond-
fers from that of ME’s in the nonanalytic term independenting material tensor is the ordinary permittivity
of the absolute value of the wave vector but dependent on its
directions, wheres=k/|k|. Thus for nondegenerate exciton e=1+4ma. (12)
bands in uniaxial crystalevhich is the situation we analyze
in detail in this paperwith OX as the optic axigsee Fig. 1 ~ Whose poles are determined by E@).
the energies of ME’s and CE’s have, respectively, the follow- For CE’s a similar physical quantity is determined by the
ing form: excitonic part of the tensgB(w,k) that relates to the per-

turbing field and has poles determined by E8):

f2cogkl) B ES i
5ME:ﬁwo_W2ﬁwo+my (7) P=3-E,. (12)
5 Both schemes are used equally often and have their own
_ hcogkl) advantages and disadvantages discussed in detail in Refs. 4
Ece=hwy— ————+R<. (8)

MI? and 5. In particular, the advantage of tenaain comparison

. . . , with 3 is that its poles are the states of but not of Eq.
Here M is the exciton effective massy,, is the frequency A P ta) q

corresponding to the edge of the exciton absorption bano(.g)’ Wh'(_:h correspopc_i 11'0 the tens@r Thus, tensorsy a_nd
The last term in(8) represents the nonanalytical part of the (OF) the invert tensoer” ~, usually used for ALW calculations

CE energy. Note that in other papers the coefficRin Eq.  In the resonance region, are the analytic functions of the

(8) is expressed in different but equivalent forms: wave vectof.*® However, some crucial questions cannot be
solved without using tensgs. In particular, as is concluded
5ot 47d? in Ref. 4, “with the polarization current being expressed
R=AA= p, =27mhwjag= , (9)  through the perturbation instead of the total electric field, one
2wq gov can introduce the spatial dispersion in the crystal polarizabil-

ity in a more simple way and involving fewer unknown pa-

rameters.” Reference 5 also notes that “since the excitonic
levels of absorption are located in the vicinity of the Cou-

lomb exciton frequency, the discussion of the form of the
exciton absorption line is more convenient to perform using
not the mechanical but the Coulomb exciton,” i.e., E8).

and tensorB, etc. These and other features of those tensors
éjetermine the motivation for the choice of either scheme by
different investigators on COSD or, even, by the same ones,
for solving the concrete problem of polariton physics. This
also makes the problem of their fitting especially realistic.
For the infinite crystal and the homogeneous waves, the
gelation between those two approaches has been clarified for
specific exciton modelgusing, for example, the Ewald-like

into account the background part of the polarizability in Ref.procedures for the separation of the proper crystal mac-

47. One can also obtain those results for the exciton model J]ofleld) and in more general casésee Refs. 49 and 50-52

our paper by passing from inhomogeneous waves to homd’y'th the use of polarization operator constructions. All those

geneous ones in EqE38) and(55), respectively. In addition, procedures are based, in facAt, on the e>§istence of a unique

many papers on this theme may be found among the refefausal relation between tensergw,k) and8(w,k), as well

ences in Refs. 4 and 5, as well. as between fieldg, andE, accordingly, that follows from
The ALW theory we are interested in here is based mainlyhe set of Eqs(3)—(6),(10),(12); see Ref. 51. In Sec. lll it is

on an accounting of the dependence of crystal permittivity orshown that one of the points in fitting the two approaches for

the wave vector via the dependence of exciton enef@jesr ~ bounded media consists in a transition from homogeneous

(8) on k. Thus, as a second consequence of the differenvaves to inhomogeneous ones. For the latter case some gen-

splitting of the Hamiltonian(5), it appears that the partial €ralization of the method of Ref. 51 leads to the following

contribution of polaritonic waves of frequenay into the  relation for infinite media:

specific crystal polarization is different in different

approache$ For ME it is proportional to the exciton part of ~

the polarizability tensom(w,k), which relates the macro-
scopic polarization vector to the total macroscopic field

wherew, is the plasma frequencljs the oscillator strength
of the excitonic transitiong, is the contribution of the given
excitation into the static polarizability of the crystdljs the
unit cell dipole momenty is the unit cell volume, and, is
the background permittivity. The expressith for the exci-
tonic dispersion law is well known from Refs. 20, 25, 26,
and 28, and many other publications. The expres&pmwas
obtained more recently from the analysis of a long-rang
dipole-to-dipole interaction for each model of the exciton
like states listed in the Introduction: optical phondfh&ren-

kel excitons?®“?classical polarization oscillatofd Wannier-
Mott excitons?’ plasmong?* etc. In the most general form it
was obtained on the basis of the polarized macroblock
approacf® in macroscopic theory of excitoffsby taking

