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We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-
binding model ofw-conjugated electrons, with rlinteractions for large. In both the weak-coupling limit
(defined byWs=U) and the strong-coupling limidefined byW<U), whereW is the bandwidth and) is the
on-site Coulomb interaction, we derive and analyze effective-particle models. We compare these to density
matrix renormalization groupfDMRG) calculations, and find good agreement in the extreme limits. We use
these analytical results to interpret the DMRG calculations in the intermediate-coupling reigfimeed by
W~U), most applicable to conjugated polymers. We make the following conclusi@hdn the weak-
coupling limit the bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-
band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative
coordinate are degenerate. Thus, theA? and 1°A; states are degenerate in this lin{@) In the strong-
coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to
holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet
excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts.
(3) In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large
dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimer-
izations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are
present(4) For all coupling strengths an infinite number of bound states exist fanteractions for an infinite
polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one
dimension, the progression of states does not follow the Rydberg series. In practice, excitons whose particle-
hole separation exceeds the length of the polymer can be considered unf®uitle DMRG calculated
exciton excitation energies scale as the inverse of the chain length for short chains and the inverse of the square
of the chain length for long chains. This fits the effective-particle-in-a-box model.
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[. INTRODUCTION lowest bound stajes generally strongly bound, with a small
particle-hole separatichSuch strongly bound excitons are
Conjugated polymers have a particularly rich spectrum ofakin to Frenkel excitons, which are delocalized intra-atomic
excited states, including covalerfor spin-density-wave excitations. However, for simplicity we prefer to label all
states and ionicor particle-hole statg¢s The particle-hole excitons formed from bound states of conduction-band elec-
states, and in particular bound particle-hdler exciton  trons and valence-band holes as Mott-Wannier excitons, rec-
states are especially important for determining the linear andgnizing that this term includes both small- and large-radius
nonlinear optical properties of conjugated polymers. Thusgexcitons. We call this limit the weak-coupling limit, as the
the problem of understanding the nature of the low-lyingstarting point in the construction of the exciton basis is the
excitations in conjugated polymers remains a challenge fononinteracting band limit.
both experimentalists and theorists alike. In this paper we More recently, an opposite, strong-coupling limit has been
attempt to develop an understanding of the exciton states insed to describe excitons in conjugated polyniefdn this
conjugated polymers via a mixture of both theoretical andimit a correlation gap separates the electron removal spectral
computational analysis. weight (the lower Hubbard bandrom the electron addition
The study of excitons in conjugated polymers has ofterspectral weight(the upper Hubbard bandNow the bound
been inspired by the treatment of excitons in bulk threeparticle-hole excitations are Mott-Hubbard excitons. That is,
dimensional semiconductotdn three-dimensional semicon- a particle, excited from the lower Hubbard band to the upper
ductors the excitons arise from bound particle-hole excitaHubbard band, is bound to the hole it leaves behind. In a
tions from the valence band to the conduction band. Thaeal-space picture, this corresponds to two electrons in the
excitons are usually weakly bound, with large particle-holesame orbital bound to an empty orbital moving in a sea of
separations, and are well described by a hydrogenic modesingly occupied orbitals. A one-dimensional hydrogenic
Excitons in this limit are called Mott-Wannier excitons. This model also applies in this limft.
model of bound conduction band electrons and valence band In the context ofw-conjugated polymers we can define
holes can also be applied to conjugated polymietén con-  the weak- and strong-coupling limits as follows. Suppose
jugated polymers a one-dimensional hydrogenic model apthatt is the hybridization energy between orbitals, andU
plies, although one difference between one and three dimeris the electronic repulsion between two electrons in the same
sions is that in one dimension the first excited state, the  # orbital. Then the bandwidthW=4t, and for weak cou-
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pling W=U, while for strong couplingh<U.® Generally, families of essential states, with one family being the Mott-
conjugated polymers are in the intermediate regimeWas Wannier excitons and the other family being the Mott-
~U, so neither the weak nor strong-coupling limits apply. Hubbard excitons. We conclude in Sec. V by comparing our
Since no theory has yet, to our knowledge, been developepredictions to a variety of conjugated polymers.

for the intermediate regime, numerical calculations are the

only means to theoretically study this limit. Il. THE WEAK-COUPLING LIMIT
In this paper we study excitons using the Pariser-Parr- o ) . .
Pople modelor extended Hubbard modedf 7-conjugated The weak-coupling limit takes as its starting point for the

polymers. This is a tight-binding model with long-range 9round state the conventional semiconductor band picture of

Coulomb interactions. We use the Ohno interaction, which i€ filled valence band and an empty conduction band. A
an interpolation between rlinteractions for large and an  Pound conduction-band electron and valence-band hole
on-site HubbardJ. We solve the Pariser-Parr-Pople model Move throu.gh the Iattlcg as an gﬁectlve particle. In this sec-
using the density matrix renormalization grodpMRG)  tion we derive the gﬁectlve-partlcle model and compare it to
method!® We test the validity of the weak- and strong- the DMRG calculations.

