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Electronic transmission through a set of metallic clusters randomly attached
to an adsorbed nanowire: Localization-delocalization transition
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The electron transmission through a monatomic nanowire contaMiagjached quasiperiodically distrib-
uted nanoclusters is studied within the ballistic model. A decimation procedure is performed to renormalize the
self-energy of the nanowire sites connected to the clusters and to transform the nanodevice into an effective
disordered one-dimensional chain. The transmittance is determined using the transfer matrix formalism. It
allows us to express each elementary reflection/transmission process per cluster in terms of a single parameter
which accounts for the self-energy renormalization. It is shown that cluster antiresonances are responsible for
the occurrence of a localization-delocalization transition which discriminates between insulating and conduct-
ing regimes for the electron transport. These results are interpreted in a general way on the basis of the scaling
theory which involves the random phase approximation to characterize the behavior of the probability distri-
bution connected to the transmittance. However, the scaling theory fails for particular values of the electron
energy leading to singularities in the average transmittance called tips and dips. These singularities are related
to the reminiscence of quantum interferences which the disorder is not sufficient to break.
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[. INTRODUCTION that self-organized defects at the surface can be used to pre-
pare nanodevices such as one-dimensional wires and con-
The development of powerful microprocessors depend§ned two-dimensional structuré$:1® Local probes such as
on continued progress in miniaturizing their componentsSTM, serve as acute tools to build nanostructt¥&$ and
The industry now manufactures devices with feature size§1€y can be used to excite the electronic and vibrational de-
below 180 nm, and, if current trends contifueonventional ~ grees of freedom of admoleculs. _
silicon chips should reach their physical limits around 2012. Step decoration on vicinal surfaces can be exploited to
Therefore, one of the challenges of technology is to find a/PPt&in single high quality atomic chains and nanogratings
alternative to silicon chips in order to control the electrond€Pending on the growth scenatimmely, by changing tem-

transport at the nanometer or subnanometer scale. perature, deposition conditions, and terrace widthé’ For

. . . the system Ag adsorbed on the vicina(9®7) surface(ter-
At this length scale, the propagation of the electrons Isace width about 20 A it has been shown that, &k

said to be ballistic since their mean free path is much IargeF

than the size of the device. As a result, scattering due to botﬁ 200K, for a flux deposition about 10 atoms per §econd
) . nd a coverage around 0.2 ML, compact nanoscopic Ag clus-
impurities and phonons can be neglected and the transpoE

hich t be treated i hanicall be d rs are quasiperiodically distributed along the Ag mon-
which must be treated quantum mechanically, can be Q& qmic \ires formed at the step bottoAisThese observa-
scribed in terms of the transmission matrix formalism base

, 2o . ions have motivated a theoretical stdtlyo investigate the
on the Landauer-Buttiker theofy." Note that it has been gjecironic transmission through a single rectangular cluster

shown recently that dissipation in small atomic wires canattached to an adsorbed nanowire. The cluster plays the role
occur through phonon emissidriiowever, such a process of a cavity for the electronic wave function leading to the
takes place above a threshold voltage and will be neglectegccurrence of resonances and antiresonances, depending on
in the present work. The wave nature of the electron is rethe cluster size and shape. In particular, it has been demon-
sponsible for the occurrence of quantum interferences, whicktrated that a linear cluster can be used to switch the elec-
were first observed for electron transport on mesoscopi@ronic current in the nanowire. The influence of a periodic
length scalegsee, for instance, Ref.)6New phenomena distribution of linear clusters was recently investigated by
connected to quantum interferences were discovered such ®asseuret al?® From the analysis of the electronic band
the weak localization, the universal conductance fluctuationsstructure, they showed that the band gaps can be opened near
and the Aharonov-Bohm oscillations. The quantization of thehe Fermi energy as a result of both the periodic arrangement
conductance was observed in a nanowire obtained by dravand the resonances induced by the clusters.

ing a metal constriction between the tip of a scanning tun- The present paper is devoted to a more general, and prob-
neling microscopéSTM) and a metal surface® ably more physical, situation for which a set of linear clus-

In this context, well-controlled surfaces of solids are idealters are quasiperiodically attached along the nanowire. We
templates for the formation of low-dimensional nanostruc-thus address the fundamental question of the influence of the
tures with defined geometriés'* The formation of two- disorder on the electronic transmission. The electronic trans-
dimensional monolayers on a perfect surface has nowort properties in random lattices can be traced back to the
reached a high standard of understantfirand it is known  seminal paper of Anders8hwhere the localization of quan-
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tum states was first discussed. The so-called Anderson local-
ization has been a central topic of intense researches during
the last four decadesee, for instance, Ref. 27By local- @
ization, it is meant that disorder, depending on the lattice
dimensionality, can trap electrons by quantum interference to
a finite region such that the conductor behaves as an insula-
tor. In one-dimensionallD) lattices, the original Anderson
model was based on a single-band tight binding Hamiltonian
for which the site energies were supposed to be random and
independent. As a consequence, all the electronic states
turned out to be localized, even if the disorder was infini-
tesimally small. However, it has been recently discovered
that 1D lattices can support both discrete and continuum
extended states when the disorder exhibits spatial
correlations?®—33

In such 1D disordered lattices, the electronic transmit-

tance(conductancgis a random variable which depends in a A’&

complicated manner on the disorder realization. Due to co- -—>

herent interferences in the electron scattering from the static ¢ < ! ” < % ¢

disorder, the transmission coefficient is not a self-averaging Ay L 4 8 t H AN

guantity. As a result, the statistical fluctuations of the trans- DECIMATION

mittance grow faster than the average value, thus violating . &

the central limit theorem. This apparently ill-posed problem 0y A A A A Ay Ny

. 34 - 1 2 3 4 N

was first solved by Andersoet al.>* who introduced a gen- 00008000080 - 800

eral scaling theory to characterize the behavior of the prob- (? Xg X2 X3 X4 XN <_E
0 N

ability distribution of the transmittance versus the lattice

size. During the two later decades, the scaling theory of 1D
. . 9 _

latt'.ce V\./as.de\./emped In great Qet5?I§ and the full prob metal atomgdark circle$ decorating the step of a surface and con-

ability distribution O.f the transmlttance was shown to obey ataining a set of linear clusters of the same atomic spetieSche-

ng-nor.mal law which the typlcql value decreases EXPONeN; atic representation of the decimation procedwiedefines the

tially with respect to the lattice sizéor a recent review, see, position of thejth linear cluster and the arrows characterize the

for instance, Refs. 40, 41 _incident, the reflected and the transmitted electronic Bloch waves
The paper is organized as follows. In Sec. I, we descrlbthough the nanodevice.

