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Electronic transmission through a set of metallic clusters randomly attached
to an adsorbed nanowire: Localization-delocalization transition

V. Pouthier and C. Girardet
Laboratoire de Physique Mole´culaire, UMR CNRS 6624, Faculte´ des Sciences–La Bouloie, Universite´ de Franche-Comte´,

25030 Besanc¸on Cedex, France
~Received 16 May 2002; published 26 September 2002!

The electron transmission through a monatomic nanowire containingN attached quasiperiodically distrib-
uted nanoclusters is studied within the ballistic model. A decimation procedure is performed to renormalize the
self-energy of the nanowire sites connected to the clusters and to transform the nanodevice into an effective
disordered one-dimensional chain. The transmittance is determined using the transfer matrix formalism. It
allows us to express each elementary reflection/transmission process per cluster in terms of a single parameter
which accounts for the self-energy renormalization. It is shown that cluster antiresonances are responsible for
the occurrence of a localization-delocalization transition which discriminates between insulating and conduct-
ing regimes for the electron transport. These results are interpreted in a general way on the basis of the scaling
theory which involves the random phase approximation to characterize the behavior of the probability distri-
bution connected to the transmittance. However, the scaling theory fails for particular values of the electron
energy leading to singularities in the average transmittance called tips and dips. These singularities are related
to the reminiscence of quantum interferences which the disorder is not sufficient to break.

DOI: 10.1103/PhysRevB.66.115322 PACS number~s!: 71.23.2k, 71.30.1h, 73.23.Ad, 73.63.Nm
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I. INTRODUCTION

The development of powerful microprocessors depe
on continued progress in miniaturizing their componen
The industry now manufactures devices with feature si
below 180 nm, and, if current trends continue,1 conventional
silicon chips should reach their physical limits around 20
Therefore, one of the challenges of technology is to find
alternative to silicon chips in order to control the electr
transport at the nanometer or subnanometer scale.

At this length scale, the propagation of the electrons
said to be ballistic since their mean free path is much lar
than the size of the device. As a result, scattering due to b
impurities and phonons can be neglected and the trans
which must be treated quantum mechanically, can be
scribed in terms of the transmission matrix formalism ba
on the Landauer-Buttiker theory.2–4 Note that it has been
shown recently that dissipation in small atomic wires c
occur through phonon emission.5 However, such a proces
takes place above a threshold voltage and will be negle
in the present work. The wave nature of the electron is
sponsible for the occurrence of quantum interferences, wh
were first observed for electron transport on mesosco
length scales~see, for instance, Ref. 6!. New phenomena
connected to quantum interferences were discovered suc
the weak localization, the universal conductance fluctuatio
and the Aharonov-Bohm oscillations. The quantization of
conductance was observed in a nanowire obtained by d
ing a metal constriction between the tip of a scanning t
neling microscope~STM! and a metal surface.7,8

In this context, well-controlled surfaces of solids are ide
templates for the formation of low-dimensional nanostru
tures with defined geometries.9–11 The formation of two-
dimensional monolayers on a perfect surface has n
reached a high standard of understanding12 and it is known
0163-1829/2002/66~11!/115322~13!/$20.00 66 1153
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that self-organized defects at the surface can be used to
pare nanodevices such as one-dimensional wires and
fined two-dimensional structures.13–15 Local probes such as
STM, serve as acute tools to build nanostructures16–20 and
they can be used to excite the electronic and vibrational
grees of freedom of admolecules.21

Step decoration on vicinal surfaces can be exploited
obtain single high quality atomic chains and nanogratin
depending on the growth scenario~namely, by changing tem
perature, deposition conditions, and terrace widths!.14,22 For
the system Ag adsorbed on the vicinal Pt~997! surface~ter-
race width about 20 Å!, it has been shown that, atT
.200 K, for a flux deposition about 1024 atoms per second
and a coverage around 0.2 ML, compact nanoscopic Ag c
ters are quasiperiodically distributed along the Ag mo
atomic wires formed at the step bottoms.23 These observa-
tions have motivated a theoretical study24 to investigate the
electronic transmission through a single rectangular clu
attached to an adsorbed nanowire. The cluster plays the
of a cavity for the electronic wave function leading to th
occurrence of resonances and antiresonances, dependin
the cluster size and shape. In particular, it has been dem
strated that a linear cluster can be used to switch the e
tronic current in the nanowire. The influence of a period
distribution of linear clusters was recently investigated
Vasseuret al.25 From the analysis of the electronic ban
structure, they showed that the band gaps can be opened
the Fermi energy as a result of both the periodic arrangem
and the resonances induced by the clusters.

The present paper is devoted to a more general, and p
ably more physical, situation for which a set of linear clu
ters are quasiperiodically attached along the nanowire.
thus address the fundamental question of the influence o
disorder on the electronic transmission. The electronic tra
port properties in random lattices can be traced back to
seminal paper of Anderson26 where the localization of quan
©2002 The American Physical Society22-1
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B66, 115322 ~2002!
tum states was first discussed. The so-called Anderson lo
ization has been a central topic of intense researches du
the last four decades~see, for instance, Ref. 27!. By local-
ization, it is meant that disorder, depending on the latt
dimensionality, can trap electrons by quantum interferenc
a finite region such that the conductor behaves as an ins
tor. In one-dimensional~1D! lattices, the original Anderson
model was based on a single-band tight binding Hamilton
for which the site energies were supposed to be random
independent. As a consequence, all the electronic st
turned out to be localized, even if the disorder was infi
tesimally small. However, it has been recently discove
that 1D lattices can support both discrete and continu
extended states when the disorder exhibits spa
correlations.28–33

In such 1D disordered lattices, the electronic transm
tance~conductance! is a random variable which depends in
complicated manner on the disorder realization. Due to
herent interferences in the electron scattering from the s
disorder, the transmission coefficient is not a self-averag
quantity. As a result, the statistical fluctuations of the tra
mittance grow faster than the average value, thus viola
the central limit theorem. This apparently ill-posed proble
was first solved by Andersonet al.34 who introduced a gen
eral scaling theory to characterize the behavior of the pr
ability distribution of the transmittance versus the latti
size. During the two later decades, the scaling theory of
lattice was developed in great details35–39 and the full prob-
ability distribution of the transmittance was shown to obe
log-normal law which the typical value decreases expon
tially with respect to the lattice size~for a recent review, see
for instance, Refs. 40, 41!.