coupling theories by comparing them to the DMRG calcula-

tions. Furthermore, we use the DMRG calculations to inter- A. The effective-particle model

polate between these two limits in order to gain an

; : . , In the weak-coupling limit it is convenient to regard the
understanding of the physically relevant intermediate re ping 9

polymer chain as a linear chain of dimers, where each dimer

gimes. _ . ) ___represents a repeat unit. For polyacetylene the repeat unit is a
Our starting point is the Pariser-Parr-Pople model, def'neglouble bond. For polpara-phenylenethe repeat unit is a

as phenyl unit; however, an effective two-band model can be

derived for the low-lying physics associated with the HOMO
H=—2 ti(cl,Cit1o7Cly1,Ci0) valence band and the LUMO conduction band.
io Let a%' andag! create electrons in Bloch states of the
valence and conduction bands, respectively. In terms of the
+UX nyng + 2 Viningy; . (1)  atomic orbital basis they are
i ij
¢! creates an electron with spinin the 7 orbital on sitei vT:i i ; +cf i
and n==,c/ c,,. V; is the Coulomb repulsion,V; e \/E[Clk”exp(I dd2)+ Caox—10d2)), ()

=U/\/1+,Br]-2, where the bond lengths are in A argl a
=(U/14.397Y. The long and short bond lengths used in the
evaluation ofV; are 1.45 and 1.36 A, respectively, and the 1
bond angle is 120°. The hybridization integria=t[1+ all=—
(—1)'8], whereé is the bond dimerization parameter. We \/5
fix t at 2.5 eV, and vary both) and é. In a realistic param-
eterization for 7r-conjugated systemslJ~10 eV. Linear
polymers, such as polyacetylene and polydiacetylene, are

nd

[CloeXP(i hi/2) — Ch exp—i /)], (3)

where

therefore in the intermediate-coupling regime. For_ the CL«T:L 2 C£|—1geXF{i(2| —1)ka], (4)
phenyl-based systems, however, the electronic screening by N, T

the other electrons on the phenyl rings results in an effec-

tively smaller local Coulomb interaction for the electrons in 1

the bonding highest occupied molecular orbitdOMO) and === > c}expi2lka), (5
lowest unoccupied molecular orbitdlUMO). Modeling of \/—u !

phenyl-based systems with a two-band model suggests
effectiveU of between 3 and 4 eV, and&= 0.2, suggest-
ing that the weak-coupling limit is more applicable for these
systems.

In the next section we discuss the predictions and validity v o . 12
of the weak-coupling limit and compare them to the DMRG eie=—2t[cos'(ka) + &*sir(ka)] ©)
calculations. We show that the Mott-Wannier excitons are thegr the valence band, and
so-called essential states that participate in the nonlinear op-
tical spectroscopie¥. We then discuss the strong-coupling el=2t[co(ka) + &%sirP(ka) ]2 7
limit in Sec. Ill, and show that here the Mott-Hubbard exci-
tons form the essential states. In Sec. IV we discuss théor the conduction band, whete=27n/Na and —N/4<n
DMRG calculations in the intermediate regime. Using our<N/4.
understanding of the weak- and strong-coupling limits we The corresponding Wannier molecular orbitals, localized
show that for certain values of the dimerization parameteon thelth repeat unit, are the Bloch transforms of E(®.
(relevant to polyacetylene and polydiacteyletieere are two  and(3),

&lﬁn(qsk) = dtan(ka), the sum is over unit cellg, is the lattice
parameter, andl, (=N/2) is the number of unit cellsa’;:;
and aﬁ:r, diagonalize Eq(1) whenU =0, with energies of,
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1 1
ot vt i T vt act
aj,=— 2, aexp—i2lka 8 Co_1,~—=(a,tay, 1
= % dlaex—izika) ® 210~ @+l (17
and and
atl=—— 3 aflexp~i2lka). ©) Cho= = (al— ). (18)
N, % 2

The ground state is constructed by filling the valencelhis approximation does not lead to any qualitative differ-
band, ences in the predictions, but does lead to the simplification of

only having nearest-neighbor hopping terms in the next
ot equationt*
|G = l_k[ ay;ay;|0), (10 Substituting Eqs(17) and(18) into Eq.(1), the molecular
orbital Hamiltoniant**°is
or, equivalently in real space,