first the model and define the Hamiltonian used to character-

ize the electron transport. A decimation procedure allows Ugar shape. This assumption appears to be relevant from a
to renormalize the influence of the clusters and to describgualitative point of view, since it is the simplest approach to
the system as a strictly one-dimensional disordered latticejiscuss the influence of the cluster size and distribution on
The transfer matrix formalism is then used to reach the forthe electronic propagation along the nanowire. The disorder
mal expression of the electronic transmittance. The numerin the nanostructure is therefore due to both the quasiperiod-
cal results are presented in Sec. Ill for a sef\ofdentical icity of the distribution and the random size of these clusters.
linear clusters quasiperiodically arranged along the nanofo describe the quasiperiodic distribution, let us definas
wire. Section IV is devoted to the interpretation of the elec-the average distance between two nearest neighbor clusters.
tron transmittance with particular emphasis on the metallicit represents the distance associated to a periodic distribu-
insulating transition and on the influence of quantumtion, for which the clusters are located at their equilibrium

FIG. 1. (a) Schematic view of a monatomic nanowire formed by

interferences depending on the disorder realization. positionsx})=jL, wherej=1,...N. The quasiperiodicity is
taken into account by assuming that the positigpsxhibit
Il. THEORETICAL BACKGROUND random fluctuations around their equilibrium values, namely,

X; =x?+ 8;a, where{d;} denotes a set dfl independent dis-
crete random variablelFig. 1(b)]. The randomness of the
Let us consider a set of metal atoms adsorbed on a terra@tuster size is taken into account by introducing a seNof
of a well-defined stepped surface within the growth condi-random independent variablg#/;}, whereW; represents the
tions described in the IntroductidiFig. 1(a@)]. Due to the random number of atoms in théh cluster.
singularity of the potential interaction, the adatoms are A model based on a single-electron scattering problem is
trapped in the preferential step sites and they form a perfectlysed to study the quantum transport of electrons throughout
ordered 1D lattice parallel to the step. The position of thethis nanostructure. A single-band tight binding Hamiltonian
atoms in the chain is described by a single inde&anda  describes the electron dynamics. The relevant parameters are
denotes the lattice paramef&iig. 1(b)]. Additional adatoms the orbital energy and the hopping constant. When the atoms
form a set ofN clusters randomly attached to the nanowire.belonging to the nanowire are different from the atoms of the
In this paper, we assume that the clusters have a simple lirglusters, the nanowire and the clusters are characterized by

A. Model and Hamiltonian
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different sets of parameters. LEf, andJ denote the orbital ~defined asPy(X)=1 and P,(X)=X, respectively, and the
energy and the hopping constant between nearest neighbgptire series can be generated by using the recursive relation
sites, in the nanowire, respectively. In the same way, each

cluster will be characterizeF()j by azorbital enelgy anga Pins 1(X) = XPry(X) = I5Prm1(X). @
hopping constand., and, finally,J" will be connected to the  As shown in Ref. 24, the self-energy correctidn(E)
hopping constant between the first atom of ttrecluster and  strongly depends on the incident energy. Indeed, it tends to
the n;th atom of the nanowirenj=Xx;/a). The resulting infinity when the incident energy is equal to one of the

Hamiltonian is thus written as eigenenergies of thgth cluster containing/V; atomsfi.e.,
PWJ_(E—EC)=0]. Such a feature, called resonance, leads to
H=S E I J , 1 zero trgnsmission. I_3y contrast, antiresonapces occur when
Z. ala)el <a2,5> asl @)l @) the incident energy is equal to one of the eigenenergies of a

_ _finite size chain formed by the las¥;—1 atoms belonging
where(a,B) sta}nds for a sum over the nearest ne|ghbor sitego the jth cluster]i.e., Py _1(E—E.)=0]. In that case, the
only andJ, g is equal th, Jo, andJ’ dependmg on the propagation along the nénowire through fltle cluster is not
nature ofa and 3 (nanowire, clusters or mixed sites modified since the self-energy correction vanishes. Finally,

by applying the decimation procedure to the seilafiusters,
B. Clusters decimation procedure the scattering problem reduces to the transmission of an elec-
To calculate the transmission coefficient of the electron irffoNic wave function through an effective 1D disordered lat-
the nanowire through the attached clusters, we solve th#C€ containingN point defects characterized by self-energy
Schrodinger equation related to the Hamiltonkrand seek ~Ccorrectionsa; [Fig. 1(b)].
wave functions in terms of Bloch waves that obey scattering

boundary conditions as C. Transfer matrix formalism
. ana . o~ —iana The determination of the electronic transmittance
W Ag €9+ Age "% na>xy, @) throughout this one-dimensional disordered lattice can be
n

achieved by using the transfer matrix formalism. Within this
formalism, the amplituded, andAy, of the wave function

In the region of the metallic nanowire located before thejn the regions free of defects are connected via the transfer
clusters fa<x,), the wave function is a superimposition of matrix M(N), as
incident and reflected Bloch waves with wave vectpEnd

T A€+ Aje I8 na>xy .

amplitudesA; andA, , respectively. The corresponding en- AY VPN Ay 5
ergy E, is equal to the eigenenergy of the chdiy=E, Ayl (N) Ay’ (5
+2Jcos@a). In the part of the metallic nanowire located . . .

