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Phase measurement in the mesoscopic Aharonov-Bohm interferometer
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Mesoscopic solid state Aharonov-Bohm interferometers have been used to measure the “intrinsic” phase,
agp, Of the resonant quantum transmission amplitude through a quanturtQidt For a two-terminal
“closed” interferometer, which conserves the electron current, Onsager’s relations require that the measured
phase shifig only “jumps” between 0 andr. Additional terminals open the interferometer but tigedepends
on the details of the opening. Using a theoretical model, we present quantitative driteicah can be tested
experimentally for 8 to be equal to the desiretlyp : the “lossy” channels near the QD should have both a
small transmission and a small reflection.
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[. INTRODUCTION cluding the QD only once, and the total transmission ampli-
tude is equal to the sum of thamplitudesin the two
Recent advances in the fabrication of nanometer-scaleranches,
electronic devices raised much interest in the quantum me-
chanics of quantum dot&QD’s), which represent artificial
atoms with experimentally controllable properttésThe
guantum nature of the QD is reflected by resonant tunneling
through it, as measured when the QD is connected via me- (a)
tallic leads to electron reservoirs. The measured conductance QD
G shows peaks whenever the Fermi energy of the electrons I, r
crosses a bound state on the @Bxperimentally, the ener-
gies of these bound states are varied by controlling the
plunger gate voltage on the QIN, Quantum mechanically,
the information on the tunneling is contained in the complex
transmission amplitudegp= TQDei“QD. It is thus of great d
interest to measure both the magnitutig, and the phase
aqp, and study their dependence @i Although the former (b)
can be deduced from measuring, via the Landauer C,
formula® G=(2e%/h)T, experimental information on the Ce QD
latter has only become available since 1895ysing the
Aharonov-Bohm(AB) interferometef.
In the AB interferometer, an incoming electronic wave- in out
guide is split into two branches, which join again into the
outgoing waveguiddsee Fig. 1a)]. Aharonov and Bohrh
predicted that a magnetic fluk through the ring would add > Cq -~
a difference p=ed/#c between the phases of the wave
functions in the two branches of the ring, yielding a periodic
dependence of the overall transmissibron ¢. Placing a (©)
QD on one of the branches, one expet&iso to depend on

t=t,e'?+t,. 2

in out

top. Indeed, the experiments found a periodic dependence Ce QD Cr
of T(¢), and fitted the results to a Fourier expansion of the
form .
n out
T=A+Bcod¢p+B)+Ccod2¢+y)+ ..., (1)
Ca

with the convention8,C>0.

In a simple two-slit situation, there is no reflection of FIG. 1. Model for the AB interferometerfa) Closed two-
electrons from either the source or the “screen” that collectserminal case(b) schematic picture of the six-terminal open inter-
them. Therefore, the electron passes through each bfamch ferometer,(c) model for the open interferometer.
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(Gauge invariance allows one to attach the AB phas® a: Jx=0 c: Jx=.9J

either branch Assuming also that; =|t;|e'*1=ctyp, and lA

that bothc=|c|e'® andt,=|t,|e'*2 do not depend oW near 0.00005"

the QD's resonances, one obtains E(l), with B

=2|ctytop|, C=0 (i.e., no higher harmonigsand 8= aqp .

+ 60— a,. Below we subtract fromrgp and from g their —60 —20 20" -60- 0
B
e

values at large negativ¥, far away from the resonances, B
thus removingv-independent quantities such s «,. For 0.4
the “closed” two-terminal geometry of Fig.(&), as used by 0.0000
Yacoby et al.® the expectation thaB= aqp (equivalent to

the two-slit situation was clearly not borne out by the mea-
surements: Unitarity(conservation of curreptand time-

reversal symmetry imply the Onsager relatioh$t which c
state thatc(¢) = G(— ¢), and therefores (as well asy etc) 0.4