(13

. 4rnk-k-B
[
k?—4mk-B-k

. wherel is the unit tensor anét-k is the dyad. By its deri-
P=«a-E. (10)  vation the vectoiE, is assumed to be nonpolarizéce., its
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curl-free and divergence-free parts are nongerbis defines .
Eq. (13) uniquely, and the same is true for the representation =54 [1 v, (16)
of E,, throughE: e
whereS is the operator of the antisymmetrization procedure
A andl is the integer lattice vector and the number of the ex-
Ep— ( f— —k- k- &) -E. (14)  cited cell at the same time. According to Efb), the Hamil-
2 tonian and the dipole moment of the system “crystaper-
turbing electromagnetic field” have the form

From a microscopic point of view the discrimination be- H=Ro 4+ Qint (17)
tween those types of excitons is arbitrary since it merely cE TR
corresponds to different splittings of the polariton Hamil- _
tonian and, hence, any observable quantity should not de- Age=—2 di-Ex(lb), (18
pend on it. While it is clear for polariton dispersion of the
bulk, consistency problems arise for bounded media in con-
nection with the problem of ABC's, which are necessary as P(r)=2>, dis(r—1), (19
soon as spatial dispersion is involved and may be, in prin- '
ciple, different in different approachésee Sec.)!

For the bounded media we are interested in, the primar
problem is to formulate the constitutive equations instead o
the algebraic ones for the infinite case. So as not to overloaﬁe
the main results by the routine for crystal optics with spatial
dispersion calculations we will restrict ourselves to the case
of semiinfinite medigsee Fig. 1, where the sample is located V=04 D by(t)d,. (20)
in the half-space=0, and they=0,z=0 planes are those of !
light incidence and crystal surface, respectiyelor further  The averaging of operatdil9 on the wave function(20)
concretization of polarization and field configurations let usdetermines the crystal specific polarization in the form
consider the uniaxial crystal with an isolated nondegenerate
dipole-allowed exciton state in resonanée., for the case P(1)= dby(t)
ho = &, Where&,, is defined by Eqs(7) and(8), corre- x v
spondingly. Also let the polarization vectoP,={P,,0,0}
be directed along th® X crystal optical axis ané lie in the
XZ plane. This situation is realized in practice for the longi-
tudinal excitons in crystals witlCg, symmetry, illuminated
by ap-polarized electromagnetic wate.

To construct the appropriate constitutive equations w
take advantage of the generalized ,(N)-exponential exci-
tonic model formulated first in Ref. 23. To make the situation ab,
as clear as possible we pick out the simplest yet sufficient —iﬁ—+Hﬁ,b,+ E H|0|,b|,=d.Epr(I,t), (22
version of that model for Frenkel exciton witi =1 (ignor- at A
ing mixing of molecular configurationsandN=2 (the two  yyhereH? ,=H’ |, are the known Frenkel exciton matrix el-
exciton transport mechanisms approximatiobet a;, a,, ements.
andag be the main lattice periods alongy, andz axes and We are interested in the long enough polaritonic waves
the integer vector=1,a, +1,a,+133; describes the positions i the wave vectors satisfying the inequalilya<1. In
of the unit cell centers. Since we consider a semi-infinitehis case the interaction of the distant neutral cells can be

crystal, the two indices, andl, are changing from-= Up  {aken in dipole approximation. Let this interaction term be
to «, but the thirdl; takes the values 1,2,3.. . The denoted as1 V)
A

ground and perturbed states of fitke unit cell are defined as

whereP(r) is the operator of the specific electric polariza-
ion of the medium.

The crystal state, perturbed by the external electromag-
tic field may be found in the form

(21)

wherev is the volume of the unit cell.

