
PHYSICAL REVIEW B 66, 115309 ~2002!
Testing the violation of the Clausius inequality in nanoscale electric circuits
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The Clausius inequality, one of the classical formulations of the second law, was recently found to be
violated in the quantum regime. Here this result is formulated in the context of a mesoscopic or nanoscale
linearRLC circuit interacting with a thermal bath. Previous experiments in this and related fields are analyzed,
and the possibilities of experimental detection of the violation are pointed out. It is discussed that recent
experiments reached the range of temperatures where the effect should be visible and that a part of the proposal
has already been confirmed.
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I. INTRODUCTION

The application of thermodynamics to electric circuits h
a long and remarkably fruitful history.1–6 In the late 1920’s,
by applying general principles of thermodynamics—in p
ticular, the second law—Nyquist1 deduced the spectrum o
the fluctuation force acting in an equilibrium electric circu
This result was much later confirmed by microscop
approaches5,7–10 and became known as the Nyquist spe
trum. Nearly 20 years later Brillouin2 applied the second law
to analyze a circuit containing rectifying elements. Anoth
formulation of the second law—the Clausius inequality
was considered in the context of electric circuits
Landauer.3 The equilibrium thermodynamics of linear an
nonlinear circuits was thoroughly analyzed by Stratonovic5

Further research in this field was stimulated by two fac
first, by the technical importance of circuits in electroni
and, second, by their feasibility, which allows one to cre
experimental conditions close to those in theory.6

In view of these successful applications of thermodyna
ics, one naturally expects that electrical circuits can play a
a complementary role by acting as experimental and theo
ical laboratories for testing new ideas and results in statist
thermodynamics itself. The present paper makes such a
tempt in the context of our recent discussion of the appli
bility of the second law to quantum systems coupled to th
mal baths.11,12The general philosophy of the approach is th
thermodynamic relations are not introduced axiomatically
phenomenologically, but should be derived from first pr
ciples: namely, the laws of quantum mechanics. For lin
systems—e.g., a set of harmonically bounded Brownian
ticles interacting with a quantum thermal bath—this progr
can be carried out exactly. As the main result we were abl
check some formulations of the second law, whose valid
in the classical domain was confirmed several times
analogous approaches.3–5 One of these formulations—th
Clausius inequality—appeared to be broken in the lo
temperature quantum regime. Here we reformulate this re
for a quantum linearRLC circuit.7,8,13 Our purpose is rathe
straightforward: we explain that the above violation can
detected experimentally in low-temperature mesoscopic
cuits. To this end we analyze some known experimental
sults and show that several important parts of our propo
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were already realized in experiment.
Our plan for the present paper is the following: In Sec.

we will briefly describe the quantumRLC circuit coupled
with a thermal bath. We continue with an explanation of t
Clausius inequality in Sec. III. In the following section w
analyze some experimental results, and in their context
make quantitative estimates for our effect. Our conclusio
are presented in the last section.

II. RLC CIRCUIT AND ITS HEISENBERG-LANGEVIN
EQUATIONS

A. ClassicalRLC circuit

The classical scheme of the simplestRLC circuit is well
known. It consist of capacityC, inductanceL, and resistance
R. The loss of voltage across the resistance is given by
Ohm law IR, whereI 5dQ/dt is the current andQ stands
for the charge. The capacitor enters the total voltage asQ/C.
Finally, the inductive element induces a magnetic field w
the flux F5LI , which in turn contributes to the voltag
~Faraday’s law!. Altogether, one finally obtains

Q̇5
F

L
, Ḟ52

Q

C
2

R

L
F. ~2.1!

The first equation is just the definition of the current, and
second one expresses the fact that the total voltage in
closed circuit is zero. Apart from the term connected with t
resistance, Eqs.~2.1! can be viewed as the canonical equ
tion of motion generated by the Hamiltonian

HS5
F2

2L
1

Q2

2C
, ~2.2!

whereQ andF are the canonical coordinate and momentu
Within the language of Brownian motion the contribution
the resistance in Eq.~2.1! corresponds to the Ohmic friction
with the damping coefficientR. In the same contextC cor-
responds to the inverse strength of the external harmo
potential, andL corresponds to the mass of the Browni
particle.

B. Quantum RLC circuit

Equation ~2.2! makes obvious that forR50 one can
quantize the model regardingF andQ as the corresponding
operators:
©2002 The American Physical Society09-1
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@Q,F#5 i\. ~2.3!