c
-9
mustbe equal to zero orr. Indeed, the experimenfaj 1.2-10 M M I
v

=60 -20 207 =60-20 20

“jumps” from 0 to = whenevelV crossed a resonance of the
QD, and then exhibits aa priori unexpected “phase lapse” %0 —20 20 -60-2020
back to 0, between every pair of resonances. Later
experiments opened the interferometer, using the six- bpeta 3 ?ita
terminal configuration shown schematically in Figb)t the '
additional leads allow losses of electronic current, thus 1.57
breaking unitarity. Indeed, the resulting data gave a gradual v v
increase ofg through each resonance, accompanied by a -60 -20 20 -60 -20 20
peak in the amplituddd, but maintained the sharp “phase @) ()
lapse” back to zero between resonances, which were accom-
panied by zeros ifB. In the present paper we present a the-
oretical model, aimed to imitate the experimental setups of 0.7
Figs. 1@ and Xb). Figure 2 shows examples of our model VY VYV 1 5.10°%
calculations forA,B,C and B versusV. Qualitatively, these
plots look similar to those found experimentdiiyHowever,
as discussed below, the quantitative results for the open in-
terferometers depend on details of the opening. B
The above experimental results led to much theoretical 0.3 B
discussion. Some of this*® emphasized the nontrivial ef- 1.5-107"
fects of the ring itself on the measured results, even for the
closed case. Other theoretical papéréassumedthat the 60 =20 20"
measureds represents the correetyp, and discussed the
possible origins of the observed features, e.g., the phase 042C
lapse and the similarity between the data at many reso-

C
6.-107"
nances. However, not much attention was given tovedel- | l I I
Y

b: Jx=.15J0 d: Jx=1.5J

$
—0 =20 o0 %y
—%d’

ity of this assumptionSince 8 is equal to 0 ors for the v
closed interferometer, and deviates from these values for the -60 -20 20 -60-2020
open one, it is clear thg& mustdepend on the details dbw beta beta
the system was openelsideed, Ref. 21 considered one ex- 3.14 3.14
ample of an open interferometer, and showed that the devia-
. S . 1.57 1.57} ’l”’“
tion of B from its trivial values(0 and ) increases mono-
tonically with the stfength of the coupli.ng to the lossy =505 =505
channel. Although different values of this coupling gave (b) d
qualitativelysimilar B(V) curves, which were also similar to
the experimental results, the detailed dependengg of V FIG. 2. A,B,C andg for transmission througta) the closed AB
varied with that strength. As a result, Ref. 21 posed the chalring, and for the open interferometer with) J,=0.15], (c) J,
lenge of finding clear criteria as to when the experimeptal =0.90 and(d) J,=1.5]. The dashed lingn the plots of3) shows
is really equal to the intrinsiegp . the exact intrinsic phaseqp (from Fig. 3.

In the present paper we address this challéAggection
Il presents a simple model for the QD, which contains reso€omparisons of this kind. Sections Il and IV then present a
nances and phase lapses. Typical results for the intringic ~ simple model for the(closed and openinterferometer, and
andagp are shown in Fig. 3. The latter is also reproduced indiscuss the optimal way to open the interferometer, so that
Fig. 2 (calculated with the same QD paramejeiar com-  the “measured’s will be close to the theoretical “intrinsic”
parison with3. We are not aware of any earlier quantitative aqp. Our exact analytical results confirm the intuitive ex-
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\
/ \
”// \ / ./ \ 7 S~ v
-60 -20 20
alpha
3.14 A , 4 - . .
’I/ // // // FIG. 4. Model for a QD with four discrete energy levels.
/
,'I ," ,” "I with nearest-neighbotnn) real tunneling amplitudes-Jj;
1.57 ! ! ] ! and site energies; . All nn distances are set equal @0 The
! ! / ! Schralinger wave equation is thus written a& €;) ;=
// // / ! —2;Jij¢;, where the sum is over the nn's of In each
sl / / / v calculation, we have a scattering element connected to two
20 one-dimensional1D) leads, which havel; ;,;=J,¢=0.

