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First-principles approach to spin-orbit coupling in dilute magnetic semiconductors
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We describe the implementation of a spin-polarized fully relativistic plane wave pseudopotential density
functional method. Using the method, we compare the calculated electronic band structures of hypothetical
ferromagnetic zinc blende structure MnAs and MnSe within the scalar-relativistic and fully relativistic pseudo-
potential approximations. We extract the conduction band and valence band exchange constants and extrapolate
to the low concentration limit following a simple mean field approximation. Finally we investigate how
strongly the exchange constants are affected by the spin-orbit term and provide a computational justification for
extracting these constants from scalar-relativistic calculations.
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I. INTRODUCTION

Dilute magnetic semiconductors~DMS’s! are by now a
well established class of materials. Conventional mangan
doped DMS’s are based on II-VI materials such as ZnSe
ZnTe, in which very high manganese concentrations can
achieved. In fact thin layers of pseudomorphic zinc blen
MnSe can be stabilized artificially by means of nonequil
rium epitaxial growth techniques despite the fact that b
MnSe crystallizes in the NaCl structure.1,2 In contrast bulk
MnAs crystallizes in the hexagonal NiAs structure and h
not been stabilized in the zinc blende structure.3 Neverthe-
less, DMS’s based on III-V materials such as GaAs or In
have recently been fabricated by means of low-tempera
molecular beam epitaxy with manganese concentrat
reaching 10%.4,5

Despite the large number of experimental and theoret
works dedicated to the electronic and magnetic propertie
DMS’s there are many questions that remain unanswere1,6

For example a recently proposed mean-field model rece
a significant amount of attention since it allows the quant
tive prediction of the Curie temperature—a parameter of
most technological interest—for a variety of ferromagne
semiconductors.7,8 However, some of the most important p
rameters entering the mean-field model, the so-called c
duction band and valence band exchange constantsNa and
Nb are only known for a limited number of relevan
materials7.

In principle it is straightforward to extractNa and Nb
from appropriate band structure calculations.9 However the
experimentalNb is properly defined as the exchange co
stant for theG8 level of the host semiconductor, implyin
that an exact theoretical treatment of the exchange cons
needs to take the effect of spin-orbit coupling into accou
Nevertheless, band structure calculations that are used to
termine the exchange constants in DMS materials are usu
carried out within the scalar-relativistic approximation.

The results presented in this paper are the first applica
of a recent implementation of spin-orbit coupling within th
ab initio pseudopotential scheme of density functional the
to magnetic systems. Our motivation for including spin-or
coupling explicitly in our study comes from the fact th
there are a number of spin-dependent effects in semicon
0163-1829/2002/66~11!/115208~9!/$20.00 66 1152
e-
r
e

e
-
k

s

s
re
s

al
of

d
-
t-

n-

-

nts
t.
de-
lly

n

y
t

c-

tors that are governed by spin-orbit coupling. Examples
the spin-relaxation of conduction electrons10,11 and aniso-
tropic superexchange and weak ferromagnetism.12–14 Very
recently anisotropic ferromagnetic coupling in DMS’s h
also been attributed to the effect that spin-orbit coupling
on the valence band in these materials.7,8

A brief review of the method for non-spin-polarize
systems15 is given in Sec. II A of this paper, followed in Sec
II B by details on generalization of the local spin dens
approximation to include spin-orbit coupling in spin
polarized systems. Symmetry considerations are discusse
Sec. II C.

In Sec. III we apply the scalar- and fully relativisti
pseudopotential methods to hypothetical ferromagnetic z
blende MnAs and MnSe. This allows us to study the int
play between spin-orbit coupling and exchange interaction
these materials. We find that the generally accepted Kon
like form of the p-d interaction cannot account for exa
levels of the relativistic bands structure. However, the qu
titative effect is small compared to the large exchange sp
ting and affects the exchange constants little.

