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Generalization of the DMPK equation beyond quasi one dimension
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Electronic transport properties in a disordered quantum wire are very well described by the Dorokhov-
Mello-Pereyra-KumakDMPK) equation, which describes the evolution of the transmission eigenvalues as a
function of the length of a multichannel conductor. However, the DMPK equation is restricted to quasi-one-
dimensional systems only. We derive a generalized DMPK equation for higher dimensions, containing depen-
dence on the dimensionality through the properties of the transmission eigenvectors, by making certain statis-
tical assumptions about the transfer matrix. An earlier phenomenological generalization is obtained as a special
case.
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The Dorokhov-Mello-Pereyra-Kumar(DMPK) equa- and time reversal symmetfyve consider the case of unbro-
tion'? has been enormously successful in describing the eleden time reversal symmetry onlyestricts the number of
tron transport properties of a quasi-one-dimensional disorindependent parameters lfto N(2N+1) and can be writ-
dered conductctThe equation describes the evolution of theten in general ds
joint probability distribution of the transmission eigenvalues

with increasing length of the system and has been shown to [u O [VI+A W\ \fv O —UTV (1
be equivalerftto the description in terms of a nonlinear “lo u* IN 1+7/\0 ov*) (D

modeP obtained from the microscopic tight-binding Ander-
son Hamiltonian. The advantage of the DMPK approachvhereu,v are NXN unitary matrices and is a diagonal
over the nonlinearr model is that one can consider the full Mmatrix with positive elements;, i=1,2,...N. An en-
distribution of transport quantities rather than the mean angemble of random conductors of lendthall with the same
variance alone. Recent analytical as well as numerical resulf§acroscopic disorder characterized by the same mean free
show that the distribution of conductandsas many sur- pathl, but different microscopic realizations of the random-
priseS, inc|uding very Sharp features(dimensionlesscon- ness, is described by an ensemble of random transfer matri-
ductanceg=1 which could not be anticipated from studies c€sM, whose differential probability depends parametrically
of the moments of the distribution and which should haveon L and can be written asip (M)=p (M)du(M)
important consequences for the Anderson transition. On& PL(I,U,V)du(I)du(U)du(V). Here du(M) is
major disadvantage of the DMPK equation, however, is thathe invariant Haar measure of the group, given in terms of
it does not contain information about the spatial structure ofhe ~ parameters  in  Eq. (1) by  du(M)
the sample in directions perpendicular to the direction of the= J(\)[TINdN;Jdu(u)du(v), where J(\) =TI, ;N —\;|#
current flow, limiting its applicability to quasi one dimension with the “symmetry exponent3=1 in our case, andu(u)
(Q1D) only. Since at present there is no other analytic apanddu(v) are the invariant measures of the unitary group
proach available to study the full distribution of transport U(N).
properties, it is clear that a generalization of the DMPK We now take two conductors, with lengthsand 6L, to
equation valid in higher dimensions is of fundamental impor-make a conductor of length+ 6L (Fig. 1). Denoting the
tance. A phenomenological generalization, with @ah hoc  corresponding transfer matrices bM”, M’, and M
constraint to conserve probability, was recently propbsed=M"M’ with probability densities p,(M"=MM’"1),
which seems to agree with numerical reslitssystems be- ps (M'), andp, . s (M), respectively, we have the relatfon
yond Q1D in some restricted regimes. In the present paper
we derive a further generalization that contains a dependence . , ,
on the dimensionali?y through the properties of the t?ansmis- pLML(M):f pLMM’  Hpg (MHdu(M').  (2)
sion eigenvectors and contains the earlier model as a special
case. No additional constraint is needed to conserve prob- The restriction of the DMPK equation to Q1D arises from
ability in the present approach. Moreover, the approach rethe “isotropy” approximation, that the distributiop (M) is
produces the expression for Lyapunov exponents in highgndependent of the matricesandv. Several attempts have
dimensions obtained in Ref. 9. Known properties of thesé)een made in order to relax the isotropy approximatiotf
exponents provide useful constraints on the phenomenologi-
cal parameters in the current model. <oL— L

In the transfer matrix approach, a conductor of lerigie ~ —= | M’ | M |_—_’
placed between two perfect leads of finite width. The scat-
tering states at the Fermi energy defiNechannels. The FIG. 1. A small wire with lengthsL, “the building block,” is
2N X 2N transfer matrixM relates the flux amplitudes on the attached to a long one with length(SL<L). The total transfer
right of the system to that on the léft.Flux conservation matrix M is given byM=M"M’.
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We will avoid writing a set of coupled evolution equations

for \, u, andv by considering the marginal distribution

m):j pU(T,U V) d(U)da(V). 3

PHYSICAL REVIEW B66, 115318 (2002

Consider the combinatiod =MMT=UT?U". At length

L, get H'=M"M"T=urvm ~YM ~YHfviTu’

