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Theory of polaritons in bounded spatially dispersive media
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In crystal optics with spatial dispersion there are two alternative approaches to the polariton problems
starting from either mechanical excitons~ME’s! or Coulomb excitons~CE’s!, respectively. The difference
between them arises from the different treatment of that part of the polarized crystal unit interaction which is
associated with the long-range curl-free proper crystal field, generated by fictitious charges of macroscopic
dielectric polarization. In the case of the CE scheme the unperturbed~by electromagnetic field! energy operator
contains that part, while in the case of the ME scheme it does not. This is the peculiarity that makes their
dispersion laws and all other characteristics, including the boundary conditions, essentially different. Both
primary conceptions are equally used in theoretical research and have their own advantages and shortcomings.
The agreement between those for infinite space has been proven by a lot of investigations, but solving the same
problem for finite media has not been done. Moreover, the majority of papers in the field use the same
boundary conditions for excitonic polarizations in both schemes. This makes them all true only for some
particular cases but, certainly, the contradictions appearing should be eliminated. The aim of this paper is the
critical analysis of the existing inconsistencies and the fitting of the solutions to the boundary-value problems
for polaritons formed from those two different types of exciton states. Partially we fill the arised recess by
making both approaches in line with the case of theN-exponential Frenkel exciton model, when describing the
polarization of some bounded spatially dispersive dielectrics in the excitonic spectrum region. The light
reflection coefficient is taken as the main quantity to be fitted in both of the above calculation schemes. This
is possible only by including several exciton transport mechanisms at once~that is, forN>2) and by using the
concept of Pekar’s ‘‘missing’’ electromagnetic wave. With success in this particular case, we hope to induce
further investigations in the area for other exitonic models and in a general enough case, such as the case for
infinite media.
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I. INTRODUCTION

For the simplest case of an infinite macroscopically h
mogeneous medium the description of the spatial disper
reduces to a dependence of the permittivity tensor«, not only
on the frequencyv but on the vave vectork as well.1 In
addition to other well-known crystal optics phenomena it c
raise, in principle, the order of the algebraic dispersion re
tion for the polariton modes«(v,k)5(ck/v)2, which deter-
mines the functionk(v). In comparison with the traditiona
nonspatial dispersive case this gives rise to additional ro
corresponding to the additional light waves~ALW’s !. As a
result, several plane monochromatic waves can exist with
same frequency and polarization, but with different refract
indexes. Usually it is too delicate an effect to be checked
the optical spectrum, characterized bykl!1 (l is the lattice
constant!. The reality of the phenomenon was shown
Pekar,2 who analyzed the situation in the vicinity of exciton
resonance in detail. Its description required developing
extended version of light propagation through the solid.

By introducing the ALW one renounces classical birefr
gence theory in such a manner that the Maxwell-Fres
boundary conditions~MFBC’s! for fields at an interface be
tween two media become insufficient to uniquely define
electromagnetic waves in bounded solids and should
supplemented by some additional boundary conditi
0163-1829/2002/66~11!/115402~12!/$20.00 66 1154
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~ABC’s!. This problem was solved by Pekar2 by introducing
an ABC that predicts the partial excitonic polarizatio
Pex(r ,t) turning to zero in crystal boundary~see Fig. 1!
namely,

Pex~z50!50 ~1!

@the ‘‘first’’ Pekar ABC @Ref. 3#.
Although the ABC~1! is acknowledged and widely use

by the overwhelming majority of theoreticians and expe
mentalists, their justification has attracted lively debate t

FIG. 1. The coordinate system and the directions of
p-polarized incident (E0), reflected (ER), and penetrating (Ei) elec-
tric field amplitudes. The appearance of the additional raysEi ( i
.1) is exclusively due to spatial dispersion phenomena.
©2002 The American Physical Society02-1
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continues with each new group of investigators in the a
~great attention has been paid to the problem of ABC’s a
their grounding in Ref. 4; the results of the first stages
those investigations are summarized in Refs. 5–8 as w!.
Solving the ABC problem has become more realistic beca
of the appearance of real possibilities to confirm their cho
experimentally. This is due to the development of nonsta
ard optical techniques, as well as to studies of different a
ficial spatially dispersive solid structures~superlattices, and
layered and confined systems!.9–12 The interest in the prob
lem can also be explained by the continuous attraction of
Pekar problem as a ‘‘guinea pig’’ for critical and~or! self-
critical testing and the approval of new or modified calcu
tional methods that are periodically proposed in mod
crystal optics with spatial dispersion.13 And, last but not
least, the reason behind the undiminished interest in
problem is that in spite of a vast number of works that ha
been published in forty five years, still much controver
remains concerning the correct form of the ABC. Just
same might be said about ALW physics and other proble
of spatially dispersive media as a whole. One can find so
of the most intense arguments on the subject for the last
years in Refs. 14–19.

Thus it is clear that further studies will be essentia
complicated and inconsistent without the elimination of co
tradictions that have accumulated over recent years. On
the controversies that has also arisen due to the presence
boundary is connected to the problem of fitting two a
proaches that are well known in crystal optics with spa
dispersion alternative approaches@based on the concepts o
mechanical excitons~ME’s! and Coulomb excitons~CE’s!,
respectively# to the theoretical formation of the polariton
spectrum in finite media. It is always a danger for expe
mentalists that compare the experimental data to the diffe
theories. This is why the problem is the central focus in su
fundamental monographs as Refs. 4, 5, and 20. In additio
the questions relating to the basis, they contain the conc
results of well-known investigations of the problem in in
nite media~the necessary summary of those researches,
some generalizations, are discussed briefly in the pream
of Sec. II!. At the same time the particular solution of th
problem for bounded media is underlined there, as its
sence leads to essential disagreement in the computatio
identical physical quantities using alternative approache21

The achievement of the necessary agreement is the main
jective of this paper.