In order to find the coefficientb,, we should substitute
Eg. (20) into the time-dependent Schiinger equatiofwith
Eq. (17) as the Hamiltoniah Taking into account only the
Jirst order terms and using the Heitler-London approximation
we obtain

Yy and ¢, , respectively. For the chosen crystal symmetry the 1 12412
state ¢, is nondegenerate and the vector of the dipole mo- Hl(l)l’: 2{ g3 x| (23)
ment has only thex componentd={d,0,0}, where d=d, - =12 n=rp

= (/dy| )0 andd is the operator of the dipole moment of pe, “resonancel@|’) integrals” in Eq.(22) can be repre-
the unit cell. The wave functions of the entire crystal in theganied in the form

ground ¥, and excited®, states could be written as the
products of cell wave functions HY  =H® +H® (24)

where H,(f), contains the exchange interaction of cells as
WOZ‘SH by (15) well as the corrections which are connected with the differ-
I ence between the real Coulomb interaction and the dipole-

115402-5



V. N. PISKOVOI, E. F. VENGER, AND YA. M. STRELNIKER PHYSICAL REVIEW B56, 115402 (2002

to-dipole approximation at small distances. WHenl’| is  In Eq. (26) both A- and B-types of interactions are present,
larger than several lattice constants, tlhéﬁ), becomes neg- hence it describes the case of CE’s. Therefore, in the field-

ligible. Therefore this term can be represented in the expoSySta! interaction namely, the field, arises.
nential form To pass from the CE scheme to the ME one, we use the

results in Appendix A, where the macrofield, for a semi-
infinite macropolarized crystal is given. By realizing this and
using the relatior{6) we come to the following constitutive
equation:

H®), =ghe TI=""I, (25)

The translation symmetry along— and y-axes allows to
seek the solution of Eq.(22) in the form b, "
=b(l,,t)exp(k,) (as we assumed befork,=0). In this (wo— )Py x(z)_GAﬂf

case the short-range interaction in E82) may be trans- ' ClJa

formed in a manner of Ref. 14 and the dipole-to-dipole part

of the cell interaction takes the forA1) of Appendix A. ><exr< _FAﬂ|Z_Z’|)PME (2)dZ =FE,(2). (29
Substituting Eqs(21), (24), (25 and Eq.(Al) into Eq.(22) c '

and eliminating the common forP, and E, factor . ]

exp(—iwt+ikx) one obtains the set of equations for polar- 1NiS equation corresponds to the usual and well-known spa-
ization oscillators located in the chain of crystalline slabs,tial dispersion(1,1)-exp model, in the terminology of Ref.
which in continuous approximation takes the form dfied)-

exponential excitonic model equation in the classification of Both constitutive equations(26) and (29—are integral
Ref. 23: ones and do not need any boundary conditions. But to com-

pare the results of this paper with those based on local con-
stitutive equations we reformulate them in Appendix B to

(09~ @)Pce(2) differential ones together with ABC.

wo (@ w_0
—Gp— | exg—Ta—|z—2'||Pcex(z')dZ
CJa c ' Ill. FITTING OF THE BOUNDARY PROBLEMS
FOR THE POLARITONS FORMED ON THE BASE
-G @f exd —T E|Z—Z’| p (z')dz’ OF THE MECHANICAL AND COULOMB EXCITONS
B c Ja B C CE X

For semi-infinite media the light reflection coefficienis
=FEpx(2), (26) one of the experimentally verified optical characteristics, the
theoretical treatment of which is based on the solution of the
where wg=H, ;/# is the resonance frequency of the exci- set of self-consistent field-polarization equations. In this pa-
tonic transition andF = goR/47# is the coupling constant of per we take it as the main quantity to be fitted in both of the
the field-crystal interaction connected, directly, with the pa-above calculation schemes. If those equations allow one to
rameterR (9) that determines the interaction of the dipoles.stay in the framework of the plane-wave approximation,
The parametea in Eq. (26) takes two values;-« and 0, for  then, as is well known;, may be expressed via the refraction
nonbounded and semi-infinite crystals, respectiv@lyand  indexes. For the excitonic models chosen above such a pos-
I'; are the coefficients of the intensity and the spatial dampsibility is proved below and forms the basement of the ap-
ing rate, respectively, corresponding to flike oscillators in-  propriate extinction theorem. In such a case, as well as in
teraction mechanism. These model coefficients may be ex¢lassical birefringence optics, the ideal Maxwell equations
pressed through the real crystal parameters for all kinds otre reduced to
excitons. In the case of the Frenkel exciton they correspond
to the above parameters of the shokj-@@nd long-8) range E+47P=(n?l—n-n)-E, (30)
cell interactions, while in the case of the Wannier-Mott
excitons—to_the exchange and annihilation transporpjys the usual MFBC. Here it is assumed that
mechanismé! etc. In particular, if[,>1 then it may be
connected with the excitonic effective mass