-60 -20
The scattering solution for a wave coming from the left, with

FIG. 3. TransmissionTqp and “intrinsic” phase agp for N - . -
=4 states on the QD, with “gaplU =20J versus the gate voltagé WLave _\éggtork i’:l_r;gmenergyE— —2J COSkaR IS diiﬁ”bed by
(in units of J). Yn=e"M+re "M gn the left, and byy,,=te"®™ on the
right. The calculation of the transmission and reflection am-
pectations of Ref. 21: to hav8=aqp, the electron must pI|tud_es,t andr, then amountg to splv!ng a finite set of linear
. equations for the wave functions inside the scatterer.
cross each branch only once. One necessary condition for The QD may be described as a single dot, with man
this was appreciated qualitatively befdfethe electron must discrete ener ylevels We model it b agset of smaller dotz
practically never be reflected from the “forks” where the each contain?r? a siﬁ le resonant gtate with endig '
ring meets the incoming and outgoing terminals in order to_ ~Eq(n) ng:1 gN} This model is ,shown N Fi é(4
recover the two-slit resul2). In our model, this is achieved 0[‘6?\|D_4 REar;h suéﬁ .s.tét(so.r small doj is connected togits
by having a very small net transmission after crossing eac{weft aer r.i ht nn's on the leads via bonds with hopoing am-
of the additional lossy channe ,C,, andCy in Fig. 1(b). Iitudes{gJ n) —Jo(n) n=1 N}. The QD ng tr?us
However, we find two additional conditions: first, the trans-E q i '-é )6 NR( ), _f’ . ‘t'.’ : Qb . £
mission through the upper branth should have the same € describe y vt/ave unchons Yn, obeying [ L
—Er(M)]¢n=—3.(n) 5 —JIr(n) ¥ (where we choosesf

phase(up to aV-independent additive constamstqyp, i.e., & o i s )
i =1+r,pg=1). The exact transmission amplitude is easily
agp - In general, the scattering of the electron from the gates 170
into channelsC, andC, might cause “rattling” of the elec- found to be
tron back and forth through the QD, introducing more phase
S r2i sinka

shifts intot;. We avoid that by also having a vesmall
reflectionfrom the scatterer€, andC, . Below we introduce (3)

a parameted, that relates to the tunneling probabilities of
the electron from the ring onto the lossy channels.Jis  where  Syy=3,Jyx(n)Jy(N)*/[E—Ex(N)]/J, X,Y=L,R
increases, the transmission through the lossy scatterers depresent “bare” Green’s functions for sitésand R.
creases, but the reflection from them increases. Therefore, |n the following, we use equidistant bound-state energies,
there is only anintermediaterange ofJ, where B=agp  Eg(n)=V+U(n—1). The “gap” U can be viewed as the
[shown in Fig. 2c)]. The second condition is that there Hartree energy for an electron added to a QD which already
should be no direct losses from the QD itself; as explainethasn—1 other electron$® thus capturing some aspects of
below, these “smear” the phase lapses. In Sec. V we discusge Coulomb blockad®ehavior of the scattered electron. We
these results, and propose additional experiments whicgtudthD as function of the energy, which represents the
would check if an open interferometer indeed reproduces thgjunger gate voltage on the QD. Figure 3 shows typical re-
desired “intrinsic” QD information. sults for the transmissiofigp, and for the “intrinsic” phase
agp, Where the zero ofqp is set at its k-dependentvalue
Il. MODEL FOR THE QD at large negative/. In this figure and below, we chooskga _
=/2, so thatE=0 and the resonances of the transmission,
As in many earlier calculation$;?*?*~*%our analytic cal- where Top=1, occur exactly whenEg(n)=E=0, i.e.,
culations are based on the single-electron tight-bindingvhenV=—U(n—1).2® Results are not sensitive tonear
model(which can be viewed as a finite-difference version ofthe band center. We also use the simple symmetric case
the continuum casethe system is made of discrete si{és Ji (n)=Jgr(n)=J, and measure all energies in units &f

top= - - ,
O (s +e ) (Sppte k) —|S g2
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Interestingly, this model reproduces the apparently observeplitudet on the AB phaseb has the general form

behavior of agp: it grows smoothly from O tor as E _

crossesEg(n), and exhibits a sharp phase lapse franto 0 _ F+Ge™?

between neighboring resonances, at points wigyg=0. t= W+Z cos¢’ ®)

These latter points, associated with zerosSpf, represent ]

Fano-like destructive interference between the states on thihere the complex functions,G,W, andZ all depend on

QD.16:17.27-29 the other parameters of the Qihcluding V), the interfer-
Many earlier theoreticale.g., Ref. 14 and experimental Ometer and the electron wave veckolt is. easy to convince

(e_g_' Ref. 7 papers approximatetjby a sum of the Sing|e Onesel?l that, apart from an overall mu|t|pl|Cat|Ve faCtOI’, the

resonance Breit-Wigner-likeBW) expressions? numerator represents the two-slit situation of one crossing
through each branch of the ring, while the ¢bterm in the
e2kaj sinkaJ, (n)Jg(n)* denominator comes from a sum over an infinite geometrical

t~> . 5 > (4  series of additional motions around the ring: clockwise and
m E—Eg(n)+e" I (n)|*+[Ir(n)]*]/I counterclockwise contributions contain factors &f and