II. COMPUTATIONAL TECHNIQUES

A. Spin-orbit coupling in the pseudopotential scheme

The ab initio pseudopotential method16–18 has become a
standard tool in many areas of electronic structure calc
tion. Even magnetic compounds containing 3d transition
metal ions now lie in the realm of the plane wave pseudo
tential approach of density functional theory.19,20 In order to
obtain high precision results it is necessary to include re
tivistic effects when calculating the electronic structure
materials containing third row elements.21 Hence it is now
standard procedure to create scalar-relativistic pseudopo
tials that include the kinematic relativistic effects~mass-
velocity and Darwin term! from the fully relativistic all-
electron solution of the atom.22–26

In the scalar relativistic approximation, however, the sp
orbit interaction is only effectively taken into account by th
construction ofj-averaged pseudopotentials for each angu
momentum l. Consequently no spin-orbit splittings ar
©2002 The American Physical Society08-1
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G. THEURICH AND N. A. HILL PHYSICAL REVIEW B 66, 115208 ~2002!
present in the resulting band structure. For cases where t
splittings play a major role it is mandatory to include sp
orbit coupling explicitly.

For periodic systems the spin-orbit interaction is approp
ately written in the form27

HSO5
\

4m0
2c2

~¹W V3pW !•sW . ~1!

It is strongest close to the ion cores where the gradient of
potential is largest. However, this is the region which is co
ered by the pseudopotentials. Thus it is impossible to add
spin-orbit effecta posteriorito the scalar-relativistic pseudo
potential results; instead the pseudopotentials themse
must account for spin-orbit coupling. For the nonloc
pseudopotential scheme it has been shown by Kleinman
all relativistic effects are captured to ordera2, wherea is
the fine structure constant, when the pseudopotential com
nents are constructed from the major component of the f
relativistic solution of the atomic problem.28 Naturally, the
pseudopotentials become dependent on the total angular
mentumj and operate in orbital and spin space. The det
of the implementation ofj-dependent pseudopotentials f
non-spin-polarized systems have been given in an ea
paper15 so we do not repeat them here. However, we po
out that the construction of the pseudopotential operator
tomatically leads to the correct symmetrization of the sp
orbit term in the crystal environment. All solid state calcu
tions reported in this paper were carried out usingSPINOR,
our code capable of including spin-orbit coupling for sp
polarized systems, which is freely available29 under the GNU
public license.

In Fig. 1 we show our ionic pseudopotentials for mang
nese and selenium that were created following the fully re
tivistic procedure, within the Troullier-Martins scheme.25

The core radii for all components of the manganese pseu
potential were set at 2.20 a.u. and thes component served
as the local potential in the Kleinman-Bylander tran
formation.30 For the selenium components 2.30 a.u. was c
sen for thes andp components and 2.50 a.u. for thed com-
ponent, which was the local component in this case. Due
non-negligible overlap of the valence electrons with the c

FIG. 1. The ionic pseudopotentialsVl 61/2(r ) and the local part
Vloc for manganese~left! and selenium~right!.
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charge density we applied nonlinear core corrections31 with a
partial core radius of 0.70 a.u. to the manganese pseud
tential.

B. General local spin density approximation

In addition to the use ofj-dependent pseudopotential
extensions also have to be made to the conventional den
functional formalism in order to treat spin-orbit couplin
fully relativistically. The details of how to implement spin
orbit coupling in the plane wave pseudopotential method
a self-consistent treatment of non-spin-polarized syste
have been given previously by the authors.15 Here we de-
scribe the further developments required when spin-o
coupling is included in the calculation ofspin-polarizedsys-
tems. In this case an additional spin-dependent term
present in the Hamiltonian, arising from the exchang
correlation term of spin density functional theory~SDFT!
~Refs. 32–34!

Hxc5
dExc@n,mW #

d~n,mW !
. ~2!

Here n and mW are the fundamental variables of SDFT a
stand for the electron density and spin polarization, resp
tively. UsuallyHxc is approximated by the local spin densi
approximation~LSDA!. For the special case of collinear sp
polarizations, the exchange-correlation term does not cou
the spin degree of freedom to the orbital motion. Then e
Kohn-Sham function is automatically an eigenstate of one
the components of the Pauli spin operatorsW , which is typi-
cally chosen to be thez component.

