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Generalization of the DMPK equation beyond quasi one dimension

K. A. Muttalib and Vı́ctor A. Gopar*
Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611-8440

~Received 11 April 2002; revised manuscript received 24 May 2002; published 24 September 2002!

Electronic transport properties in a disordered quantum wire are very well described by the Dorokhov-
Mello-Pereyra-Kumar~DMPK! equation, which describes the evolution of the transmission eigenvalues as a
function of the length of a multichannel conductor. However, the DMPK equation is restricted to quasi-one-
dimensional systems only. We derive a generalized DMPK equation for higher dimensions, containing depen-
dence on the dimensionality through the properties of the transmission eigenvectors, by making certain statis-
tical assumptions about the transfer matrix. An earlier phenomenological generalization is obtained as a special
case.
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The Dorokhov-Mello-Pereyra-Kumar~DMPK! equa-
tion1,2 has been enormously successful in describing the e
tron transport properties of a quasi-one-dimensional dis
dered conductor.3 The equation describes the evolution of t
joint probability distribution of the transmission eigenvalu
with increasing length of the system and has been show
be equivalent4 to the description in terms of a nonlinears
model5 obtained from the microscopic tight-binding Ande
son Hamiltonian. The advantage of the DMPK approa
over the nonlinears model is that one can consider the fu
distribution of transport quantities rather than the mean
variance alone. Recent analytical as well as numerical res
show that the distribution of conductances6 has many sur-
prises, including very sharp features at~dimensionless! con-
ductanceg51 which could not be anticipated from studie
of the moments of the distribution and which should ha
important consequences for the Anderson transition. O
major disadvantage of the DMPK equation, however, is t
it does not contain information about the spatial structure
the sample in directions perpendicular to the direction of
current flow, limiting its applicability to quasi one dimensio
~Q1D! only. Since at present there is no other analytic
proach available to study the full distribution of transpo
properties, it is clear that a generalization of the DMP
equation valid in higher dimensions is of fundamental imp
tance. A phenomenological generalization, with anad hoc
constraint to conserve probability, was recently propos7

which seems to agree with numerical results8 in systems be-
yond Q1D in some restricted regimes. In the present pa
we derive a further generalization that contains a depende
on the dimensionality through the properties of the transm
sion eigenvectors and contains the earlier model as a sp
case. No additional constraint is needed to conserve p
ability in the present approach. Moreover, the approach
produces the expression for Lyapunov exponents in hig
dimensions obtained in Ref. 9. Known properties of the
exponents provide useful constraints on the phenomeno
cal parameters in the current model.

In the transfer matrix approach, a conductor of lengthL is
placed between two perfect leads of finite width. The sc
tering states at the Fermi energy defineN channels. The
2N32N transfer matrixM relates the flux amplitudes on th
right of the system to that on the left.11 Flux conservation
0163-1829/2002/66~11!/115318~5!/$20.00 66 1153
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and time reversal symmetry~we consider the case of unbro
ken time reversal symmetry only! restricts the number o
independent parameters ofM to N(2N11) and can be writ-
ten in general as2

M5S u 0

0 u* D S A11l Al

Al A11l
D S v 0

0 v* D[UGV, ~1!

whereu,v are N3N unitary matrices andl is a diagonal
matrix with positive elementsl i , i 51,2, . . . ,N. An en-
semble of random conductors of lengthL, all with the same
macroscopic disorder characterized by the same mean
path l, but different microscopic realizations of the random
ness, is described by an ensemble of random transfer m
cesM, whose differential probability depends parametrica
on L and can be written asdpL(M )5pL(M )dm(M )
5pL(G,U,V)dm(G)dm(U)dm(V). Here dm(M ) is
the invariant Haar measure of the group, given in terms
the parameters in Eq. ~1! by dm(M )
5J(l)@) i

Ndl i #dm(u)dm(v), where J(l)5) i , j ul i2l j ub

with the ‘‘symmetry exponent’’b51 in our case, anddm(u)
and dm(v) are the invariant measures of the unitary gro
U(N).

We now take two conductors, with lengthsL anddL, to
make a conductor of lengthL1dL ~Fig. 1!. Denoting the
corresponding transfer matrices byM 9, M 8, and M
5M 9M 8 with probability densities pL(M 95MM 821),
pdL(M 8), andpL1dL(M ), respectively, we have the relation2

pL1dL~M !5E pL~MM 821!pdL~M 8!dm~M 8!. ~2!