Although this form gives an excellent approximation fgg, e”'?, multiplying the same complex coefficient. Except for
near each resonance, it completely misses the Fano-like zH#1€ detailed dependence of the coefficientsvphese facts
ros and the phase lapses between resonances. This happ@fg model independent. In fact, the for(®) appeared in
because the approximation moves the zeros off the real efif@ny earlier model calculatioris.g., Refs. 8,23,21 and p2
ergy axis?’ As a result, the approximateqp, never reaches 0 !N fact, Eq.(5) implies that the exact form foF(¢) is
or 7, and exhibits a smooth decrease from a maximum to a
minimum near the correct phase lapse valueg.@ince our
aim here is to check on accurate measurements of the “in-
trinsic” phase, for a broad range of the parameters, and since
the phase lapse has been a topic of much recerf fit to this equation, instead of the Fourier expansian
discussiort*~2° we prefer to use the exact solutions every-would be much more accuratwith only five parametejs
where. This is particularly important since typically, avail- and would enable an easier comparison of the data with the-
able experimental datahow quite broad resonances, so thatoretical calculations oF ,G,W andZ.
the BW approximation is bound to fail between them. Using exact integration of(¢), theV dependence of the
We emphasize again: in spite of the close similarity of ourcoefficients in the expansiaid) are presented for the closed
intrinsic transmission results with the experiments, the purinterferometer in Fig. 2upper lefi, for the same QD param-
pose of this paper is not to relate the calculatgg to the  eters as in Fig. 3(The figure was produced withl; =M,
experimental systems. This would require a justification for=6,M4=12, but the results for the closed case do not de-
our choice of the sama,_(n)’s andJg(n)’s for all the reso-  pend on these numberd=or the closed interferometer, time
nances, which goes beyond the scope of the present papegversal symmetry implies that the rafféG in Eq. (5) must
Rather, we aim to check when the AB interferometer reprobe real, and thu$ depends only on cag, in agreement with
duces the “input” behavior of the QD, by vyieldingg = Onsager’s relations. This yields the same jumpsBobe-
=aqp for all V. If this fails for our simple model, then it tween zero andr as in Yacobyet al's experiments, coinci-
would surely fail in the more complicated cases, wheredent with peaks and zeros Bf
electron-electron interactioribeyond our simple Hartree ap-

proximation become importarit: IV. MODEL FOR THE OPEN AB INTERFEROMETER

A+Bcoq ¢+ B)
1+Pcos¢p+Qcofep

T(¢)=1t|*= (6)

Iil. MODEL FOR THE CLOSED AB INTERFEROMETER Pursting one possible scenaffaye model the “leaking”
from each of the three segments on the ringitating

We next place the above QD on the upper branch of the,,C,, andCy in the experiment, Fig. (b)] by connecting
closed AB interferometer, as shown in Figal We now each site on the three ring segments to a 1D lead, which
treat the whole ring as our scatterer: each segre@mt the  allows only an outgoing current to an absorbing reservoir
ring is modeled by a 1D tight-binding model &4 sites, [Fig. 1(c)]. Each such segment is thus replaced by a “comb”
with =0 andJ; ;;,;=Js (s=I,r,d for the left and right of absorbing “teeth.”
upper segments and for the lower path, respectivéking We start by investigating the properties of a single comb.
advantage of gauge invariance, we attach the AB phase fad-e base of the comb is described by a chairVotight-
tor €' ¢ to the hopping amplitude from the right-hand fork binding sites, withd,, n+1=J; and e,=0. Each tooth is
onto its nn on branch, which we write as—J,e'®. Writing ~ represented by a 1D tight-binding chain, wigh=0. The
the wave functions in segmesstas ¢5=Asne +Bsns ™,  first bond on the tooth hady, ,=Jy, while J; ;. ,=1J for |
with 7 given by E=—Jy( s+ ,75‘1), it is easy to express =0. Assuming only outgoing waves on the teeth, with wave
the total transmission and reflection amplitudes through théunctionst,e™?! and energyE = —2J coska, one can elimi-
interferometer,t and r, in terms of the six amplitudes nate the teeth from the equations. The wave functions on the
{As,B4}, and obtain six linear equations whose coefficientsbase of the comb are then given by =A. 77 +Bc7n, ",
also contain{Syy}. Having solved these equations, one fi- where 7, is a solution of thelcomplex-energy equationE
nally finds that the dependence of the total transmission ami+ J2e™%®/J= —J (7. + 7. *). When this comb is treated as
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RT 2 €[0,7] in the free electron energy band, fag=0.7] (a),