after the set of clustersi@>x,), the electron wave function Where the transfer matriki (N) is defined as

is represented by a transmitted Bloch wave with amplitude . —

A}, and wave vectolg, which propagates freely far apart M(N)= U (N) T(N)/t(N) 6)
from the clusters. This wave is also characterized by the —r(N)/t(N) 1 (N) |

energyk, of the ideal chain. Note that, in order to generalize _

the notation, a backward Bloch wave with amplituig is  In Ed. (6), t(N),r(N) and t(N),r(N) stand for the left-to-

also introduced. right and right-to-left transmission and reflection coefficients
The relation connecting the different amplitudes is ob-Of the N clusters, respectively, artd is the conjugate com-

tained by solving the Schdinger equatiomd|¥)=E|W¥) for plex of t. These C(Efﬁcients satisfy the well-known relation

a given valueE=E, of the energy. As detailed in Ref. 24, |t(N)|2+]|r(N)|?=[t(N)|?+[r(N)|?’=1 which ensures the

this equation can be expressed in an improved form by usingonservation of the probability current.

a decimation procedure which allows us to eliminate the pro- In our situation, theN clusters connect two identical me-

jected Schrodinger equations connected to the clusters and tii, i.e., the left- and right-hand side parts of the nanowire.

locally renormalize the dynamical parameters describing thés a result, the determinant of the transfer matrix is equal to

electron propagation. When it is applied to fltie cluster, the  gnpe, leading to the reIatiot(N)zt_(N). From the funda-
renormalization is responsible for the occurrence of a correcmental property of the transfer matrix method, i.e., the mul-
tion Aj(E) of the self-energy at the site where tfth cluster tiplicative composition ruleM (N) is expressed as a product
is linked to the nanowire, as of N elementary transfer matricéd; connected to the dif-
ferent clusters as
Pw,-1(E—E¢)

Aj(E):lem- 3 M(N)=MyMy_1---M,M;. 7)
i c

Since the connections between the clusters and the nanowire
In Eqg. (3), Pw(X) represents the characteristic polynomial correspond to the sitgs=1,...N, the interactions responsible
connected to the tight binding Hamiltonian of a cluster con-for the scattering are coincident with the cluster positions
taining W sites. The polynomials of degrees 0 and 1 arealong the wire, and the electronic wave function between
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two clusters is a superimposition of progressive and regredhe influence of the quasiperiodicity of the cluster distribu-
sive plane waves. Consequently, the elementary transfer méen, only. Thus we shall assume that each cluster contains
trix M; at thejth defect site can be straightforwardly deter- exactly the same numb&V of atoms and is characterized by
mined as the same parametge(E). The randomness in the cluster
L sizes will be studied in a forthcoming paper.
] t] _r]‘ 1)’ ( )

where the elementary reflection and transmission coefficients
are expressed as

IIl. NUMERICAL RESULTS

The transmittancd (N) through theN clusters is studied
according to the disorder realization on the cluster distribu-
i _ tion. The energ of the incident Bloch wave is restricted to
1 oy the allowed band of the chain, namely,— 2|J|<E<E,
1=t +2|J|. Note that to reduce the number of parameters, we
. assume that the self-energies and hopping constants are the
r—j:'Lefziqxj, same everywhere, i.eE.=E, andJ.=J'=J. Such an as-
1-ip; sumption, although not strictly verified due to potential dis-
tortions in the neighborhood of steps and at the nanowire/
1 cluster connections, should be quite valid when the nanowire
and the clusters are formed by the same adspecies. In the
reverse situatior{i.e., when the chain and the clusters are
i 1tiy constituted by different metallic specjesew phenomena
M= 1w 9) could occur, as studied in a forthcoming paper. The self-
! energy Eq will be used as the origin of the energy¥({
As shown in Eq(9), these coefficients are characterized by a=0), and the hopping constadiwill be fixed equal to—1.
single parametep;(E)=A;(E)/2J sin(@a), which accounts To describe the quasiperiodicity of the cluster distribution we
for the energy dependence of the self-energy correction. lassume that each random variablecan take the values 0,
addition, a phase occurs in the elementary reflection coeffi+1 with the same probabilitp=1/3. Such a choice qualita-
cients which obeys to the symmetry of the scattering processvely agrees with both the experimerifsind theoreticaf>
(*+2igx; according to the wave propagation is from left to results where it has been shown that the position of the clus-

I’J-=

right or from right to lefi. ters exhibits weak fluctuations around the periodic configu-
Note that a direct calculation of the reflection and trans—atijon.
mission coefficients (N) andt(N) for the set ofN clusters The transmittance for a periodic and a quasiperiodic lat-

can be done by using the composition |giq. (7)]. These tice is compared in Fig. 2 for different values of the number
coefficients are expressed in terms of the elementary coeffN of clusters when their size and their average distance are

cientsty, ry andry as equal toW=2 andL=5a, respectively. The full line repre-
sents the transmittance for the periodic configuration
t(N) = tnt(N—1) whereas the empty circles characterize the average value of
1-ryr(N=1)" the transmittance over the random fluctuations of the cluster
positions. By increasing the number of clusters, a band struc-
Tyt nr(N—1) ture emerges for the periodic latti¢éull line), which de-
T(N)= 1-ryr(N—1) " pends on both the cluster size and the intercluster distance.
Quasiperfect bands are obtained whes 50. By contrast,
r(N—1)+ n(N=1)ry the average transmittance for the quasi-periodic lattice
r(N)=——7-, TIN=1) (100 (empty circle decreases strongly as the number of clusters
N increases excepted at the center of the energy band where a
with 7(N)=t(N)/t(N)*. single band remains around the antiresonance. This band is

At this step, the electronic transmittan@éN) =|t(N)|>  symmetric and the average transmittance is equal to one at
through theN clusters can be computed using either Eqsthe antiresonance, whatever the number of clusters. Its width
(6)—(9) or Eq.(10). This transmittance is a random variable strongly depends on the numbhklr and it decreases ad
which depends on the realization of the disorder in two dif-increases. This behavior can be compared with the transmit-
ferent ways. First, as shown in E), the quasiperiodic tance through a single cluster, which does not depend on the
nature of the cluster distribution leads to a random phase gfosition of this cluster and exhibits a single wide antireso-
the elementary reflection coefficients through the exponentiatance at the center of the energy band with two shoufders.
term. Note that it does not modify the elementary transmis- The dependence of the previous features with respect to
sion coefficient. Second, both the elementary reflection anthe number of atoms belonging to the clusters is illustrated in
transmission coefficients depend on the random nature of thigig. 3. WhenW=3 instead of 2, the transmittance through
cluster size through their dependence with respect tquthe the perfectly periodic cluster lattic€full line) displays a
parameters. In the present paper, we shall disregard this sdsand structure with, however, a reverse behavior since the
ond effect and focus our attention on the first one, namelygcenter of the band corresponds to a forbidden baedo-
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FIG. 2. Transmittance for a periodic and a quasiperiodic lattice -20 -15 1.0 -05 00 05 10 15 20
when the cluster size and the average distance between clusters are
equal toW=2 andL =5, respectively, for different values of the
cluster numbeNN. The full line represents the transmittance for the