A number of attempts using different models of excito
have been made in order to remove contradictions that a
when trying to solve the problem,22 however, they all failed.
Their analysis has led us to the conclusion of the imposs
ity for a solution with a single excitonic transport mechanis
only. One needs to take into consideration several s
mechanisms simultaneously~at least two—one that is com
mon for CE’s and ME’s, and another that makes the disti
tion between them!. In this paper we do that by unifying th
concept of the universal enough (N)-exponential excitonic
model23 and that of Pekar’s ‘‘missing’’ wave.24 Here we con-
fine ourselves to the theoretical aspects of the problem, le
ing the prospects of practical calculations to a later publi
11540
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tion. Nevertheless, the problem studied is not a speciali
aspect of spatial dispersion theory. It concerns practically
excitonlike states irrespective of their specific model a
area of application~genuine electron excitons in a variety o
models: optical phonons, vibrons, plasmons, quanta of po
ized oscillations, etc.!. While the models share many prope
ties, parallel exciton transport mechanisms such as reson
~annihilation! and exchange mechanisms in the case o
Wannier-Mott-Rashba exciton,25–27 or those attached to
short-range~A! and long-range~B! interactions in the case o
a Frenkel-Heller-Marcus exciton,28,29 or optical phonon~vi-
brational exciton!,20 etc. We would remind the reader tha
ME includes only exchangelike mechanisms~A! while the
CE includes both the exchange~A! and resonance~B! mecha-
nisms, which is the peculiarity that makes their dispers
laws and all other characteristics, including the bound
conditions, essentially different.

Since, certainly, the observable quantities must not
pend on different starting points of the calculation, som
subjective sources of the continually appearing inconsis
cies in fitting them must be given. To clear up the situati
let us consider the dipole-allowedF1 exciton states in cubic
crystals ofOh symmetry. Fork50 they are threefold degen
erate in both models. But their behavior atkÞ0, which is
important to account for ALW spatial dispersive effects, d
fers essentially. For ME the degenerate states are split
portionally to (kl)2 and in the general case remain nonpol
ized. In the same situation for CE there arise two transve
bands and a longitudinal one split by a finite quantity\D.
This is the well-known checked experimental effect of t
‘‘longitudinal-transverse’’ splitting of the polariton branche
The above-mentioned controversy arose, in fact, when s
investigators tried to use the usual ABC~1! formulated
initially2 for ME’s in the CE scheme. This might be becau
of the lack of a correct form of ABC’s for the CE that is s
popular and generally acknowledged as Eq.~1! is for ME’s.
It is known that for the particular case when the ‘‘annihil
tion’’ channel of the Coulomb exciton moving prevails ov
‘‘the exchange’’ one, the contradiction may be removed
reformulation of the ABC~1! to the form

Pred~z50!50 ~2!

~the ‘‘second’’ Pekar ABC!, wherePred(r ,t) is the reduced
excitonic polarization defined in detail in Ref. 4@see below,
Eq. ~B7b!#. Another particular case is in Ref. 30. But th
essential restriction of those cases induces one to restric
limits of experimental research or to resort to somewhat v
similar but not proven postulates.31

The questions we hope to solve in the paper presented
as follows.

Does the ABC have the form of Eq.~1! or ~2! or some
other form in the case when both transport channels b
comparative contributions to its energy?

How, in this case, is the agreement of both approache
construction of unique polaritonic states in bounded me
achieved?

As was mentioned above, for all investigations on AL
physics the ABC’s are the source of different difficulties a
2-2



in
ro

of
e

ria
ld
c-
p

ire
e
n
on
ly,
p

ctl

th
al
th
,
a

s

on
p
s
a
is
n

us

p
sa

to
on

so
n

ay
or
ry

m
he
l
te
ith
on
o
in
nd

In
n

sed
-
ec-
a-
n

the
is

he
a-

g
ous
he

re-
fer-

ci-
rgy

xed
f the
lari-
e
the

the
the
via

n-
f

era-
e it
po-
plit-
t

g
pic

THEORY OF POLARITONS IN BOUNDED SPATIALLY . . . PHYSICAL REVIEW B66, 115402 ~2002!
ambiguities. So we should briefly explain our position
connection with the methods taken to solve the above p
lem. We confined ourselves to Pekar’s original idea2 that
correct formulations of ABC’s should not be a product
some phenomenological guesses but must follow uniqu
from the concrete microscopic construction of the mate
~constitutive! Maxwell equations. This position was uphe
in all his further investigations on ALW physics and convin
ingly grounded by comparison with other possible a
proaches to the problem.4 Because of the success the ent
procedure had in fitting ME and CE schemes, its fundam
tals are presented in this paper in the semiclassical versio
polariton theory applied to the nonlocal optics of reflecti
and transmission of light in the vicinity of definite, name
Frenkel exciton polarization, described for the bounded s
tially dispersive media by a universal enough and exa
soluble generalized exponential model.23

Another aspect of the ABC problem is connected to
well-known mathematical fact that if instead of differenti
equations, the equivalent integral ones are considered,
no boundary conditions~BC’s! are required at all. So it is
certainly, with the ideal and material Maxwell equations th
are used as often in differential~local! form as in the integral
~nonlocal! one. Therefore it is not surprising that the la
approach is also under intensive study and developing
crystal optics with spatial dispersion.32–38So in the paper we
present constitutive equations based on exponential excit
models.23,39–41 However, this does not substitute the a
proach based on Maxwell-Pekar BC’s, but serves rather a
addition to it, and all the above described problems rem
but can be reformulated in a slightly different form. This
so because for solving the problem of reflection and tra
mission of waves in a local term one really needs to
some BC, in particular the MFBC added by ABC of ALW
theory. Solving the same problem on the basis of a pro
nonlocal treatment makes the BC approach unneces
However, when constructing nonlocal polarization~or an ap-
propriate Green function! of the bounded media one needs
know the wave functions and the proper boundary conditi
for Schrödinger excitons, which is connected with the sam
problem of choosing the above alternative approaches
starting points. Also, for every concrete realization of a
lution to the polariton problem based on a nonlocal term, o
usually comes to wave matching conditions that may alw
be compared, confronted, and even presented in a f
analogous to BC’s of appropriate locally formulated theo

In this paper we startad hoc from integral constitutive
equations which need no BC’s. However, in order to co
pare the obtained results with the majority of those in ot
papers on ALW physics~theoretical as well as experimenta!
performed on a local term, in Appendix B we reformula
our basic equations in an equivalent differential form w
microscopically formulated ABC’s. The last discussion
the ABC problem17–19 shows that it is also very useful t
‘‘translate’’ each of the integral methods to ABC terms
order to understand which physical situation it correspo
to.

