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Phase measurement in the mesoscopic Aharonov-Bohm interferometer
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Mesoscopic solid state Aharonov-Bohm interferometers have been used to measure the ‘‘intrinsic’’ phase,
aQD , of the resonant quantum transmission amplitude through a quantum dot~QD!. For a two-terminal
‘‘closed’’ interferometer, which conserves the electron current, Onsager’s relations require that the measured
phase shiftb only ‘‘jumps’’ between 0 andp. Additional terminals open the interferometer but thenb depends
on the details of the opening. Using a theoretical model, we present quantitative criteria~which can be tested
experimentally! for b to be equal to the desiredaQD : the ‘‘lossy’’ channels near the QD should have both a
small transmission and a small reflection.
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I. INTRODUCTION

Recent advances in the fabrication of nanometer-s
electronic devices raised much interest in the quantum
chanics of quantum dots~QD’s!, which represent artificia
atoms with experimentally controllable properties.1,2 The
quantum nature of the QD is reflected by resonant tunne
through it, as measured when the QD is connected via
tallic leads to electron reservoirs. The measured conducta
G shows peaks whenever the Fermi energy of the elect
crosses a bound state on the QD.3 Experimentally, the ener
gies of these bound states are varied by controlling
plunger gate voltage on the QD,V. Quantum mechanically
the information on the tunneling is contained in the comp
transmission amplitude,tQD5ATQDeiaQD. It is thus of great
interest to measure both the magnitudeTQD and the phase
aQD , and study their dependence onV.4 Although the former
can be deduced from measuringG, via the Landauer
formula,5 G5(2e2/h)T, experimental information on the
latter has only become available since 1995,6,7 using the
Aharonov-Bohm~AB! interferometer.8

In the AB interferometer, an incoming electronic wav
guide is split into two branches, which join again into t
outgoing waveguide@see Fig. 1~a!#. Aharonov and Bohm9

predicted that a magnetic fluxF through the ring would add
a differencef5eF/\c between the phases of the wa
functions in the two branches of the ring, yielding a period
dependence of the overall transmissionT on f. Placing a
QD on one of the branches, one expectsT also to depend on
tQD . Indeed, the experiments found a periodic depende
of T(f), and fitted the results to a Fourier expansion of
form

T5A1B cos~f1b!1C cos~2f1g!1 . . . , ~1!

with the conventionsB,C.0.
In a simple two-slit situation, there is no reflection

electrons from either the source or the ‘‘screen’’ that colle
them. Therefore, the electron passes through each branch~in-
0163-1829/2002/66~11!/115311~7!/$20.00 66 1153
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cluding the QD! only once, and the total transmission amp
tude is equal to the sum of theamplitudes in the two
branches,

t5t1eif1t2 . ~2!

FIG. 1. Model for the AB interferometer:~a! Closed two-
terminal case,~b! schematic picture of the six-terminal open inte
ferometer,~c! model for the open interferometer.
©2002 The American Physical Society11-1
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~Gauge invariance allows one to attach the AB phasef to
either branch!. Assuming also thatt15ut1ueia15ctQD , and
that bothc5ucueid andt25ut2ueia2 do not depend onV near
the QD’s resonances, one obtains Eq.~1!, with B
52uct2tQDu, C50 ~i.e., no higher harmonics! andb5aQD
1d2a2. Below we subtract fromaQD and from b their
values at large negativeV, far away from the resonance
thus removingV-independent quantities such asd2a2. For
the ‘‘closed’’ two-terminal geometry of Fig. 1~a!, as used by
Yacoby et al.,6 the expectation thatb5aQD ~equivalent to
the two-slit situation! was clearly not borne out by the me
surements: Unitarity~conservation of current! and time-
reversal symmetry imply the Onsager relations,10,11 which
state thatG(f)5G(2f), and thereforeb ~as well asg etc.!
must be equal to zero orp. Indeed, the experimental6 b
‘‘jumps’’ from 0 to p wheneverV crossed a resonance of th
QD, and then exhibits ana priori unexpected ‘‘phase lapse
back to 0, between every pair of resonances. La
experiments7 opened the interferometer, using the s
terminal configuration shown schematically in Fig. 1~b!; the
additional leads allow losses of electronic current, th
breaking unitarity. Indeed, the resulting data gave a grad
increase ofb through each resonance, accompanied b
peak in the amplitudeB, but maintained the sharp ‘‘phas
lapse’’ back to zero between resonances, which were acc
panied by zeros inB. In the present paper we present a th
oretical model, aimed to imitate the experimental setups
Figs. 1~a! and 1~b!. Figure 2 shows examples of our mod
calculations forA,B,C andb versusV. Qualitatively, these
plots look similar to those found experimentally.6,7 However,
as discussed below, the quantitative results for the open
terferometers depend on details of the opening.