The paper is organized as follows. In Sec. II, we descr
first the model and define the Hamiltonian used to charac
ize the electron transport. A decimation procedure allows
to renormalize the influence of the clusters and to desc
the system as a strictly one-dimensional disordered latt
The transfer matrix formalism is then used to reach the
mal expression of the electronic transmittance. The num
cal results are presented in Sec. III for a set ofN identical
linear clusters quasiperiodically arranged along the na
wire. Section IV is devoted to the interpretation of the ele
tron transmittance with particular emphasis on the meta
insulating transition and on the influence of quantu
interferences depending on the disorder realization.

II. THEORETICAL BACKGROUND

A. Model and Hamiltonian

Let us consider a set of metal atoms adsorbed on a ter
of a well-defined stepped surface within the growth con
tions described in the Introduction@Fig. 1~a!#. Due to the
singularity of the potential interaction, the adatoms a
trapped in the preferential step sites and they form a perfe
ordered 1D lattice parallel to the step. The position of
atoms in the chain is described by a single indexn and a
denotes the lattice parameter@Fig. 1~b!#. Additional adatoms
form a set ofN clusters randomly attached to the nanowi
In this paper, we assume that the clusters have a simple
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ear shape. This assumption appears to be relevant fro
qualitative point of view, since it is the simplest approach
discuss the influence of the cluster size and distribution
the electronic propagation along the nanowire. The disor
in the nanostructure is therefore due to both the quasiper
icity of the distribution and the random size of these cluste
To describe the quasiperiodic distribution, let us defineL as
the average distance between two nearest neighbor clus
It represents the distance associated to a periodic distr
tion, for which the clusters are located at their equilibriu
positionsxj

05 jL , where j 51,...,N. The quasiperiodicity is
taken into account by assuming that the positionsxj exhibit
random fluctuations around their equilibrium values, name
xj5xj

01d ja, where$d j% denotes a set ofN independent dis-
crete random variables@Fig. 1~b!#. The randomness of the
cluster size is taken into account by introducing a set oN
random independent variables$Wj%, whereWj represents the
random number of atoms in thej th cluster.

A model based on a single-electron scattering problem
used to study the quantum transport of electrons through
this nanostructure. A single-band tight binding Hamiltoni
describes the electron dynamics. The relevant parameter
the orbital energy and the hopping constant. When the at
belonging to the nanowire are different from the atoms of
clusters, the nanowire and the clusters are characterize

FIG. 1. ~a! Schematic view of a monatomic nanowire formed
metal atoms~dark circles! decorating the step of a surface and co
taining a set of linear clusters of the same atomic species.~b! Sche-
matic representation of the decimation procedure.xj defines the
position of the j th linear cluster and the arrows characterize t
incident, the reflected and the transmitted electronic Bloch wa
through the nanodevice.
2-2
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ELECTRONIC TRANSMISSION THROUGH A SET OF . . . PHYSICAL REVIEW B 66, 115322 ~2002!
different sets of parameters. LetE0 andJ denote the orbital
energy and the hopping constant between nearest neig
sites, in the nanowire, respectively. In the same way, e
cluster will be characterized by an orbital energyEc and a
hopping constantJc , and, finally,J8 will be connected to the
hopping constant between the first atom of thej th cluster and
the nj th atom of the nanowire (nj5xj /a). The resulting
Hamiltonian is thus written as

H5(
a

Eaua&^au1 (
^a,b&

Ja,bua&^bu, ~1!

where^a,b& stands for a sum over the nearest neighbor s
only and Ja,b is equal toJ, Jc , and J8 depending on the
nature ofa andb ~nanowire, clusters or mixed sites!.

B. Clusters decimation procedure

To calculate the transmission coefficient of the electron
the nanowire through the attached clusters, we solve
Schrodinger equation related to the HamiltonianH and seek
wave functions in terms of Bloch waves that obey scatter
boundary conditions as

Cn5H A0
1eiqna1A0

2e2 iqna, na.x1 ,

AN
1eiqna1AN

2e2 iqna, na.xN .
~2!

In the region of the metallic nanowire located before t
clusters (na,x1), the wave function is a superimposition o
incident and reflected Bloch waves with wave vectorsq and
amplitudesA0

1 andA0
2 , respectively. The corresponding e

ergy Eq is equal to the eigenenergy of the chainEq5E0
12J cos(qa). In the part of the metallic nanowire locate
after the set of clusters (na.xN), the electron wave function
is represented by a transmitted Bloch wave with amplitu
AN

1 and wave vectorq, which propagates freely far apa
from the clusters. This wave is also characterized by
energyEq of the ideal chain. Note that, in order to generali
the notation, a backward Bloch wave with amplitudeAN

2 is
also introduced.

The relation connecting the different amplitudes is o
tained by solving the Schro¨dinger equationHuC&5EuC& for
a given valueE5Eq of the energy. As detailed in Ref. 24
this equation can be expressed in an improved form by u
a decimation procedure which allows us to eliminate the p
jected Schrodinger equations connected to the clusters a
locally renormalize the dynamical parameters describing
electron propagation. When it is applied to thej th cluster, the
renormalization is responsible for the occurrence of a cor
tion D j (E) of the self-energy at the site where thej th cluster
is linked to the nanowire, as

D j~E!5J82
PWj 21~E2Ec!

PWj
~E2Ec!

. ~3!

In Eq. ~3!, PW(X) represents the characteristic polynom
connected to the tight binding Hamiltonian of a cluster co
taining W sites. The polynomials of degrees 0 and 1 a
11532
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defined asP0(X)51 and P1(X)5X, respectively, and the
entire series can be generated by using the recursive rela

Pm11~X!5XPm~X!2Jc
2Pm21~X!. ~4!