The remainder of this article is organized as follows.
Sec. II the main concepts of CE’s and ME’s are defined a
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the appropriate constitutive equations are formulated ba
on the two-exponential excitonic model. In Sec. III we com
pare and fit the boundary problem solutions obtained, resp
tively, in the ME and CE schemes for polariton state form
tion. We also give the correct form of the light reflectio
index for exciton resonance region in crystals ofC6v sym-
metry. Section IV provides a summary and discussion of
main results. The generalization of the Ewald’s method
presented in Appendix A. In Appendix B the procedure of t
local reformulation of the basic integral constitutive equ
tions is given.

II. BASIC EQUATIONS

The general term ‘‘exciton’’ refers to any nonconductin
state of a crystal that is characterized by one continu
quantum numberk and whose energy is separated from t
ground state by an energy gap.4 This definition contains the
main specificity required for understanding most of the
sults of special dispersion theory, and incorporates the dif
ent quasiparticles listed in the Introduction.

When the field part of the energy, transported by an ex
ton inside the crystal, is of the same order as the ene
transported purely by the electromagnetic wave, the mi
exciton-electromagnetic waves become the real states o
system. The corresponding quasiparticles are called po
tons ~light or photoexcitons! and are usually treated in th
framework of the two alternative approaches, based on
concepts of mechanical and Coulomb5 ~in other
terminology4—mechanical and Schro¨dinger! excitons, re-
spectively.

The difference between ME’s and CE’s ensues from
different treatment of the long-range interaction between
polarized crystal units. This interaction may be described
the macroscopic part of the proper crystal field4 ~the Ewald’s
‘‘erregendes feld’’20!, i.e., by the curl-free nonretarded pote
tial Coulomb field E8, generated by fictitious charges o
macroscopic dielectric polarizationP:

¹3E850, ~3!

¹•E8524p¹•P. ~4!

In the case of the CE scheme the unperturbed energy op
tor contains this part, while in the case of the ME schem
does not. So the basic equation from which the unique
lariton states should be formed depends on the way of s
ting the total crystal HamiltonianĤ into an unperturbed par
Ĥ0 and the part describing the crystal-field interactionĤ int:

Ĥ5H ĤME
0 1ĤME

int ~E! for ME,

ĤCE
0 1ĤCE

int ~Epr! for CE,

~5a!

~5b!

whereEpr is the intensity of the smooth part of the perturbin
field, connected with the intensity of the total macrosco
electric field in the mediaE by the relation

E5Epr1E8. ~6!
2-3
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As a consequence of different splittings of the Ham
tonian~5!, for infinite media the dispersion law of CE’s dif
fers from that of ME’s in the nonanalytic term independe
of the absolute value of the wave vector but dependent o
directions, wheres[k/uku. Thus for nondegenerate excito
bands in uniaxial crystals~which is the situation we analyz
in detail in this paper! with OX as the optic axis~see Fig. 1!
the energies of ME’s and CE’s have, respectively, the follo
ing form:

EME5\v02
\2cos~kl !

Ml 2
.\v081

\2k2

2M
, ~7!

ECE5\v02
\2cos~kl !

Ml 2
1Rsx

2 . ~8!

Here M is the exciton effective mass,v08 is the frequency
corresponding to the edge of the exciton absorption ba
The last term in~8! represents the nonanalytical part of t
CE energy. Note that in other papers the coefficientR in Eq.
~8! is expressed in different but equivalent forms:

R5\D5
\vp

2 f

2v08
52p\v08ast5

4pd2

«0v
, ~9!

wherevp is the plasma frequency,f is the oscillator strength
of the excitonic transition,ast is the contribution of the given
excitation into the static polarizability of the crystal,d is the
unit cell dipole moment,v is the unit cell volume, and«0 is
the background permittivity. The expression~7! for the exci-
tonic dispersion law is well known from Refs. 20, 25, 2
and 28, and many other publications. The expression~8! was
obtained more recently from the analysis of a long-ran
dipole-to-dipole interaction for each model of the excit
like states listed in the Introduction: optical phonons,20 Fren-
kel excitons,29,42classical polarization oscillators,43 Wannier-
Mott excitons,27 plasmons,44 etc. In the most general form i
was obtained on the basis of the polarized macroblo
approach45 in macroscopic theory of excitons46 by taking
into account the background part of the polarizability in R
47. One can also obtain those results for the exciton mode
our paper by passing from inhomogeneous waves to ho
geneous ones in Eqs.~38! and~55!, respectively. In addition,
many papers on this theme may be found among the re
ences in Refs. 4 and 5, as well.

The ALW theory we are interested in here is based ma
on an accounting of the dependence of crystal permittivity
the wave vector via the dependence of exciton energies~7! or
~8! on k. Thus, as a second consequence of the diffe
splitting of the Hamiltonian~5!, it appears that the partia
contribution of polaritonic waves of frequencyv into the
specific crystal polarization is different in differen
approaches.4 For ME it is proportional to the exciton part o
the polarizability tensorâ(v,k), which relates the macro
scopic polarization vector to the total macroscopic field

P5â•E. ~10!
11540
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~here and below we mark the second rank tensors in Ca
sian coordinates with a hat!. In this scheme the correspond
ing material tensor is the ordinary permittivity

«̂5 Î 14pâ. ~11!

whose poles are determined by Eq.~7!.
For CE’s a similar physical quantity is determined by t

excitonic part of the tensorb̂(v,k) that relatesP to the per-
turbing field and has poles determined by Eq.~8!:

P5b̂•Epr . ~12!

Both schemes are used equally often and have their
advantages and disadvantages discussed in detail in Re
and 5. In particular, the advantage of tensorâ in comparison
with b̂ is that its poles are the states of Eq.~7! but not of Eq.
~8!, which correspond to the tensorb̂. Thus, tensorsâ and
~or! the invert tensorâ21, usually used for ALW calculations
in the resonance region, are the analytic functions of
wave vector.5,48 However, some crucial questions cannot
solved without using tensorb̂. In particular, as is concluded
in Ref. 4, ‘‘with the polarization current being express
through the perturbation instead of the total electric field, o
can introduce the spatial dispersion in the crystal polariza
ity in a more simple way and involving fewer unknown p
rameters.’’ Reference 5 also notes that ‘‘since the excito
levels of absorption are located in the vicinity of the Co
lomb exciton frequency, the discussion of the form of t
exciton absorption line is more convenient to perform us
not the mechanical but the Coulomb exciton,’’ i.e., Eq.~8!

and tensorb̂, etc. These and other features of those tens
determine the motivation for the choice of either scheme
different investigators on COSD or, even, by the same on
for solving the concrete problem of polariton physics. Th
also makes the problem of their fitting especially realistic

