PHYSICAL REVIEW B 66, 115309 (2002

Testing the violation of the Clausius inequality in nanoscale electric circuits
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The Clausius inequality, one of the classical formulations of the second law, was recently found to be
violated in the quantum regime. Here this result is formulated in the context of a mesoscopic or nanoscale
linearRLC circuit interacting with a thermal bath. Previous experiments in this and related fields are analyzed,
and the possibilities of experimental detection of the violation are pointed out. It is discussed that recent
experiments reached the range of temperatures where the effect should be visible and that a part of the proposal
has already been confirmed.
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I. INTRODUCTION were already realized in experiment.
Our plan for the present paper is the following: In Sec. I
The application of thermodynamics to electric circuits haswe will briefly describe the quanturRLC circuit coupled
a long and remarkably fruitful history® In the late 1920's, With & thermal bath. We continue with an explanation of the
by applying general principles of thermodynamics—in par_Clau:sms inequality in Sec. lll. In the following section we

ticular, the second law—Nyquistieduced the spectrum of analyze some experimental results, and in their context we
the fluctuation force acting in an equilibrium electric circuit. make quantitative estimates for our effect. Our conclusions

This result was much later confirmed by microscopicare presented in the last section.
7—1 .
approaches’~'® and became known as the Nyquist Spec- || ric CIRCUIT AND ITS HEISENBERG-LANGEVIN

trum. Nearly 20 years later Brillou?rgpplied the second law EQUATIONS
to analyze a circuit containing rectifying elements. Another . o
formulation of the second law—the Clausius inequality— A. ClassicalRLC circuit

was considered in the context of electric circuits by The classical scheme of the simpl&st.C circuit is well
Landauef The equilibrium thermodynamics of linear and known. It consist of capacit€, inductance., and resistance
nonlinear circuits was thoroughly analyzed by Stratonovich. R. The loss of voltage across the resistance is given by the
Further research in this field was stimulated by two factsOhm law IR, wherel =dQ/dt is the current and) stands
first, by the technical importance of circuits in electronicsfor the charge. The capacitor enters the total voltag®/&s.

and, second, by their feasibility, which allows one to create~inally, the inductive element induces a magnetic field with

experimental conditions close to those in thebry. the flux ®=LI, which in turn contributes to the voltage
In view of these successful applications of thermodynam{Faraday’s law. Altogether, one finally obtains

ics, one naturally expects that electrical circuits can play also q) Q R

a complementary role by acting as experimental and theoret- Q: T b=— o E(D' (2.1

ical laboratories for testing new ideas and results in statistical
thermodynamics itself. The present paper makes such an arhe first equation is just the definition of the current, and the
tempt in the context of our recent discussion of the applicasecond one expresses the fact that the total voltage in the
bility of the second law to quantum systems coupled to therelosed circuit is zero. Apart from the term connected with the
mal baths*2The general philosophy of the approach is thatresistance, Eqg2.1) can be viewed as the canonical equa-
thermodynamic relations are not introduced axiomatically ottion of motion generated by the Hamiltonian
phenomenologically, but should be derived from first prin- »? Q2

ciples: namely, the laws of quantum mechanics. For linear He==+ =,
systems—e.g., a set of harmonically bounded Brownian par- 2L 2C
ticles interacting with a quantum thermal bath—this programyhereQ and® are the canonical coordinate and momentum.
can be carried out exactly. As the main result we were able tqvithin the language of Brownian motion the contribution of
check some formulations of the second law, whose validitythe resistance in Eq2.1) corresponds to the Ohmic friction

in the classical domain was confirmed several times viawith the damping coefficienR. In the same context cor-
analogous approach&s> One of these formulations—the responds to the inverse strength of the external harmonic
Clausius inequality—appeared to be broken in the low-{otential, andL corresponds to the mass of the Brownian
temperature quantum regime. Here we reformulate this resuparticle.

for a quantum lineaR L C circuit.”8*3Our purpose is rather o

straightforward: we explain that the above violation can be B. Quantum RLC circuit

detected experimentally in low-temperature mesoscopic cir- Equation (2.2) makes obvious that foR=0 one can
cuits. To this end we analyze some known experimental requantize the model regardinh andQ as the corresponding
sults and show that several important parts of our proposalperators:

(2.2
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[Q.@]=if. 23 b= 2 i+ g0, 2.7