The restriction of the DMPK equation to Q1D arises fro
the ‘‘isotropy’’ approximation, that the distributionpL(M ) is
independent of the matricesu andv. Several attempts hav
been made in order to relax the isotropy approximation.7,9,10

FIG. 1. A small wire with lengthdL, ‘‘the building block,’’ is
attached to a long one with lengthL (dL!L). The total transfer
matrix M is given byM5M 9M 8.
©2002 The American Physical Society18-1
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We will avoid writing a set of coupled evolution equation
for l, u, andv by considering the marginal distribution

p̄L~l!5E pL~G,U,V!dm~U !dm~V!. ~3!

We first show that theU integration can be done exactly an
then we make statistical assumptions about certain prod
of the matrix elements ofV.
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Consider the combinationH5MM†5UG2U†. At length
L, we get H95M 9M 9†5UGVM821(M 821)†V†GU†

[U9G92U9†. It then follows that we can writeU9
5U•U-(G,V,M 8). Similarly, by considering the combina
tion Q5M†M5V†G2V, we get Q95M 9†M 95(M 821)†

V†G2VM821[V9†G92V9, which implies that we can write
G95G9(G,V,M 8) and V95V9(G,V,M 8). Equation~2! can
then be rewritten as
pL1dL~U,G,V!5E pL„U•U-~G,V,M 8!,G9~G,V,M 8!,V9~G,V,M 8!…pdL~M 8!dm~U8!dm~G8!dm~V8!. ~4!
-

c-
hin
the
We now integrate both sides of Eq.~4! over the invariant
measuredm(U). The left-hand side defines a marginal d
tribution qL1dL(G,V). On the right side, since the measure
invariant, dm(U)5dm(U•U-) for U- fixed. Therefore
dm(U)5dm(U9), and integrating overdm(U9) gives the
marginal distributionqL(G9,V9) with the following convo-
lution equation:

qL1dL~l,v !5E qL~l9,v9!pdL~l8,u8,v8!dm~M 8!, ~5!

where we have used Eq.~1! to introduce the matrix element
l,v,l8,v8, etc.

Writing l95l1dl and v95v1dv, Eq. ~5! can be re-
written as

qL1dL~l,v !5^qL„l1dl~l,v !,v1dv~l,v !…&dL , ~6!

where^•••&dL denotes an average over the ensemble ofM 8.
In order to obtaindl anddv within a perturbation theory, we
search for a matrix constructed fromM whose eigenvalues
and eigenvectors are given byl and columns ofv, respec-
tively. Consider the matrixQ5M†M5V†G2V. Flux conser-
vation impliesQ215SzQSz , whereSz is the 2N32N gen-
eralization of the Pauli matrixsz . It then follows that the
matrix X5@Q1Q2122I #/4, whereI is the identity matrix,
is block diagonal. It has been shown thatV diagonalizesX,11

leading toN doubly degenerate eigenvaluesl. We can there-
fore obtaindl and dv by considering the changedX5X9
2X due to change inM arising fromM 8. Writing dQ5Q9
2Q, it is easy to see thatdX is also block diagonal, with
dX115

1
2 dQ11 and dX225

1
2 dQ11* . Since bothX and dX are

block diagonal, the perturbation can be treated as ac
separately on the two subblocks ofX, and one can use ordi
nary, as opposed to degenerate, perturbation theory to o
dl anddv by considering one subblock only.

Denoting the perturbation by w̃5v(dX11)v†

5 1
2 v(dQ11)v† we get
g

ain

w̃52l1vu8@l81A11l8v8v†lvv8†A11l8

1Al8v8* v* †lv* v8* †Al8#u8†v†

2vu8@A11l8v8v†Al~11l!v* v8* †Al8

1Al8v8* v* †Al~11l!vv8†A~11l8#u8†v†. ~7!

We expectl8}dL/ l !1. Since w̃ contains terms propor
tional toAl8, we need to consider corrections to bothl and

v up to second order inw̃ in order to keep terms up to
O(l8). Standard perturbation theory12 gives dla5dla

(1)

1dla
(2) anddvan

† 5dvan
†(1)1dvan

†(2) with

dla
(1)5w̃aa , dla

(2)5 (
b(Þa)

w̃abw̃ba

la2lb
, ~8!

dvan
†(1)5 (

m(Þn)

w̃mn

ln2lm
vam

† , ~9!

and similarly for dvan
†(2) . Note thatv1dv has to remain

unitary, which imposes an additional constraint.
The averages over the ‘‘building block’’M 8 appearing in

Eq. ~6! involve averages over combinations ofl8, u8, and

v8 which appear inw̃. Note that the building block is highly
anisotropic; in the limitdL→0, the transfer matrixM 8→I .
This condition will be implemented by assumingu8v85I . In
addition, instead of modeling the fullpdL(l8,v8), we use the
following averages overM 8:

K (
a

la8v8aa* vag8 L
dL

5kdag , ~10!