—U’T”ZU” It then follows that we can writeU”
=U.-U"(',V,M’). Similarly, by considering the combina-

tion Q=M'M=VT2v, we get Q"=M"M"=(m ~Ht

We first show that thé&J integration can be done exactly and VIT2VM' ~1=Vv"TT"2y" which implies that we can write

then we make statistical assumptions about certain producls’=

of the matrix elements o¥.

pL+5L(U1r!V): J' pL(U : UW(F,V,M ,),F”(F,V,M ,)1V”(F!V1M ’))pﬁL(M ,)d#(U,)dM(F’)dM(V,)

We now integrate both sides of E(}) over the invariant

measuredu(U). The left-hand side defines a marginal dis-
tribution g 4 5. (T",V). On the right side, since the measure is

invariant, du(U)=du(U-U") for U” fixed. Therefore
du(U)=du(U"), and integrating ovedu(U") gives the
marginal distributiong, (I'”,V") with the following convo-
lution equation:

QL+5L(7\,U)=fQL(X",U”)paL(?\’,U’.v')dM(M'), ©)

where we have used E() to introduce the matrix elements
Nou,N v, ete.

Writing A"=\+ 6\ andv”=v + dv,
written as

Eqg. (5) can be re-

AL+sLNv)=(aLA+ N(\,v),v+v(N,v)))s, (6)

where(- - - ) 5. denotes an average over the ensemblil 6f
In order to obtaind\ anddv within a perturbation theory, we
search for a matrix constructed from whose eigenvalues
and eigenvectors are given byand columns ob, respec-
tively. Consider the matriQ@=M'™™ =V'T'2V. Flux conser-
vation impliesQ " 1=3,Q3,,, whereX, is the 2Nx 2N gen-
eralization of the Pauli matrix-,. It then follows that the
matrix X=[Q+Q 1—21]/4, wherel is the identity matrix,
is block diagonal. It has been shown thadiagonalizesx, !
leading toN doubly degenerate eigenvaluesWe can there-
fore obtain SN and dv by considering the changéX= X"
— X due to change iM arising fromM’. Writing 6Q= Q"
—Q, it is easy to see thafX is also block diagonal, with
8X11=3 Q11 and 6X =3 5Q%,. Since bothX and 56X are

block diagonal, the perturbation can be treated as acting

separately on the two subblocks Xf and one can use ordi-

nary, as opposed to degenerate, perturbation theory to obtain

rr,v,m" andV”
then be rewritten as

V"(I',V,M"). Equation(2) can

(4)
I
W=—X+oU' [N +VI+N v v oo’ TVI+N
+\/FUI*U*T)\U*U/*T\/F]UITUT
—ou'[VI+ N v o TN @+ N v* o * TN
+ o *o* TN+ Nov VAN U Tt ()

We expect\’xSL/I<1. Sincew contains terms propor-
tional to \\”, we need to consider corrections to batland
v up to second order imw in order to keep terms up to
O(\'). Standard perturbation thedfygives ox,=o\{"
+ 0P and ov] ;= v 1P+ 6012 with

~ \7\/ bVVba
AP=w,,, aP= =22 8
a aa a b(#:a) Aa_)\b ()
w
Sv V= Tl 9
an m(E#:n) )\n_)\m am ( )
T(2)

and similarly for dv,,;”’. Note thatv+ v has to remain
unitary, which |mposes an additional constraint.

The averages over the “building block’ appearing in
Eg. (6) involve averages over combinations »f, u’, and

v’ which appear iw. Note that the building block is highly
anisotropic; in the limitsSL — 0, the transfer matriv’ —1.
This condition will be implemented by assumiatp’=1. In
addition, instead of modeling the fudls (\',v"), we use the
following averages oveM ':

(10

I 1% ’ —
<2 )\av aaV ay> _K5a71
SL

= Kaayaﬁﬁﬁaﬁ ' (11)
L

<2 VA; )\bU aaV a,th,)b‘Ui;y>
5|

S\ and év by considering one subblock only.
Denoting the  perturbation by w=uv(8X;)v"
=3v(8Q.)v " we get

wherex=6L/1. The first average is used in Ref. 2, the sec-
ond one in Ref. 9; the latter incorporates the fact that the thin
slice allows backward scattering without changes in the