{E,P}~exp{i2n~r—wt), (31
3 2 c
“4Gal c wheren=ck/w is the refraction vectofRV) governed by the

_ _ o Fresnel dispersion relation and by the crystal boundary as
In this case the exponential excitonic transport channel trangyel|l.

forms into the nearest-neighb@iN) one with the excitonic In accordance with Sec. Il we use exponential excitonic

energy given by Eq(7), see Ref. 23. In accordance with Eq. models as constitutive ones, according to which the polariza-
(A1) we take for theB channel the parameters that conform tion oscillators are placed at the lattice sites, where they in-

the dipole-to-dipole interaction of the polarization oscillatorsteract locally with the electromagnetic field and with
each other through the exponentially decaying interactions.
I's=n,, Gg=-27uFn,. (28 If we represent the fields and polarization in the form
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.w _ ing the solution in the forn{31)—(35) and equating expres-
Py(r,t)= Px(Z)eXD( I X wt) : (32 sions corresponding to the samdependent phase factors in
its left and right sides. So we have

Eprx(r,t)= Epryx(z)exp{ i %nxx— i wt) , (33 Puex= @exx(@,MEy, (36)
wheren,=sin @ is the same for all wavesRV component, e XX:L, (37)
determined by the Snell law, andl is the light incidence 7 ove(n) - o
angle, then the equation for thecomponent of the macro-
scopic polarizatiorP,(z) can be written in the fornt29) for , .Ga n§
ME'’s and(26) for CE’s, respectively. wve(N) =g+ 2F_A 2412’ (38)

Below we present the corresponding evaluations of the AR
main optical characteristics separately for MEZec. Il A) Ga
and for CE’s(Sec. Il B). Then we compare and fit them in wéEwO—ZF—A, (39

Sec. llIC.
where wyz can be associated with the energy of the me-
A. ME scheme chanical excitonfye=#wye, and where the AC’s on the

As was just said, the material equation corresponding t(g)artlal polarization takes the form

the ME scheme has the form of E@9). The basic refer- p()
ences on its treatment are contained in Ref. 23, so we do it > MEX g (40)
here in a brief form. It is a nonhomogeneous Fredholm equa- =1 Tating

tion With a Hermitian gnd quasi-d(_a_generate k_e_rnel. In 9geNfcompare it with the appropriate AB(B3), arising in the
eral, it does not require any additional conditio®C's),  corresponding approach to the problem based on a differen-
except the finiteness of the electric field and polarizationsjy| constitutive equatioh In Eq. (40) the total numbed of
The necessity of some AC's arises from the specific methodg,e waves and the corresponding values ofiR/ compo-

used for its solution, chosdaccording to conventional con- nentn,; are determined by the dispersion equation
siderations of the light propagating through the vacuum- )

crystal interfacesin the form of the finite superposition of de11|n2T—n~ n—§||=0, (41)
the partial excitonic polarizationsP{)(r,t) and fields ) o ) R
EO(r,t), related to thegth light wave, namely, following from the substitutior{10),(36) into (30). Tensore
is determined by Eq(11), where
J

Pe(r,t)=2, PR(r.1), (349 X y oz

=1 X[ ag| + e xx 0 0
J 0 a=Yy 0 @y 0 |. (42)

E(rt=2, EV D), (35 2\ 0 0 ap

where the sums go over an unspecifiédr the moment ~ Here « is the background part of polarizability, so thaf

number of transmitted modes. =|+4mag is the appropriate tensor of the background per-
There are a lot of mathematical methods for treating themittivity.

integral equations, but the simplest and more convenient for For the p-polarized waves Eq41) givesJ=2 different

comparison with the other ways is to do it directly by seek-RV’s (in contrary to usual birefringence theory wiik=1):