The above experimental results led to much theoret
discussion. Some of this12,13 emphasized the nontrivial ef
fects of the ring itself on the measured results, even for
closed case. Other theoretical papers14–20assumedthat the
measuredb represents the correctaQD , and discussed the
possible origins of the observed features, e.g., the ph
lapse and the similarity between the data at many re
nances. However, not much attention was given to thevalid-
ity of this assumption. Sinceb is equal to 0 orp for the
closed interferometer, and deviates from these values for
open one, it is clear thatb mustdepend on the details ofhow
the system was opened. Indeed, Ref. 21 considered one e
ample of an open interferometer, and showed that the de
tion of b from its trivial values~0 andp) increases mono
tonically with the strength of the coupling to the los
channel. Although different values of this coupling ga
qualitativelysimilar b(V) curves, which were also similar t
the experimental results, the detailed dependence ofb on V
varied with that strength. As a result, Ref. 21 posed the c
lenge of finding clear criteria as to when the experimentab
is really equal to the intrinsicaQD .

In the present paper we address this challenge.22 Section
II presents a simple model for the QD, which contains re
nances and phase lapses. Typical results for the intrinsicTQD
andaQD are shown in Fig. 3. The latter is also reproduced
Fig. 2 ~calculated with the same QD parameters! for com-
parison withb. We are not aware of any earlier quantitati
11531
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-comparisons of this kind. Sections III and IV then presen
simple model for the~closed and open! interferometer, and
discuss the optimal way to open the interferometer, so
the ‘‘measured’’b will be close to the theoretical ‘‘intrinsic’’
aQD . Our exact analytical results confirm the intuitive e

FIG. 2. A,B,C andb for transmission through~a! the closed AB
ring, and for the open interferometer with~b! Jx50.15J, ~c! Jx

50.9J and~d! Jx51.5J. The dashed line~in the plots ofb) shows
the exact intrinsic phaseaQD ~from Fig. 3!.
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pectations of Ref. 21: to haveb5aQD , the electron must
cross each branch only once. One necessary condition
this was appreciated qualitatively before:21 the electron must
practically never be reflected from the ‘‘forks’’ where th
ring meets the incoming and outgoing terminals in order
recover the two-slit result~2!. In our model, this is achieved
by having a very small net transmission after crossing e
of the additional lossy channelsCl ,Cr , andCd in Fig. 1~b!.
However, we find two additional conditions: first, the tran
mission through the upper brancht1 should have the sam
phase~up to aV-independent additive constant! as tQD , i.e.,
aQD . In general, the scattering of the electron from the ga
into channelsCl andCr might cause ‘‘rattling’’ of the elec-
tron back and forth through the QD, introducing more pha
shifts into t1. We avoid that by also having a verysmall
reflectionfrom the scatterersCl andCr . Below we introduce
a parameterJx that relates to the tunneling probabilities
the electron from the ring onto the lossy channels. AsJx
increases, the transmission through the lossy scatterers
creases, but the reflection from them increases. There
there is only anintermediaterange of Jx where b5aQD
@shown in Fig. 2~c!#. The second condition is that ther
should be no direct losses from the QD itself; as explain
below, these ‘‘smear’’ the phase lapses. In Sec. V we disc
these results, and propose additional experiments w
would check if an open interferometer indeed reproduces
desired ‘‘intrinsic’’ QD information.