As is well known, the spin-orbit term of Eq.~1! mixes the
spin eigenstates. For non-spin-polarized systems, i.e., fomW
50 at every point in space, this does not cause any com
cations. However, for spin-polarized systems the sp
polarization for each individual Kohn-Sham functionc i
needs to be expressed in the general form

mW i~rW !5c i* ~rW !sW c i~rW ! . ~3!

It is clear that the sum over all occupied states can produ
noncollinear total spinpolarizationmW and the usual collinea
assumption fails. It has been shown that the generalizatio
Hxc to noncollinear spin polarizations is straightforward
the case of the local density approximation.34–36 The
exchange-correlation term can be written in the general lo
spin density approximation~GLSDA! as

Hxc5axc12321bW xc•sW , ~4!

where

axc~rW !5
dExc@n,mW #

dn~rW !
5

dExc@n,m#

dn~rW !
~5!

and
8-2
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bW xc~rW !5
dExc@n,mW #

dmW ~rW !
5

dExc@n,m#

dm~rW !
m̂~rW ! . ~6!

Herem̂(rW) denotes a unit vector in the direction of the sp
polarization at pointrW. Since at each point we can rotate t
reference system in the direction of the spin polarization
follows that the functional derivatives of the exchang
correlation energy with respect to the electron density
spin polarization, respectively, are equivalent to the exp
sions of conventional LSDA. We use the parametrization
Perdew and Zunger37 to approximate the density and pola
ization dependent exchange-correlation energy.

C. Symmetries

We pointed out in the last section that without the effe
of spin-orbit coupling it is always possible to separate
spin polarized problem according to thez component of the
electron’s spin. The up- and down-spin problems can
solved independently, coupled only by the requirement
overall self-consistency. Without spin-orbit coupling the sp
polarization direction is completely arbitrary and no coupli
to the lattice exists. Consequently the Hamiltonian refle
the symmetry of the full space group of the crystal, and b
the electron densityn(rW) and the magnitude of the spin po
larization m(rW) can be obtained by symmetrization from
reduced set of states in the Brillouin zone.38 Note further that
the complex conjugate operationK0 also enters the symme
try group, resulting in a twofold degeneracy of states w
opposite sign of their Bloch wave vectors. Interesting
since K0 does not invert the spin quantum number of t
state, this symmetry holds for any collinear spin polarizat
even for magnetic orders that are not invariant under t
reversal such as ferromagnetically ordered states.

The presence of the spin-orbit term, however, prevents
separation of the problem into up and down compone
Then each symmetry operation that is applied to the lat
also affects the spin polarization. Thus, in general the nu
ber of symmetry operations will be reduced from the f
space group of the crystal to those that preserve the
polarization at the same time. For clarity we adopt a notat
similar to that of spin space groups39 ~SSG’s! and write an
arbitrary symmetry operation as

$aSuaRutW%, ~7!

whereaS andaR are general 333 rotation matrices andtW is
a spatial translation vector. The transformations are defi
by their action on the electron density

$aSuaRutW%n~rW !5n@aR
21~rW2tW !# ~8!

and spin polarization

$aSuaRutW%mW ~rW !5asmW @aR
21~rW2tW !#. ~9!

The action on a two-component spinorc(rW) is given by

$aSuaRutW%cW ~rW !5R1/2~as!c@aR
21~rW2tW !#, ~10!
11520
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whereR1/2 is the 232 spin rotation matrix corresponding t
the rotationaS . For a general rotation with Euler anglesa,
b, andg the spin rotation matrix is40

S e2(1/2)iacos1
2 be21/2ig 2e2(1/2)iasin1

2 be11/2ig

e1(1/2)iasin10
1be21/2ig e1~1/2!iacos1

2 be11/2 ig D .

~11!

The restrictions introduced by the coupling of the spin a
orbital degrees of freedom can only be satisfied if we requ
aS5aR for every proper rotation in the symmetry group.41

However, in the case of an improper rotationaR we note that
the spin polarization is unchanged under spatial inversioJ
due to its axial nature, and thusaR5JaS .

We note further that complex conjugation no longer re
resents an allowed symmetry operation when the spin-o
term is included. However, as is well known, the spin-or
term is invariant under the action of the time reversal ope
tor

K52 isyK0 . ~12!