Then Eqs.~2.1! are just the Heisenberg equations of t
problem. A quantum description of electrical circuits beca
necessary at the beginning of 1980s with the appearanc
gravitational-wave-measuring setups and Josephson j
tions. These devices operate at low temperatures and are
susceptible to their environment, so that both the circuit a
its photonic thermal bath have to be described quantum
chanically. Since then the problem of quantization for t
electrical circuit was considered in numerous contributio
~see, e.g., Refs. 7, 8, and 13! with special emphasis on th
dissipative aspects of the problem. More recently interes
this subject was renewed in the context of low-temperat
mesoscopic circuits.16,17 Though within the classical ap
proach the resistivity can be introduced phenomenologica
this is impossible for the quantum case, in particular beca
it will violate the Heisenberg relation. The cause is that ev
if Eq. ~2.3! is valid at the initial moment, a non-Hamiltonia
dynamics does not conserve it in time. Thus, the dissipa
quantum situation should be investigated starting from
more fundamental level i.e., by explicitly describing the th
mal bath. The strategy here is exactly the same as w
studying the dynamics of open quantum systems in gene9

One models the resistance as an open chain of linearLC
circuits~thermal bath! attached to the studied circuit and the
applies the standard canonical quantization scheme to
whole closed Hamiltonian system. In a second step
traces out the bath, since only the degrees of freedom o
initial circuit are considered to be observable. Since the b
consists of harmonic oscillators, this procedure can be r
ized explicitly. Omitting technicalities which can be found
Refs. 7–9 and 11, we will write down the final quantu
Langevin equations

Q̇5
F

L
, ~2.4!

Ḟ52
Q

C
2RGE

0

t

dse2G(t2s)Q̇~s!1h~ t !2RGe2GtQ~0!,

~2.5!

where G is the maximal frequency of the bath and whe
h(t) is the quantum Gaussian noise~random emf! with the
Nyquist spectrum:

K~ t2t8!5
1

2
^h~ t !h~ t8!1h~ t8!h~ t !&

5
\R

p E
0

`

dv
v coth~ 1

2 b\v!

11~v/G!2

3cosv~ t2t8!, ~2.6!

where b51/kBT and we use units in which Boltzmann
constantkB51.

If G is much larger than other frequencies of the probl
~this is the most typical situation!, then fort.0 one can get
the Langevin equation~2.5! in a more standard form
11530
e
of
c-

ery
d
e-
e
s

in
e

y,
se
n

e
a
-
en
l:

he
e

he
th
l-

Ḟ52
Q~ t !

C
2RI~ t !1h~ t !. ~2.7!

In the classical limit~largeT) the spectrum~2.6! would be-
come the Nyquist white noise spectrum

K~ t2t8!5RTGe2Gut2t8u'2RTd~ t2t8!, ~2.8!

but that regime will not be of our concern. Though in th
classical situation the noise can be omitted atT50, for the
quantum case the presence of a resistivity without the co
sponding noise is excluded.

Generally, one should keep the parameterG in Eq. ~2.6!
for the noise correlation function, since otherwise some
vergences will occur. However, provided thatG is large a
concrete form of the cutoff function~here taken to be Lorent
zian! is not essential.9,11

C. Stationary state of the circuit

Equation~2.7! is linear and can be solved exactly. We w
not repeat the derivation of this solution, since it was th
oughly investigated in Refs. 9 and 11. Starting from a
initial state the circuits relaxes to its stationary state, wh
F and Q are independent random Gaussian quantities w
zero averages,̂ F&5^Q&50, and have the following
dispersions:7

^F2&5E dv

2p

v2k~v!

~11v2/G2!@~v22v0
2!21v2R2/L2#

,

^Q2&5E dv

2p

k~v!

~v22v0
2!2L21v2R2

,

k~v!5\Rv coth
\v

2T
, ~2.9!

wherev051/ALC is the frequency of the free circuit. Sta
tistically these variables are independent, which is expres
by the relation^QF1FQ&50. Explicit formulas express-
ing ^Q2& and^F2& in terms of digamma functions are give
in Refs. 11 and 12.

The disorder present in the circuit is characterized by
occupied phase-space volume

S5
DFDQ

\
[A^F2&^Q2&

\2
. ~2.10!