Then Egs.(2.1) are just the Heisenberg equations of the c

problem. A quantum description of electrical circuits becamgy the classical limitllarge T) the spectruni2.6) would be-
necessary at the beginning of 1980s with the appearance ghme the Nyquist white noise spectrum
gravitational-wave-measuring setups and Josephson junc-

tions. These devices operate at low temperatures and are very K(t—t')= RTFe—Flt—t’|%2RT5(t_t/) 2.9
susceptible to their environment, so that both the circuit and ' '

its photonic thermal bath have to be described quantum mesut that regime will not be of our concern. Though in the
chanically. Since then the problem of quantization for theclassical situation the noise can be omitted a0, for the
electrical circuit was considered in numerous contributiongjuantum case the presence of a resistivity without the corre-
(see, e.g., Refs. 7, 8, and)1®ith special emphasis on the sponding noise is excluded.

dissipative aspects of the problem. More recently interest in - Generally, one should keep the paramdiein Eq. (2.6)

this subject was renewed in the context of low-temperaturgor the noise correlation function, since otherwise some di-
mesoscopic circuit®*’ Though within the classical ap- vergences will occur. However, provided tHatis large a

proach the resistivity can be introduced phenomenologicallygoncrete form of the cutoff functiothere taken to be Lorent-
this is impossible for the quantum case, in particular becausgian) is not essential:**

it will violate the Heisenberg relation. The cause is that even
if Eg. (2.3) is valid at the initial moment, a non-Hamiltonian
dynamics does not conserve it in time. Thus, the dissipative . o )
quantum situation should be investigated starting from a Equation(2.7) is linear and can be solved exactly. We will
more fundamental level i.e., by explicitly describing the ther-not repeat the derivation of this solution, since it was thor-
mal bath. The strategy here is exactly the same as whePughly investigated in Refs. 9 and 11. Starting from any
Studying the dynamics Of open quantum Systems in geﬁera”nitial State the CirCUitS reIaXeS to |tS Stationary State, Where
One models the resistance as an Open chain of lih€&ar ()] andQ are independent random Gaussian quantities W|th
circuits (thermal bathattached to the studied circuit and then zero averages(®)=(Q)=0, and have the following
applies the standard canonical quantization scheme to tdispersions”

whole closed Hamiltonian system. In a second step one

traces out the bath, since only the degrees of freedom of the <¢2>_J' dw 0’k(w)

|n|t|al_ circuit are Cor_15|dere_zd to be opservable. Since the bath 2 (1+w2/F2)[(w2—w§)2+w2R2/Lz] '

consists of harmonic oscillators, this procedure can be real-
ized explicitly. Omitting technicalities which can be found in
Refs. 7-9 and 11, we will write down the final quantum <Q2>:fd_“’ k(w)
Langevin equations 27 (@2— w§)2L2+ w2R2’

C. Stationary state of the circuit

. O hw
Q=1 2.9 k(w)=%Rw cotho=, 29

. Q U sy . where wy=1/\LC is the frequency of the free circuit. Sta-
¢=- c- R fodse Q(s)+ n(t)—RI'e”"Q(0), tistically these variables are independent, which is expressed
(2.5 by the relation(Q®d +dQ)=0. Explicit formulas express-
ing (Q?) and(®?) in terms of digamma functions are given
whereI" is the maximal frequency of the bath and wherein Refs. 11 and 12.

7n(t) is the quantum Gaussian noigandom emf with the The disorder present in the circuit is characterized by the
Nyquist spectrum: occupied phase-space volume
1 , , ADA d2)(Q?
K=ty =5 (g0 7(t)+ () m(D) 5o APAQ_ J(®INQY (2.10
2 A A
1
:ﬁ_R wdww coth(; Bhiw) The lower boun& = 3 follows from the Heisenberg relation
7 Jo 1+ (w/T)? AD®AQ=3%. It means that the charge and flux fluctuate
close to their average values.
X cosw(t—t'), (2.6 It is important to notice that in general the dispersions are

o . not equal to their Gibbsian values
where B=1/kgT and we use units in which Boltzmann'’s q

constankg=1.

If T is much larger than other frequencies of the problem
(this is the most typical situationthen fort>0 one can get
the Langevin equatiof.5) in a more standard form (Q?)g=3 Chwgtanhg B w,, (2.11

<q)2>G: % Lhwotanr'é Bﬁwo,
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which are obtained by assuming a Gibbs distribution for thehen its phase-space volume is increaséd:>0. On the
circuit, valid for a weak coupling with the bath—i.e., when other hand, if the circuit is subjected to the squeezing of its

taking R—0. That is why(®?) and(Q?) do not contain  phase-space volumit <0, then it has to release heat to the
the resistanc® anymore, in contrast to the general expres-path: ¢dQ<0. In formulas it reads

sions for(®?) and(Q?), presented above.