For the infinite crystal and the homogeneous waves,
relation between those two approaches has been clarified
specific exciton models~using, for example, the Ewald-like
procedures for the separation of the proper crystal m
rofield! and in more general cases~see Refs. 49 and 50–52!,
with the use of polarization operator constructions. All tho
procedures are based, in fact, on the existence of a un
causal relation between tensorsâ(v,k) andb̂(v,k), as well
as between fieldsEpr and E, accordingly, that follows from
the set of Eqs.~3!–~6!,~10!,~12!; see Ref. 51. In Sec. III it is
shown that one of the points in fitting the two approaches
bounded media consists in a transition from homogene
waves to inhomogeneous ones. For the latter case some
eralization of the method of Ref. 51 leads to the followin
relation for infinite media:

â5b̂•F Î 1
4pk•k•b̂

k224pk•b̂•k
G , ~13!

where Î is the unit tensor andk•k is the dyad. By its deri-
vation the vectorEpr is assumed to be nonpolarized~i.e., its
2-4
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curl-free and divergence-free parts are nonzero!. This defines
Eq. ~13! uniquely, and the same is true for the representa
of Epr throughE:

Epr5S Î 2
4p

k2
k•k•â D •E. ~14!

From a microscopic point of view the discrimination b
tween those types of excitons is arbitrary since it mer
corresponds to different splittings of the polariton Ham
tonian and, hence, any observable quantity should not
pend on it. While it is clear for polariton dispersion of th
bulk, consistency problems arise for bounded media in c
nection with the problem of ABC’s, which are necessary
soon as spatial dispersion is involved and may be, in p
ciple, different in different approaches~see Sec. I!.

For the bounded media we are interested in, the prim
problem is to formulate the constitutive equations instead
the algebraic ones for the infinite case. So as not to over
the main results by the routine for crystal optics with spa
dispersion calculations we will restrict ourselves to the c
of semiinfinite media~see Fig. 1, where the sample is locat
in the half-spacez>0, and they50,z50 planes are those o
light incidence and crystal surface, respectively!. For further
concretization of polarization and field configurations let
consider the uniaxial crystal with an isolated nondegene
dipole-allowed exciton state in resonance~i.e., for the case
\v . Eex, whereEex is defined by Eqs.~7! and~8!, corre-
spondingly!. Also let the polarization vectorPex5$Px,0,0%
be directed along theOX crystal optical axis andE lie in the
XZ plane. This situation is realized in practice for the lon
tudinal excitons in crystals withC6v symmetry, illuminated
by a p-polarized electromagnetic wave.4

To construct the appropriate constitutive equations
take advantage of the generalized (M ,N)-exponential exci-
tonic model formulated first in Ref. 23. To make the situati
as clear as possible we pick out the simplest yet suffic
version of that model for Frenkel exciton withM51 ~ignor-
ing mixing of molecular configurations! andN52 ~the two
exciton transport mechanisms approximation!. Let a1 , a2,
anda3 be the main lattice periods alongx, y, andz axes and
the integer vectorl5 l 1a11 l 2a21 l 3a3 describes the position
of the unit cell centers. Since we consider a semi-infin
crystal, the two indicesl 1 and l 2 are changing from2` up
to `, but the third l 3 takes the values 1,2,3, . . . ,̀ . The
ground and perturbed states of thelth unit cell are defined as
c l andf l , respectively. For the chosen crystal symmetry
statef l is nondegenerate and the vector of the dipole m
ment has only thex componentd5$d,0,0%, where d[dx

5^cud̂xuf&Þ0 andd̂ is the operator of the dipole moment o
the unit cell. The wave functions of the entire crystal in t
ground C0 and excitedF l states could be written as th
products of cell wave functions

C05Ŝ)
l8

c l8 , ~15!
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c l8 , ~16!

whereŜ is the operator of the antisymmetrization procedu
and l is the integer lattice vector and the number of the e
cited cell at the same time. According to Eq.~5b!, the Hamil-
tonian and the dipole moment of the system ‘‘crystal1 per-
turbing electromagnetic field’’ have the form

Ĥ5ĤCE
0 1ĤCE

int , ~17!

ĤCE
int 52( d̂l•Epr~ l,t !, ~18!

P̂~r !5(
l

d̂ld~r2 l!, ~19!

where P̂(r ) is the operator of the specific electric polariz
tion of the medium.

The crystal state, perturbed by the external electrom
netic field may be found in the form

C85C01(
l

bl~ t !F l . ~20!

The averaging of operator~19! on the wave function~20!
determines the crystal specific polarization in the form

Px~ l!5
dbl~ t !

v
, ~21!

wherev is the volume of the unit cell.
In order to find the coefficientsbl , we should substitute

Eq. ~20! into the time-dependent Schro¨dinger equation@with
Eq. ~17! as the Hamiltonian#. Taking into account only the
first order terms and using the Heitler-London approximat
we obtain

2 i\
]bl

]t
1H l,l

0 bl1(
l8Þ l

H l,l8
0 bl85d•Epr~ l,t !, ~22!

whereH l,l8
0 [H l2 l8

0 are the known Frenkel exciton matrix e
ements.

We are interested in the long enough polaritonic wav
with the wave vectors satisfying the inequalityk•a!1. In
this case the interaction of the distant neutral cells can
taken in dipole approximation. Let this interaction term
denoted asH l2 l8

(1) :

H l2 l8
(1)

5d2F 1

u l2 l8u3
23

l x
21 l y

2

u l2 l8u5
G . ~23!

Then ‘‘resonance (lÞ l8) integrals’’ in Eq.~22! can be repre-
sented in the form

H l2 l8
0

5H l2 l8
(1)

1H l2 l8
(2) , ~24!

where H l2 l8
(2) contains the exchange interaction of cells

well as the corrections which are connected with the diff
ence between the real Coulomb interaction and the dip
2-5



p

a

r-
bs

o

ci-
f
a
s

p

e
s
on

t
o

n

q.
m
rs

t,
eld-

the

nd

pa-
.

om-
on-
to

the
the
pa-
he
e to
n,
n
pos-
p-
in

ns

as

nic
iza-
in-

th
ns.