The lower boundS5 1
2 follows from the Heisenberg relation

DFDQ> 1
2 \. It means that the charge and flux fluctua

close to their average values.
It is important to notice that in general the dispersions

not equal to their Gibbsian values

^F2&G5 1
2 L\v0tanh1

2 b\v0 ,

^Q2&G5 1
2 C\v0tanh1

2 b\v0 , ~2.11!
9-2
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which are obtained by assuming a Gibbs distribution for
circuit, valid for a weak coupling with the bath—i.e., whe
taking R→0. That is why^F2&G and ^Q2&G do not contain
the resistanceR anymore, in contrast to the general expre
sions for^F2& and ^Q2&, presented above.

It is natural to identify the average energy stored in
circuit with

U[^HS&5
^F2&
2L

1
^Q2&
2C

. ~2.12!

There is a general argument why the dispersions^F2& and
^Q2& are not equal to their Gibbsian values.11,12 For T→0
the Gibbs distribution predicts that the circuit is in th
ground state of its HamiltonianHS . Indeed, it can be
checked that when the values~2.11! are inserted into Eq
~2.12!, one getsU5 1

2 \v0, just the exact ground-state en
ergy of the free~i.e., R50) circuit. In quantum mechanic
two interacting systems are typically not in pure states, e
though the overall state of the total system may be pure. T
is the intriguing property of quantum entanglement. Thus,
should not expect that a quantum circuit interacting n
weakly with its low-temperature bath will be found in a pu
state. The approximate equalitieŝF2&'^F2&G, ^Q2&
'^Q2&G are valid only for two particular cases: the wea
coupling situation, where in Eqs.~2.9! one takesR→0, and
the classical case\/T→0, where the temperature of the ba
is so high that all signs of the quantum effects disappear
both these situations the entanglement is very weak.

III. CLAUSIUS INEQUALITY

Let one of the parameters of the circuit~e.g., the induc-
tivity L) be varied by an external source fromL to L1dL, in
a certain time interval. The variation is assumed to be v
slow, so that at any moment the distributions of the flux a
the charge are still given by Eqs.~2.9! with the instantaneous
inductanceL5L(t). The variation itself is a accompanied b
the work done by the external source. A part of that work
stored in the circuit, and the rest is transferred to the bat
heat. The energy budget of the variation is given by the fi
law

dU

dL
5

dW

dL
1

dQ
dL

,
dW

dL
5 K ]HS

]L L 52
^F2&

2L2
, ~3.1!

wheredU is the change of the energy stored in the circu
dW is the work done by external source on the system,
the difference between them, the heatdQ, is the energy that
goes from the bath to the system.10,11,14,15

Thermodynamics imposes a general relation between
heat received by the circuit and the change of its phase-s
volumedS. This statement was proposed by Clausius in
last part of the 19th century and became established as o
the formulations of the second law.10,15 There are severa
levels of mathematical rigor by which the Clausius formu
tion can be presented.10,11,14,15For our present purposes
will be enough to use the simplest version:11,12 If the circuit
receives from the bath a positive amount of heatdQ.0,
11530
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then its phase-space volume is increased:d S.0. On the
other hand, if the circuit is subjected to the squeezing of
phase-space volumedS,0, then it has to release heat to th
bath:dQ,0. In formulas it reads

dQ.0 ⇒ dS.0,

dS,0 ⇒ dQ,0. ~3.2!

In the classical domain everybody had a chance to obs
the validity of the Clausius formulation when looking at
squeezed substance which heats its environment~e.g., a
working pomp! or at a heated substance which tends to
crease its volume~e.g., boiling water!. For the reader who is
familiar with the formal structure of thermodynamics w
mention that the Clausius formulation can be presented
the Clausius inequalitydQ<TdS, whereS is the entropy of
the system For our circuit the so-called von Neumann
tropy reads11

S5~S1 1
2 !ln~S1 1

2 !2~S2 1
2 !ln~S2 1

2 !, ~3.3!

which is a well-behaved function, since as we discussed,

variable S is larger than or equal to12 . It starts atS( 1
2 )

50, increases monotonically, and behaves for largeS asS
5 ln S111O(1/S).

Equations~3.2! follow from assumingdQ<T dS upon
noticing dS}1dS.11,12 In particular, forT50 this inequal-
ity produces another version of the Clausius formulation:
heat can be extracted from a zero-temperature thermal b
The remaining inequalitydQ(T50)<0 says that heat can
only be dumped into the bath.