II. MODEL FOR THE QD

As in many earlier calculations,12,20,23–25our analytic cal-
culations are based on the single-electron tight-bind
model~which can be viewed as a finite-difference version
the continuum case!: the system is made of discrete sites$ i %,

FIG. 3. TransmissionTQD and ‘‘intrinsic’’ phase aQD for N
54 states on the QD, with ‘‘gap’’U520J versus the gate voltageV
~in units of J).
11531
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with nearest-neighbor~nn! real tunneling amplitudes2Ji j
and site energiese i . All nn distances are set equal toa. The
Schrödinger wave equation is thus written as (E2e i)c i5
2( j Ji j c j , where the sum is over the nn’s ofi. In each
calculation, we have a scattering element connected to
one-dimensional~1D! leads, which haveJi ,i 115J,e i50.
The scattering solution for a wave coming from the left, w
wave vectork and energyE522J coska, is described by
cm

L 5eikam1re2 ikam on the left, and bycm
R5teikam on the

right. The calculation of the transmission and reflection a
plitudes,t andr, then amounts to solving a finite set of line
equations for the wave functions inside the scatterer.

The QD may be described as a single dot, with ma
discrete energy levels. We model it by a set of smaller d
each containing a single resonant state, with energy$ER
5eQD5ER(n),n51, . . . ,N%. This model is shown in Fig. 4
for N54. Each such state~or small dot! is connected to its
left and right nn’s on the leads via bonds with hopping a
plitudes$2JL(n),2JR(n),n51, . . . ,N%. The QD can thus
be described byN wave functions cn , obeying @E
2ER(n)#cn52JL(n)c0

L2JR(n)c0
R ~where we choosec0

L

511r ,c0
R5t). The exact transmission amplitude is eas

found to be

tQD5
SLR2i sinka

~SLL1e2 ika!~SRR1e2 ika!2uSLRu2
, ~3!

where SXY5(nJX(n)JY(n)* /@E2ER(n)#/J, X,Y5L,R
represent ‘‘bare’’ Green’s functions for sitesL andR.

In the following, we use equidistant bound-state energ
ER(n)5V1U(n21). The ‘‘gap’’ U can be viewed as the
Hartree energy for an electron added to a QD which alre
hasn21 other electrons,14 thus capturing some aspects
theCoulomb blockadebehavior of the scattered electron. W
study tQD as function of the energyV, which represents the
plunger gate voltage on the QD. Figure 3 shows typical
sults for the transmissionTQD and for the ‘‘intrinsic’’ phase
aQD , where the zero ofaQD is set at its (k-dependent! value
at large negativeV. In this figure and below, we chooseka
5p/2, so thatE50 and the resonances of the transmissi
where TQD51, occur exactly whenER(n)5E50, i.e.,
when V52U(n21).26 Results are not sensitive tok near
the band center. We also use the simple symmetric c
JL(n)5JR(n)[J, and measure all energies in units ofJ.

FIG. 4. Model for a QD with four discrete energy levels.
1-3
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Interestingly, this model reproduces the apparently obser
behavior of aQD : it grows smoothly from 0 top as E
crossesER(n), and exhibits a sharp phase lapse fromp to 0
between neighboring resonances, at points whereTQD50.
These latter points, associated with zeros ofSLR , represent
Fano-like destructive interference between the states on
QD.16,17,27–29

Many earlier theoretical~e.g., Ref. 14! and experimenta
~e.g., Ref. 7! papers approximatedt by a sum of the single
resonance Breit-Wigner-like~BW! expressions,30

t'(
n

e2ika2i sinkaJL~n!JR~n!*

E2ER~n!1eika@ uJL~n!u21uJR~n!u2#/J
. ~4!

Although this form gives an excellent approximation fortQD
near each resonance, it completely misses the Fano-like
ros and the phase lapses between resonances. This ha
because the approximation moves the zeros off the real
ergy axis.27 As a result, the approximateaQD never reaches 0
or p, and exhibits a smooth decrease from a maximum t
minimum near the correct phase lapse values ofV. Since our
aim here is to check on accurate measurements of the
trinsic’’ phase, for a broad range of the parameters, and s
the phase lapse has been a topic of much rec
discussion,14–20 we prefer to use the exact solutions eve
where. This is particularly important since typically, ava
able experimental data7 show quite broad resonances, so th
the BW approximation is bound to fail between them.