V. N. PISKOVOI, E. F. VENGER, AND YA. M. STRELNIKER PHYSICAL REVIEW B66, 115402 ~2002!
to-dipole approximation at small distances. Whenu l2 l8u is
larger than several lattice constants, thenH l2 l8

(2) becomes neg-
ligible. Therefore this term can be represented in the ex
nential form

H l2 l8
(2)

5g\e2Gu l2 l8u. ~25!

The translation symmetry alongx2 and y-axes allows to
seek the solution of Eq. ~22! in the form bl
5b( l z ,t)exp(ikxlx) ~as we assumed before,ky50). In this
case the short-range interaction in Eq.~22! may be trans-
formed in a manner of Ref. 14 and the dipole-to-dipole p
of the cell interaction takes the form~A1! of Appendix A.
Substituting Eqs.~21!, ~24!, ~25! and Eq.~A1! into Eq. ~22!
and eliminating the common forPx and Epr factor
exp(2ivt1ikxx) one obtains the set of equations for pola
ization oscillators located in the chain of crystalline sla
which in continuous approximation takes the form of a~1,2!-
exponential excitonic model equation in the classification
Ref. 23:

~v02v!PCE,x~z!

2GA

v0

c E
a

`

expF2GA

v_0

c
uz2z8uGPCE,x~z8!dz8

2GB

v0

c E
a

`

expF2GB

v0

c
uz2z8uGPCE,x~z8!dz8

5FEpr,x~z!, ~26!

wherev0[H1,1/\ is the resonance frequency of the ex
tonic transition andF5«0R/4p\ is the coupling constant o
the field-crystal interaction connected, directly, with the p
rameterR ~9! that determines the interaction of the dipole
The parametera in Eq. ~26! takes two values,2` and 0, for
nonbounded and semi-infinite crystals, respectively;Gi and
G i are the coefficients of the intensity and the spatial dam
ing rate, respectively, corresponding to thei th oscillators in-
teraction mechanism. These model coefficients may be
pressed through the real crystal parameters for all kind
excitons. In the case of the Frenkel exciton they corresp
to the above parameters of the short-(A) and long-(B) range
cell interactions, while in the case of the Wannier-Mo
excitons—to the exchange and annihilation transp
mechanisms,27 etc. In particular, ifGA@1 then it may be
connected with the excitonic effective mass

M5
\GA

3

4GA
S v0

c D 2

. ~27!

In this case the exponential excitonic transport channel tra
forms into the nearest-neighbor~NN! one with the excitonic
energy given by Eq.~7!, see Ref. 23. In accordance with E
~A1! we take for theB channel the parameters that confor
the dipole-to-dipole interaction of the polarization oscillato

GB5nx , GB522pFnx . ~28!
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In Eq. ~26! both A- and B-types of interactions are presen
hence it describes the case of CE’s. Therefore, in the fi
crystal interaction namely, the fieldEpr arises.

To pass from the CE scheme to the ME one, we use
results in Appendix A, where the macrofield,E8 for a semi-
infinite macropolarized crystal is given. By realizing this a
using the relation~6! we come to the following constitutive
equation:

~v02v!PME,x~z!2GA

v0

c E
a

`

3expS 2GA

v0

c
uz2z8u D PME,x~z8!dz85FEx~z!. ~29!

This equation corresponds to the usual and well-known s
tial dispersion~1,1!-exp model, in the terminology of Ref
23.

Both constitutive equations—~26! and ~29!—are integral
ones and do not need any boundary conditions. But to c
pare the results of this paper with those based on local c
stitutive equations we reformulate them in Appendix B
differential ones together with ABC.

III. FITTING OF THE BOUNDARY PROBLEMS
FOR THE POLARITONS FORMED ON THE BASE

OF THE MECHANICAL AND COULOMB EXCITONS

For semi-infinite media the light reflection coefficientr is
one of the experimentally verified optical characteristics,
theoretical treatment of which is based on the solution of
set of self-consistent field-polarization equations. In this
per we take it as the main quantity to be fitted in both of t
above calculation schemes. If those equations allow on
stay in the framework of the plane-wave approximatio
then, as is well known,r may be expressed via the refractio
indexes. For the excitonic models chosen above such a
sibility is proved below and forms the basement of the a
propriate extinction theorem. In such a case, as well as
classical birefringence optics, the ideal Maxwell equatio
are reduced to

E14pP5~n2Î 2n•n!•E, ~30!

plus the usual MFBC. Here it is assumed that

$E,P%;expS i
v

c
n•r2vt D , ~31!

wheren5ck/v is the refraction vector~RV! governed by the
Fresnel dispersion relation and by the crystal boundary
well.

In accordance with Sec. II we use exponential excito
models as constitutive ones, according to which the polar
tion oscillators are placed at the lattice sites, where they
teract locally with the electromagnetic field and wi
each other through the exponentially decaying interactio
If we represent the fields and polarization in the form
2-6
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Px~r ,t !5Px~z!expS i
v

c
nxx2 ivt D , ~32!

Epr,x~r ,t !5Epr,x~z!expS i
v

c
nxx2 ivt D , ~33!

wherenx5sinu is the same for all wavesx-RV component,
determined by the Snell law, andu is the light incidence
angle, then the equation for thex component of the macro
scopic polarizationPx(z) can be written in the form~29! for
ME’s and ~26! for CE’s, respectively.

Below we present the corresponding evaluations of
main optical characteristics separately for ME’s~Sec. III A!
and for CE’s~Sec. III B!. Then we compare and fit them i
Sec. III C.

A. ME scheme

As was just said, the material equation corresponding
the ME scheme has the form of Eq.~29!. The basic refer-
ences on its treatment are contained in Ref. 23, so we d
here in a brief form. It is a nonhomogeneous Fredholm eq
tion with a Hermitian and quasi-degenerate kernel. In g
eral, it does not require any additional conditions~AC’s!,
except the finiteness of the electric field and polarizati
The necessity of some AC’s arises from the specific meth
used for its solution, chosen~according to conventional con
siderations of the light propagating through the vacuu
crystal interfaces! in the form of the finite superposition o
the partial excitonic polarizationsPex

( j )(r ,t) and fields
E( j )(r ,t), related to thej th light wave, namely,

Pex~r ,t !5(
j 51

J

Pex
( j )~r ,t !, ~34!

E~r ,t !5(
j 51

J

E( j )~r ,t !, ~35!

where the sums go over an unspecified~for the moment!
number of transmitted modes.