As can be checked directly, if the dispersions of the fl
and charge have their Gibbsian values~2.11!, the Clausius
statement is valid. This fact has received a special atten
in the context of electrical circuits.3,5 More generally, any
statistical system which in its stationary state is describ
by Gibbs distribution has to satisfy the Clausi
formulation.10,11,14,15So it is interesting to ask what will hap
pen with the Clausius formulation if the temperature of t
bath will be low enough—i.e., in the quantum situation. N
tice that the physical relevance of this question is exactly
same as in the classical situation, since it is expected
thermodynamical relations should not change upon lower
the temperature. As we argued above, the dispersions^F2&,
^Q2& are in general not Gibbsian, and the Clausius inequa
need not be satisfied. Moreover, as was shown in Refs
and 12 it can be violated in the quantum regime. Here
will present these results in the context ofRLC circuits.

First of all, we notice that there is a general res
dQ/dL>0 valid in all ranges of the parameters.12 To see the
violation of the Clausius formulation we show that one c
have dS/dL<0. We consider low temperatures i.e., th
quantum frequencyT/\ is comparable with at least one o
the other frequenciesv0 , 1/(CR), andR/L involved in the
problem. Depending on the value of the quality fact
v0L/R one can obtain from Eqs.~2.9! two extreme cases12
9-3
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dS2

dL
52

R

4L2v0

lnS G

v0
D , for

v0L

R
@1, ~3.4!

dS2

dL
52

1

p2L
lnS GL2

CR3D , for
v0L

R
!1. ~3.5!

Recall thatG is assumed to be much larger than any ot
frequency, so that both logarithms are positive, implying t
in both casesdS/dL is negative. The first case is realized
case of high quality~weak damping!; it is then natural that
dS is proportional to the small inverse quality, since forR
50, S is just equal to1

2 ~recall that the temperature is low!
and, thus, does not vary withL. It is seen also that, apa
from a small prefactor,dS is multiplied by the logarithm of
a large number. The second equation describes the
quality situation, and heredS is just proportional to the loga
rithm of a large number. This makes the situation especi
interesting, sinceLdS2/dL is at least of order unity. For both
above cases the change of heat is given by12

dQ
dL

5
\R

2pL2
.0. ~3.6!

Two things have to be noted with this formula: it does n
depend onG, not even through a logarithm, and its ratio
the ground-state energy;\v0 of the circuit just produces
the quality factor \v0 /DQ;Lv0 /R, where D Q
;LdQ/dL. So this zero-temperature heat is potentially o
servable for low-quality circuits. Notice that the very exi
tence of the positive zero-temperature heat contradicts
Clausius inequality.

It should be mentioned that there is a widespread ar
ment against a positive zero-temperature heat, stating
since atT50 the bath is in its ground state, it cannot provi
energy to the circuit. This is clearly incorrect, because if
circuit and bath do interact, the bath by itself cannot be in
ground state. It is always in a mixed state, and this is
property of quantum entanglement. Changing a paramete
the junction can lead to a transfer of zero-point energy fr
the bath to the junction, and this should be identified w
heat, since it is arising from the unobservable bath mode

IV. EXPERIMENTAL RESULTS

In the present section we will briefly discuss the possib
ties of experimental detection of the violation of the Claus
formulation. In general, one needs to observe^F2& and^Q2&
for several different values of the inductivityL. These are
sufficient to recover the corresponding changes of ene
the phase-space volume, and the work according to form
~2.12!, ~2.10!, and~3.1!, respectively. In the second step o
can check the consistency of the results by observing dire
the work done by the external source, as can be done u
an additional control circuit.18 The observed work is then
subtracted from the total energy to get the heat and to c
firm dQ(T→0)Þ0 and dQ/dL.0. Altogether, the main
challenge of the experimental observation is in observa
of the variances.
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We are not aware of experiments which measure b
^F2& and ^Q2& directly. However, there are several expe
ments which report indirect observations of the variances
different regimes. In Ref. 16 the authors considered mes
copic electrical circuits in the context of single-charge tu
neling. The used circuits had thickness of the order of 10
and width of the order of 1mm. The observations allowed
indirect determination of̂Q2&. With the subsequent improv
ment made in Ref. 17, the correspondence with the theo
ical expression~2.9! is perfect. The observations were don
with C54.5 fF, L54.5 nH, and for R in the range
101—103 kV, which corresponds with the quality facto
varying from 1021 to 1023. To avoid thermal noises, th
circuits were cooled down to 20 mK. At such a low tempe
ture quantum effects are really dominating, since the qu
tum frequencyT/\;108 s21 is comparable with the sys
tem’s characteristic frequenciesv0;10921010 s21, R/L
;108 s21, and 1/(RC);109 s21.