As shown in Ref. 24, the self-energy correctionD j (E)
strongly depends on the incident energy. Indeed, it tend
infinity when the incident energy is equal to one of t
eigenenergies of thej th cluster containingWj atoms @i.e.,
PWj

(E2Ec)50]. Such a feature, called resonance, leads
zero transmission. By contrast, antiresonances occur w
the incident energy is equal to one of the eigenenergies
finite size chain formed by the lastWj21 atoms belonging
to the j th cluster@i.e., PWj 21(E2Ec)50]. In that case, the

propagation along the nanowire through thej th cluster is not
modified since the self-energy correction vanishes. Fina
by applying the decimation procedure to the set ofN clusters,
the scattering problem reduces to the transmission of an e
tronic wave function through an effective 1D disordered l
tice containingN point defects characterized by self-ener
correctionsD j @Fig. 1~b!#.

C. Transfer matrix formalism

The determination of the electronic transmittan
throughout this one-dimensional disordered lattice can
achieved by using the transfer matrix formalism. Within th
formalism, the amplitudesA0

6 andAN
6 of the wave function

in the regions free of defects are connected via the tran
matrix M (N), as

S AN
1

AN
2D 5M ~N!S A0

1

A0
2D , ~5!

where the transfer matrixM (N) is defined as

M ~N!5S 1/t* ~N! r̄ ~N!/ t̄ ~N!

2r ~N!/ t̄ ~N! 1/t̄ ~N!
D . ~6!

In Eq. ~6!, t(N),r (N) and t̄ (N), r̄ (N) stand for the left-to-
right and right-to-left transmission and reflection coefficien
of the N clusters, respectively, andt* is the conjugate com-
plex of t. These coefficients satisfy the well-known relatio
ut(N)u21ur (N)u25u t̄ (N)u21u r̄ (N)u251 which ensures the
conservation of the probability current.

In our situation, theN clusters connect two identical me
dia, i.e., the left- and right-hand side parts of the nanow
As a result, the determinant of the transfer matrix is equa
one, leading to the relationt(N)5 t̄ (N). From the funda-
mental property of the transfer matrix method, i.e., the m
tiplicative composition rule,M (N) is expressed as a produ
of N elementary transfer matricesM j connected to the dif-
ferent clusters as

M ~N!5MNMN21¯M2M1 . ~7!

Since the connections between the clusters and the nano
correspond to the sitesj 51,...,N, the interactions responsibl
for the scattering are coincident with the cluster positio
along the wire, and the electronic wave function betwe
2-3
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B66, 115322 ~2002!
two clusters is a superimposition of progressive and reg
sive plane waves. Consequently, the elementary transfer
trix M j at the j th defect site can be straightforwardly dete
mined as

M j5
1

t j
S h j r̄ j

2r j 1 D , ~8!

where the elementary reflection and transmission coeffici
are expressed as

r j5
im j

12 im j
e2iqxj ,

r̄ j5
im j

12 im j
e22iqxj ,

t j5
1

12 im j
,

h j5
t j

t j*
5

11 im j

12 im j
. ~9!

As shown in Eq.~9!, these coefficients are characterized b
single parameterm j (E)5D j (E)/2J sin(qa), which accounts
for the energy dependence of the self-energy correction
addition, a phase occurs in the elementary reflection co
cients which obeys to the symmetry of the scattering proc
(62iqxj according to the wave propagation is from left
right or from right to left!.

Note that a direct calculation of the reflection and tra
mission coefficientsr (N) and t(N) for the set ofN clusters
can be done by using the composition law@Eq. ~7!#. These
coefficients are expressed in terms of the elementary co
cientstN , r N and r̄ N as

t~N!5
tNt~N21!

12r Nr̄ ~N21!
,

r̄ ~N!5
r̄ N1hNr̄ ~N21!

12r Nr̄ ~N21!
,

r ~N!5
r ~N21!1h~N21!r N

12r Nr̄ ~N21!
~10!

with h(N)5t(N)/t(N)* .
At this step, the electronic transmittanceT(N)5ut(N)u2

through theN clusters can be computed using either E
~6!–~9! or Eq. ~10!. This transmittance is a random variab
which depends on the realization of the disorder in two d
ferent ways. First, as shown in Eq.~9!, the quasiperiodic
nature of the cluster distribution leads to a random phas
the elementary reflection coefficients through the exponen
term. Note that it does not modify the elementary transm
sion coefficient. Second, both the elementary reflection
transmission coefficients depend on the random nature o
cluster size through their dependence with respect to them j
parameters. In the present paper, we shall disregard this
ond effect and focus our attention on the first one, nam
11532
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the influence of the quasiperiodicity of the cluster distrib
tion, only. Thus we shall assume that each cluster cont
exactly the same numberW of atoms and is characterized b
the same parameterm(E). The randomness in the cluste
sizes will be studied in a forthcoming paper.

III. NUMERICAL RESULTS

The transmittanceT(N) through theN clusters is studied
according to the disorder realization on the cluster distri
tion. The energyE of the incident Bloch wave is restricted t
the allowed band of the chain, namely,E022uJu<E<E0
12uJu. Note that to reduce the number of parameters,
assume that the self-energies and hopping constants ar
same everywhere, i.e.,Ec5E0 and Jc5J85J. Such an as-
sumption, although not strictly verified due to potential d
tortions in the neighborhood of steps and at the nanow
cluster connections, should be quite valid when the nanow
and the clusters are formed by the same adspecies. In
reverse situation~i.e., when the chain and the clusters a
constituted by different metallic species! new phenomena
could occur, as studied in a forthcoming paper. The s
energy E0 will be used as the origin of the energy (E0
50), and the hopping constantJ will be fixed equal to21.
To describe the quasiperiodicity of the cluster distribution
assume that each random variabled j can take the values 0
61 with the same probabilityp51/3. Such a choice qualita
tively agrees with both the experimental14 and theoretical22,23

results where it has been shown that the position of the c
ters exhibits weak fluctuations around the periodic confi
ration.