2
1 — b—u \/ — b—pu — 7
2
N2y p=———— uteo| 1+ + teo| 1+——| | +4eo(b—p)| 1— =1, 43
7(1,2) 2(1—M/F2A)IM 0 Fi) MTEQ ri ol ) Fi (43
|
where - 2M 2 s
ﬁw% 7
o—w) 2Mc? — sirf9
= . , 44 - _
K o) hw (44) o 80”(1 -~ ) (46)
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We also have one AC similar to EGI0) which relates the F
electrical field of the mairfnorma) light wave to the addi- Be,xx:ma (54
tional (anomalousone. Along with the MFBC it allows one CE
to evaluate the reflection coefficient in the ME scheme in the PGl
usual way for ALW-theory" o) = wye(n) - — B 2' (55
2 2 1_‘B z
Er No—Np
"= Ey| ~|ngtny “n o
0 o™ p det|n?l—n-n—¢||=0, (56)
. 1 (1 sinze) 48 ) bl)
A A __ CEx _
N, N+ egti(eg/Ta)(Ny+n0 J ()
_Nalzteo (g0/T'a) (N7 _zz) (49) s PCI.E,x o, 578
N1+ N+ (L) (NNt &0) =1 lgting
[these formulas correspond to E¢3.28—(3.29 of Ref. 23 where
HereEy andEg denote the amplitudes of the electric field in X .
the incident and reflected waves, respectiveyis the same 5 y
as in usual birefringence theofjn a spectral region of an x| 144 n; 0 —a NN,
isolated nondegenerate and nonspatially dispersive excitonic Wﬁe,xxn2+n2 Wﬁe,xxn2+n2
resonancg n, is an effective refraction indéx for a given €= o o
configuration. As we mentioned above, in the case when y 0 1 0
I'a>1, the exponential model transforms into a NN one and z 0 0 1
the relationg38) and (40) reduce to the usual forms for the (58)
excitonic energy(7) [with the effective mas$27)] and of
Pekar’'s ABC(1), namely, [It would be recalled that accordingly with Sec. Il A the

) usual Pekar’'s ABGB4) should be used instead of E&.739
if I' > 1]. The valug(55) may be interpreted as the energy of
Puvex(2=0) :2 jE(2=0)=0. (50 the Coulomb excitonfee=7%wce [see Eqs.(8) with (55)
written for homogeneous wave§ he simultaneous presence
of two AC’s in the CE scheme agrees with the possibility to
B. CE scheme reduce the integraR6) to a fourth-order differential equation
As follows from Sec. Il in this schem@ce is governed by ~ (B5) and two ABC's(B7) in addition. The total numbel of
Eq. (26) with T'g,Gg determined by Eq(28) and B3,=0 in the posmble waves and_the corresppndlng_ vahyesire de-
Eq. (10) (as mixing of the molecular configurations is ig- €rmined from the solution of the dispersion equatiés)
nored. In the manner of Sec. Ill A we search for a commonWhich can be written in the form
solution of the set of the ideal equatiof®) and the material 4 2 - .
equationg26) in the form(31)—(35) for each possible wave. n*+n“(1—Tre)+dete=0. (59
As the perturbed field in our problem is a purely transverseSubstituting Eq.(58 into Eq. (59 we obtain for the

one we can use a simpler correlation betwBgrandE than p-polarized waves the following bicubic equation
is given by Eq.(14), namely,

. k-k
S| T )

) 4 5
.E. (51) n== ?Be,xx: (60)

The substitution of Eq(51) into Eq. (12) introduces a new the solution of which gives three different values rf.

material tensok instead ofe (11) (the so-called “transverse Similar to the case of ME'YSec. Ill A) we calculate the
dielectric constant,” see Refs. 2 anit 5 reflection coefficient ¢ for the case of CE’s using the usual