_ It _is n'atural to identify the average energy stored in the d0>0= dS >0,
circuit with
®? 2 d3<0= dQ<0. 3.2
UE<H5>=<2L>+—<§C>. (2.12 -9 (3.2

In the classical domain everybody had a chance to observe

There is a general argument why the dispersi@h$) and  the validity of the Clausius formulation when looking at a
(Q?) are not equal to their Gibbsian valués? For T-0  squeezed substance which heats its environntery., a
the Gibbs distribution predicts that the circuit is in the working pomp or at a heated substance which tends to in-
ground state of its HamiltoniarHs. Indeed, it can be crease its volumée.g., boiling watex. For the reader who is
checked that when the valug®.11) are inserted into Eq. familiar with the formal structure of thermodynamics we
(2.12), one getsU = 3wy, just the exact ground-state en- mention that the Clausius formulation can be presented as
ergy of the free(i.e., R=0) circuit. In quantum mechanics the Clausius inequalitdQ<TdS whereSis the entropy of
two interacting systems are typically not in pure states, eveithe system For our circuit the so-called von Neumann en-
though the overall state of the total system may be pure. Thifopy read$'
is the intriguing property of quantum entanglement. Thus, we
should not expect that a quantum circuit interacting non- _ 1 1y 1 1
weakly with its low-temperature bath will be found in a pure S=(+2)InE+3)-(E-2)InE-2), 63
state. The approximate equalitiegb?)~(d?)g, (Q?) . o .
~(Q2)¢ are valid only for two particular cases: the weak- which is a well-behaved function, since as we discussed, the
coupling situation, where in Eqé2.9) one takesR—0, and  variableX is larger than or equal tg. It starts atS(3)
the classical cask/T— 0, where the temperature of the bath =0, increases monotonically, and behaves for lagas S
is so high that all signs of the quantum effects disappear. IF=IN2+1+0O(1/%).

both these situations the entanglement is very weak. Equations(3.2) follow from assumingdQ=<T dS upon
noticing dSx +d3 . *12|n particular, forT=0 this inequal-
IIll. CLAUSIUS INEQUALITY ity produces another version of the Clausius formulation: No

heat can be extracted from a zero-temperature thermal bath.

Let one of the parameters of the circiétg., the induc-  The remaining inequalitydQ(T=0)<0 says that heat can
tivity L) be varied by an external source frdnto L+dL, in  only be dumped into the bath.
a certain time interval. The variation is assumed to be very As can be checked directly, if the dispersions of the flux
slow, so that at any moment the distributions of the flux andand charge have their Gibbsian valu@sll), the Clausius
the charge are still given by Eg.9) with the instantaneous statement is valid. This fact has received a special attention
inductance. = L(t). The variation itself is a accompanied by in the context of electrical circuits® More generally, any
the work done by the external source. A part of that work isstatistical system which in its stationary state is described
stored in the circuit, and the rest is transferred to the bath asy Gibbs distribution has to satisfy the Clausius
heat. The energy budget of the variation is given by the firsformulation®141%30 it is interesting to ask what will hap-
law pen with the Clausius formulation if the temperature of the
bath will be low enough—i.e., in the quantum situation. No-
tice that the physical relevance of this question is exactly the
same as in the classical situation, since it is expected that
thermodynamical relations should not change upon lowering
wheredU is the change of the energy stored in the circuit,the temperature. As we argued above, the dispergidns,
dW is the work done by external source on the system, andQ?) are in general not Gibbsian, and the Clausius inequality
the difference between them, the hé, is the energy that need not be satisfied. Moreover, as was shown in Refs. 11
goes from the bath to the systéfitt1415 and 12 it can be violated in the quantum regime. Here we

Thermodynamics imposes a general relation between theill present these results in the contextREC circuits.
heat received by the circuit and the change of its phase-space First of all, we notice that there is a general result
volumeds. This statement was proposed by Clausius in thedQ/dL=0 valid in all ranges of the parametéfsTo see the
last part of the 19th century and became established as one wblation of the Clausius formulation we show that one can
the formulations of the second Id®*° There are several have dX/dL<0. We consider low temperatures i.e., the
levels of mathematical rigor by which the Clausius formula-quantum frequencyl/# is comparable with at least one of
tion can be presentdd!*1*SFor our present purposes it the other frequencies,, 1/(CR), andR/L involved in the
will be enough to use the simplest versidrt? If the circuit  problem. Depending on the value of the quality factor
receives from the bath a positive amount of he@>0, woL/R one can obtain from Eq$2.9) two extreme casé$