The transmittance for a periodic and a quasiperiodic
tice is compared in Fig. 2 for different values of the numb
N of clusters when their size and their average distance
equal toW52 andL55a, respectively. The full line repre
sents the transmittance for the periodic configurat
whereas the empty circles characterize the average valu
the transmittance over the random fluctuations of the clu
positions. By increasing the number of clusters, a band st
ture emerges for the periodic lattice~full line!, which de-
pends on both the cluster size and the intercluster distan25

Quasiperfect bands are obtained whenN550. By contrast,
the average transmittance for the quasi-periodic lat
~empty circles! decreases strongly as the number of clust
increases excepted at the center of the energy band wh
single band remains around the antiresonance. This ban
symmetric and the average transmittance is equal to on
the antiresonance, whatever the number of clusters. Its w
strongly depends on the numberN and it decreases asN
increases. This behavior can be compared with the trans
tance through a single cluster, which does not depend on
position of this cluster and exhibits a single wide antires
nance at the center of the energy band with two shoulde24

The dependence of the previous features with respec
the number of atoms belonging to the clusters is illustrated
Fig. 3. WhenW53 instead of 2, the transmittance throug
the perfectly periodic cluster lattice~full line! displays a
band structure with, however, a reverse behavior since
center of the band corresponds to a forbidden band~reso-
2-4
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ELECTRONIC TRANSMISSION THROUGH A SET OF . . . PHYSICAL REVIEW B 66, 115322 ~2002!
nance! instead of an allowed band~antiresonance!. Such a
result is consistent with the conditions imposed byD(E)
according toW is even or odd. The average transmittance
the quasiperiodic lattice~empty circles! decreases whenN
increases. It is mainly characterized by two broad bands c
tered around the antiresonances and symmetrically loc
around the band center. As in the previous situation, the
bands narrow asN increases without appreciably changin
their position. The average transmittance is equal to on
the antiresonances. Note that the profile of the bands is ra
asymmetric, in marked contrast with the previous situati
It can be compared with the behavior of the transmitta
through a single cluster which exhibits two antiresonan
located at the energiesE5E06J.24

In Figs. 4, the average@full line in Fig. 4~a!# and standard
deviation @full line in Fig. 4~b!# of the transmittance are
shown when the cluster size, the average distance betw
nearest neighbor clusters and the cluster number are equ
W52, L510a, andN570, respectively. The average tran
mittance shows a symmetric, single band located at the a
resonance (E50). Although the curve varies in a quasico
tinuous way with respect to the energy, it exhibits two ti
which are symmetrically located on both sides of the a
resonance, and which occur for discrete values of the en
equal toEtip5E060.28J. These tips characterize a local in
crease of the average transmittance for a given value of
electron energy. The values of the energy at which these
occur do not depend on the numberN of clusters, but they
are shifted when the average distanceL between the cluster
is changed. More precisely, the tip energy moves away fr

FIG. 2. Transmittance for a periodic and a quasiperiodic lat
when the cluster size and the average distance between cluste
equal toW52 andL55, respectively, for different values of th
cluster numberN. The full line represents the transmittance for t
periodic configuration whereas the empty circles characterizes
average transmittance.
11532
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the antiresonance maximum asL decreases. The standa
deviation is very small around the maximum of the transm
tance, but it increases in a dramatic way to become la
than the average value when the energy shifts away from
antiresonance. As a result, it exhibits two symmetrically
cated maxima.

Another configuration is shown in Fig. 5 whenW52, L
516a, and N530, i.e., by increasing the intercluster di
tanceL and decreasing the numberN of clusters. Both the
average transmittance@full line in Fig. 5~a!# and the standard
deviation@full line in Fig. 5~b!# exhibit a similar behavior as
in the previous configuration. However, in marked contr
with the previous case, the average transmittance shows
tips at the energiesEtip5E060.18J andEtip8 5E060.53J and
two dips, corresponding to a local decrease of the aver
transmittance, at the energiesEdip5E060.36J.

The behavior of the probability distribution of the tran
mittance is shown in Fig. 6 when the cluster size, the av
aged distance between nearest neighbor clusters and the
ter number are equal toW52, L510, andN570, respec-
tively ~see Fig. 4!. The various figures represent the probab
ity distribution for distinct values of the incident energy, i.e
for different values of the average transmittance. The sh
of this probability distribution evolves continuously with re
spect to the incident energy and it appears to be a slo
varying function of the transmittance excepted when a ‘‘ti
or a ‘‘dip’’ region is reached. We see that when the avera

e
are

he
FIG. 3. Transmittance for a periodic and a quasiperiodic latt

when the cluster size and the average distance between cluste
equal toW53 andL55, respectively, for different values of th
cluster numberN. The full line represents the transmittance for t
periodic configuration whereas the empty circles characterizes
average transmittance.
2-5
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B66, 115322 ~2002!
transmittance is close to 1, i.e., when the incident energ
the electron is close to the anti-resonance, the probab
distribution behaves as an exponential law which reac
its maximum for T51.0 @Fig. 6~a!#. As the energy shifts
away from the antiresonance@Figs. 6~b! and 6~c!#, the distri-
bution loses its local character and reaches a quasiunif
shape for^T&50.5 with only a small dip atT50. As the
average transmittance goes slightly below 0.5, the proba
ity distribution displays a fully different behavior since
tends to a log-normal distribution which becomes maxim
for T50 @Figs. 6~f! and 6~g!#. For an average transmittanc
equal to^T&50.45 @Fig. 6~e!#, which corresponds to the oc
currence of a tip, the behavior is totally different since t
distribution exhibits a set of exponential decaying profil
This distribution seems to condensate around discrete va
which are more and more concentrated when the trans
tance values become closer and closer to zero. Similar re
would be obtained~not shown! for values ofW, L, and N
corresponding to Fig. 5, with the occurrence of singular d
tribution profiles at each tip and dip of the transmittan
curve.

FIG. 4. ~a! Average value of the transmittance~full curve! when
W52, L510, andN570. The empty circles represent the theor
ical curve obtained by using the scaling theory@see Eq.~15! in Sec.
IV B #. ~b! Standard deviation of the transmittance~full curve! when
W52, L510, andN570. The empty circles represent the theor
ical curves@see Eq.~15! in Sec. IV B#.
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IV. INTERPRETATION AND DISCUSSION

A. Localization-delocalization transition. Singularity
of the localization length

The present numerical results appear to be in marked c
trast with the well-known Anderson problem, for which n
transition should occur in a one-dimensional lattice. Inde
they point out that a one-dimensional nanowire contain
randomly distributed clusters exhibits a localizatio
delocalization transition which depends on the incident
ergy of the electron propagating through the quasiperio
cluster distribution. Such a transition occurs when the in
dent energy of the electron coincides with the antiresonan
of a cluster. At these antiresonances, the self-energy cor
tion D(E) vanishes. When all the clusters are identical~same
shape and size! their self-energy correction is the same, a
the electron propagates freely. The transmittance is t
strictly equal to one whatever the number and the position
these clusters. Note that a similar effect was previously p
dicted by Denbigh and Rivier42 in a slightly different system.
Indeed, the authors have shown that the Schro¨dinger equa-
tion connected to a Kronig-Penney potential with identic
rectangular barriers randomly spaced exhibits an infinite
of extended eigenstates.