- . . . . FIG. 3. Transmittance for a periodic and a quasiperiodic lattice
periodic configuration whereas the empty circles characterizes the . .
. when the cluster size and the average distance between clusters are
average transmittance.

equal toW=3 andL =5, respectively, for different values of the

nancg instead of an allowed bangantiresonande Such a cluster numbeN. The full line represents the transmittance for the
periodic configuration whereas the empty circles characterizes the

result [s consi_stent with the conditions imposed_zb(/E) average transmittance.
according toW is even or odd. The average transmittance for
the quasiperiodic latticéempty circle$ decreases wheN  the antiresonance maximum ésdecreases. The standard
increases. It is mainly characterized by two broad bands cerdleviation is very small around the maximum of the transmit-
tered around the antiresonances and symmetrically locatdeince, but it increases in a dramatic way to become larger
around the band center. As in the previous situation, the twthan the average value when the energy shifts away from the
bands narrow a#\ increases without appreciably changing antiresonance. As a result, it exhibits two symmetrically lo-
their position. The average transmittance is equal to one atated maxima.
the antiresonances. Note that the profile of the bands is rather Another configuration is shown in Fig. 5 whéi=2, L
asymmetric, in marked contrast with the previous situation=16a, and N=30, i.e., by increasing the intercluster dis-
It can be compared with the behavior of the transmittancéancelL and decreasing the numbhrof clusters. Both the
through a single cluster which exhibits two antiresonanceswerage transmittand¢éull line in Fig. 5(a)] and the standard
located at the energids=E,+J.? deviation[full line in Fig. 5(b)] exhibit a similar behavior as

In Figs. 4, the averagdull line in Fig. 4(a)] and standard in the previous configuration. However, in marked contrast
deviation [full line in Fig. 4(b)] of the transmittance are with the previous case, the average transmittance shows four
shown when the cluster size, the average distance betweips at the energie;;,= Eo+0.18] andE,=E,+0.53) and
nearest neighbor clusters and the cluster number are equaltiwo dips, corresponding to a local decrease of the average
W=2,L=10a, andN=70, respectively. The average trans- transmittance, at the energig,=E,*0.36).
mittance shows a symmetric, single band located at the anti- The behavior of the probability distribution of the trans-
resonanceE=0). Although the curve varies in a quasicon- mittance is shown in Fig. 6 when the cluster size, the aver-
tinuous way with respect to the energy, it exhibits two tipsaged distance between nearest neighbor clusters and the clus-
which are symmetrically located on both sides of the antiter number are equal t&/=2, L=10, andN=70, respec-
resonance, and which occur for discrete values of the energyvely (see Fig. 4. The various figures represent the probabil-
equal toE,=Eq*0.28). These tips characterize a local in- ity distribution for distinct values of the incident energy, i.e.,
crease of the average transmittance for a given value of thier different values of the average transmittance. The shape
electron energy. The values of the energy at which these tipsf this probability distribution evolves continuously with re-
occur do not depend on the numbrof clusters, but they spect to the incident energy and it appears to be a slowly
are shifted when the average distahcketween the clusters varying function of the transmittance excepted when a “tip”
is changed. More precisely, the tip energy moves away fronor a “dip” region is reached. We see that when the average

Rl Nd50
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. FIG. 5. (a) Average value of the transmittan@ell curve) when
FIG. 4. (a) Average value of the transmittanf@ll curve) when
@ 9 de ) W=2, L=16, andN=30. The empty circles represent the theoret-

W=2, L=10, andN=70. The empty circles represent the theoret- . . . .
ical curve obtained by using the scaling thefsge Eq(15) in Sec. ical curve obtained by using the scaling thefsge Eq(15) in Sec.

IV B]. (b) Standard deviation of the transmittan@ell curve) when IVB]. (b) Standard deviation of the tre}nsmittar(d:lmll curve) when .
W=2,L=10, andN=70. The empty circles represent the theoret- =2, L=10 andN= /0. The empty circles represent the theoreti-
ical curves[see Eq(15) in Sec. IV B. cal curve[see Eq(15) in Sec. IV B].

IV. INTERPRETATION AND DISCUSSION

transmittance is close to 1, i.e., when the incident energy of A |ocalization-delocalization transition. Singularity

the electron is close to the anti-resonance, the probability of the localization length

distribution behaves as an exponential law which reaches . .

it . torT—1.0 [Fi As th hift The present numerical results appear to be in marked con-
IS maximum for{=1. [ 9. 6a)]. As the energy SIS trast with the well-known Anderson problem, for which no
away from the antiresonangBigs. Gb) and Gc)], the distri-  ransition should occur in a one-dimensional lattice. Indeed,
bution loses its local character and reaches a quasmmformhey point out that a one-dimensional nanowire containing
shape for(T)=0.5 with only a small dip alf=0. As the randomly distributed clusters exhibits a localization-
average transmittance goes slightly below 0.5, the probabildelocalization transition which depends on the incident en-
ity distribution displays a fully different behavior since it ergy of the electron propagating through the quasiperiodic
tends to a log-normal distribution which becomes maximunrcluster distribution. Such a transition occurs when the inci-
for T=0 [Figs. &f) and &g)]. For an average transmittance dent energy of the electron coincides with the antiresonances