We emphasize again: in spite of the close similarity of o
intrinsic transmission results with the experiments, the p
pose of this paper is not to relate the calculatedtQD to the
experimental systems. This would require a justification
our choice of the sameJL(n)’s andJR(n)’s for all the reso-
nances, which goes beyond the scope of the present p
Rather, we aim to check when the AB interferometer rep
duces the ‘‘input’’ behavior of the QD, by yieldingb
5aQD for all V. If this fails for our simple model, then i
would surely fail in the more complicated cases, whe
electron-electron interactions~beyond our simple Hartree ap
proximation! become important.31

III. MODEL FOR THE CLOSED AB INTERFEROMETER

We next place the above QD on the upper branch of
closed AB interferometer, as shown in Fig. 1~a!. We now
treat the whole ring as our scatterer: each segments on the
ring is modeled by a 1D tight-binding model ofMs sites,
with e i50 and Ji ,i 115Js (s5 l ,r ,d for the left and right
upper segments and for the lower path, respectively!. Taking
advantage of gauge invariance, we attach the AB phase
tor eif to the hopping amplitude from the right-hand fo
onto its nn on branchr, which we write as2Jre

if. Writing
the wave functions in segments as cm

s 5Ashs
m1Bshs

2m ,
with hs given by E52Js(hs1hs

21), it is easy to express
the total transmission and reflection amplitudes through
interferometer, t and r, in terms of the six amplitudes
$As ,Bs%, and obtain six linear equations whose coefficie
also contain$SXY%. Having solved these equations, one
nally finds that the dependence of the total transmission
11531
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plitude t on the AB phasef has the general form

t5
F1Ge2 if

W1Z cosf
, ~5!

where the complex functionsF,G,W, andZ all depend on
the other parameters of the QD~including V), the interfer-
ometer and the electron wave vectork. It is easy to convince
oneself21 that, apart from an overall multiplicative factor, th
numerator represents the two-slit situation of one cross
through each branch of the ring, while the cosf term in the
denominator comes from a sum over an infinite geometr
series of additional motions around the ring: clockwise a
counterclockwise contributions contain factors ofeif and
e2 if, multiplying the same complex coefficient. Except f
the detailed dependence of the coefficients onV, these facts
are model independent. In fact, the form~5! appeared in
many earlier model calculations~e.g., Refs. 8,23,21 and 22!.
In fact, Eq.~5! implies that the exact form forT(f) is

T~f!5utu25
A1B cos~f1b!

11P cosf1Q cos2f
. ~6!

A fit to this equation, instead of the Fourier expansion~1!,
would be much more accurate~with only five parameters!,
and would enable an easier comparison of the data with
oretical calculations ofF,G,W andZ.

Using exact integration onT(f), theV dependence of the
coefficients in the expansion~1! are presented for the close
interferometer in Fig. 2~upper left!, for the same QD param
eters as in Fig. 3.~The figure was produced withMl5Mr
56,Md512, but the results for the closed case do not
pend on these numbers!. For the closed interferometer, tim
reversal symmetry implies that the ratioF/G in Eq. ~5! must
be real, and thusT depends only on cosf, in agreement with
Onsager’s relations. This yields the same jumps ofb be-
tween zero andp as in Yacobyet al.’s experiments,6 coinci-
dent with peaks and zeros ofB.

IV. MODEL FOR THE OPEN AB INTERFEROMETER

Pursuing one possible scenario,21 we model the ‘‘leaking’’
from each of the three segments on the ring@imitating
Cl ,Cr , andCd in the experiment, Fig. 1~b!# by connecting
each site on the three ring segments to a 1D lead, wh
allows only an outgoing current to an absorbing reserv
@Fig. 1~c!#. Each such segment is thus replaced by a ‘‘com
of absorbing ‘‘teeth.’’