MFBC and AC(57). Omitting the details of rather clumsy

( k-k) evaluations we give the final result
e=l+4mp| |1 — — (52
2
k ‘ER 2 |cosf—n, ? 61
. ree=|—| =|——| ,
(Note that in contrast te, the latter tensor is neither sym- “Eo cosf+ n,’)

metric nor Hermitian. As a result we obtain the following o L _
set of equations in the CE scheme, that substitutes the set where the effective index of refractiam, is determined by

equationg36)—(42) of the ME scheme: the combination of three RV's, which correspond to three
roots of Eq.(60) with positive projection of their real parts
Pcex=Bexx(@,NEp «, (53 on thez axis of Fig. 1:
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3 3 waves appears: two waves in the ME scheme but three waves
H nzj+co§02 Nyj in the CE scheme. This fact was already mentioned in Ref.
n’:J=1 =1 (62) 54, where Eq(61) was expected to give the more precise
P 3 ' result. In the present paper we show that both expressions
gj nzinzj+C0320 (for rye andrg) lead to the same results in the case of a

semi-infinite crystal. To do this we have to use the solutions

; _ (43) in the case of ME’s and those following from E0) in

[R%?mzpsa;grlfﬁes (S;Zégatél\rlgf;alig;-r(ﬂi-ri&(3-33 (3.39 of the case of CE's. At the same time we should use the same

Thus we see that the process of light reflection from the@PProximations for the results of Secs. 11l Aand Il B, that is,
same sample can be described in different wisee Eqs.  t0 puteg=cos6 in Egs.(43)—(49). Then the polarizabilities
(47) and (61)] with different numbers of transmitting waves (54) and(37) satisfy the fundamental relatio$3), which is
[see Eqs(49) and(62)]. In Ref. 22 only the CE scheme for the first check point on the way to agreement of both ap-
treating the boundary problem for a Frenkel exciton in aProaches to the unique polariton crystal states. In such a case
semi-infinite crystal was used. For the homogeneous wavel§e reflection coefficientye in the ME schemdsee Egs.
used there it was possible to perform only in two extremel47)—(49)] can be written as
cases, which lead to ABC’s & type (1) [see Eq(B4)] and
essentially different ABC's oB type (2) [see Eq.(B7b)], FmMe=T1l2, (63)
respectively. The first one corresponds to the case where the
second term in Eq(8) is much larger than the third one ro=
(A%IMI?>R, i.e., the exciton energy band width is larger '

than its longitudinal-transverse splittingand the second one

appears in the opposite ca%n the general case, as follows Similarly, for the case of the CE scheme, the reflectipn
from Ref. 22, the conditioné’) and (B) proved to be mutu- indexr cg can be represented as a product of the appropriate

ally excluding. This constitutes the main point of the ALw Partial coefficients. From Eq#61),(62) it follows that

contradiction referred to in the Introduction.
Frce=rafars, (65

cosf—n,;|?

cosf+ ny; (64

wherer; has the form64) with n,; as the roots of Eq60).
It is easy to see, that in above approximation the RV’s
The detailed analyses of previous papers on this themgyarked as “1” and “2” in Egs.(63) and (65) coincide and
showed that f|tt|ng of the two SolutionS, discussed above fohave the form of Eq(43) At the same time for the extra root
the bounded media, has not been performed up to (@Ww  of the dispersion equatioi60) [in comparison with Eq(41)]
cept some particular cases marked abdue the following  the partial coefficient 5 in Eq. (65) is equal to unity, so the
reasons. _ ~two reflection indices g andr e coincide on a whole. The
(1) In the case of homogeneous waves, considered in thgave corresponding to the above extra root in the CE
majority of papers on ALW theoryincluding Ref. 22, the  scheme is called a “missing” one in Ref. 24As has been
third term in formula(8) was assumed to be independent ofshown above, in reflection and transmission problems this
n (i.e., of k). There remains a singla-dependent factor \ave allows us to fit the CE and ME approaches for bounded