H= _2 ’f‘y'y(alyc;I--a'IYJrltz-—’_alyjlcralya')—’_2 67n|‘y
|GS>=H ai)TTah‘r|0>. (11) lyo ly
|

i~ ’\V/O ’ ~ r
+V0|Z g+ o > '+ X Vnn?,,
Y

We may use either thlespace or real-space representations ol L
YFY YY

to construct an exciton basis. A basis state in real space is

’ 1 ’
- + Zn,7n|7 , (19

I+m/2,l—mi2)=S! |G, (12) -3

ly#y'

where vt

wheren/_ =a/ a/,, Syzippfaﬁfoppyafp,, and o are the

Pauli spin matrice$® In terms of the atomic orbital param-
S{rmzﬁ(aﬂ m/21affm/21ia|cl w2 A2l (13) Zirs the molecular orbital parametédenoted by a tilde
S| creates an electron in a conduction-band Wannier mo- T,y= —Tec=t(1—8)/2,
lecular orbital in the K+m/2)th repeat unit, separated by
repeat units from a hole in a valence-band Wannier molecu-
lar orbital. The plus sign creates a singlet basis, while the
minus sign creates a triplet basis. The general exciton eigen-
state,| MW} is then formed from a linear superposition of
these basis states,

€,=—€.=—1(1+9),
Vo= (Vo+V,)/2, (20)

Vi= (V14 2Vy +Vy 1 1)/4,

|\IfMW)=;n f(1L,m)[1+m/2) —m/2), (14) I=(Vg—Vyp)/2.
The scalar productl + (m/2),| — (m/2)|H|¥MWY) gives the

here th fficientd,(I f f th i-
where the coefficientd,(I,m), are found from the appropri following equation forf (I,m)-

ate exciton Hamiltonian, and MW refers to Mott-Wannier
excitons'®

To proceed further it is necessary to recast the Pariser- _7| ¢ I+E,m—1 +f(|_£,m+l +f I—},m—l)
Parr-Pople model in a molecular orbital basis. Furthermore, 2 2 2
as a simplification, we assume that the Wannier molecular 1
orbitals are localized on a particular dimer, i.e., we assume 4 f I+§,m+1 +(2‘]5m05M_'\7|)f(|,m)
that
1 =(E-Vo—A+J)f(l,m), (22)
vt Tot— — At T
Ao~ = "5 (Ca 10t Cato) 19 \WhereA=e,—e,=2t(1+ 5) is the HOMO-LUMO gap, and
T=t(1-6)/2.
and To derive an effective-particle mod&t/ we introduce the
center-of-mass coordinat®= (R, ; 2+ R _m2)/2=1d, and
of_Tot_ 1 + 16 the relative coordinate,= R, n»— R/ _n2=md, whered is
A== E(CZFM_CZ'U)' 18 the contour length between repeat unitsa for dimerised
chaing. For periodic boundary conditions we may assume
The inverse relations are thus that
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fn(l,m)ziexp(iKR)Fn(r), (22

VN,

where K is the center-of-mass momentum: 7/d<K
</d. For open boundary conditions we assume that

2
f(l,m)= /7 SINBIRFA(T), (23

where B; is the center of mass pseudomomentugy:
=jm/(N,+1)d, andj=1,2,... N,.
Substituting Eq.(22) into Eq. (21) the following differ-

ence equation for the relative wave function is obtained:

—2tcogKd/2)[Fy(m—1)+F,(m+1)]

+(238mo8u— Vi) Fo(m) = (E—=Vo— A+ J)Fy(m),
(24)
where 6 =1 for singlet excitons, and,, =0 for triplet
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Finally, this model leads to unphysical predictions for
large U, namely, that the lowest triplet has an energy below
that of the ground state. This occurs whér A, ie., U
~19.5 eV for the Ohno potential.

We briefly discuss the continuum limit and the hydrogenic
solutions of Eq.(24) in Appendix B. In the next section we
analyze the general solutions to Eg4) and compare them
to the DMRG calculations.

B. Comparison to the DMRG calculations

The DMRG calculations are performed on polymer chains
with the polyacetylene geometry. Since these chains process
C, symmetry the many-body eigenstates are either egn,
or odd, B,. As discussed in Sec. Il A, the singlet exciton
wave function has even or odd parity when the particle-hole
eigenvalue is odd or even. Conversely, the triplet exciton
wave function has even or odd parity when the particle-hole
eigenvalue is even or odd. As a consequence, we can express
a|'B,) state as,

excitons®® F,(m) is the relative wave function for the
electron-hole pair in the localized molecular orbitaismo-
lecular repeat units apart. A similar equation for linear chains
is obtained using Eq23), with g; replacingK in Eq. (24).
Notice that two quantum numbers specify the exciton
eigenstates, Eq22): the principle quantum number and (25
the (pseudo} momentumK (or B;). For everyn there are a
family of excitons with different momenta. Od(_j and evenwhere|\lfr'\1"-w is defined by Eq(14) and(23). Similarly, we
values ofn correspond to the relative wave functidf,(m), ! +
. X ____can express thgA) state as
being even or odd under a reversal of the relative coordinate, 9
respectively. We refer to even and odd parity excitons as
excitons whose relative wave function is even or odd under a
reversal of the relative coordinate. We do not mean that the
overall parity of the eigenstatfEq. (14)], determined by
both the center-of-mass and relative wave functions, is even (26)
or odd. The number of nodes in the exciton wave function,