This leads to Kramer’s degeneracy in the case of param
netic band structures. However, for spin-ordered systems
isolated operationK is not a symmetry operation either sinc
it leads to the equalitymW (rW)52mW (rW) at all points in space.
On the other hand if the time-reversal operation is coup
with certain spatial symmetry operations we can constr
allowed transformations. In order to illustrate this fact, p
ture a collinear ferromagnetic structure. Then a rotation
180° along an axis perpendicular to the magnetization ax
not a symmetry operation even if it leaves the chemical cr
tal unchanged. But if the same rotation is followed by t
time-reversal operation the original magnetization is
stored.

The underlying symmetry of the chemical lattices stud
in this work is that of the cubicTd point group which con-
tains the 24 spatial rotations 1,8C3 ,3C2 ,6sd , and 6S4.
Then, for the scalar-relativistic calculations, the general po
group operation has the form$1uaRu0%, whereaR stands for
any of the 24 rotations inTd . For the fully relativistic case,
however, the general point group operations take on the f

K8$aSuaRu0%, ~13!

whereaS5JaR or aS5aR depending on whether the rota
tion aR contains spatial inversion or not. The operationK8
refers to either identity or the Kramers’ operator defined
Eq. ~12!. The resulting tetragonal point group for the ca
with spin polarization along the@001# direction only has
eight symmetry operations which are given in Table I.

TABLE I. Point group operations for zinc blende structure wi
net magnetization along@001#.

K8 1 1 1 1 K K K K
aS 1 C2z C4z C4z

21 C2x C2y C2xy C2xȳ

aR 1 C2z C4z
21 C4z C2x C2y sxy sxȳ
8-3
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III. RESULTS AND DISCUSSION

In this section we apply the scalar-relativistic and fu
relativistic pseudopotential approximations to the cases
zinc blende structure MnSe and MnAs. For both mater
we consider the ferromagnetic spin alignment. We note
although MnSe can be stabilized in the zinc blende struc
it does not exhibit ferromagnetism but rather orde
antiferromagnetically.2,42 DMS materials based on II-V
compounds, however, show paramagnetic behavior.1 Bulk
MnAs on the other hand is more difficult to stabilize in th
zinc blende structure and only low concentrated III-V-DMS
have been grown successfully.4 This class of DMS’s orders
ferromagnetically with transition temperatures up to 1105

Zinc blende MnSe and MnAs can thus be viewed as the h
concentration limit of the appropriate DMS material. In t
case of MnSe the enforced ferromagnetic order models
effect of an external magnetic field which produces a fin
magnetization. For MnAs it corresponds to the actual LS
ground state of the high concentration limit.

A. A benchmark study; fully relativistic ZnSe

First, as a test case of our implementation, and as a be
mark to compare our later results for ferromagnetic mat
als, Fig. 2 shows the fully relativistic band structure of no
spin-polarized zinc blende ZnSe obtained usingj-dependent
pseudopotentials for zinc~not shown! and selenium~Fig. 1!.
This is, to our knowledge, the first published relativistic ba
structure calculation of ZnSe based on theab initio pseudo-
potential scheme. Chelikowsky and Cohen previously de
mined the relativistic band structure of ZnSe based on
empirical pseudopotential method, excluding the Znd
states from the valence.43

We find that the split-off hole band is clearly separat
from the light hole (lh), heavy hole (hh) degeneracy atG.
Further thelh, hh degeneracy, which is present along t
L-G-X line for scalar-relativistic calculations, is lifted by th
spin-orbit coupling term. The calculated spin-orbit splittin
of the top of the valence band at the Brillouin zone cente
0.41 eV is reasonably close to the experimentally availa
value of 0.42 eV.44,45Also, the splitting of 0.24 eV at theL

FIG. 2. Fully relativistic band structure of ZnSe.
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point compares well with experimental data that gives
range between 0.20 and 0.30 eV for this splitting.44,45 It is
interesting to note the lifting of the threefold degeneracy
the zinct2 d states, whereas thed states ofe symmetry seem
to be unaffected by spin-orbit coupling .