_ : ; f a cluster. At these antiresonances, the self-energy correc-
equal to(T)=0.45[Fig. 6(€)], which corresponds to the oc- © ) ' K .
currence of a tip, the behavior is totally different since thetion A(E) vanishes. When all the clusters are identisaime

distribution exhibits a set of exponential decaying profiles shape and sizaheir self-energy correction is the same, and

s . ‘the electron propagates freely. The transmittance is thus
This distribution seems to condensate around discrete valu%ﬁicﬂy equal to one whatever the number and the position of

which are more and more concentrated when the transmithese clusters. Note that a similar effect was previously pre-
tance values become closer and closer to zero. Similar resulicted by Denbigh and Riviétin a slightly different system.
would be obtainednot shown for values ofW, L, andN |ndeed, the authors have shown that the Sdimger equa-
corresponding to Fig. 5, with the occurrence of singular distion connected to a Kronig-Penney potential with identical
tribution profiles at each tip and dip of the transmittancerectangular barriers randomly spaced exhibits an infinite set
curve. of extended eigenstates.
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LT>=0.89 straightforward to show that the transmittance behaves as
SE-Eg)/J=0.08 T(N)=~exp(—Nu?). The localization length is thus defined as

] @) 2L 8LJ*sir’(qa)

EB)=—

5070 When the energy approaches an anti—re_sonance, the sel_f en-
{E-Egi=0.15 ergy correctionA(E) tends to zero leading to a dramatic
increase of the localization length, which diverges at the an-
i (b) tiresonance. As shown in Ref. 24, the self-energy correction
behaves ad (E)~E—E, when the energ¥ is close to an
’ / antiresonance with enerdy, . As a consequence, the local-
Py ization length _exhibits a power Iaw dep_endence_ with respect
{E-EQi=0.22 to the energy, i.e£(E)~|E—Ea| " in which the divergence
is controlled by the critical exponeni=2. Equation(11)
4 (© is equivalent to the expression of the localization length
occurring in the one-dimensional Anderson problem within
the weak disorder limit. For a complete comparison with
<o the Anderson problem, note that 'ghe_ self-energy correction
(E-E)1d=0.25 plays the role of the standard deviation of the one-site ran-
0 dom energies and that the cluster antiresonances correspond
] (d) to the situation for which the fluctuations of the one-site
energies vanish. Note that, strictly speaking, the localized
or extended nature of the electronic state is an intrinsic prop-
— erty of an infinite one-dimensional lattice. However, as it
F;E_(;}j:o.zs will be shown in the following section, a state will be de-
1 0 noted localizedor extendegiwhen the corresponding local-
ization length is smallefor greater than the size of the
nanowire.

(e)

<T>=0.30 B. Random phase approximation and scaling theory

(E-E)/9=0.30 The occurrence of a localization-delocalization transition

i (f) allows us to distinguish between two different regimes for

the electronic transport. Such a transition, which does not
_(\\ occur for a strictly one-dimensional disordered lattice, has
nevertheless been observed in quasi-one-dimensional wires

<T>=0.19 and interpreted within the framework of the scaling
6 - (E-Eg)J=0.35 theory>*~*!Within this theory, the probability distribution of
the transmittance approaches a universal function which de-
) pends only on a limited number of parameters characteristic
2 of the system. It can be determined by taking advantage of
the formal resemblance between the random evolution of the
transmittancel (N) versus the numbeN of clusters and the
time evolution of a stochastic variab¥(t), N playing the
T role of the timet. In fact, such a procedure can be straight-
forwardly exploited by using the resistance(N)=[1
—T(N)]/T(N) instead of the transmittandgN), as the rel-
evant variable. In this context, the evolution of the probabil-
ity distributionP(p,N) is given by a Fokker-Planck equation
expressed as

P(T,N=70)
'S

FIG. 6. Probability distribution of the transmittance whéh
=2,L=10, andN=70 for different values of the incident energy of
electron (i.e., for different values of the average transmittance
Both theX andY axis are the same for the different graphs.

dP(p,7)
ap

2

localization lengthé. To determine its expression, we take T ar
advantage of the fact that, in the close neighborhood of an

antiresonance, the elementary reflection coefficients are vemyherer=Nu(E)%=2NL/&(E). To obtain this equation, it is
small and the composition law for the transmission coeffi-assumed that the cumulative phase of the reflexion coeffi-
cients [Eg. (10)] reduces to a strictly multiplicative law. cientr(N) behaves as a random variable uniformly distrib-
Since the randomness of the cluster locations does natted between 0 and= and the random phase approximation

modify the elementary transmission coefficients, it isis applied. Two limit cases can be considered depending on

The relevant parameter characterizing the transition is the IP(p,7) 4 [
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the typical value of the resistance. For small values of th€T(N)“)=exp(~4NL/3¢). In marked contrast with the me-

resistance §°<p), the transmittance is close to one and thetallic regime, the relative standard deviation increases in an

solution of Eq.(12) yields an exponential distribution ex- exponential way asST/{T)~exp(NL/3¢) which accounts

pressed as for the large distribution law of the transmittance in the in-
sulating regime.

1 p
P(p,7)= ,—rexl{ - ;) : (13 C. Weak disorder limit

Although the scaling theory interprets most of the numeri-
cal results, it cannot explain the occurrence of the tips and
dips in the average transmittance. The main reason is that the
tips and dips occur at energies for which the random phase
approximation does not apply to build the Fokker-Planck
1 [In(p)— 7]? equation[Eqg. (12)]. To discuss this phenomenon more pre-
p\/4—mexf< - 4—7) (14)  cisely, let us consider the weak disorder limit to study the

behavior of the transmittance, especially in the neighborhood
These results perfectly agree with the observed behavior g

the probability distribution of the transmittance drawn in Fig.

For large values of the resistange?® p), the transmittance
is close to zero and the solution of E42) has the form of
a log-normal distribution:

P(p,7)=

f an antiresonance. Indeed, tips and dips can a priori occur
verywhere in the average transmittance curve, as shown in

Figs. 4 and 5. However, interpreting their occurrence in the

6. They show that the electronic transport along the NaNOWIrG tiresonance neighborhood is analytically easier and leads

W.'th. ra”d‘)"?'y atta_ched _clusters e\(olyes according 10 WQ, e understanding of the physical phenomena. We thus
distinct scaling regimes in a way similar to the quasi one-

. : 4 . . assume that the self-energy correctid(E) is a small pa-
dimensional wire, depending on the rahid/¢ between the :
lattice size NL and the localization lengtte(E). When rameter and perform a second order perturbative theory to

. . . . determine the transmittance. From the composition[lag.
NL/£<1, the regime is said to be metalljor delocalizeg P (Bt

and the average transmittance decreases linearly with the si%leo)]’ the transmission coefficient is expressed as
NL, according to the lawT(N))=1—2NL/£(E). The fluc-
tuations of the transmittance around its average value remain
small and the average value is physically relevant. By con-
trast whenN L/ &> 1, the fluctuations become greater than the
average transmittance. The typical transmittance exhibits awhenA(E)<1, the composition law for the right-to-left re-
exponential decrease vershk asT,(N)=exp(—2NL/§) and  flexion coefficients reduces to an additive law. Therefore, by
the regime is said to be insulatirigr localized. considering the second order perturbation theory of (E6).