We start by investigating the properties of a single com
The base of the comb is described by a chain ofM tight-
binding sites, withJm,m115Jc and em50. Each tooth is
represented by a 1D tight-binding chain, withe j50. The
first bond on the tooth hasJm,05Jx , while Jj , j 115J for j
>0. Assuming only outgoing waves on the teeth, with wa
functionstxe

ika j and energyE522J coska, one can elimi-
nate the teeth from the equations. The wave functions on
base of the comb are then given bycm

c 5Achc
m1Bchc

2m ,
wherehc is a solution of the~complex-energy! equationE
1Jx

2eika/J52Jc(hc1hc
21). When this comb is treated a
1-4
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PHASE MEASUREMENT IN THE MESOSCOPIC . . . PHYSICAL REVIEW B 66, 115311 ~2002!
our basic scatterer, i.e. connected via2Jin and2Jout to our
‘‘standard’’ two leads, then the transmission and reflect
amplitudes via the comb are given~up to unimportant
phases! by t5Jout(Achc

N1Bc /hc
N)/J and r 5Jin(Achc

1Bc /hc)/J2eika, and one ends up with two linear equ
tions for Ac andBc . The results forT5utu2 andR5ur u2 are
shown for three values ofM in Fig. 5 as functions ofka

FIG. 5. Transmission~thick line! and reflection~thin line!
through a ‘‘comb’’: ~a! versuska at Jx50.7J and ~b! versusJx

at ka5p/2. The number on each frame gives the number
‘‘teeth’’ M.
11531
n

P@0,p# in the free electron energy band, forJx50.7J ~a!,
and as functions ofJx , for ka5p/2 ~b!. In the figure,Jc

5Jin5Jout5J. It is rewarding to observe that bothT andR
are almost independent of the electron energyE over a broad
range near the band center. It is also interesting to note
for these parameters,T decreases withJx , but R increases
with Jx . For fixedJx , T andR exhibit some even-odd oscil
lations with M, but basicallyT decreases withM while R
increases towards an almost constant value forM.6. This is
understandable: a strong coupling to the teeth causes a s
decay of the wave function along the comb. Thus, for ea
value of M, one can find an intermediate optimal region
which bothT andR are small. This region broadens, and h
smallerT andR, for largerM.

We next place three such combs on the AB interferome
as in Fig. 1~c!, and study the AB transmissionT as function
of the various parameters. For simplicity, we set the sa
parameters for all the combs, and vary the coupling stren
Jx . Since each tooth of the comb can be replaced by add
the complex numberJx

2eika/J to the energyE in the equa-
tions forcm

s on the ring segments, the mathematics is sim
of that of the bare closed interferometer. The main differen
in the results is that nowhc is complex, yielding a decay o
the wave function through each comb. This also turns
ratio F/G in Eq. ~5! complex, yielding nontrivial values for
b. To demonstrate qualitative results, we chooseMl5Mr
56,Md512, useJl5Jr5Jd5Jc5J and keepka5p/2 and
the QD parametersJL(n)5JR(n)5J,N54,U520J. The
choice for the comb parameters ensures thatA andB in Eq.
~1! are of the same order. Other choices give similar qu
tative results. Figure 2 shows results forA,B,C, and b as
functions ofV, for several values ofJx . Clearly,Jx50.15J
gives a phaseb which is intermediate between the Onsag
jumps of the upper left Fig. 2 and the exact intrinsicaQD of
Fig. 3. IncreasingJx yields a saturation ofb onto aQD ,
which persists for a broad range betweenJx50.5J and Jx
50.9J. However, larger values ofJx , e.g.,Jx51.5J, cause a
deviation ofb from aQD , due to the increase of the reflec
tion from each comb. Interestingly, this deviation isin the
same directionas for smallJx The reason for this is clear: a
the reflection of each comb increases, the electron rattle
and out of the QD. This localizes it on the QD, and reduc
the width of the QD resonances. For these large values ofJx ,
one hasuZ/Wu!1 in Eq. ~5!. Thus, the two-slit conditions
hold, and one hasB}ut1u and b5a1. We have solved the
equations for the transmission through the upper branch o
~disconnecting the lower branch altogether!, and found that
indeed, the coefficientc in t15ctQD is a constant as long a
the reflection of the combs is small. However, asJx increases
above about 0.9J, c is no longer a constant. The narrow
resonances shown in Fig. 2~d! fully agree with this modified
upper branch transmission. In any case, ‘‘optimal comb
with small T and R, do yieldb5aQD .