Finally we observe that the band gap for relativistic Zn
is halved compared to the value we obtain in the no
relativistic approximation. This reduction of the band gap
due to well documented relativistic band shifts which a
larger for the antibonding bottom of the conduction ba
than for the bonding top of the valence band.46 In addition
the spin-orbit splitting of the valence band top further r
duces the band gap in the fully relativistic result.

B. Scalar-relativistic pseudopotential results
for MnAs and MnSe

Figures 3 and 4 show our calculated band structures
ferromagnetic zinc blende MnAs and MnSe, respectively,
ing j-averaged scalar-relativistic pseudopotentials. The lat

FIG. 3. Band structure for majority and minority spin states
hypothetical ferromagnetic zinc blende MnAs at a lattice const
of 5.65 Å. The highlighted splittings are discussed in the text.

FIG. 4. Band structure for majority and minority spin states
hypothetical ferromagnetic zinc blende MnSe at a lattice constan
5.65 Å. The highlighted splittings are discussed in the text.
8-4
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FIRST-PRINCIPLES APPROACH TO SPIN-ORBIT . . . PHYSICAL REVIEW B 66, 115208 ~2002!
constant has been chosen to match the experimental val
5.65 Å for GaAs and ZnSe, so as to simulate the experim
tal situation where these substrates are often used. All ca
lations have been carried out for the ideal zinc blende st
ture, and possible distortions have been neglected.
distinction between minority and majority bands is given
the z component of the electron spin, which in the scal
relativistic approximation remains a good quantum numb
The striking similarity of the two band structures emphasi
the fact that the underlying ionic potentials in MnAs a
MnSe are very similar. However, the position of the Fer
level, which is determined by the number of electrons
formula unit, is quite different for MnAs and MnSe wit
respect to the majority spin states. For MnAs the Fermi le
lies right in the center of the upper most majority valen
band manifold whereas for MnSe, which has one additio
electron per formula unit, it resides closer to the top of
same valence band. The position of the Fermi level w
respect to the minority states is almost identical in both m
terials, only barely cutting through the bottom of the lowe
unoccupied band, leading to an almost half-metallic el
tronic structure for MnAs as has been reported earlier.3

The main features of the overall band structures for b
MnAs and MnSe are determined by the energetic position
the spin-polarized manganesed states and their influence o
the cationp bands, driven by a strongp-d hybridization in-
teraction. To analyze this in more detail we show the p
jected density of states for MnSe in Fig. 5. The density
states for MnAs is very similar to that of MnSe~as one can
imagine from the similar band structures! and is not shown
here.

In compliance with Hund’s first rule we find that the e
change interaction splits the strongly localized manganed
states into a group of occupied majority states and a grou
unoccupied minority states. In addition, the projected den
of states of Fig. 5 reveals that some of the occupied vale
states in MnSe have strong Se-p character. As a result of thi
hybridization small spin polarization is induced on the
sites. Furthermore the antibonding top of the majority v

FIG. 5. Total and projected density of states for majority a
minority spin states of hypothetical ferromagnetic zinc blen
MnSe at a lattice constant of 5.65 Å.
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lence band is pushed upwards by the hybridization, aw
from the bonding states at around25 eV. The hybridization
interaction is smaller for the minority states since the e
change interaction raises the minorityd states several eV
above the valence band top. Nevertheless, even for the
nority states,p-d hybridization is evident in the projecte
density of states, leading to a small downwards shift of
minority valence band. Thus the exchange splitting of
manganesed states introduces a sizable splitting of th
mostlyp-like valence band in MnAs and MnSe that is opp
site in sign, meaning that the majorityp bands lie higher in
energy than the minorityp bands. The relevant splittings ar
labeledD«(v) in Figs. 3 and 4. The thick arrows atG high-
light the states that strongly interact via hybridization.

Figures 3 and 4 further show a small splitting of thes-like
conduction band atG labeledD«(c). In contrast to thep-like
valence states we find the splitting of the conduction band
be positive. To understand whys- and p-like states are af-
fected differently by the exchange splitting of the mangan
d states, it is important to realize that thes-like states atG
cannot hybridize with states ofd symmetry. Thus it is direct
Coulomb exchange alone that leads to the observed con
tion band exchange splitting.