Let us now estimate the outcome of our effect with t
above parameters. TakingR5103 kV one gets, from Eq.
~3.6!, DQ;L dQ/dL;10219 J;1 eV, an observable effect
On the other hand, restoring Boltzmann’s constant, the rig
hand side of the Clausius inequalitykBTDS;kBT takes a
much smaller value, since forT520 mK one haskBT
;10225 J;1026 eV. Thus to verify the violation of the
Clausius inequality it suffices to take the sign ofDL as posi-
tive, which brings a positiveDQ.

V. CONCLUSION

The present paper discusses the Clausius inequality,
of the formulations of the second law, in the context of eq
librium RLC circuits. Following Refs. 11 and 12 it is con
firmed that this inequality is broken if the bath temperature
low enough—namely, if the characteristic quantum tim
scale \/T is comparable with other relevant times of th
circuit. The result can be briefly summarized as follows:
calization of the system—i.e., decrease of its entropy
phase-space volume, can be connected with absorptio
heat from the bath. This is in a sharp contrast with the cl
sical experience, where localization occurs with emission
heat. We provide a simple and sufficiently general form
~3.6!, which describes the effect at low temperatures.

One of our main purposes was to compare our result w
recent experiments done on nanoscale low-tempera
circuits.16,17 This comparison led us to conclude that an e
perimental verification of the Clausius inequality breaking
fully within the reach of modern experiments. It is, therefo
hoped that the present paper will stimulate further exp
mentation on the issue whether nonthermodynamic ene
flows occur in nature.

ACKNOWLEDGMENT

This work is part of the research program of the ‘‘Stic
ting voor Fundamenteel Onderzoek der Materie,’’ which
financially supported by the ‘‘Nederlandse Organisatie vo
Wetenschappelijk Onderzoek’’~NWO!.
9-4



s

tt.
-

o-

TESTING THE VIOLATION OF THE CLAUSIUS . . . PHYSICAL REVIEW B 66, 115309 ~2002!
1H. Nyquist, Phys. Rev.32, 110 ~1928!.
2L. Brillouin, Phys. Rev.78, 627 ~1950!.
3R. Landauer, Phys. Rev. A18, 255 ~1978!.
4J. Meixner, J. Math. Phys.4, 154 ~1963!.
5R.L. Stratonovich,Nonlinear, Nonequilibrium Thermodynamic

~Springer, New York, 1992!.
6L. Chua, C.A. Desoer, and E.S. Kuh,Linear and Non-linear Cir-

cuits ~McGraw-Hill, New York, 1987!.
7F. Haake and R. Reibold, Phys. Rev. A32, 2462~1985!.
8B. Yurke and J.S. Denker, Phys. Rev. A29, 1419 ~1984!; B.

Yurke, Am. J. Phys.52, 1099~1984!; 54, 1133~1986!.
9U. Weiss,Quantum Dissipative Systems~World Scientific, Sin-

gapore, 1999!.
10Yu. L. Klimontovich, Statistical Theory of Open Systems~Klu-

wer, Amsterdam, 1997!.
11530
11A.E. Allahverdyan and Th.M. Nieuwenhuizen, Phys. Rev. Le
85, 1799 ~2000!; Th. M. Nieuwenhuizen and A. E. Allahver
dyan, cond-mat/0011389, Phys. Rev. E66, 036102~2002!.

12A.E. Allahverdyan and Th.M. Nieuwenhuizen, Phys. Rev. E64,
056117~2001!.

13J.M. Courty and S. Reynaud, Phys. Rev. A46, 2766~1992!.
14J. Keizer, Statistical Thermodynamics of Nonequilibrium Pr

cesses~Springer-Verlag, Berlin, 1987!.
15R. Balian,From Microphysics to Macrophysics~Springer-Verlag,

Berlin, 1992!.
16A.N. Cleland, J.M. Schmidt, and J. Clarke, Phys. Rev. B45, 2950

~1992!.
17G.Y. Hu and R.F. O‘Connell, Phys. Rev. B46, 14 219~1992!.
18V. Braginki and F. Khalili,Quantum Measurement~Cambridge

University Press, Cambridge, England, 1992!.
9-5