Approximate expressions for the average transmittancevith respect taA(E), the transmission coefficient through
(T(N)) and its second momexT (N)?) can be determined identical clusters can be expressed in an improved form as
self-consistently(see Appendix A They are given as

N—-1

t(N):tNthl'“tl exr{ - '21 |n[l—l’i+1ﬂi)]

. (16

N—1 i
TN ( 2e2NL/E | a’l3 — s t(N)%tT exr{; J-E_:l Fieal] ). 17
=\ 3 _—5=aNrrz e ~ &
3—-e

At this step, by using Eq(9), the transmittance is finally

with a=1, 2. In Figs. 4a) and Fa), the empty circles rep- expressed as
resent the behavior of the theoretical average transmittance
obtained by using Eq(15). In the same way, the empty T(N)~exg — S(N)], (18)
circles in Figs. 4b) and 8b) characterize the evolution of the
thecz[ret;caz_r;t?ndard deviation of the transmittanae ( \yhere the quantitg(N) is defined as

These theoretical curves perfectly reproduce the numeri-
cal results in the neighborhood of the antiresonance for S(N) = p2
which the average transmittance is significant, i.e., in the
metallic regime. Equatiol5) leads to a linear decrease of
both the averaged transmittance and its second momerfrom a physical point of view, the quanti§(N) measures
(T(N)*y=1-2aNL/£. In addition, the relative standard de- the (second ordgrquantum probability to observe the elec-
viation of the transmittance remains weak and scales ason in the left-hand side of the nanowire after it has been
STI{T)y~2NL/¢, in very good agreement with the scaling scattered by the set df clusters. It appears as the square
theory. However, an energy shift from the antiresonancenodulus of the probability amplitude for the realization of
maximum leads to a loss of accuracy with numerical datahe process and takes into account for the probability for the
although the results still remain qualitatively correct. Note,electron to be scattered by every cluster and for the quantum
in particular, that Eq(15) shows an exponential decrease of interferences between two different paths involving the inter-
both the average transmittance and its second moment astion with two distinct clusters.

2

N
le e2iax (19)
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These interferences play a crucial role to understand the
behavior of T(N). Indeed, when the clusters are periodically
distributed along the nanowires(=0), the quantum prob-
ability S(N) exhibits a particular behavior when the incident
wave vector is quantized according to the relatign
=ma/2L, wherem denotes an integer. For even valuesmf
the different paths give rise to constructive interferences
leading to a maximum probabilit(N) equal tox>N?. The
corresponding value of the transmittance is small since the
wave vector lies in the forbidden bands induced by the peri-
odic distribution of the clusters. For odd values nof two
paths involving two successive clusters interfere destruc-
tively leading to a minimum value d&&(N) equal to zero for
evenN values and tou? for odd N values. Sinceu is as-
sumed to be small, the corresponding transmittance in Eq.
(18) is maximum whateveN.

When the clusters are quasiperiodically distributed, the
guantum probabilitys(N) becomes a random variable which
strongly depends on the disorder realization in the cluster

Y(N)/y

Y(NYu

positions. The behavior of this probability is thus the result 10 - (c)
of the influence of the randomness on the quantum interfer-

. . 2 0 1
ences. Its characterization can be performed by taking advan- 3
tage of its formal resemblance with a two-dimensional > -10 1
Brownian trajectory. Indee(N) can be formally expressed
asS(N)=|X(N)+iY(N)|?> where the two random variables -20 | , | :
X(N) andY(N) are defined as 1500 1000 500 0

N X(N)/p

X(N):“,Zl cog2qx)), FIG. 7. Two-dimensional Brownian motion associated to the

evolution of the quantum probabilit$(N). (a) g=ma/2L, (b) q
N =ma/2L, with m odd, and(c) g=ms/2L, with m even.

Y(N)=,ujzl sin(2qx;). (20)

From Eq.(20), S(N) can be identified with the square modu- shows a power law with respect to the transmittance which
lus of the distance performed by a Brownian particle withdepends on the sign of the expong#@NL— 1. When the
coordinates<(N) andY(N) along a two-dimensional trajec- exponent is positive (8L<¢), the distribution is maximum
tory. The numbeN plays the role of the time. The evolution \hen the transmittance is close to one and characterizes the
of S(N) strongly depends on the values of the incident wavemetallic regime. By contrast, when the exponent is negative
vector and three distinct behaviors appear which correspon@N L>¢&), the distribution turns out to be maximum when
to three different kinds of Brownian motions. the transmittance is close to zero and it corresponds to the
When the wave vector is different fromm/2L, the  j qiating regime. Note that Eq21) leads to a crossover

Brownian particle describes a continuous and isotropic tWOp atween the two regimes which occurs wHaR(N))=0.5
dimensional trajectoryFig. 7(a)]. The successive jumps re- In this case we obtain a uniform distribution, in very good

alized by the particle are random and independent and thggreement with the numerical resulig. 6).

random phase approximation can be applied. The evolution S .