So far, we assumedno direct losses from the QD itself. I
is easy to add such losses, by connecting a lossy chann
each resonant staten,21 similar to the teeth of our combs with
a tunneling amplitudeJx8 . As before, this introduces a com
plex additionJx8

2eika to E2ER(n). Figure 6 shows the re

f
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sults for the same parameters as above, but withJx5Jx8
50.9J. Clearly, the new imaginary parts eliminate the Fan
like zero in B, and yield a smooth variation ofb near the
‘‘intrinsic phase lapses.’’ Although similar to the behavi
arising in the BW approximation, the present effects arereal,
due to physical breaking of the unitarity on the QD. It
interesting to note that the data of Ref. 7 show similar~and
otherwise unexplained! smooth features. It is, however, po
sible that the latter come from finite-temperature averagin27

V. DISCUSSION

In conclusion, we find that the AB interferometer yield
quantitative information on the QD resonances only if t
electron crosses each segment on the ring, as well as the
itself, only once. As stated, this can be rephrased by
criteria: having the two-slit condition, i.e., effectively no r
flections back from the ‘‘forks’’ into the ring’s branches, an
having no ‘‘rattling’’ around the QD. i.e., having little reflec
tion from the ‘‘lossy’’ terminals. A third criterion requires n
direct losses from the QD itself.

The two-slit conditions are easy to examine: a sm
uZ/Wu in Eq. ~5! implies small amplitudes for all except th
first harmonic in Eq.~1!, as indeed seen by the decreasi
relative values ofC for increasingJx in Fig. 2. This is also
easily checked in the analysis of the experimental data7 It
might be interesting to fit intermediate range data to the
act Eq.~6!, instead of using a truncated Fourier series as
Eq. ~1!.

The second condition, which has not been emphasize
the literature before, is somewhat harder to confirm. O
way to check this is to varyJx experimentally, and look for
the value that gives thelargest width of the resonances
Other ways require disconnecting the lower branch, a
studying the conductance through the lossy path includ

FIG. 6. Same as Fig. 2, but with a ‘‘lossy’’ channel attached
the QD;Jx5Jx850.9J.
11531
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the QD and the two combs. The combs are acceptable for
purposes only below a thresholdJx , as long as the conduc
tance peaks remain independent ofJx .

It is worth emphasizing that the experimental data~as
reflected in Fig. 2! actually contain more than the AB phas
shift b. As stated below Eq.~2!, the two-slit condition im-
plies thatB52ut1t2u. Sincet2 is independent ofV, this gives
B}ut1u. Assuming also that the combs on the upper bran
do not modify theV dependence~i.e., c is V independent!,
we conclude thatTQD5utQDu25(B/Bmax)

2, whereBmax is
the maximum of B(V). Indeed, we confirmed that ou
‘‘data’’ in Fig. 2 obey this relation in the optimal range ofJx .
Moving away from these optimal conditions causes a stee
increase inb, and a related narrower peak inB. Both of
these widths should be largest for the optimal conditions
fact, a third way to ensure a correct measurement ofaQD
would be to measureTQD directly from the conductance o
the isolatedQD, and compare it with the normalizedB2 in
the interferometer measurement. Obviously, all of the la
experiments require modifications of the mesoscopic
cuitry, and may thus not be straightforward to follow.

Although we presented results for only one set of para
eters, we emphasize that similar results can be obtained
many other sets. In particular, the results forb and for
B/Bmax do not depend on the parameters of the low
branch. Varying these parameters only addsV-independent
factors, and changes theV dependence ofA ~which is domi-
nated by the ratiout1 /t2u). The results are also not sensitiv
to the sizesMs of the combs. However, too broad comb
imply too small values of the total transmission through t
interferometer~at optimum!, giving very small outgoing cur-
rents which may be difficult to measure. Thus, althou
Weidenmu¨ller22 is right in wishing many terminals, this is
not enough. One could also vary other parameters, suc
Jc , but this might introduce additional resonances, due to
combs and not to the QD. Similar undesired comb-rela
resonances also arise whenka is close to the band edge, bu
will not arise when one abandons the special 1D treatmen
the leads and branches, a situation which is better mod
near the center of the band.

Our analysis also shows that even away from optimu
the locationsof both the resonances and the Fano-like ze
~or ‘‘phase lapses’’! are reproduced correctly, independen
of the coupling strengthJx . The main purpose of optimizing
the interferometer is thus to obtain accurate values of
intrinsic resonancewidths, which should agree with thos
found from the direct measurements of the peaks in the
lated QD conductance.
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