115318-2



GENERALIZATION IN THE DMPK EQUATION . .. PHYSICAL REVIEW B66, 115318 (2002

channel indices and is highly anisotropic. Equati@t® and  vector correlations self-consistently, but will have to use

(11), with the conditionsu’v’=1 and k<1, define the them as phenomenological parameters.

model of our building block. Using Eq.(14), we expand Eq(6) in a Taylor series about
Using the above model and the expansigh+A'=1 X\,

+N\'/2+0(N'?), we averageS\, Eq.(8), overM’:

aq (\,v
(ONa) o= K(1+2N,) QL+5L()\'U)QQL()\10)+E %(5%\)&
a a
NaFAp+2N N\
+Kb(;a) W 2 |vaa|2|Ub0z|2! " 1 z &ZqL()\yU) SNL SN n
a m - LA
2 & (9)\319)\[) < a b>5L 1

(12
(15

(ONgONp) 5= 5ab2K7\a(1+7\a)§ ao ™ 13 here the ellipsis includes terms containing higher-order de-
rivatives of \. We choosex= 6L/l <1, which allows us to
Similar calculations can be done to obtain the correspondingruncate the Taylor series at the third term, neglecting terms
averages fobu. of O(«?) and higher. Using Eqg12) and(13), the reduced

We should now, in principle, expand E() in a Taylor istributionp_(\) =g, (\,v)du(v) can then be written as
series around bothh andv and evaluate the average over
M’. However, for weak disorder, it is known that the isot- .
ropy approximation is very good, which mea#g, /v 4 — — apL(N)
—0. In the strong-disorder limit, the eigenvectors are local- PL+o(M)~PL(M)+ K; (1+2hy) INg
ized, so that in thath rowuv ,, has only one element equal to
unity, all other elements being zero. Since different rows are NatApT+ 2N 0,
orthogonal to each other, we can see from @gthat in this + Kk;a W
limit 6v —0 because of the restricted sum#n. So in both :
these limits, the producty, /v 1) ( Sv ap) s — 0. To @ good 5 ,d9L(\,v)
approximation, in these limits, we can therefore treat the XJ Ea: [0l *|Vbdl Tdﬂ(v)
macroscopid- as a parameter that depends on disorder but 2
for a given strength of disorder does not change any further K
with L. In general, a conductor has a fractit@epending T3 za: 2ha(1+hq)
on the disorderof its channels closetf i.e., the correspond-

ing eigenvectors are localized, while the others are open, the 22q,(\,v)
corresponding eigenvectors being extended. We expect the XJ 2 |vaa|4—2d,u(v). (16)
isotropy approximation to remain good for the open channels “ INg

and the closed channels to contribdiz— 0 since they are
localized. In other words, the producd /dv ap){ v ap) st
can be assumed to be smpatbompared to the contribution

from (9, /dN)(SN) 4] for all channels for a wide range of ot appear inside the integrals in EG6) are replaced by
intermediate disorder as well. Physically, since the e|genvalfheir mean values which can be taken out of the integrals.

ues depend on the length exponentiali(\,v) remains  Thig js equivalent to the assumption that for a given disorder,
important for all lengths at any disorder. On the other handg,cations in such quantities are small compared to their
we expect that at a macroscopic lengththe eigenvectors  5yerages. In the weak-disorder regime, each matrix element
alrgady evolve to either metall(asotroplc) or msulatmg(lo- is of order 14/N, differing mostly in their phases; once the
calized structures for a given macroscopic dlsor_der,_ and anBf)hases cancel, the fluctuations are negligible for homoge-
further change due téL (as opposed to change in disorder o, ¢ gisorder. In the strong-disorder regime, each eigenvec-
is likely to be negI|g|bIe..We will thgrefore e>.<pand the tor has one element which is unity representing a localized
ensemble-averaged marginal probability densify(\,v)  gjte and the rest are zero, but different samples will have
within the approximation different localized sites, leading to large sample-to-sample
fluctuations for individual elements. However, it is expected
(AL +ON(N,v),v+ 6v(N,0))) o that the fluctuations in the sum over the elements of any
~(q N+ SN(N,0),0)) 1 - (14) ~ eigenvector for a given disorder will remain negligible.
Therefore the mean-field approximation is reasonable in
We show below that this approximation retains the dominanthese two limits. As argued before, we will assume that the
eigenvector correlationszia S\ (\,v)] needed to reproduce assumption remains valid in the intermediate region of dis-
the Lyapunov exponents in arbitrary dimensions as obtainedrder as well, based on the picture of open and closed chan-
in Ref. 9. The price we pay for not includingv in our  nels. Within this approximation and expanding the left-hand
calculation is that we will not be able to evaluate the eigenside of Eq.(16) in powers ofSL/1, we get