Despite their different nature, it is possible and conveni
to describe thes-d andp-d interactions in DMS materials in
a formally similar fashion. Since thes-d interaction is a re-
sult of direct Coulomb exchange it is conveniently written
the Kondo form

Hs-d52N0aSW •sW, ~14!

whereN0 is the number of unit cells in the crystal,a is the
exchange integral, andSW andsW are the spin operators of th
manganesed states and thes-like conduction band electrons
respectively. Schrieffer and Wolff have shown that the h
bridization interaction between localized impurity levels a
the delocalized host states can also be transformed in
Kondo-like form,47

Hp-d52N0bSW •sW. ~15!

The Schrieffer-Wolff transformation relates the effective e
change integral (b), which will be negative in general, to th
matrix elements of the interaction potential between
bands of the crystal.

Following Eqs.~14! and ~15! it is straightforward to ex-
tract the exchange constantsN0a and N0b from the bulk
band structures.9 Since all spins are collinear in our scala
relativistic calculation,D«(c) andD«(v) simply need to be
divided by half of the total spin polarization given in units
Bohr magnetons. The results that we obtain from our sca
relativistic calculations for MnAs and MnSe are compiled
Table II and will be discussed in more detail in the followin
section. It is worth pointing out once more that the pres
results for the exchange constants are derived from calc
tions in the high concentration limit and as such are
directly comparable to the values obtained by Sanvitoet al.
from a low concentration fit of large super cell calculations48

e

8-5
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G. THEURICH AND N. A. HILL PHYSICAL REVIEW B 66, 115208 ~2002!
C. Mean-field interpolation

Within a simple mean-field approximation it is possible
extrapolate the high concentration results of the last sec
to the experimentally accessible low concentration limit.
the mean-field model, the interaction between the delo
ized carriers and the localized manganesed moments is ap-
proximated by an interaction with an effective moment
strengthx^S&, wherex is the effective manganese concent
tion and^S& is the average manganesed moment. Taking the
average moment along thez direction, the two interaction
terms simplify to

Hs-d52N0ax^S&sz ~16!

and

Hs-p52N0bx^S&sz . ~17!

In addition to the interactions of Eqs.~16! and ~17! a
complete description of the spin interactions in semicond
tors must also contain the spin-orbit term. Furthermore, if
external magnetic field is applied, as is the case for the p
magnetic II-VI DMS materials, the Zeeman and Land
splittings must, in principle, also be taken into accou
However, for wide-gap host materials such as ZnSe, both
effective electron mass andg factor are reasonably close t
1. As a result, the Landau and Zeeman splitting can be
glected leading to only two competing spin-dependent te
in the Hamiltonian, exchange and spin-orbit coupling.

FIG. 6. Splitting of the Ga12xMnxAs valence and conducto
band edges as a function of manganese concentrationx, assuming a
manganese polarization of 100% and using the computed spin
larization from Table II. The optical transitions between the valen
and conduction band are also shown for circularly polarized lig

TABLE II. Spin-polarization and exchange constants for Mn
and MnSe.

uM u (mB) N0a ~eV! N0b ~eV!

MnAs scalar relativistic 3.44 0.18 22.82
MnSe scalar relativistic 4.42 0.28 21.85
11520
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The valence band spin-orbit splittings in GaAs~Ref. 15!
and in ZnSe~Sec. III A! are roughly one order of magnitud
smaller than the values forN0b of Table II, suggesting tha
the region around 10% manganese concentration will
most interesting. In order to study this region we add
exchange terms of Eqs.~16! and ~17!, using the exchange
constants of Table II, to an eight bandk•p matrix for GaAs
which contains the spin-orbit splitting parameterD at theG
point. The resulting splittings of the valence and conduct
band edges are shown in Fig. 6. A 100% manganese po
ization is assumed in the calculation. Forx,0.04 the ex-
change interaction between the free carriers and the local
manganesed states can be treated as a perturbation compa
to the spin-orbit term. In this concentration regime, t
heavy-hole, light-hole degeneracy splits into four states, w
equal spacing of1

3 N0bx^S& between the states. Forx
.0.04 the exchange interaction starts to dominate over
spin-orbit term and the spin splitting becomes more com
cated. On the right side of Fig. 6 we show the optical tra
sitions for circularly polarized light at 10% manganese co
centration.