-

-

FIG. 5. ~a! Average value of the transmittance~full curve! when
W52, L516, andN530. The empty circles represent the theor
ical curve obtained by using the scaling theory@see Eq.~15! in Sec.
IV B #. ~b! Standard deviation of the transmittance~full curve! when
W52, L510 andN570. The empty circles represent the theore
cal curve@see Eq.~15! in Sec. IV B#.
2-6
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ELECTRONIC TRANSMISSION THROUGH A SET OF . . . PHYSICAL REVIEW B 66, 115322 ~2002!
The relevant parameter characterizing the transition is
localization lengthj. To determine its expression, we tak
advantage of the fact that, in the close neighborhood of
antiresonance, the elementary reflection coefficients are
small and the composition law for the transmission coe
cients @Eq. ~10!# reduces to a strictly multiplicative law
Since the randomness of the cluster locations does
modify the elementary transmission coefficients, it

FIG. 6. Probability distribution of the transmittance whenW
52, L510, andN570 for different values of the incident energy o
electron ~i.e., for different values of the average transmittanc!.
Both theX andY axis are the same for the different graphs.
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straightforward to show that the transmittance behaves
T(N)'exp(2Nm2). The localization length is thus defined a

j~E!5
2L

m2 5
8LJ2 sin2~qa!

D~E!2 . ~11!

When the energy approaches an anti-resonance, the se
ergy correctionD(E) tends to zero leading to a dramat
increase of the localization length, which diverges at the
tiresonance. As shown in Ref. 24, the self-energy correc
behaves asD(E);E2EA when the energyE is close to an
antiresonance with energyEA . As a consequence, the loca
ization length exhibits a power law dependence with resp
to the energy, i.e.,j(E);uE2EAu2n in which the divergence
is controlled by the critical exponentn52. Equation~11!
is equivalent to the expression of the localization leng
occurring in the one-dimensional Anderson problem with
the weak disorder limit. For a complete comparison w
the Anderson problem, note that the self-energy correc
plays the role of the standard deviation of the one-site r
dom energies and that the cluster antiresonances corres
to the situation for which the fluctuations of the one-s
energies vanish. Note that, strictly speaking, the localiz
or extended nature of the electronic state is an intrinsic pr
erty of an infinite one-dimensional lattice. However, as
will be shown in the following section, a state will be de
noted localized~or extended! when the corresponding loca
ization length is smaller~or greater! than the size of the
nanowire.

B. Random phase approximation and scaling theory

The occurrence of a localization-delocalization transiti
allows us to distinguish between two different regimes
the electronic transport. Such a transition, which does
occur for a strictly one-dimensional disordered lattice, h
nevertheless been observed in quasi-one-dimensional w
and interpreted within the framework of the scalin
theory.34–41Within this theory, the probability distribution o
the transmittance approaches a universal function which
pends only on a limited number of parameters character
of the system. It can be determined by taking advantage
the formal resemblance between the random evolution of
transmittanceT(N) versus the numberN of clusters and the
time evolution of a stochastic variableX(t), N playing the
role of the timet. In fact, such a procedure can be straig
forwardly exploited by using the resistancer(N)5@1
2T(N)#/T(N) instead of the transmittanceT(N), as the rel-
evant variable. In this context, the evolution of the probab
ity distributionP(r,N) is given by a Fokker-Planck equatio
expressed as

]P~r,t!

]t
5

]

]r F ~r1r2!
]P~r,t!

]r G , ~12!

wheret5Nm(E)252NL/j(E). To obtain this equation, it is
assumed that the cumulative phase of the reflexion co
cient r (N) behaves as a random variable uniformly distr
uted between 0 and 2p, and the random phase approximatio
is applied. Two limit cases can be considered depending
2-7
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B66, 115322 ~2002!
the typical value of the resistance. For small values of
resistance (r2!r), the transmittance is close to one and t
solution of Eq.~12! yields an exponential distribution ex
pressed as

P~r,t!5
1

t
expS 2

r

t D . ~13!

For large values of the resistance (r2@r), the transmittance
is close to zero and the solution of Eq.~12! has the form of
a log-normal distribution:

P~r,t!5
1

rA4pt
expS 2

@ ln~r!2t#2

4t D . ~14!

These results perfectly agree with the observed behavio
the probability distribution of the transmittance drawn in F
6. They show that the electronic transport along the nanow
with randomly attached clusters evolves according to t
distinct scaling regimes in a way similar to the quasi on
dimensional wire, depending on the ratioNL/j between the
lattice size NL and the localization lengthj(E). When
NL/j!1, the regime is said to be metallic~or delocalized!
and the average transmittance decreases linearly with the
NL, according to the laŵT(N)&5122NL/j(E). The fluc-
tuations of the transmittance around its average value rem
small and the average value is physically relevant. By c
trast whenNL/j@1, the fluctuations become greater than t
average transmittance. The typical transmittance exhibits
exponential decrease versusNL asTt(N)5exp(22NL/j) and
the regime is said to be insulating~or localized!.

Approximate expressions for the average transmitta
^T(N)& and its second moment^T(N)2& can be determined
self-consistently~see Appendix A!. They are given as

^T~N!a&5S 2e2NL/j

32e24NL/jD a2/3

e22aNL/j ~15!

with a51, 2. In Figs. 4~a! and 5~a!, the empty circles rep-
resent the behavior of the theoretical average transmitta
obtained by using Eq.~15!. In the same way, the empt
circles in Figs. 4~b! and 5~b! characterize the evolution of th
theoretical standard deviation of the transmittances
5A^T2&2^T&2).