" P : : When the incident wave vector is equal or/2L, the
f th I N h . o Lo
of the probability distributiong(S,N) is described by t en probability distributions of both the quantum probability

well-known two-dimensional diffusion equation. Its solutio
g S(N) and the transmittancg(N) suddenly behave in a dras-

is a universal exponential functiaf(S, 7) =exp(—S7)/7. As : . .
a result, it is straightforward to show that the probability fic@lly different way. In that case, the random phase approxi-
mation is not valid and an exact calculation is required to

distribution for the transmittance is expressed as
P determine the probability distribution &(N). In Appendix

& B, it is demonstrated tha&®(N) becomes a discrete random
P(T,N)= 5= TéNL-L (21)  variable and its possible values depend on the parity of both
2NL ; )
m and N. In other words, the continuous trajectory of the
where ¢ is the localization length defined in E¢ll). Al- Brownian particle turns out to be discrete since the particle is

though the probability distribution in Eq21) is obtained by constrained to move on a two-dimensional lattice. The shape
assuming that the self-energy correction remains a small paf the unit cell of this lattice depends on the value of the
rameter, we can qualitatively interpret the transition betweenvave vectorq. The probability distribution connected to
the metallic and insulating regimes. Indeed, this distributionS(N) is thus defined asAppendix B
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Nl Nl_rl N2 NZ—TZ Nl!Nz!5[8_S(rl,sl,Nl,rz,Sz,Nz)]

SN)= -y , 22
9SN)= 3N, rlz:o o o o TS (NI—T1—S)IT1S, (N~ T,—5))! 22)
|
where the possible values 8{N) are expressed as Gaussian envelop. Note that, as shown in the inset, this result
perfectly agrees with the numerical data obtained within the
S(r1,51,N1,r5,8,N)/ u?={[1—cogmma/L)](r,—r5) transfer matrix formalism. The most probable value of the

transmittance is localized in the very close neighborhood of

_ 2
+cogmmal/L)(N;—Ny)} the originS=0. Therefore, the typical value for the transmit-

+{[2(s;—Sp)+r1—r,—N; tance is close to 1 which is thus associated to the occurrence
_ of a tip in the average transmittance. The Brownian character
+Nylsinimma/L)}2.  (23)  of the motion of the particle remains but it appears to be

. . _ slightly anisotropic. In addition, the particle is constrained to
As shown in Appendix B, the values of the integer numbersyqye°on 4 two-dimensional lattice which is responsible for
N, and N, depend on botim and N. The behavior of the  yhe giscretization of the possible values of the random vari-

distributiong(S,N) is illustrated in Fig. 8 when the cluster ableS(N) [Fig. 7(b)]. When the integem is even[m= 14 in
size, the average distance between nearest neighbor clust@fiﬁ_ 8(b)], the corresponding values of, and N, are N,

and the cluster number are equal\W=2, L=16, andN  _N and N,=0. As previously obtained, the probability
=30, respectively. When the integeris oddm=15in Fig. 5 N)dS exhibits a set of exponential decaying bar
8(a)], the corresponding values ®f; andN; areN;=N,  gpectrum with a Gaussian envelop. The most probable value
=N/2 whenN is even andN;=(N—-1)/2, No=(N+1)/2 S(N) is approximately equal to S=u2N[1
whenN is odd. The probabilityg(S,N)dS exhibits a set of 5 costma/L) /9. As a result, the typical transmittance
exponential decaying bar spectrum distributed according to "f‘tzexp(—S) is very small and a dip occurs in the average

transmittance. In other words, a drift motion is added to the

0.00 S(N) is responsible for the observed features shown in Figs.

4, 5, and 6e). Indeed, the discretization of the quantum

0.12 008 random walk performed by the Brownian particle which thus
0.10 - oo moves far away_from its starting position. T_he distance cov-
' ered by the particle scales Bisleading to an increase of the
0.08 - - quantum probability Which_ beha\/_es_as2 [Fig. 7(c)]. A!-
? L though these results are in qualitative agreement with the
Z 0.06 - 000 Ly numerical data represented in the inset, they point out the
e 00 05 10 15 29 limitation of the theory which remains valid in the neighbor-
0.04 A hood of the antiresonance, only. Especially, the theoretical
distribution tends to spread out over larg¢iN) values than
0.02 the numerical one.
l i This singular behavior of the probability distribution of
0.0 0.5 1.0 15 2.0

St probability S(N) wheng=m/2L leads to the discrete be-
0.06 o1z havior of the random transmittance and thus to the observed
0.05 condensation of its probability distribution. In addition, the
' 0.008 previous analysis allows us to evaluate the theoretical ener-

0.04 - gies of both the tips and the dips. Indeed, wh&r-2, L

0 o004 =16, andN=30 (Fig. 5), the theoretical results lead &y,

E 0.03 4 0000 =Ey+0.19 and Et’ip= Ey+0.58) which compare very well

[=2]

0 5 10 15 20 25 30 with the numerical result€;,=E(+0.18] and Eg,=E,

tip ™
+0.53], respectively(see Sec. Y. In the same way, the
predicted dip is equal t&q,=Ey+0.36) in good agreement
with the numerical values equal ®y,=Eq+0.39. When

W=2, L=10 andN=70, the theoretical tip energies are

0.00 equalE;,=Ey*0.31], in nice agreement with the numerical
0 5 10 15 20 25 30 p
S(N) value equal t(-Etip: Eoi 0.28].
FIG. 8. Theoretical probability distribution of the quantum V. CONCLUSION

probability S(N) when W=2, L=16, and N=30. (a) Incident

wave vectorq=(L—1)m/2L. (b) Incident wave vectorq=(L In this paper, the electronic transmission through a set of
—2)x/2L. The insets represent the corresponding numerical resultgetallic linear clusters randomly distributed along an ad-
obtained within the transfer matrix formalism. sorbed nanowire has been investigated by using a single
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band tight-binding Hamiltonian. It has been shown that thethe lattice size since it decreases as the cluster nuiNber
extended nature of the clusters forming a lattice along théncreases and scales as/l/
nanowire is responsible for the occurrence of a localization- Note that the present study has pointed out some speci-
delocalization transition when the incident energy of theficities of such nanodevices within a model limited to iden-
electron coincides with the cluster antiresonances. This trariical, linear clusters attached to a nanowire formed by the
sition, which is similar to the localization-delocalization same atomic species. Further developments are required to
transition occurring in a quasi-one-dimensional wire, hasstudy, on one hand, the influence of the shape and size of the
been interpreted in terms of the scaling theory. Two differenglusters on the electron conductance and, on the other hand,
regimes are found for the electronic transport depending, of’® modifications induced when two different metal species
the ratio between the localization lengthand the lattice for the wire and the clusters are considered.
size. In the very close neighborhood of an antiresonance, the
regime is metallic and corresponds to a localization length APPENDIX A: EXPRESSION OF (T%)
greater than the lattice size. In other wordss larger than
the size of the cluster device along the atomic chain. By From the relation between the resistance and the transmit-
contrast, when the energy shifts away from the antiresotance, theath moment ofT(N) can be written as
nance, the electron localization takes place and an insulating
regime is established. (TIN)y=(exp{—a In[1+p(N)]}) (A1)