The labels of the light hole and split-off hole states in F
6 are only approximate, since the exchange term mixes th
four states. However, ourk•p calculations show that the
states at this manganese concentration retain at least 85
their original character. We therefore plot in Fig. 7 the hea
hole and light hole 1s exciton splitting of Ga12xMnxAs as a
function of manganese concentration. Note that the light h
exciton splitting is not a linear function of the mangane
concentration even within the mean-field approximation a
result of the interplay between spin-orbit coupling and e
change interaction. This needs to be taken into account w
extracting exchange constants from experimental data.

Finally we show in Fig. 8 the spin splitting of the valenc
band edge for Ga12xMnxAs as a function of manganese co
centration from 0 to 100%, using the samek•p Hamiltonian
as before. Only the character of the heavy hole states rem
unchanged for the entire concentration range. This is du

o-
e
.

FIG. 7. Splitting of the 1s heavy hole and light hole exciton
level in Ga12xMnxAs as a function of manganese concentrationx,
assuming a manganese polarization of 100% and using the c
puted spin polarization from Table II.
8-6
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the fact that the spin and orbital part can be separated
these states rendering them eigenstates of the exchang
teraction at the same time. Light holes and split-off hol
however, are strongly mixed by the exchange term for h
manganese concentrations. The most interesting featur
Fig. 8 in the current context is the spin-orbit splitting of th
two spin-split groups of valence bands in the high conc
tration limit, since the fully relativistic pseudopotenti
method allows us to obtain these splittingsab initio. To first
order the splitting of these states is equal to1

3 D, whereD is
the spin-orbit parameter of GaAs. We therefore expect to
a splitting of approximately 120 meV. The values found
exact diagonalization, shown in Fig. 8, agree with the
proximate result to within a fewmeV. The difference arises
from second order terms.

D. Fully relativistic pseudopotential results

The fully relativistic pseudopotential method developed
Sec. II of this paper allows us to obtain self-consistentab
initio solutions including spin-orbit and exchange couplin
It is particularly interesting to examine whether the valen
spin splitting pattern really follows the form suggested by
k•p model in the previous section.

As before we will consider here the high concentrati
limit, i.e., we will study hypothetical ferromagnetic MnA
and MnSe in the zinc blende structure. Assuming the m
netization is along thez axis of the conventional zinc blend
unit cell only the tetragonal symmetry operations of Tabl
are allowed. Hence, in contrast to the scalar-relativistic ca
it is necessary to plot the dispersions parallel and perp
dicular to the spin-polarization axis.

Figure 9 shows the fully relativistic band structure of fe
romagnetic MnAs with pointsX, U, andK in the plane per-
pendicular to@001#, the direction of magnetization. In Fig

FIG. 8. Splitting of the Ga12xMnxAs valence edge as a functio
of manganese concentrationx assuming a manganese polarizati
of 100% and using the computed spin polarization from Table
Only the heavy hole states are eigenstates across the entire ran
x.
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10 the same points lie in the plane parallel to the direction
magnetization. Figures 11 and 12 show the dispersions
MnSe along the same Brillouin zone directions.

Compared to the scalar-relativistic case the separation
minority and majority states is a little more subtle. In th
fully relativistic case theexpectation valueof the spin along
the magnetization axis serves as the label. If for a particu
state this expectation value is negative the considered s
points mainly opposite to the net spin-polarization axis a
thus belongs to the minority channel and vice versa.

As expected, spin-orbit coupling does not lead to a dra
modification of the scalar-relativistic band structure of MnA
and MnSe. However, along the directions that lie in the pla
parallel to the magnetization axis~Figs. 10 and 12! all the
remaining degeneracies in the valence band are lifted. O
along theG-X direction perpendicular to the magnetizatio

.
e of

FIG. 9. Relativistic band structure for majority and minori
spin states of hypothetical ferromagnetic zinc blende MnAs a
lattice constant of 5.65 Å. The pointsX, U, andK lie in the plane
perpendicular to the direction of magnetization.