There are a lot of mathematical methods for treating
integral equations, but the simplest and more convenien
comparison with the other ways is to do it directly by see
11540
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ing the solution in the form~31!–~35! and equating expres
sions corresponding to the samez-dependent phase factors
its left and right sides. So we have

PME,x5ae,xx~v,n!Ex , ~36!

ae,xx5
F

vME~n!2v
, ~37!

vME~n!5v0812
GA

GA

nz
2

GA
21nz

2
, ~38!

v08[v022
GA

GA
, ~39!

where vME can be associated with the energy of the m
chanical excitonEME[\vME , and where the AC’s on the
partial polarization takes the form

(
j 51

J PME,x
( j )

GA1 inz j
50 ~40!

@compare it with the appropriate ABC~B3!, arising in the
corresponding approach to the problem based on a diffe
tial constitutive equation#. In Eq. ~40! the total numberJ of
the waves and the corresponding values of thez-RV compo-
nentnz j are determined by the dispersion equation

detuun2Î 2n•n2 «̂uu50, ~41!

following from the substitution~10!,~36! into ~30!. Tensor«̂
is determined by Eq.~11!, where

â5

x

y

z

x y z

S a0i1ae,xx 0 0

0 a0' 0

0 0 a0'

D . ~42!

Here â0 is the background part of polarizability, so that«̂0

5 Î 14pâ0 is the appropriate tensor of the background p
mittivity.

For thep-polarized waves Eq.~41! gives J52 different
RV’s ~in contrary to usual birefringence theory withJ51):
nz(1,2)
2 5

1

2~12m/GA
2 !
H m1 «̄0S 11

b2m

GA
2 D 6AFm1 «̄0S 11

b2m

GA
2 D G 2

14«̄0~b2m!S 12
m

GA
2 D J , ~43!
where

m5
v2v08

v08
•

2Mc2

\v0
, ~44!
b5DS 2Mc2

\v0
2 D , ~45!

«̄05«0iS 12
sin2u

«0'
D . ~46!
2-7
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We also have one AC similar to Eq.~40! which relates the
electrical field of the main~normal! light wave to the addi-
tional ~anomalous! one. Along with the MFBC it allows one
to evaluate the reflection coefficient in the ME scheme in
usual way for ALW-theory:4

r ME5UER

E0
U2

5Un02np

n01np
U2

, ~47!

n05
1

cosu S 12
sin2u

«0'
D , ~48!

np5
nz1nz21 «̄01 i ~ «̄0/GA!~nz11nz2!

nz11nz21 i ~1/GA!~nz1nz21 «̄0!
~49!

@these formulas correspond to Eqs.~3.28!–~3.29! of Ref. 23#.
HereE0 andER denote the amplitudes of the electric field
the incident and reflected waves, respectively,n0 is the same
as in usual birefringence theory~in a spectral region of an
isolated nondegenerate and nonspatially dispersive excit
resonance!, np is an effective refraction index53 for a given
configuration. As we mentioned above, in the case w
GA@1, the exponential model transforms into a NN one a
the relations~38! and ~40! reduce to the usual forms for th
excitonic energy~7! @with the effective mass~27!# and of
Pekar’s ABC~1!, namely,

PME,x~z50!5(
j 51

2

PME,x
( j ) ~z50!50. ~50!

B. CE scheme

As follows from Sec. II in this schemePCE is governed by
Eq. ~26! with GB ,GB determined by Eq.~28! and b̂050 in
Eq. ~10! ~as mixing of the molecular configurations is ig
nored!. In the manner of Sec. III A we search for a comm
solution of the set of the ideal equations~30! and the material
equations~26! in the form~31!–~35! for each possible wave
As the perturbed field in our problem is a purely transve
one we can use a simpler correlation betweenEpr andE than
is given by Eq.~14!, namely,

Epr5S Î 2
k•k

k2 D •E. ~51!

The substitution of Eq.~51! into Eq. ~12! introduces a new
material tensorê instead of«̂ ~11! ~the so-called ‘‘transverse
dielectric constant,’’ see Refs. 2 and 5!:

ê5 Î 14pb̂S Î 2
k•k

k2 D . ~52!

~Note that in contrast to«̂, the latter tensor is neither sym
metric nor Hermitian.! As a result we obtain the following
set of equations in the CE scheme, that substitutes the s
equations~36!–~42! of the ME scheme:

PCE,x5be,xx~v,n!Epr,x , ~53!
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be,xx5
F

vCE~n!2v
, ~54!

vCE~n!5vME~n!2
2GBGB

GB
21nz

2
, ~55!

detuun2Î 2n•n2 êuu50, ~56!

5 (
j 51

J PCE,x
( j )

GA1 inz j
50,

(
j 51

J PCE,x
( j )

GB1 inz j
50,

~57a!

~57b!

where

ê5

x

y

z

x y z

S 114pbe,xx

nz
2

nx
21nz

2
0 24pbe,xx

nxnz

nx
21nz

2

0 1 0

0 0 1

D .

~58!

@It would be recalled that accordingly with Sec. III A th
usual Pekar’s ABC~B4! should be used instead of Eq.~57a!
if GA@1#. The value~55! may be interpreted as the energy
the Coulomb excitonECE5\vCE @see Eqs.~8! with ~55!
written for homogeneous waves#. The simultaneous presenc
of two AC’s in the CE scheme agrees with the possibility
reduce the integral~26! to a fourth-order differential equation
~B5! and two ABC’s~B7! in addition. The total numberJ of
the possible waves and the corresponding valuesnz j are de-
termined from the solution of the dispersion equation~56!
which can be written in the form

n41n2~12Trê !1detê50. ~59!

Substituting Eq. ~58! into Eq. ~59! we obtain for the
p-polarized waves the following bicubic equation

n2511
4pnz

2

n2
be,xx , ~60!

the solution of which gives three different values ofnz
2 .

Similar to the case of ME’s~Sec. III A! we calculate the
reflection coefficientr CE for the case of CE’s using the usu
MFBC and AC ~57!. Omitting the details of rather clums
evaluations we give the final result

r CE5UER

E0
U2

5Ucosu2np8

cosu1np8
U2

, ~61!

where the effective index of refractionnp8 is determined by
the combination of three RV’s, which correspond to thr
roots of Eq.~60! with positive projection of their real part
on thez axis of Fig. 1:
2-8
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np85

)
j 51

3

nz j1cos2u(
j 51

3

nz j

(
i . j

3

nzinz j1cos2u

. ~62!