L dL TdLr dr \aL /T @D

du dw dQ dW_<aHS>__<q>2>
212"’
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ds.2 R r wol We are not aware of experiments which measure both
= In(—) for >1, (3.4 (P2 and(Q?) directly. However, there are several experi-
dL 4Lwo \@o R ments which report indirect observations of the variances in
different regimes. In Ref. 16 the authors considered mesos-
dz? 1 rL? wol copic electrical circuits in the context of single-charge tun-
dar - 2 M\ cRrel” for ==<1.. (3.9  peling. The used circuits had thickness of the order of 10 nm

and width of the order of Jum. The observations allowed
Recall thatl" is assumed to be much larger than any otheiindirect determination ofQ?). With the subsequent improv-
frequency, so that both logarithms are positive, implying thatment made in Ref. 17, the correspondence with the theoret-
in both casesl>/dL is negative. The first case is realized in ical expressior(2.9) is perfect. The observations were done
case of high qualitfweak dampiny it is then natural that with C=45fF, L=4.5nH, and for R in the range

dX is proportional to the small inverse quality, since fr 10'—10° kQ, which corresponds with the quality factor
=0, 3 is just equal to} (recall that the temperature is lpw varying from 10! to 1073, To avoid thermal noises, the
and, thus, does not vary with. It is seen also that, apart circuits were cooled down to 20 mK. At such a low tempera-
from a small prefactoriS is multiplied by the logarithm of ture quantum effects are really dominating, since the quan-
a large number. The second equation describes the lovwium frequencyT/A~10° s is comparable with the sys-
quality situation, and herd, is just proportional to the loga- tem’s characteristic frequenciesy~ 10°-10°s™!, R/L
rithm of a large number. This makes the situation especially~10° s™*, and 1/RC)~10° s 1.

interesting, sinc&d>?/dL is at least of order unity. For both Let us now estimate the outcome of our effect with the

above cases the change of heat is givelf by above parameters. Taking=10® k() one gets, from Eq.
(3.6), AO~L dQ/dL~101°J~1 eV, an observable effect.
do %R On the other hand, restoring Boltzmann'’s constant, the right-
- m>0. (3.6 hand side of the Clausius inequalikgTAS~kgT takes a

much smaller value, since for=20 mK one haskgT
Two things have to be noted with this formula: it does not~10 *>J~10"%eV. Thus to verify the violation of the
depend orl", not even through a logarithm, and its ratio to Clausius inequality it suffices to take the signAdf as posi-
the ground-state energy# w, of the circuit just produces tive, which brings a positive Q.
the quality factor Zwg/AQ~Lwy/R, where AQ
~LdQ/dL. So this zero-temperature heat is potentially ob-
servable for low-quality circuits. Notice that the very exis- V. CONCLUSION

tence of the positive zero-temperature heat contradicts the ¢ present paper discusses the Clausius inequality, one

Clausius inequality. _ , of the formulations of the second law, in the context of equi-
It should be mentioned that there is a widespread argUyriym RLC circuits. Following Refs. 11 and 12 it is con-

ment against a positive zero-temperature heat, stating thtmed that this inequality is broken if the bath temperature is
since aff =0 the bath is in its ground state, it cannot provide |, enough—namely, if the characteristic quantum time

energy to the circuit. This is clearly incorrect, because if thegeaje /T is comparable with other relevant times of the
circuit and bath do interact, the bath by itself cannot be in itsircit. The result can be briefly summarized as follows: lo-

ground state. It is always in a mixed state, and this is th@jization of the system—i.e., decrease of its entropy or

property of quantum entanglement. Changing a parameter ofyase-space volume, can be connected with absorption of

the junction can lead to a transfer of zero-point energy from,e4; from the bath. This is in a sharp contrast with the clas-

the bath to the junction, and this should be identified withgjca| experience, where localization occurs with emission of

heat, since it is arising from the unobservable bath modes. o4t \We provide a simple and sufficiently general formula
(3.6), which describes the effect at low temperatures.

IV. EXPERIMENTAL RESULTS One of our main purposes was to compare our result with

recent experiments done on nanoscale low-temperature

In the present section we will briefly discuss the pOSSIb"I_CiI’CUitS.lG'N This comparison led us to conclude that an ex-

ties of experimental detection of the violation of the Clausius__ - e L . L
formulation. In general, one needs to obsef®&) and(Q2) perimental verification of the Clausius inequality breaking is

for several different values of the inductivity. These are fully within the reach of modern experiments. It is, therefore,

o . hoped that the present paper will stimulate further experi-
sufficient to recover the corresponding changes of energ entation on the issue whether nonthermodynamic energy
the phase-space volume, and the work according to formulaﬁows occur in nature
(2.12, (2.10, and(3.1), respectively. In the second step one '
can check the consistency of the results by observing directly
the work done by the external source, as can be done using
an additional control circu® The observed work is then
subtracted from the total energy to get the heat and to con- This work is part of the research program of the “Stich-
firm dQ(T—0)#0 and dQ/dL>0. Altogether, the main ting voor Fundamenteel Onderzoek der Materie,” which is
challenge of the experimental observation is in observatioffinancially supported by the “Nederlandse Organisatie voor
of the variances. Wetenschappelijk OnderzoeKNWO).
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