Fn(m), isn—1. , ) Generally, the sums will be dominated by one component,
There are three important observations to be made abo%&cept at anticrossings, as discussed shortly. gther con-

this effective-particle model. The first point is that since thegjp, tionsto the state vectors include, for example, covalent
exchange interaction is locdl.e., it is only nonzero when -4 holon-doublon term<.

m=_0), we immgdiately see that this term vanishes for odd Figure 1 shows the binding energies of the singlet and
parity excitons[i.e., Fn(m)=—Fy(—m)], as Fy(0)=0.  yipjet excitons as a function dfi.2° Since there is no ex-
Now, since the parity of the exciton is determined by thechange term in the binding energy of the triplets, their ener-

particle-hole symmetry, and odd singlet and triplet excitongyies follow the predictions of the one-dimensional hydrogen-
are determined by positive and negative particle-hole symp o model, namely, that the binding energy of the lowest

metries, respectivey, this theory predicts thatA; and  exciton scales atJ, while for largeU the energies of the
%A, and the'B and B, excitons are degeneratdA  other excitons approaches the Rydberg seiies discussed
derivation of the relation between particle-hole symmetryin Appendix B. In contrast, the exchange term affects the
and particle-hole parity is given in Appendix)A. binding energies of the even parity singlet excitons. As a
The second observation is that when making the mappingesult of the functional form of the Ohno potential, which
from the atomic orbital Hamiltonian, to the molecular orbital becomes steeper for smallas U increases, the exchange
Hamiltonian the distance between sites in the Coulomb interm increases with). This leads to nonmonotonic behavior
teraction is replaced by the distance between molecular ren the binding energies as a function df
peat units. For the polyacetylene structure the distance be- We can compare these theoretical predictions to the
tween double bonds ig3a. Thus, the Coulomb interaction DMRG calculations. We employ three ways of identifying
has aneffectivedielectric constant oé= /3. An alternative  the lowest pseudomomentum branghk=(L) of a given exci-
and equivalent interpretation is that the effective mass is reton family (n). First, these states have strong dipole mo-
duced by a factor o&?. Both interpretations lead to a reduc- ments connecting them. Second, there are jumps in the
tion of the effective Rydberg by a factor ef. particle-hole separations,,, defined as!?!

'By)= > X an| W)+ (other contributions
oddn odd]j

PAg)= 2 2 an|WhY)+ (other contributions

evenn odd]j !
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Binding energy (eV)
Excitation energy (eV)

FIG. 2. The transition energies of the= 1 singlet(solid curve,
n=1 triplet (dotted curvg, n=2 singlet and tripletshort-dashed
curve excitons, and the charge gdjpng-dashed curyein the
weak-coupling limitt=2.5 eV andé=0.2. The circles and squares
are the DMRG calculations on 30-site chains for thel andn
=2 excitons, respectively. The diamonds are the DMRG calculated
charge gap. Singlésolid symbol$ and triplet(open symbols The
calculatedn=2 singlet and triplet energies overlie each other at
U=1 and 10/3 eV. The small discrepanciedat 1 eV arise from
finite-size effects.

Binding energy (eV)

3 There is a large disagreement between theory and calcu-
10l . ‘ . . . . L] lation for the band gaps for largd. The origin of this dis-
6 2 4 6 8 10 12 14 agreement is that the unbound particle-hole pair is strongly
U (eV) solvated by intrachain screening. The excitons are also sol-
) L . . vated, but this solvation becomes less strong as the excitons
FIG. 1. Exciton binding energies in the weak-coupling limit. hocome more strongly bound. This intrachain screening can-
Even and odd parity exc@or(swth respect to the relative co_ordl- not simply be modeled by an effective dielectric constant,
natg are shown by solid and dashed curves, respectively. aiihqugh this would reduce the exciton binding energies, it
:2.5 eV and5=Q.2. Thg circles and squares are.the DMRG Cal'would not affect the band gap.
culations on 30-site chains for time=1 andn=2 excitons, respec- The evolution of the calculated exciton energies as func-
tively. (a) Singlet and(b) triplet excitons. tion of chain length shows a number of interesting features.
Fig 3(a) and 3b) show the'B, (oddn) and A (evenn)
spectra, respectively. The different pseudomomentgm

% m2<p|S|Tm|GS)2 states for the sama, and anticrossings between states of
rSI(mZ),F . (27) differentn are clearly seen. Figurd&@ shows then=1 and
2 <p|STm|GS)2 n=3 excitons converging to 2.6 eV and 3.9 eV, respec-
Im tively, while Fig. 3b) shows then=2 andn=4 excitons

converging to 3.5 eV and 4.1 eV, respectively. The band gap

Finally, as shown in Fig. 3, energy plots against inversgs also shown converging to 4.4 eV. Thus, for 102 sites,
chain length identify the different exciton families. there are at least four families of bound excitons. Figures