In order to make further progress, we will now make a
mean-fieldapproximation, where the products of foufs
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IpL(N) IpL(N)
(L) ~§a: (1+2ha) g
Mot Np+ 2N A apL(\
+E a b_ a‘b b pL( )
&b Aa—\p N,
FpL(N)

+§ Na(1+X)Kaa— 5= (17)

a

Here we have defined

S (oaclTo0d0 =2 [ loaolondla00)du00)

Xdu(v)=Kap. (18

Sincev is unitary,K,, satisfies the sum rulg K ,=1.
This allows us to rewrite Eq.17), following Ref. 7, as

ap(V) 1 d
2

—ap
a(Li) —3— - . )\a(l-i-)\a)KanWa , (19
with
— 2K ap
I=TT a=npl2,  yap="—. (20
a<b aa

Equation(19), with the definition(20), is our generalization
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Separating the sum ovbrinto a term less thaa and another
greater thara and using the unitarity of, v, can be rewrit-
ten in the form

N

1

Va™ EKaa+ 2 Kab» (22)
b=a+1

which coincides with that of Ref. 9. Note that the isotropy
approximation gives the smallest Liapunov exponent to be
vy=1/(N+1). While this is the correct form in the metallic
regime (\;<<1), the approximation fails to reproduce the ex-
pected behavior in the insulating regimgy~0O(1), inde-
pendent ofN. Our approach incorporates the necessary ei-
genvector correlations to describe the Liapunov exponents at
weak- as well as strong-disorder limits. Known properties of
these exponents should provide a guide for constructing a
model ofK.

It is important to note that while Eq19) is of the same
form as the DMPK equation, the pressure of the malifix
might not allow a solution of Eq(19) in the same generic
form as that of the DMPK equatich.

In summary, the DMPK equation for the distribution
p.(\) was obtained by adding a thin slice of length to a
conductor of macroscopic length The assumption thai,
depends only om and not on ¢,v) limited the equation to
Q1D only. We consider the marginal distribution where the
andv are integrated over. Theintegration is done exactly.
We then assume that while the changes idue to the added
slice depend crucially on the eigenvectorsthe eigenvec-

of the DMPK equation. Note that in the DMPK equation, tors themselves do not change much with length; i.e., they

to beB=1. In our case, as the eigenvectorare integrated

over, the coupling between the eigenvalues and eigenvecto
adds an effective matrix exponent to the existing symmetr)}

exponent, resulting in an effectivkin Eq. (19).
Under isotropy conditiorK ;p,=(1+ 8,5)/(N+1), we re-
cover the DMPK equation «,;,=1). If we chooseK,

lengthL. This implies that our equation is valid only beyond
the relaxation length of the paramet&rg,. We also assume
hat the eigenvector correlatiol,|v,,|*|v,.|? have sharp
distributions. While these assumptions were made to obtain
the simplest generalization that captures the essentials of di-
mensionality dependence and need to be verified indepen-
dently (e.g., numerically, we show that our approach keeps

=p1/(N+1) andKaa=2u,/(N+1), we obtain the gener- the dominant eigenvector correlations that reproduce the Li-
alization of Ref. 7, where an extra condition was neededy,ynov exponents in higher dimensions at both weak and
betweeny,; and w, in order to satisfy the conservation of strong disorder. The fact that the parametégg may incor-
probability. In our current framework, that condition is iden- porate proper dimensionality dependence has already been
tical to the sum rul&pKap=1. shown in Ref. 9. Finally, Eq(19) reduces to the DMPK

As a check of our model, we evaluate the Liapunov ex-gquation as well as to an earlier generalizationappropri-
ponents v,=(1/26L)In(1+6N,/\,) in the limit A{>N\,> ate limits.

--+->\p>1 and compare with Ref. 9. Expanding in powers

of S\./\,, averaging over, and using the results for ~ Ve are grateful to P. Mello for his continued interest and

(6\), Egs.(12) and(13), we obtain

SL A
2v,—=~2k+2k 2 : <2 |Uaa|2|vba|2>

| b(Fa) Na— Ap .

(21)
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