K (
ab

Ala8lb8v8aa* v8ab* vbd8 vbg8 L
dL

5kdagdbddab , ~11!

wherek5dL/ l . The first average is used in Ref. 2, the se
ond one in Ref. 9; the latter incorporates the fact that the t
slice allows backward scattering without changes in
8-2
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channel indices and is highly anisotropic. Equations~10! and
~11!, with the conditionsu8v85I and k!1, define the
model of our building block.

Using the above model and the expansionA11l851
1l8/21O(l82), we averagedl, Eq. ~8!, over M 8:

^dla&dL5k~112la!

1k (
b(Þa)

la1lb12lalb

la2lb
(
a

uvaau2uvbau2,

~12!

^dladlb&dL5dab2kla~11la!(
a

uvaau4. ~13!

Similar calculations can be done to obtain the correspond
averages fordv.

We should now, in principle, expand Eq.~6! in a Taylor
series around bothl and v and evaluate the average ov
M 8. However, for weak disorder, it is known that the iso
ropy approximation is very good, which means]qL /]vab
→0. In the strong-disorder limit, the eigenvectors are loc
ized, so that in thenth row vna has only one element equal t
unity, all other elements being zero. Since different rows
orthogonal to each other, we can see from Eq.~9! that in this
limit dv→0 because of the restricted summÞn. So in both
these limits, the product (]qL /]vab)^dvab&dL→0. To a good
approximation, in these limits, we can therefore treatv at the
macroscopicL as a parameter that depends on disorder
for a given strength of disorder does not change any fur
with dL. In general, a conductor has a fraction~depending
on the disorder! of its channels closed;13 i.e., the correspond
ing eigenvectors are localized, while the others are open
corresponding eigenvectors being extended. We expec
isotropy approximation to remain good for the open chann
and the closed channels to contributedv→0 since they are
localized. In other words, the product (]qL /]vab)^dvab&dL
can be assumed to be small@compared to the contribution
from (]qL /]l)^dl&dL] for all channels for a wide range o
intermediate disorder as well. Physically, since the eigen
ues depend on the length exponentially,dl(l,v) remains
important for all lengths at any disorder. On the other ha
we expect that at a macroscopic lengthL, the eigenvectors
already evolve to either metallic~isotropic! or insulating~lo-
calized! structures for a given macroscopic disorder, and a
further change due todL ~as opposed to change in disorde!
is likely to be negligible. We will therefore expand th
ensemble-averaged marginal probability densityqL(l,v)
within the approximation

^qL„l1dl~l,v !,v1dv~l,v !…&dL

'^qL„l1dl~l,v !,v…&dL . ~14!

We show below that this approximation retains the domin
eigenvector correlations@via dl(l,v)] needed to reproduce
the Lyapunov exponents in arbitrary dimensions as obtai
in Ref. 9. The price we pay for not includingdv in our
calculation is that we will not be able to evaluate the eig
11531
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them as phenomenological parameters.

Using Eq.~14!, we expand Eq.~6! in a Taylor series abou
l,

qL1dL~l,v !'qL~l,v !1(
a

]qL~l,v !

]la
^dla&dL

1
1

2 (
ab

]2qL~l,v !

]la]lb
^dladlb&dL1•••,

~15!

where the ellipsis includes terms containing higher-order
rivatives ofl. We choosek5dL/ l !1, which allows us to
truncate the Taylor series at the third term, neglecting te
of O(k2) and higher. Using Eqs.~12! and ~13!, the reduced
distribution p̄L(l)5*qL(l,v)dm(v) can then be written as

p̄L1dL~l!' p̄L~l!1k(
a

~112la!
] p̄L~l!

]la

1k (
bÞa

la1lb12lalb

la2lb

3E (
a

uvaau2uvbau2
]qL~l,v !

]la
dm~v !

1
k

2 (
a

2la~11la!

3E (
a

uvaau4
]2qL~l,v !

]la
2

dm~v !. ~16!

In order to make further progress, we will now make
mean-fieldapproximation, where the products of fourv ’s
that appear inside the integrals in Eq.~16! are replaced by
their mean values which can be taken out of the integr
This is equivalent to the assumption that for a given disord
fluctuations in such quantities are small compared to th
averages. In the weak-disorder regime, each matrix elem
is of order 1/AN, differing mostly in their phases; once th
phases cancel, the fluctuations are negligible for homo
neous disorder. In the strong-disorder regime, each eigen
tor has one element which is unity representing a locali
site and the rest are zero, but different samples will ha
different localized sites, leading to large sample-to-sam
fluctuations for individual elements. However, it is expect
that the fluctuations in the sum over the elements of a
eigenvector for a given disorder will remain negligibl
Therefore the mean-field approximation is reasonable
these two limits. As argued before, we will assume that
assumption remains valid in the intermediate region of d
order as well, based on the picture of open and closed ch
nels. Within this approximation and expanding the left-ha
side of Eq.~16! in powers ofdL/ l , we get
8-3
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] p̄L~l!