These theoretical curves perfectly reproduce the num
cal results in the neighborhood of the antiresonance
which the average transmittance is significant, i.e., in
metallic regime. Equation~15! leads to a linear decrease
both the averaged transmittance and its second mom
^T(N)a&5122aNL/j. In addition, the relative standard de
viation of the transmittance remains weak and scales
dT/^T&'2NL/j, in very good agreement with the scalin
theory. However, an energy shift from the antiresona
maximum leads to a loss of accuracy with numerical d
although the results still remain qualitatively correct. No
in particular, that Eq.~15! shows an exponential decrease
both the average transmittance and its second momen
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^T(N)a&5exp(24NL/3j). In marked contrast with the me
tallic regime, the relative standard deviation increases in
exponential way asdT/^T&'exp(2NL/3j) which accounts
for the large distribution law of the transmittance in the i
sulating regime.

C. Weak disorder limit

Although the scaling theory interprets most of the nume
cal results, it cannot explain the occurrence of the tips a
dips in the average transmittance. The main reason is tha
tips and dips occur at energies for which the random ph
approximation does not apply to build the Fokker-Plan
equation@Eq. ~12!#. To discuss this phenomenon more pr
cisely, let us consider the weak disorder limit to study t
behavior of the transmittance, especially in the neighborh
of an antiresonance. Indeed, tips and dips can a priori oc
everywhere in the average transmittance curve, as show
Figs. 4 and 5. However, interpreting their occurrence in
antiresonance neighborhood is analytically easier and le
to the understanding of the physical phenomena. We t
assume that the self-energy correctionD(E) is a small pa-
rameter and perform a second order perturbative theor
determine the transmittance. From the composition law@Eq.
~10!#, the transmission coefficient is expressed as

t~N!5tNtN21¯t1 expF2 (
i 51

N21

ln@12r i 11r̄ ~ i !#G . ~16!

WhenD(E)!1, the composition law for the right-to-left re
flexion coefficients reduces to an additive law. Therefore,
considering the second order perturbation theory of Eq.~16!
with respect toD(E), the transmission coefficient throughN
identical clusters can be expressed in an improved form

t~N!'t1
N expF (

i 51

N21

(
j 51

i

r i 11r̄ j G . ~17!

At this step, by using Eq.~9!, the transmittance is finally
expressed as

T~N!'exp@2S~N!#, ~18!

where the quantityS(N) is defined as

S~N!5m2U(
j 51

N

e2iqxjU2

. ~19!

From a physical point of view, the quantityS(N) measures
the ~second order! quantum probability to observe the ele
tron in the left-hand side of the nanowire after it has be
scattered by the set ofN clusters. It appears as the squa
modulus of the probability amplitude for the realization
the process and takes into account for the probability for
electron to be scattered by every cluster and for the quan
interferences between two different paths involving the int
action with two distinct clusters.
2-8
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ELECTRONIC TRANSMISSION THROUGH A SET OF . . . PHYSICAL REVIEW B 66, 115322 ~2002!
These interferences play a crucial role to understand
behavior ofT(N). Indeed, when the clusters are periodica
distributed along the nanowire (d j50), the quantum prob-
ability S(N) exhibits a particular behavior when the incide
wave vector is quantized according to the relationq
5mp/2L, wherem denotes an integer. For even values ofm,
the different paths give rise to constructive interferen
leading to a maximum probabilityS(N) equal tom2N2. The
corresponding value of the transmittance is small since
wave vector lies in the forbidden bands induced by the p
odic distribution of the clusters. For odd values ofm, two
paths involving two successive clusters interfere destr
tively leading to a minimum value ofS(N) equal to zero for
evenN values and tom2 for odd N values. Sincem is as-
sumed to be small, the corresponding transmittance in
~18! is maximum whateverN.

When the clusters are quasiperiodically distributed,
quantum probabilityS(N) becomes a random variable whic
strongly depends on the disorder realization in the clu
positions. The behavior of this probability is thus the res
of the influence of the randomness on the quantum inter
ences. Its characterization can be performed by taking ad
tage of its formal resemblance with a two-dimension
Brownian trajectory. Indeed,S(N) can be formally expresse
asS(N)5uX(N)1 iY(N)u2 where the two random variable
X(N) andY(N) are defined as

X~N!5m(
j 51

N

cos~2qxj !,

Y~N!5m(
j 51

N

sin~2qxj !. ~20!

From Eq.~20!, S(N) can be identified with the square mod
lus of the distance performed by a Brownian particle w
coordinatesX(N) andY(N) along a two-dimensional trajec
tory. The numberN plays the role of the time. The evolutio
of S(N) strongly depends on the values of the incident wa
vector and three distinct behaviors appear which corresp
to three different kinds of Brownian motions.

When the wave vector is different frommp/2L, the
Brownian particle describes a continuous and isotropic tw
dimensional trajectory@Fig. 7~a!#. The successive jumps re
alized by the particle are random and independent and
random phase approximation can be applied. The evolu
of the probability distributiong(S,N) is described by the
well-known two-dimensional diffusion equation. Its solutio
is a universal exponential functiong(S,t)5exp(2S/t)/t. As
a result, it is straightforward to show that the probabil
distribution for the transmittance is expressed as

P~T,N!5
j

2NL
Tj/2NL21, ~21!

where j is the localization length defined in Eq.~11!. Al-
though the probability distribution in Eq.~21! is obtained by
assuming that the self-energy correction remains a small
rameter, we can qualitatively interpret the transition betwe
the metallic and insulating regimes. Indeed, this distribut
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shows a power law with respect to the transmittance wh
depends on the sign of the exponentj/2NL21. When the
exponent is positive (2NL,j), the distribution is maximum
when the transmittance is close to one and characterizes
metallic regime. By contrast, when the exponent is nega
(2NL.j), the distribution turns out to be maximum whe
the transmittance is close to zero and it corresponds to
insulating regime. Note that Eq.~21! leads to a crossove
between the two regimes which occurs when^T(N)&50.5.
In this case we obtain a uniform distribution, in very goo
agreement with the numerical results~Fig. 6!.

When the incident wave vector is equal tomp/2L, the
probability distributions of both the quantum probabili
S(N) and the transmittanceT(N) suddenly behave in a dras
tically different way. In that case, the random phase appro
mation is not valid and an exact calculation is required
determine the probability distribution ofS(N). In Appendix
B, it is demonstrated thatS(N) becomes a discrete rando
variable and its possible values depend on the parity of b
m and N. In other words, the continuous trajectory of th
Brownian particle turns out to be discrete since the particl
constrained to move on a two-dimensional lattice. The sh
of the unit cell of this lattice depends on the value of t
wave vectorq. The probability distribution connected t
S(N) is thus defined as~Appendix B!