@Compare Eqs.~61!,~62! with Eqs. ~3.28!,~3.33!–~3.35! of
Ref. 23 for the parameters taken here#.

Thus we see that the process of light reflection from
same sample can be described in different ways@see Eqs.
~47! and ~61!# with different numbers of transmitting wave
@see Eqs.~49! and ~62!#. In Ref. 22 only the CE scheme fo
treating the boundary problem for a Frenkel exciton in
semi-infinite crystal was used. For the homogeneous wa
used there it was possible to perform only in two extre
cases, which lead to ABC’s ofA type ~1! @see Eq.~B4!# and
essentially different ABC’s ofB type ~2! @see Eq.~B7b!#,
respectively. The first one corresponds to the case where
second term in Eq.~8! is much larger than the third on
(\2/Ml 2@R, i.e., the exciton energy band width is larg
than its longitudinal-transverse splitting!, and the second on
appears in the opposite case.30 In the general case, as follow
from Ref. 22, the conditions~A! and~B! proved to be mutu-
ally excluding. This constitutes the main point of the AL
contradiction referred to in the Introduction.

C. Fitting the results

The detailed analyses of previous papers on this the
showed that fitting of the two solutions, discussed above
the bounded media, has not been performed up to now~ex-
cept some particular cases marked above! for the following
reasons.

~1! In the case of homogeneous waves, considered in
majority of papers on ALW theory~including Ref. 22!, the
third term in formula~8! was assumed to be independent
n ~i.e., of k). There remains a singlen-dependent factor
common for CE’s@see Eq.~8!# and ME’s @see Eq.~7!# and
determined by the effective excitonic massM. In this case,
Eq. ~56!, as well as Eq.~41!, gives a single additional wave
which cannot simultaneously satisfy two AC equations~57a!
and ~57b! @ or ABC’s ~B7a! and ~B7b!, respectively#.

~2! In the other group of papers the inhomogeneous wa
are considered but only a single excitonic transport mec
nism is taken into account.

In contrast to this we take into account both the abo
factors simultaneously in order to solve the problem~for a
preliminary discussion see Refs. 4 and 31, 54–56, in a
tion!. In our approach~based from the very beginning on th
consideration of inhomogeneous waves withnx fixed by
Snell law! the second term in~55! depends onnz . For given
vCE it determines the additional branch of CE’s~in compari-
son with ME!. This, as was shown in Sec. III B, allows on
to satisfy the increased number of ABC’s in the CE sche
@specifically two, see Eq.~57!#, instead of a single one in th
ME scheme@see Eq.~40!#.

However, some contradictions still remain, because d
ing the calculations of the corresponding reflection coe
cientsr ME ~47! and r CE ~61! a different total number of the
11540
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waves appears: two waves in the ME scheme but three w
in the CE scheme. This fact was already mentioned in R
54, where Eq.~61! was expected to give the more preci
result. In the present paper we show that both express
~for r ME and r CE) lead to the same results in the case o
semi-infinite crystal. To do this we have to use the solutio
~43! in the case of ME’s and those following from Eq.~60! in
the case of CE’s. At the same time we should use the s
approximations for the results of Secs. III A and III B, that
to put «̄05cos2u in Eqs.~43!–~49!. Then the polarizabilities
~54! and~37! satisfy the fundamental relations~13!, which is
the first check point on the way to agreement of both
proaches to the unique polariton crystal states. In such a
the reflection coefficientr ME in the ME scheme@see Eqs.
~47!–~49!# can be written as

r ME5r 1r 2 , ~63!

r i5Ucosu2nzi

cosu1nzi
U2

. ~64!

Similarly, for the case of the CE scheme, the reflect
index r CE can be represented as a product of the appropr
partial coefficients. From Eqs.~61!,~62! it follows that

r CE5r 1r 2r 3 , ~65!

wherer i has the form~64! with nz,i as the roots of Eq.~60!.
It is easy to see, that in above approximation the RV
marked as ‘‘1’’ and ‘‘2’’ in Eqs. ~63! and ~65! coincide and
have the form of Eq.~43!. At the same time for the extra roo
of the dispersion equation~60! @in comparison with Eq.~41!#
the partial coefficientr 3 in Eq. ~65! is equal to unity, so the
two reflection indicesr CE andr ME coincide on a whole. The
wave, corresponding to the above extra root in the
scheme is called a ‘‘missing’’ one in Ref. 24.57 As has been
shown above, in reflection and transmission problems
wave allows us to fit the CE and ME approaches for boun
media playing the buffer~coordinative! role.

IV. SUMMARY

Some aspects of the identity of the boundary probl
solutions for the two known and widely used schemes
polariton state formation, namely, for ME and CE ones,
analyzed in the framework of ALW physics. Here we ha
taken the first steps to~i! based on the investigations know
from infinite media postulate that to avoid blunders o
should use the ME scheme and ABC’s such as Pekar’s
~ii ! to formulate a system of adequate boundary conditi
on partial excitonic polarization for theoretics and expe
mentalists that stay in the framework of the CE concept. I
done on the basis of the exponential excitonic model gen
alized for the case of the coexistence of several~say N)
different exciton transport mechanisms. For CE’s there
ways exists one connected with the dipole-to-dipole inter
tion of the physically infinitely small areas of the polarize
medium. The transition from the CE to ME scheme cor
sponds formally@~i! position# to the substitution into the
crystal-light interaction operator of the transverse compon
2-9
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~i.e., curl part! of the electromagnetic field for the total fiel
with the simultaneous elimination of the mechanism abo
from the part of the CE unperturbed transport equation. T
studies performed in this way result in the following conc
sions.

~1! In the case of the unbounded media both approac
give the equal numberN21 of the homogeneous addition
electromagnetic waves for fixed polarization.4,5

~2! For bounded crystals the number of additional wav
should precisely coincide with the total number of ABC
and vice versa. However, since the transition from CE’s
ME’s is accompanied by a decrease of one of the number
the possible channels of exciton movement in the crystal,
number of ABC’s is equal toN21 for ME’s and toN for
CE’s @compare the single Eq.~40! with the system of Eqs
~57!#.