and as functions ofl,, for ka= /2 (b). In the figure,J.
=Jin=Jout=J. Itis rewarding to observe that boithandR

are almost independent of the electron endtgyver a broad
range near the band center. It is also interesting to note that
for these parametergd, decreases witll,, but R increases
with J,.. For fixedJ,, T andR exhibit some even-odd oscil-
RT 6 lations with M, but basicallyT decreases wittM while R
increases towards an almost constant valudfor6. This is
understandable: a strong coupling to the teeth causes a strong
decay of the wave function along the comb. Thus, for each
value of M, one can find an intermediate optimal region in
which bothT andR are small. This region broadens, and has
smallerT andR, for largerM.

RT 10 We next place three such combs on the AB interferometer,
as in Fig. 1c), and study the AB transmissiohas function

of the various parameters. For simplicity, we set the same
parameters for all the combs, and vary the coupling strength
J,. Since each tooth of the comb can be replaced by adding

RT

the complex numbedZe™®?/J to the energyE in the equa-
tions for ¢, on the ring segments, the mathematics is similar
of that of the bare closed interferometer. The main difference
in the results is that now. is complex, yielding a decay of
the wave function through each comb. This also turns the

ratio F/G in Eq. (5) complex, yielding nontrivial values for
B. To demonstrate qualitative results, we chodée=M,
=6My=12, usel,=J,=J3=J.=J and keepka= 7/2 and
the QD parameters), (n)=Jr(n)=J,N=4U=20J. The
choice for the comb parameters ensures fandB in Eq.

(1) are of the same order. Other choices give similar quali-
%T 6 tative results. Figure 2 shows results #yB,C, and 8 as
functions ofV, for several values od, . Clearly,J,=0.15]
gives a phasg which is intermediate between the Onsager
jumps of the upper left Fig. 2 and the exact intrinaigp, of
Fig. 3. Increasingl, yields a saturation of3 onto aqp,
which persists for a broad range betwegs=0.5] and J,
=0.9]. However, larger values df , e.g.,J,=1.5], cause a

RT deviation of 8 from aqp, due to the increase of the reflec-
1 10 tion from each comb. Interestingly, this deviationisthe
same directioras for smallJ, The reason for this is clear: as
0.5 the reflection of each comb increases, the electron rattles in
) and out of the QD. This localizes it on the QD, and reduces
the width of the QD resonances. For these large valudg of
T 5 JX one has/Z/W|<1 in Eq. (5). Thus, the two-slit conditions
(b) hold, and one ha8«|t;| and 8=a;. We have solved the