The DMRG calculations of the binding energies are3(c) and 3d) show the energies of the three lowest pseudo-
shown forU=1,10/3, and 10 eV for 30 sites in Fig. 1. Ex- momentum branches of the lowestB; (n=1) and
cept forU=1 eV, the deviations between the weak-coupling 1Ag (n=2) excitong(i.e.,j=1,3, and % as a function of the
theory and calculation are rather large. However, as Fig. 2quare of the inverse chain length. The ratios of their slopes
indicates, these deviations arise predominately from discrefare 1:9:25showing that the energies scale aN?/indicat-
ancies in the predicted charge gap, rather than the excitang particle-in-a-box behavidr.
excitation energies. Figure 2 shows the two lowest singlet The particle-hole separations are shown in Fig. 4 at 102
and triplet energies, and the charge gap. Betr1 andU  sites. The jumps in the separation occupat9 andp=38
=10/3 eV the agreement between the model and the DMRGor the even and odd parity excitons, respectively, corre-
calculations are good for the exciton energies. As predictedsponding to thg =1 branches of th@=3 andn=4 exci-
the odd parity singlet and triplet excitons are degenerateons. Notice that, as predicted in Ref. 8 and Appendix B, the
However, forU=10 eV, the results are less good, particu-particle-hole separations decrease with increagifay the
larly for the odd parity excitons. Further, the singlet andsamen. As a comparison to the DMRG calculations, we plot
triplet are no longer degenerate, because the triplet exciton iie exciton probability functions derived from the weak-
evolving into a gapless spin density wave state. coupling limit in Fig. 5.
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FIG. 3. The DMRG calculated singlet exciton transition energies as a function of square of the inverse chairtteddireV, U
=10/3 eV, and5=0.2. All curves are for odd pseudomomentum quantum nunpb®glid and dashed curves are to illustrate the anticross-
ings. Also shown is the charge gap as the dotted cueye!B, states(odd n), showing then=1 exciton converge to 2.6 eV and the
=3 exciton converge to 3.9 e\(b) 1A; states(evenn), showing then=2 exciton converge to 3.5 eV and the=4 exciton converge to
4.1 eV.(c) The first three'B,, states, showing straight line fits of relative gradieht9:25. (d) The first threelA;r states.

A comparison between the DMRG results and the weakion band. As we saw in Sec. Il a real-space picture corre-
coupling theory is shown in Table I. For te=1 andn  sponds to a particle in a local antibonding molecular orbital
=2 excitons the agreement between the excitation energiesiund to a hole in local bonding molecular orbital. Since an
good, but, as discussed above, the binding energies do nefectron and hole can exist on the same dimer there are no

agree well. _ _ _ restrictions on the symmetries of the relative wave function,
We conclude this section with a few remarks on the “es-and both singlet and triplet excitons exist. The strong-

sential” states responsible for the nonlinear optical suscepticoupling limit starts from the approximation that the Cou-
bilities. There are at most four states in a particular excitationomp interactions are so large that the undimerized band

path way in the sum-over-s\t}aétes calculationy®?. Mazum-  gplits into a lower and upper Hubbard band. At half-filling
dar and co-workers observedthat only a few excitation  yhe |ower Hubbard band is full, corresponding to one elec-

pathwaysand hence statpsontribute to this sum. The path- tron perr orbital. Now an exciton is a particle in the upper

way must contain strong dipole moments to the ground Statq-'|ubbard band bound to a hole in the lower Hubbard band, or

i i 1p+ 1p~
Inlth+e weak fogplmg I|m|_t these are the’d, , 1°B,, an empty orbital bound to doubly occupied orbital on another
27Ag, andnB, states, i.e., the ground state and the g0 These are Mott-Hubbard excitons. As shown in Ref. 7,
=1, 2 and 3 Mott-Wannier excitorfs. this problem maps onto the problem of two bound spinless
fermions(or hard-core bosonsThe particle and hole cannot
exist on the same site, so there is a local hard-core repulsion,
The strong-coupling limit for nearest-neighbor interac-and the relative wave function is zero fo0. In the con-
tions was studied in Refs. 6 and 7, while an effective-particldinuum limit with a 1f potential the bound states form a
model for general interactions was derived in Ref. 8. Exci-Rydberg series, with each energy level being composed of an
tons in this limit are quite different from their counterparts in even and odd pair of statés.

the weak-coupling limit. In the weak-coupling limit excitons ~ The general particle-hole eigenstate in this limit is of the
are particle-hole excitations from the valence to the conducform

Ill. THE STRONG-COUPLING LIMIT
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0} TABLE I. The excitation energies and binding energieseV)

s for the first fourj=1 Mott-Wannier excitons of a 102-site chain.
T V N 6=0.2,U=10/3 eV, and=2.5 eV.

g 5

Y 12 ¢ ] State DMRG calculation Weak-coupling theory
& 10 ] Excitation Binding Excitation  Binding

§ = energy  energy energy energy

g ; ] 1'B, (n=1) 2.62 1.82 2.68 2.49

'j:’ 6 . 2 1Ag (n=2) 3.49 0.95 3.70 1.47

= N I S . o ] 9'B, (n=3) 3.93 0.51 4.25 0.92

g 8'A; (n=4) 4.13 0.31 4.54 0.63

g on » | ] ™ » - - . ]