FIG. 10. Relativistic band structure for majority and minori
spin states of hypothetical ferromagnetic zinc blende MnAs a
lattice constant of 5.65 Å. The pointsX, U, andK lie in the plane
parallel to the direction of magnetization.
8-7
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axis does the interplay between thekW dependent spin-orbi
interaction and thekW independent, effective exchang
correlation fieldbW xc(rW) lead to an accidental degeneracy
two valence bands.

In this study we are particularly interested in the effe
that the spin-orbit coupling term has on the states at
Brillouin zone center. Figure 13 summarizes the relevant
formation for the MnAs valence band states. The splitting
62.405 eV is that obtained from the scalar-relativistic ba
structure which led to the valence band exchange cons
calculated in Sec. III B and used throughout Sec. III C. T
levels of the six exchange and spin-orbit split states are th
from our fully relativistic band structure calculation.

We find that theab initio spin-orbit splitting between the
majority states is 20 to 30% smaller than that obtained fr
thek•p analysis of Sec. III C, and for the minority states it

FIG. 12. Relativistic band structure for majority and minori
spin states of hypothetical ferromagnetic zinc blende MnSe
lattice constant of 5.65 Å. The pointsX, U, andK lie in the plane
parallel to the direction of magnetization.

FIG. 11. Relativistic band structure for majority and minori
spin states of hypothetical ferromagnetic zinc blende MnSe
lattice constant of 5.65 Å. The pointsX, U, andK lie in the plane
perpendicular to the direction of magnetization.
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even 60% below thek•p value. The apparent reason for th
overestimation by thek•p method is that, unlike the pseudo
potential calculations here, they are not completely s
consistent. Thus the band structure in the pseudopote
calculation will relax according to the correct filling of th
available states. Notice that the majority valence band
lies above the Fermi level, whereas the corresponding mi
ity states are completely occupied.

There is a second difference between theab initio calcu-
lations considered here and the model used in Sec. III C
the model Hamiltonian the interaction between As-p and
Mn-d states was included effectively by a Kondo-like ter
~15!. However, from the density of states plot in Fig. 5 w
can see that these states hybridize very strongly. This is
ticularly true at theG point. Since the spin-orbit interactio
introduced by manganese is smaller than that arising fr
arsenic, both results can be reconciled.

Finally we answer the question of how strongly the v
lence band exchange constantN0b is affected by spin-orbit
coupling. Assuming the validity of the Schrieffer-Wol
transformation for spin-dependent potentials there are
ways in which spin-orbit coupling could change the scal
relativistic result. First the net magnetization could be
fected by the self-consistent treatment of spin-orbit coupli
This seems especially plausible because the Fermi level
right through stronglyp-d hybridized, spin-orbit coupled
states~see Figs. 9–12!. Second, as already discussed, t
valence band level splittings will be more complicated in t
self-consistent treatment of the problem.

However, we find that the net spin polarizations for MnA
and MnSe are practically unaffected by spin-orbit coupli
and we obtain values of 3.44mB for MnAs and 4.42mB per
formula unit for MnSe as in the scalar-relativistic case.
addition, the small shifts of the relativistic exchange sp
tings discussed in Fig. 13 have only a minor effect on
exchange constants listed in Table III.

a

FIG. 13. Schematic of the valence band energy levels atG for
MnAs.

TABLE III. Spin-polarization and exchange constants for MnA
and MnSe.

uM u (mB) N0a ~eV! N0b ~eV!

MnAs fully relativistic 3.44 0.18 22.80
MnSe fully relativistic 4.42 0.28 21.86

a

8-8
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IV. CONCLUSION

We performed scalar-relativistic and fully relativistic ban
structure calculations for MnAs and MnSe. Spin-orbit co
pling lifts the triply degenerate exchange split valence ba
states at theG point and we find that the exact value of th
splitting can only be obtained in a completely self-consist
treatment that includes the effect of spin-orbit coupling. A
though the spin-orbit splittings are absent in the sca
relativistic treatment we find that the valence band excha
constants (N0b) determined for MnAs and MnSe are un
changed when treated fully relativistically. Thus our resu
.
v.

u

ci

s.

y

n
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provide computational support for scalar-relativistic calcu
tions of the conduction and valence band exchange const
in dilute magnetic semiconductors.
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