equations for the transmission through the upper branch only
FIG. 5. Transmission(thick line) and reflection(thin line) (disconnecting the lower branch altogetheand found that
through a “comb”: (a) versuska at J,=0.7) and (b) versusJ,  indeed, the coefficient in t;=ctqp is a constant as long as
at ka=m/2. The number on each frame gives the number ofthe reflection of the combs is small. HoweverJasncreases
‘teeth” M. above about 0.8 c is no longer a constant. The narrower
resonances shown in Fig.(@) fully agree with this modified
our basic scatterer, i.e. connected vid;, and —J,,;to our  upper branch transmission. In any case, “optimal combs,”
“standard” two leads, then the transmission and reflectiorwith small T and R do yield 8= aqp .
amplitudes via the comb are givefup to unimportant So far, we assumeubo direct losses from the QD itself. It
phases by t=Jo,(A.7N+Bc/7Y)/J and r=J;,(A.7. is easy to add such losses, by connecting a lossy channel to
+B./75.)/J—€*? and one ends up with two linear equa- each resonant state?! similar to the teeth of our combs with
tions for A, andB,. The results foT =|t|2 andR=|r|?> are  a tunneling amplitudd, . As before, this introduces a com-
shown for three values dfl in Fig. 5 as functions oka  plex additionJ,2e’® to E—Eg(n). Figure 6 shows the re-
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the QD and the two combs. The combs are acceptable for our
purposes only below a threshald, as long as the conduc-
tance peaks remain independent]of
=53 It is Wprth_ emphasizing that' the experimental dé&s
reflected in Fig. 2 actually contain more than the AB phase
shift 8. As stated below Eq(2), the two-slit condition im-
plies thatB=2|t;t,|. Sincet, is independent o¥/, this gives
Bo|t,]. Assuming also that the combs on the upper branch
do not modify theV dependencéi.e., c is V independent
we conclude thal op=|top|*=(B/Bma)?® WhereBay is
the maximum ofB(V). Indeed, we confirmed that our
“data” in Fig. 2 obey this relation in the optimal range &f.
Moving away from these optimal conditions causes a steeper
increase ingB, and a related narrower peak B Both of
—60-20 20" these widths should be largest for the optimal conditions. In
fact, a third way to ensure a correct measurement g
would be to measuréqp directly from the conductance of
the isolated QD, and compare it with the normaliz&f in
the interferometer measurement. Obviously, all of the latter
experiments require modifications of the mesoscopic cir-
—t0 -70 20 cuitry, and may thus not be straightforward to follow.
Although we presented results for only one set of param-
FIG. 6. Same as Fig. 2, but with a “lossy” channel attached togters, we emphasize that similar results can be obtained for
the QD; J,=J,=0.90. many other sets. In particular, the results férand for
o B/B do not depend on the parameters of the lower
sults for the same parameters as above, but W¥ithJ, branch. Varying thepse parameter:? only adtimdependent
_=0.QJ. Clgarly, the new imaginary part§ gllmlnate the Fano'factors, and changes thedependence oA (which is domi-
like zero inB, and yield a smooth variation g8 near the  a1eq py the ratidt, /t,|). The results are also not sensitive
“intrinsic phase lapses.” Although similar to the behavior {; he sizesM of the combs. However, too broad combs
arising in the BW approximation, the present effectsraes, )y 100 small values of the total transmission through the
due to physical breaking of the unitarity on the QD. It is jnerferometerat optimum, giving very small outgoing cur-
interesting to note that the data of Ref. 7 show simi@rd o which may be difficult to measure. Thus, although
otherwise unexplaingdsmooth features. It is, however, pos- \nwidennilier? is right in wishing many terminals, this is
sible that the latter come from finite-temperature averagfing. not enough. One could also vary other paramete,rs, such as

J., but this might introduce additional resonances, due to the
V. DISCUSSION combs and not to the QD. Similar undesired comb-related
resonances also arise whiea is close to the band edge, but

In conclusion, we find that the AB interferometer yields "= - ;
quantitative information on the QD resonances only if theWill not arise when one abandons the special 1D treatment of

electron crosses each segment on the ring, as well as the %Be leads and branches, a situation which is better modeled

itself, only once. As stated, this can be rephrased by twd€ar the celnte_r Ofl the Eand. H . _
criteria: having the two-slit condition, i.e., effectively no re- _ OUr analysis also shows that even away from optimum,
flections back from the “forks” into the ring’s branches, and the locationsof both the resonances and the Fano-llke zeros
having no “rattling” around the QD. i.e., having little reflec- (or “phase lapses)' are reproduced correctly, independently

tion from the “lossy” terminals. A third criterion requires no ©f the coupling strengtl, . The main purpose of optimizing
direct losses from the QD itself. the interferometer is thus to obtain accurate values of the

The two-slit conditions are easy to examine: a smaliintrinsic resonancavidths which should agree with those
|Z/W| in Eg. (5) implies small amplitudes for all except the found from the direct measurements of the peaks in the iso-

first harmonic in Eq(1), as indeed seen by the decreasing2t€d QD conductance.
relative values ofC for increasingd, in Fig. 2. This is also
easily checked in the analysis of the experimental Gata.
might be interesting to fit intermediate range data to the ex- We thank M. Heiblum, Y. Levinson, A. Schiller, H. A.
act Eq.(6), instead of using a truncated Fourier series as inNeidenmiler, and A. Yacoby for helpful conversations. This
Eq. (2). project was carried out in a center of excellence supported by

The second condition, which has not been emphasized ithe Israel Science Foundation, with additional support from
the literature before, is somewhat harder to confirm. Onehe Albert Einstein Minerva Center for Theoretical Physics at
way to check this is to vary, experimentally, and look for the Weizmann Institute of Science, from the German Federal
the value that gives théargest width of the resonances. Ministry of Education and ResearcfBMBF) within the
Other ways require disconnecting the lower branch, andFrramework of the German-Israeli Project CooperatiotP),
studying the conductance through the lossy path includingind from the NSF Grant No. DMR 99-81283.
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