We have shown that the scaling theory, based on the ran-
dom phase approximation, fails for particular values of thelnstead of performing a cumulant expansion of the averaged
incident energy. Indeed, tips and dips occur in the curve of/alue of the exponential, we introduce a trial functiofr)
the average transmittance vs the energy for discrete values tbm the following identification:
the energy. In these tip or dip regions, the probability distri-
bution of the transmittance exhibits a singular behavior a?
which is interpreted within the weak disorder approximation. (T9)= EXL{ —a(In(1+p))+ S u(n]. (A2)
Basically, outside the tip and dip regions, the disordered na-

ture of the cluster distribution is responsible for the breakinGrpis trial function is determined self-consistently by using
of the coherence in the electron propagation. No quantunthe Fokker-Planck equatidiEg. (12)]. Indeed, it is straight-

interference occurs and the transmittance behaves as a cQt\ard to show thatIn(1+p))=7. Moreover, both(T) and
tinuous, random variable distributed according to a universag-l-2> are not independent and sa.ltisfy the e(’quation
function which depends on the number of clusters, only. By

contrast, in the tip or dip regions, the disorder is not suffi-

cient to eliminate the influence of the quantum interferences d(T) _ _<-|-2>_ (A3)

and the transmittance becomes a discrete, random variable. dr

The tips correspond to a situation for which the typical value

of the quantum probability to observe the electron in theBY using Eq.(A3) to determineu(), we find that it verifies

region located before the clusters is minimum while the dipghe first order nonlinear differential equation

characterize the memory of the forbidden bands and corre-

spond to a situation for which the typical value of the quan- 1du

tum probability is maximum. E“LGXF(
To conclude, let us discuss the implications of the previ-

ous re_sults in th_e electronic transport at the nanometer Sc_alﬁquation(A4) reduces to a Bernoulli equation which can be

As p(_)lnted out in Ref. 24, the_ attachment of reduced SiZ@xactly solved leading to

atomic clusters along a nanowire could open a new way for

3
—r+-ul=1 (A4)

2

fabricating nanodevices with specific functionalities, able to 5 6T
mimic the operations realized by integrated circiasrrent u(r)= —In(—_2>. (AB)
switching, transistor effect, logical gates)..The main idea 3 \3-e“

is to obtain the desired functionalities by controlling the

quantum interferences experienced by the electron wavBY inserting Eq.(A5) into Eq. (A2), we obtain the resulting
function. However, the disordered nature of such real nanéxpressions ofT) and(T?) in Eq. (15).

odevices cannot be disregarded since the disorder can have a

dramatic influence on the electronic transport by bre_a_king APPENDIX B: CALCULATION OF THE DISTRIBUTION

the quantum coher_ence_ _and, thus, preventing the efflqlency OF THE QUANTUM PROBABILITY S(N)

of the desired functionalities. Our results show that this is no

longer the case when the disorder is responsible for small Instead of directly studying the probability distribution
fluctuations of the cluster positions around the periodic dis€onnected toS(N), let us focus on the two-dimensional
tribution, only. In that case, the disorder destroys the coherprobability distributionh(X,Y). Since the variableX andY
ence created by the periodicity and the transmittance is eslepend on the set of thd independent random variables
sentially governed by the single cluster antiresonances. Thigsj} defined in Sec. Il, the functioh(X,Y) can be easily
width of the allowed bands can be controlled by changingdetermined as products of Dirac functions as
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1 1 +1 N of performing the calculation for the various situations, a
h(X,Y)= 3N, E . E S X—,uE cos{2qxj)) general procedure can be performed by expressing the char-
=-1 on=- =1 acteristic function as
N
oy uS sin(2qxj)). ®1 BUN)=BUN)®(~U,~V)y,,  (BS)
=1

. . . ) where®(U,V)y is defined as
By Fourier transforming EqB1), the characteristic function

®(U,V) connected to the distribution functidm(X,Y) is D(U,V))y,=(e/Vrcos2aas)glVusinzqashyM — (Bg)

defined as .
In Egs.(B5) and(B6), the values of the integeid; andN,

N o depend on the parity of bottn and N. Indeed, for everm
d(U,V) =] (eVrcoszaggiVusinzagy  (B2)  yaluesN,=N andN,=0 and Eqs(B5) and (B6) reduce to

=1 Eq. (B4). By contrast, for oddn values,N;=N,=N/2 when

When the incident wave vector is equal ge=mm/2L, an  Nis even andN;=(N—1)/2,N,=(N+1)/2 whenN is odd.
analytical expression of the characteristic functbfU,V) By performing the average over the varialie=0, =1 oc-
can be determined. Indeed, in that case, we have curring into Eq.(B6) and weighted with the probabilitp

_ =1/3, the function®(U,V),, is written as
cog2qx;)=(—1)""cog2qas),
M M-r Cr

sin(24x) =(—1)""sin(2qas)). (B3) CU V=2 2, —aw—eeVVis, (B7)

Therefore, three situations occur depending on the parity of

bothmandN. For evemmvalues, (- 1)I™=1 whatevej. As  whereCf is the usual binomial coefficient and
a result, the characteristic functidn(U,V) factorizes as the

product ofN identical and independent terms as Xp=p[r+(M—r)cog2qa)],

N .
DUN)= ] (e oxzaas v szaasy Y, s=p(2s+r—M)sin(2qa). (B8)
i=1 At this step, by inserting Eq(B7) into Eq. (B5) and by
performing an inverse Fourier transform, it is straightforward
to obtain the required probability distributiam(X,Y) and
For oddm values, a different factorization occurs which in- then to deduce the distribution of the random quantum prob-
volves the parity of the cluster numbilr However, instead ability S(N). The final result is given in Eq22).

E<eiU,u. cos{2qa5j)eiv,u sin(2qa6j)>N' (B4)
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