= ]

4 0 — T (‘5 — é T o wherei is the distance between atomic orbitals. The hard-
E P core repulsion, imposed by the conditibR(0)=0, implies

that even and odd parity solutions are degenerate, because
FIG. 4. The DMRG calculated root-mean-square particle-hole™n(i) can be matched by either F,(—i) at the origin.

separationst , [Eq. (27)] in units of the molecular repeat distance, [N analogy with Eqs(25) and (26) we can express the

for 102 sites.t=2.5 eV, U=10/3 eV, andé=0.2. p'B, states €XClton states as

(squaresand plAg states(circles. The molecular repeat distance

is twice the lattice distance. |1BJ>= 2 2 an|‘lf,'\1"jH>+(other contributions
oddn odd]j
32
UMY = f (0,07 |i+i72i—i"12), (28) (32
i’ and
where |i+i'/2i—i'12)=2,d ., hl_,.,,|GS, and the " " o
MH refers to Mott-Hubbard excitons. "Aq >:e%m (%j Bnjl Wy ") + (other contributionk
hiT(r:Cirr(l_ni;) (29) (33)

where| W)} is defined in Eq(28).
Since the unbound continuum startd at 4t, we see that
this model is unphysical fdd <4t, as then the bound states
df =cf n— (30) would have a negative excitation energy. So, although we
o Tt can obtain binding energies, we cannot obtain physically re-
creates a doublofi.e., creates a particle with spim in the  alistic excitation energies in the intermediate-coupling re-

creates a holofi.e., removes a particle with spin from the
lower Hubbard banx while

upper Hubbard band gime. However, as we shall see in Sec. IV, this theory does
Following the same procedure as in Sec. Il, the relativeprovide qualitative insight to the behavior of the
wave functionF (i), Eq. (22), satisfies intermediate-coupling regime.
. . _ We check the theory against DMRG calculations. Figure 6
—2tcogKal2)[Fy(i—1)+F(i+1)]=ViFq(i) shows the binding energies as a functiorUpfwith compari-
=(E—U)Fy(i), (31) |
035 ——————————— s
—n=1 —_ j
2 o3 N | =21 >
| Y 7 T =3 -t
= g
;z 02 F ] ‘é’n 1
£ oois) ] g
o 2]
2 01f ] ]
0.05 b s N ] !
/ 4 , ~
0 b S ] 80 100
.15 -10 0 15 U (V)

Particle-hole separation (in units of the repeat distance) ) o ] ] )
FIG. 6. The exciton binding energies in the strong-coupling

FIG. 5. The singlet exciton probability densify,(m)?, in the limit. t=2.5 eV and6=0. The circles are the DMRG calculations
weak-coupling limitt=2.5 eV,U=10/3 eV, ands=0.2. for then=1 exciton on 30-site chains.
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TABLE II. Excitation energies(in eV) of the key low-lying  weak interactions the exciton will be considerably more
states for the undimerized 6-site chaiti=100eV andt  complicated than the holon-doublon exciton discussed in

=25¢eV. Sec. lIl. Alternatively, if the dimerization gap {4) is large
— compared to the correlation gap, we expect Mott-Wannier
State Character Excitation ener@V)  excitons to be the dominant low-energy ionic excitations.
21A; Pair of bound magnons 0.365 . We can see this bghaw_or by ;tudylng thﬁ DMRE; cfalcula—
118, n=1 Mott-Hubbard 86.375 tions. First, we conydeﬁ—é). 7F|gu[e +Xa) s OV\lISE e four
singlet exciton lowest essential states. TheB, , 9°A, , and 7°B,, states
51A; n=2 Mott-Hubbard 86.650 are t+hej =1,n=1, 2, and 3 Mott-Hubbard excitons. The
singlet exciton 2'A; state, with an energy lower than the',, state, is
138; Magnon 0.138 predominately a bound triplet. The particle-hole separations
13, Magnon bound to the=1 86.545 in the holon-doublon channel,, defined ad
Mott-Hubbard exciton
83/ Magnon bound to the=2 86.819 12 T 2
Mott-Hubbard exciton ?‘ : <p|2(:‘ dighisiro|GS
re=(i"%,= . (39

2 (P12 dlh,lGS?
ii g

sons to DMRG calculations fof=0. At largeU the theory

becomes exact, and also agrees very well with dimerized
chains. are also shown.