determined by the effective excitonic masgs In this case,

Eq. (56), as well as Eq(41), gives a single additional wave,
which cannot simultaneously satisfy two AC equati¢bga
and(57b) [ or ABC’s (B7a) and (B7b), respectively. Some aspects of the identity of the boundary problem
(2) In the other group of papers the inhomogeneous wavesolutions for the two known and widely used schemes of
are considered but only a single excitonic transport mechapolariton state formation, namely, for ME and CE ones, are
nism is taken into account. analyzed in the framework of ALW physics. Here we have
In contrast to this we take into account both the aboveaken the first steps t6) based on the investigations known
factors simultaneously in order to solve the probléor a  from infinite media postulate that to avoid blunders one
preliminary discussion see Refs. 4 and 31, 54-56, in addishould use the ME scheme and ABC’s such as Pekar’s and
tion). In our approactibased from the very beginning on the (ii) to formulate a system of adequate boundary conditions
consideration of inhomogeneous waves with fixed by  on partial excitonic polarization for theoretics and experi-
Snell law) the second term i65) depends om,. For given  mentalists that stay in the framework of the CE concept. It is
wce it determines the additional branch of CHEs compari-  done on the basis of the exponential excitonic model gener-
son with MB. This, as was shown in Sec. Il B, allows one alized for the case of the coexistence of sevésaly N)
to satisfy the increased number of ABC’s in the CE schemadifferent exciton transport mechanisms. For CE’s there al-
[specifically two, see Eq57)], instead of a single one in the ways exists one connected with the dipole-to-dipole interac-
ME schemdsee Eq.(40)]. tion of the physically infinitely small areas of the polarized
However, some contradictions still remain, because durmedium. The transition from the CE to ME scheme corre-
ing the calculations of the corresponding reflection coeffi-sponds formally[(i) position] to the substitution into the
cientsrye (47) andr g (61) a different total number of the crystal-light interaction operator of the transverse component

C. Fitting the results

IV. SUMMARY
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(i.e., curl part of the electromagnetic field for the total field interaction, given by Eq(23), takes the form

with the simultaneous elimination of the mechanism above

from the part of the CE unperturbed transport equation. The

z}ggises performed in this way result in the following conclu- 2 Hff),,bv:dz E b(l.,t) E

: I"#1

(1) In the case of the unbounded media both approaches

give the equal numbed —1 of the homogeneous additional 2 Skl o

electromagnetic waves for fixed polarizatibn. =27k, 2 e ezb(lz, et (AD)
(2) For bounded crystals the number of additional waves 271z

should precisely coincide with the total number of ABC's

and vice versa. However, since the transition from CE’s tdn Ed. (A1) we evaluate the lattice suni® thex,y plang in

ME’s is accompanied by a decrease of one of the numbers @gntinuous approximation using the following formulas

the possible channels of exciton movement in the crystal, the

2,12
+
1 QIX |y

. !
ikyly

i)
1 #1, ||_|'|3 ||_|/|5

! !
I

number of ABC's is equal tdN—1 for ME’s and toN for ekedxdy
CE's [compare the single Eq40) with the system of Egs. | o= f f
(57)] [X2+y2+(z_z/)2]n/2

The incompatibility of the results defined in the above

statements(1l) and (2) is known as the “first Pekar _ f”’ pdp f ok o0y g
paradox.”? For the distinct case dil=2 the concrete de- 0 [p?+(z—2')2]"2) - =

scription of the paradox is given by poiit) of Sec. llIC. It

leads to the necessity of addition@ comparison with the = pJo(kyp)dp

unbounded medjaproof of the equivalence of those two = Wfo [2+(z——z’)2]n’2

approaches. It turned out to work well by the transition from p

homogeneous plane waves to the inhomogeneous ones. For kn/2—l|z_z/|1—n/2

the latter case the number of the ALW for CE’s is larger by L a— Ki_no(kyz—2']), (A2)
one than for ME and therefore coincides with the corre- 2"2710 (n/2)

sponding number of ABC’s. We prove that this extra root
gives the possibility to fit the CE and ME scheme in polar-where J, and K,, are the Bessel and McDonald functions,
iton theory for bounded media. Such is the objective aspectsespectively? The exact summation of E¢AL) is presented

of the problem. in Ref. 23.

The subjective appreciation of the solved problem is con- To separate the part corresponding to macroscopic field
nected with our hope that this paper will help a lot of inves-E’ from Eq.(A1) we should use Eq$3),(4) for semi-infinite
tigators, using those different calculation schemes, givingnacropolarized media with density of space chapge),
possible ways and means for agreement of their results andiven by relation p(r)=—-V[®(z)P(r)]. Putting E’
research limits® Here we give(as an examplethe self- =-—Vy¢', for the above polarization situation we have
consistent expression for the reflection light index in the vi-
cinity of exciton resonance, corresponding to nondegenerate
states in crystals 0€g, symmetry (this is a case popular
enough in ALW experimental investigatiofs