The incompatibility of the results defined in the abo
statements~1! and ~2! is known as the ‘‘first Pekar
paradox.’’22 For the distinct case ofN52 the concrete de
scription of the paradox is given by point~1! of Sec. III C. It
leads to the necessity of additional~in comparison with the
unbounded media! proof of the equivalence of those tw
approaches. It turned out to work well by the transition fro
homogeneous plane waves to the inhomogeneous ones
the latter case the number of the ALW for CE’s is larger
one than for ME and therefore coincides with the cor
sponding number of ABC’s. We prove that this extra ro
gives the possibility to fit the CE and ME scheme in pol
iton theory for bounded media. Such is the objective asp
of the problem.

The subjective appreciation of the solved problem is c
nected with our hope that this paper will help a lot of inve
tigators, using those different calculation schemes, giv
possible ways and means for agreement of their results
research limits.30 Here we give~as an example! the self-
consistent expression for the reflection light index in the
cinity of exciton resonance, corresponding to nondegene
states in crystals ofC6v symmetry ~this is a case popula
enough in ALW experimental investigations53!.

In addition we should note that in this problem the ‘‘se
ond Pekar paradox’’ also exists’’ attached to the case ofe0
Þ1, see Refs. 4 and 21. It cannot be solved in the framew
of the generalizedN-exp model used here, but demands
detailed study in the framework of the (M ,N)-exp model,
introduced in Ref. 23, that takes into accountM excitonic
states~with M>2) in addition toN possible excitonic trans
port canals~with N>2), which is the effect of the mixing o
molecular configurations. The detailed discussion of this w
be published elsewhere.
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APPENDIX A

If one seeks the solution of Eq.~22! in the form bl
5b( l z ,t)exp(ikxlx), then the dipole-to-dipole part of the ce
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interaction, given by Eq.~23!, takes the form

(
l8Þ l

H l2 l8
(1) bl85d2 (

l z8Þ l z

b~ l z8 ,t ! (
l x8 ,l y8

F 1

u l2 l8u3
23

l x
21 l y

2

u l2 l8u5
Geikxl x8

52p
d2

v
kxaz (

l z8Þ l z

e2kxu l z2 l z8ub~ l z8 ,t !eikxl x. ~A1!

In Eq. ~A1! we evaluate the lattice sums~in thex,y plane! in
continuous approximation using the following formulas

I n/2[E E eikxxdxdy

@x21y21~z2z8!2#n/2

5E
0

` rdr

@r21~z2z8!2#n/2E2p

p

eikxr cosudu

52pE
0

` rJ0~kxr!dr

@r21~z2z8!2#n/2

52p
kx

n/221uz2z8u12n/2

2n/221G~n/2!
K12n/2~kxuz2z8u!, ~A2!

where J0 and Kn are the Bessel and McDonald function
respectively.58 The exact summation of Eq.~A1! is presented
in Ref. 23.

To separate the part corresponding to macroscopic fi
E8 from Eq.~A1! we should use Eqs.~3!,~4! for semi-infinite
macropolarized media with density of space charger(r ),
given by relation r(r )52¹@Q(z)P(r )#. Putting E8
52¹w8, for the above polarization situation we have

¹2w8524pr54p ikxQ~z!Px~z!eikxx. ~A3!

The solution of Eq.~A3! gives the following form for
macrofieldE85$Ex8 ,0,Ez8%,where Ex8 is the component we
are interested in, is

Ex8522pkxE
0

`

e2kxuz82zuPc~z8!dz8. ~A4!

APPENDIX B

For the reasons outlined in the Introduction we pres
here the constitutive equations of Sec. II as the appropr
differential equations with the determined set of ABC’s.

1. ME scheme

In the case of only one interaction parameterG ~one-
exponential model! it reduces to a second-order differenti
equation which can be obtained by the sequenced diffe
tiation of Eq.~29!
2-10
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F ]2

]z2
2S GA

v0

c D 2G @~v02v!PME,x2FEx#

12GAGAS v0

c D 2

PME,x50. ~B1!

Since the use of the differential operator increases the o
of the equation, the solutions obtained by this way could
linearly dependent. Because the differential equation~B1! is
valid not only fora52` in Eq. ~29! but also fora50, its
solution should be fulfilled by some additional condition
These conditions may be as follows: Eq.~29! has to be sat-
isfied identically for the arbitrary value of thez coordinate
~in particular forz50), or the same should be true for itsz
derivatives~or their partial combinations41!, etc. But the sim-
plest form of ABC is formulated originally in Ref. 23, whic
results from setting the complement of the truncated~i.e.,
with a50) Eq. ~29! to the non-truncated one~i.e., with a
52`) to zero:

E
2`

0

expS GA

v0

c
zD PME,x~z!dz50. ~B2!

We should underline that being nominally different
form accounts, partially, for the differences given in the
troduction. All of the above boundary conditions give,
course, the same final results for observable quantities.
the solutions of Sec. III A, Eq.~B2! takes the form of AC
~40!, namely,

(
j 51

J PME,x
( j ) ~0!

GA1 inz j
50. ~B3!

In the case whenGA@1 the exponential model transform
into a NN one and ABC~B2! reduces to the usual Pekar
ABC ~1! at the boundary:
s

o
e-
o

els

or

d

11540
er
e

.

-

or

PME,x~z50!50. ~B4!

2. CE scheme

The constitutive Eq.~26! for CE scheme can also be re
duced by sequenced differentiation and elimination of in
gral forms to a differential equation of fourth order:

F ]2

]z2
2S GA

v0

c D 2GF ]2

]z2
2S GB

v0

c D 2G3$~v02v!PCE,x

2FEpr,x%12GBGBS v0

c D 2F ]2

]z2
2S GA

v0

c D 2GPCE,x

12GAGAS v0

c D 2F ]2

]z2
2S GB

v0

c D 2GPCE,x50. ~B5!

Since Eq.~B5! is valid for a52` as well as fora50 in Eq.
~26! then in the last case its solution should be fulfilled und
some additional conditions. For their formulation we use
results of Ref. 23 for theN-exp excitonic model. This lead
us to the set of ABC’s of Eq.~B2! type:

E
2`

0

expS G i

v0

c
zD PCE,x~z!dz50, for i 5A,B. ~B6!

It is easily seen that for the solutions of Sec. III B that AB
~B6! take the form of Eq.~57!, namely,

5 (
j 51

J PCE,x
( j ) ~0!

GA1 inz j
50,

Pred,x~0!5(
j 51

J PCE,x
( j ) ~0!

GB1 inz j
50,

~B7a!

~B7b!

wherePred(r ,t) with GB5nx is the vector of reduced polar
ization defined in Ref. 4 and figured in Eq.~2!.
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