This strong-coupling exciton theory completely neglects Next we conside=0.2. Figure Tb) shows that the four
the low-lying spin density wave excitations; nor does it de-lowest essential sta_tes app+ear to fit the_weak-couplmg model,
scribe the triplet excitons. In this limit the®B, state is a @S they are the 1B, , 2'A;, and 4'B, states. These are
gapless spin-density wave, and not the 1 Mott-Wannier =1, n=1, 2, and 3 Mott-Wannier excitons. .
triplet exciton, while the 2A] state has evolved from the At 6=0.1 there are both Mott-Hubbard and Mott-Wannier
weak-couplingn=2 Mott-Wannier exciton to a pair of eXC|t10n§, forming two.fammes of essg_ntlal states. In general,
bound triplet€®24 This can be seen from the DMRG calcu- the "B, states are linear superpositions of E¢&5) and
lations for six sites, presented in Table II. The first odd parity(32), while the *Aj states are linear superpositions of Egs.
singlet exciton is the A state, which is ca. #/(U  (26) and(33), with one component predominating. As the
—V;) higher in energy than its associated even parity excibond dlmerlzatlgn decrgases the spm—densny—wave compo-
ton, the 1'B; state. We interpret the SHA; state as the nent of the 21Ag state increases. Figure 1c) shows the

13B; triplet bound to the B exciton, while the 8]  1'By . 2'Ag, and 4'B, states, forming the Mott-Wannier

state is the £B,; triplet bound to the BA; exciton. family of excitons, while Fig. ) shows the 1B, , 6'Ay’,
and 9B states, forming the Mott-Hubbard family of exci-
IV. THE INTERMEDIATE-COUPLING REGIME tons. The progression of excitons in both families can also be

identified by the jumps in the relevant particle-hole separa-

As the strength of the Coulomb interactions are increasetion. These families are distinct in the sense that there are
from the weak-coupling limit the character of the groundvery small dipole moments between théA{; and 9'B,
state and excitations changes. As discussed in Sec. lll, a negyates and between thelﬁg* and 4135 states. However,
class of excitations emerges, and these are the spin-densityince the 1B, state has large dipole moments to both the
wave (or covalent states. The lowest lying triplet CB;)  21a* and 6'A; states, this state clearly has large ampli-
becomes a spin-density wave, and thébg state evolves tydes in both then=1 Mott-Hubbard andn=1 Mott-
from then=2 Mott-Wannier exciton to a pair of bound trip- \Wannier families.
lets. A higher-lying*A; state evolves into the=2 Mott-
Hubbard exciton.

The intermediate-coupling regime is in the crossover be-
tween these regimes. In fact, the cross-over also occurs as aln this paper we have analyzed effective-particle models
function of the dimerizations. Consider the undimerized for excitons in the weak- and strong-coupling limits, and
chain, with 6=0. As a result of the perfect nesting in one compared them to DMRG calculations. There is good agree-
dimension there is always a correlation gap in the electronignent between the effective-particle models and the compu-
spectrum of the half-filled chain for any nonzero Coulombtational results in these limits. These extreme limits have
interaction. For the Hubbard model the correlation gap isheen used to understand the DMRG calculations in the
~ JUtexp(—2mt/U) for t>U, while it is U—4t for t<U. intermediate-coupling regime. Our key conclusions are as
We expect these predictions to remain qualitatively correcfollows.
for long-range interactions. The correlation gap separates the (1) In the weak-coupling limitwhere the single-particle
lower and upper Hubbard bands. A particle-hole excitationgap is larger than the correlation gajpe bound states are
across the correlation gap will result in a bound Mott- Mott-Wannier excitons, i.e., conduction-band electrons
Hubbard exciton for any interaction strength, although forbound to valence-band holes. Singlet and triplet excitons

V. DISCUSSIONS AND CONCLUSIONS
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gap ---ememeemeseeees 5.75eV
W 49 102
L 128 4's, 5.21eV
7'B, 4.68 eV 11
s |2 4.00 eV 2'A, = 02 325ev
1 . gap -~ 4.00€ 7r Fra .o
. 22 04 338
9'A, N 3.54eV \'B, 0438 oy
W A4
1'B, 2.25eV
. 1
1 2'A, ——— 1.20eV
1A, ———— 1's, ——
b
® gap ~TTT 7.35eV (d)
10.2
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, 52 0.3 gap - 575eV
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FIG. 7. The DMRG calculated essential statésfined as the four lowest states with the strongest inter-state dipole morfioer8 site
chains. The arrows show the dipole moments normalized %AghllBJ dipole moment. The molecular-orbital and holon-doublon
particle-hole separation@n units of the lattice spacingare shown in italics using Eq27) and bold using Eq(34), respectively.(a) t
=2.5eV,U=10 eV, ands=0, showing the Mott-Hubbard serigb) t=2.5 eV,U=10 eV, ands=0.2, showing the Mott-Wannier series,
(o) t=2.5eV,U=10 eV andé=0.1, showing the Mott-Wannier series, afi) t=2.5 eV, U=10 eV and§=0.1, showing the Mott-
Hubbard series.

whose relative wave functions are odd under a reflection of (5) The DMRG calculated exciton excitation energies
the relative coordinate are degenerate. Thus, tMJZand scale as the inverse of the chain length for short chains, and
13A; states are degenerate in this limit. the inverse of the square of the chain length for long chains.