In addition we should note that in this problem the “sec- The solution of Eq.(A3) gives the following form for
ond Pekar paradox” also exists” attached to the caseqof macrofieldE’'={E;,0,E,} ,whereE, is the component we
#1, see Refs. 4 and 21. It cannot be solved in the frameworkre interested in, is
of the generalizedN-exp model used here, but demands a
detailed study in the framework of thévi{N)-exp model, o
introduced in Ref. 23, that takes into accovtexcitonic E.= —Zwkxj e X7 ~7p (z')dz'. (A4)
stategwith M=2) in addition toN possible excitonic trans- 0
port canalgwith N=2), which is the effect of the mixing of
molecular configurations. The detailed discussion of this will
be published elsewhere.

V2¢'=—4mp=4mik,0(z)P(z)e" (A3)

APPENDIX B

For the reasons outlined in the Introduction we present
ACKNOWLEDGMENTS here the constitutive equations of Sec. Il as the appropriate

This research was supported in part by the Israel Scienc%'ﬁerent'al equations with the determined set of ABC's.
Foundation. V.N.P. would also like to thank Professor V. G.

Lyapin for helpful discussions. 1. ME scheme

In the case of only one interaction paramer(one-
APPENDIX A exponential modelit reduces to a second-order differential
If one seeks the solution of Eq22) in the form b, equation which can be obtained by the sequenced differen-
=Db(l,,t)expik,ly), then the dipole-to-dipole part of the cell tiation of Eq.(29)

115402-10



THEORY OF POLARITONS IN BOUNDED SPATIALLY . .. PHYSICAL REVIEW B56, 115402 (2002

2 wo) 2 Puex(z=0)=0. (B4)
o FA? [(wo— @)Pyg x— FEx]
9z 2. CE scheme
+2G.T @o 2P _o (B1) The constitutive Eq(26) for CE scheme can also be re-
AT Al ¢ ME,x™ duced by sequenced differentiation and elimination of inte-

. . . . ral forms to a differential equation of fourth order:
Since the use of the differential operator increases the ordegr a

of the equation, the solutions obtained by this way could be | ;2 wo\ 2| 8 w2
linearly dependent. Because the differential equat®) is _2_<FA?> —2—(FB? X{(wo— w)Pcex
valid not only fora=— in Eq. (29) but also fora=0, its oz 9z

PCE,X: 0 (BS)

solution should be fulfilled by some additional conditions. w12 52 ©

These conditions may be as follows: Eg9) has to be sat- —FE fx}+ZGBFB(—O) {——(FA—O

isfied identically for the arbitrary value of thecoordinate or c/) |9z?

(in particular forz=0), or the same should be true for is 5 5

derivatives(or their partial combinatiof$), etc. But the sim- +2G.T 2| r. 20

plest form of ABC is formulated originally in Ref. 23, which AT A 972 B¢

results from setting the complement of the truncatee., ) ) ) ]

with a=0) Eq. (29 to the non-truncated ong.e., witha  Since Eq(BY) is valid forr?\: —o as well as fom=0 in Eq.

— —) to zero: (26) then in the last case its solution should be fulfilled under
some additional conditions. For their formulation we use the
results of Ref. 23 for thé&l-exp excitonic model. This leads

f exp{ I'a—2|Pyex(2)dz=0. (B2)  us to the set of ABC’s of Eq(B2) type:
We should underline that being nominally different in fo exr{l“iﬂz) Pcex(z)dz=0, for i=A,B. (B6)
form accounts, partially, for the differences given in the In-

troduction. All of the above boundary conditions give, of |t is easily seen that for the solutions of Sec. Il B that ABC

course, the same final results for observable quantities. FgBe) take the form of Eq(57), namely,

the solutions of Sec. Il A, Eq(B2) takes the form of AC

(40), namely, pg) )
E Ex 0, (B?a)
I p) =1 FA+|nZ,
E PMEx(O) (B3) 3 (O)
= FA-HI’]ZJ ' PCEX
Prear(0)= 2, [ T =0, (B7b)

In the case whel' ,>1 the exponential model transforms
into a NN one and ABC(B2) reduces to the usual Pekar's whereP,{r,t) with ['g=n, is the vector of reduced polar-
ABC (1) at the boundary: ization defined in Ref. 4 and figured in E@).
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