]~L/ l !
'(

a
~112la!

] p̄L~l!

]la

1 (
aÞb

la1lb12lalb

la2lb
Kab

] p̄L~l!

]la

1(
a

la~11la!Kaa

]2p̄L~l!

]la
2

. ~17!

Here we have defined

(
a

^uvaau2uvbau2&L[(
a

E uvaau2uvbau2qL~l,v !dm~l!

3dm~v ![Kab . ~18!

Sincev is unitary,Kab satisfies the sum rule(bKab51.
This allows us to rewrite Eq.~17!, following Ref. 7, as

] p̄L~l!

]~L/ l !
5

1

J̄
(

a

]

]la
Fla~11la!KaaJ̄

] p̄

]la
G , ~19!

with

J̄5 )
a,b

ula2lbugab, gab5
2Kab

Kaa
. ~20!

Equation~19!, with the definition~20!, is our generalization
of the DMPK equation. Note that in the DMPK equatio
time reversal symmetry fixes the exponent in the JacobiaJ
to beb51. In our case, as the eigenvectorsv are integrated
over, the coupling between the eigenvalues and eigenvec
adds an effective matrix exponent to the existing symme
exponent, resulting in an effectiveJ̄ in Eq. ~19!.

Under isotropy conditionKab5(11dab)/(N11), we re-
cover the DMPK equation (gab51). If we chooseKab
5m1 /(N11) andKaa52m2 /(N11), we obtain the gener
alization of Ref. 7, where an extra condition was need
betweenm1 and m2 in order to satisfy the conservation o
probability. In our current framework, that condition is ide
tical to the sum rule(bKab51.

As a check of our model, we evaluate the Liapunov e
ponents na5( l /2dL)ln(11dla /la) in the limit l1@l2@
•••@lN@1 and compare with Ref. 9. Expanding in powe
of dla /la , averaging overv, and using the results fo
^dl&, Eqs.~12! and ~13!, we obtain

2na

dL

l
'2k12k (

b(Þa)

lb

la2lb
K (

a
uvaau2uvbau2L

L

2kK (
a

uvaau4L
L

. ~21!
ed
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Separating the sum overb into a term less thana and another
greater thana and using the unitarity ofv, na can be rewrit-
ten in the form

na'
1

2
Kaa1 (

b5a11

N

Kab , ~22!

which coincides with that of Ref. 9. Note that the isotro
approximation gives the smallest Liapunov exponent to
nN51/(N11). While this is the correct form in the metalli
regime (l i!1), the approximation fails to reproduce the e
pected behavior in the insulating regime,nN;O(1), inde-
pendent ofN. Our approach incorporates the necessary
genvector correlations to describe the Liapunov exponen
weak- as well as strong-disorder limits. Known properties
these exponents should provide a guide for constructin
model ofK.

It is important to note that while Eq.~19! is of the same
form as the DMPK equation, the pressure of the matrixK
might not allow a solution of Eq.~19! in the same generic
form as that of the DMPK equation.3

In summary, the DMPK equation for the distributio
pL(l) was obtained by adding a thin slice of lengthdL to a
conductor of macroscopic lengthL. The assumption thatpL
depends only onl and not on (u,v) limited the equation to
Q1D only. We consider the marginal distribution where theu
andv are integrated over. Theu integration is done exactly
We then assume that while the changes inl due to the added
slice depend crucially on the eigenvectorsv, the eigenvec-
tors themselves do not change much with length; i.e., t
remain either metallic or insulating as already determined
lengthL. This implies that our equation is valid only beyon
the relaxation length of the parametersKab . We also assume
that the eigenvector correlations(auvaau2uvbau2 have sharp
distributions. While these assumptions were made to ob
the simplest generalization that captures the essentials o
mensionality dependence and need to be verified indep
dently ~e.g., numerically!, we show that our approach keep
the dominant eigenvector correlations that reproduce the
apunov exponents in higher dimensions at both weak
strong disorder. The fact that the parametersKab may incor-
porate proper dimensionality dependence has already b
shown in Ref. 9. Finally, Eq.~19! reduces to the DMPK
equation as well as to an earlier generalization7 in appropri-
ate limits.
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