FIG. 7. Two-dimensional Brownian motion associated to t
evolution of the quantum probabilityS(N). ~a! qÞmp/2L, ~b! q
5mp/2L, with m odd, and~c! q5mp/2L, with m even.
2-9
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g~S,N!5
1

3N11N2 (
r 150

N1

(
s150

N12r 1

(
r 250

N2

(
s250

N22r 2 N1!N2!d@S2S~r 1 ,s1 ,N1 ,r 2 ,s2 ,N2!#

r 1!s1! ~N12r 12s1!! r 2!s2! ~N22r 22s2!!
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where the possible values ofS(N) are expressed as

S~r 1 ,s1 ,N1 ,r 2 ,s2 ,N!/m25$@12cos~mpa/L !#~r 12r 2!

1cos~mpa/L !~N12N2!%2

1$@2~s12s2!1r 12r 22N1

1N2#sin~mpa/L !%2. ~23!

As shown in Appendix B, the values of the integer numb
N1 and N2 depend on bothm and N. The behavior of the
distribution g(S,N) is illustrated in Fig. 8 when the cluste
size, the average distance between nearest neighbor clu
and the cluster number are equal toW52, L516, andN
530, respectively. When the integerm is odd@m515 in Fig.
8~a!#, the corresponding values ofN1 and N2 are N15N2
5N/2 when N is even andN15(N21)/2, N25(N11)/2
when N is odd. The probabilityg(S,N)dS exhibits a set of
exponential decaying bar spectrum distributed according

FIG. 8. Theoretical probability distribution of the quantu
probability S(N) when W52, L516, and N530. ~a! Incident
wave vector q5(L21)p/2L. ~b! Incident wave vectorq5(L
22)p/2L. The insets represent the corresponding numerical res
obtained within the transfer matrix formalism.
11532
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Gaussian envelop. Note that, as shown in the inset, this re
perfectly agrees with the numerical data obtained within
transfer matrix formalism. The most probable value of t
transmittance is localized in the very close neighborhood
the originS50. Therefore, the typical value for the transm
tance is close to 1 which is thus associated to the occurre
of a tip in the average transmittance. The Brownian chara
of the motion of the particle remains but it appears to
slightly anisotropic. In addition, the particle is constrained
move on a two-dimensional lattice which is responsible
the discretization of the possible values of the random v
ableS(N) @Fig. 7~b!#. When the integerm is even@m514 in
Fig. 8~b!#, the corresponding values ofN1 and N2 are N1
5N and N250. As previously obtained, the probabilit
g(S,N)dS exhibits a set of exponential decaying b
spectrum with a Gaussian envelop. The most probable v
of S(N) is approximately equal to St5m2N2@1
12 cos(mpa/L)#2/9. As a result, the typical transmittanc
Tt5exp(2St) is very small and a dip occurs in the avera
transmittance. In other words, a drift motion is added to
random walk performed by the Brownian particle which th
moves far away from its starting position. The distance c
ered by the particle scales asN leading to an increase of th
quantum probability which behaves asN2 @Fig. 7~c!#. Al-
though these results are in qualitative agreement with
numerical data represented in the inset, they point out
limitation of the theory which remains valid in the neighbo
hood of the antiresonance, only. Especially, the theoret
distribution tends to spread out over largerS(N) values than
the numerical one.

This singular behavior of the probability distribution o
S(N) is responsible for the observed features shown in F
4, 5, and 6~e!. Indeed, the discretization of the quantu
probability S(N) when q5mp/2L leads to the discrete be
havior of the random transmittance and thus to the obser
condensation of its probability distribution. In addition, th
previous analysis allows us to evaluate the theoretical e
gies of both the tips and the dips. Indeed, whenW52, L
516, andN530 ~Fig. 5!, the theoretical results lead toEtip

5E060.19J andEtip8 5E060.58J which compare very well
with the numerical resultsEtip5E060.18J and Etip8 5E0

60.53J, respectively~see Sec. IV!. In the same way, the
predicted dip is equal toEdip5E060.36J in good agreemen
with the numerical values equal toEdip5E060.39J. When
W52, L510 and N570, the theoretical tip energies ar
equalEtip5E060.31J, in nice agreement with the numerica
value equal toEtip5E060.28J.

V. CONCLUSION

In this paper, the electronic transmission through a se
metallic linear clusters randomly distributed along an a
sorbed nanowire has been investigated by using a si

lts
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ELECTRONIC TRANSMISSION THROUGH A SET OF . . . PHYSICAL REVIEW B 66, 115322 ~2002!
band tight-binding Hamiltonian. It has been shown that
extended nature of the clusters forming a lattice along
nanowire is responsible for the occurrence of a localizati
delocalization transition when the incident energy of t
electron coincides with the cluster antiresonances. This t
sition, which is similar to the localization-delocalizatio
transition occurring in a quasi-one-dimensional wire, h
been interpreted in terms of the scaling theory. Two differ
regimes are found for the electronic transport depending
the ratio between the localization lengthj and the lattice
size. In the very close neighborhood of an antiresonance
regime is metallic and corresponds to a localization len
greater than the lattice size. In other words,j is larger than
the size of the cluster device along the atomic chain.
contrast, when the energy shifts away from the antire
nance, the electron localization takes place and an insula
regime is established.

We have shown that the scaling theory, based on the
dom phase approximation, fails for particular values of
incident energy. Indeed, tips and dips occur in the curve
the average transmittance vs the energy for discrete value
the energy. In these tip or dip regions, the probability dis
bution of the transmittance exhibits a singular behav
which is interpreted within the weak disorder approximatio
Basically, outside the tip and dip regions, the disordered
ture of the cluster distribution is responsible for the break
of the coherence in the electron propagation. No quan
interference occurs and the transmittance behaves as a
tinuous, random variable distributed according to a unive
function which depends on the number of clusters, only.
contrast, in the tip or dip regions, the disorder is not su
cient to eliminate the influence of the quantum interferen
and the transmittance becomes a discrete, random vari
The tips correspond to a situation for which the typical va
of the quantum probability to observe the electron in
region located before the clusters is minimum while the d
characterize the memory of the forbidden bands and co
spond to a situation for which the typical value of the qua
tum probability is maximum.

To conclude, let us discuss the implications of the pre
ous results in the electronic transport at the nanometer s
As pointed out in Ref. 24, the attachment of reduced s
atomic clusters along a nanowire could open a new way
fabricating nanodevices with specific functionalities, able
mimic the operations realized by integrated circuits~current
switching, transistor effect, logical gates, ...!. The main idea
is to obtain the desired functionalities by controlling t
quantum interferences experienced by the electron w
function. However, the disordered nature of such real n
odevices cannot be disregarded since the disorder can h
dramatic influence on the electronic transport by break
the quantum coherence and, thus, preventing the efficie
of the desired functionalities. Our results show that this is
longer the case when the disorder is responsible for sm
fluctuations of the cluster positions around the periodic d
tribution, only. In that case, the disorder destroys the coh
ence created by the periodicity and the transmittance is
sentially governed by the single cluster antiresonances.
width of the allowed bands can be controlled by chang
11532
e
e
-

n-

s
t
n

he
h

y
-

ng

n-
e
f
of

-
r
.
a-
g
m
on-
al
y
-
s
le.

e
e
s
e-
-

i-
le.
e
r

o

ve
-

e a
g
cy
o
ll
-
r-
s-
he
g

the lattice size since it decreases as the cluster numbN
increases and scales as 1/AN.

Note that the present study has pointed out some sp
ficities of such nanodevices within a model limited to ide
tical, linear clusters attached to a nanowire formed by
same atomic species. Further developments are require
study, on one hand, the influence of the shape and size o
clusters on the electron conductance and, on the other h
the modifications induced when two different metal spec
for the wire and the clusters are considered.

APPENDIX A: EXPRESSION OF ŠTa
‹

From the relation between the resistance and the trans
tance, theath moment ofT(N) can be written as

^T~N!a&5^exp$2a ln@11r~N!#%& ~A1!

Instead of performing a cumulant expansion of the avera
value of the exponential, we introduce a trial functionu(t)
from the following identification:

^Ta&5expF2a^ ln~11r!&1
a2

2
u~t!G . ~A2!

This trial function is determined self-consistently by usi
the Fokker-Planck equation@Eq. ~12!#. Indeed, it is straight-
forward to show that̂ ln(11r)&5t. Moreover, botĥ T& and
^T2& are not independent and satisfy the equation

d^T&
dt

52^T2&. ~A3!

By using Eq.~A3! to determineu(t), we find that it verifies
the first order nonlinear differential equation

1

2

du

dt
1expS 2t1

3

2
uD51. ~A4!

Equation~A4! reduces to a Bernoulli equation which can
exactly solved leading to

u~t!5
2

3
lnS 2et

32e22tD . ~A5!

By inserting Eq.~A5! into Eq. ~A2!, we obtain the resulting
expressions of̂T& and ^T2& in Eq. ~15!.

APPENDIX B: CALCULATION OF THE DISTRIBUTION
OF THE QUANTUM PROBABILITY S„N…

Instead of directly studying the probability distributio
connected toS(N), let us focus on the two-dimensiona
probability distributionh(X,Y). Since the variablesX andY
depend on the set of theN independent random variable
$d j% defined in Sec. II, the functionh(X,Y) can be easily
determined as products of Dirac functions as
2-11



y

n-

a
har-

rd

ob-

V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B66, 115322 ~2002!
h~X,Y!5
1

3N (
d1521

11

¯ (
dN521

11

dS X2m(
j 51

N

cos~2qxj !D
3dS Y2m(

j 51

N

sin~2qxj !D . ~B1!

By Fourier transforming Eq.~B1!, the characteristic function
F(U,V) connected to the distribution functionh(X,Y) is
defined as

F~U,V!5)
j 51

N

^eiUm cos~2qxj !eiVm sin~2qxj !&. ~B2!

When the incident wave vector is equal toq5mp/2L, an
analytical expression of the characteristic functionF(U,V)
can be determined. Indeed, in that case, we have

cos~2qxj !5~21! jmcos~2qad j !,

sin~2qxj !5~21! jmsin~2qad j !. ~B3!

Therefore, three situations occur depending on the parit
bothm andN. For evenm values, (21) jm51 whateverj. As
a result, the characteristic functionF(U,V) factorizes as the
product ofN identical and independent terms as

F~U,V!5)
j 51

N

^eiUm cos~2qad j !eiVm sin~2qad j !&

[^eiUm cos~2qad j !eiVm sin~2qad j !&N. ~B4!

For oddm values, a different factorization occurs which i
volves the parity of the cluster numberN. However, instead
s.

a

s

ar

rn

11532
of

of performing the calculation for the various situations,
general procedure can be performed by expressing the c
acteristic function as

F~U,V!5F~U,V!N1
F~2U,2V!N2

, ~B5!

whereF(U,V)M is defined as

F~U,V!M5^eiUm cos~2qad j !eiVm sin~2qad j !&M. ~B6!

In Eqs.~B5! and ~B6!, the values of the integersN1 andN2
depend on the parity of bothm and N. Indeed, for evenm
values,N15N andN250 and Eqs.~B5! and~B6! reduce to
Eq. ~B4!. By contrast, for oddm values,N15N25N/2 when
N is even andN15(N21)/2, N25(N11)/2 whenN is odd.
By performing the average over the variabled j50, 61 oc-
curring into Eq.~B6! and weighted with the probabilityp
51/3, the functionF(U,V)M is written as

F~U,V!M5(
r 50

M

(
s50

M2r CM
r CM2r

s

3M eiUXreiVYr ,s, ~B7!

whereCN
p is the usual binomial coefficient and

Xr5m@r 1~M2r !cos~2qa!#,

Yr ,s5m~2s1r 2M !sin~2qa!. ~B8!

At this step, by inserting Eq.~B7! into Eq. ~B5! and by
performing an inverse Fourier transform, it is straightforwa
to obtain the required probability distributionh(X,Y) and
then to deduce the distribution of the random quantum pr
ability S(N). The final result is given in Eq.~22!.
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