(2) In the strong-coupling limitwhere the correlation gap TS fits the effective-particle-in-a-box model. _
is larger than the single particle gafhe bound states are . (6_) The DMRG calculations ShQW that_th1_a=1 exciton
Mott-Hubbard excitons, i.e., particles in the upper Hubbartf'”d'ng energy increases monotonically with increasing Cou-

band bound to holes in the lower Hubbard band. Thes omb interaction. At large coupling the binding energy agrees

bound states occur in doublets of even and odd parity exci\f\”th the strong-coupling theory. We may therefore place a

tons. Triplet excitons are maanons bound to the singlet eXcit_heoretical estimate on the binding energy of excitons in con-
- np 9 9 Jugated polymers as ca. 4.6 eV.

. s u
tons, and hence are degenerate with their singlet countel- We can apply these exciton theories to actual conjugated

parts. _ , _ _ _ polymers. Barford, Bursill, and co-workers have used the
(3) In the intermediate-coupling regime Mott-Wannier ex- p\RG method to solve realistic parameterizations of the

citons are the more appropriate description for large dimerpayiser-Parr-Pople model for various systéfi2® Recent
ization (6=0.2), while for the undimerized chain Mott- \york26 on poly(p-phenylengputs the 1B, (n=1) exciton

Hubbard excitons are the correct description. Forgi3 7 ev the 2A* (n=2) exciton at 5.1 eV and theA
dimerizations relevant to polyacetylene and polydiacetylene; e + g

. . i riplet close in energy to the %Ag state, at 5.5 eV. This
(i.e., 6~0.1) both Mott-Hubbard and Mott-Wannier excitons progression indicates a Mott-Wannier series of excitons. In

are present. contrast, polyacetylene and polydiacetylene have predomi-

¢ (t4) For' at"fCOli?.“r:g str?ngthfs an |n_f|r11|t(.atnum|ber of kéound nately Mott-Hubbard excitons. In polyacetylene the vertical
states exist for 1/interactions for an infinite polymer. Gen- energies of the 1By, and 21Ag+ states are virtually

erally, the effective-particle models overestimate binding en- . . " .
ergigs, as they neglgct intrachain screening. As a resultgof th%egeneraté? while for polydlacteylenel th,e A itga‘e lies a
discreteness of the lattice, and the restrictions on the excitolfV €nths Oi an eV higher than the'8,, state™” In both
wave functions in one dimension, the progression of state§ases the' Ay state most strongly connected to theBl,
does not follow the Rydberg series. In practice, excitonsState is not the 2A; state, but a highem*A; state, fitting
whose particle-hole separation exceeds the length of théhe pattern of Mott-Hubbard excitons. Furthermore, in both
polymer can be considered unbound. These predictions are rases the 2A; state undergoes strong electron-lattice relax-
contrast to the those obtained from models with short-rangation, and its relaxed energy lies below that of the relaxed
interactions, which would predict one or more bound stated 1By, state?’?° This places polyacetylene and polydiacety-
in the weak-coupling limit, and zero or more bound states inene on the correlated side of the intermediate-coupling
the strong-coupling limi¢:’ regime.
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Our results apply to the vertical excitations of single poly- 1
mer chains. Various additional intrinsic and extrinsic effects =——(af zals e Al 28l iz ) |G
can significantly modify excited energies. Covalent states, V2

; + 1p+

sgch as highly correla’_[ed B, anq 2°A, states, undergo = —|l=m/2,l + m/2) (A3)
significant electron-lattice relaxation, and as already stated,
this leads to a reversal of the'B;, and 21Ag energies in  under the particle-hole transformation. Thus, the particle-
polyacetylene and polydiacetylene. hole adapted-symmetry state

An important extrinsic effect is solvation by the environ- 1
ment, and aga|n,.th|s S|gn|f|c§mt!y alters the energy of excited ([l mi2) = mi2) = |- mi2,) + mi2))
states. States with larger binding energy are less solvated V2
than those that are weakly bound. Current estimates are that (A4)
the n=1 exciton solvates by ca. 0.3 eV, tlme=2 exciton

[I,m;¥)=

solvates by ca. 0.6 eV, and the band gap solvates by ca. 1@5 a n_egative particle-hole symmetry eigenvalue for the
eV Thus, the experimentally reported exciton binding en-EVEN Parity combination and a positive particle-hole symme-
try eigenvalue for the odd parity combination.

ergies of ca. 0.5-1.0 eV, for polydiactelyene and PPV, etc., Th lation holds f ol b he triol
are much smaller than the bare single-chain values calculated e reverse relation holds for triplets, because the triplet

here particle-hole basis state
In conclusion, we have developed exciton theories for 1+ m/2, — m/2)
single chains with long-range interactions. It remains a chal- '
lenge to predict the experimental signatures of these exciton 1
states, especially when the additional intrinsic and extrinsic = E(aﬁimmaf_mm—afIm,ZLaF_m,gi)lGS>
effects are included.
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APPENDIX A: PARTICLE-HOLE SYMMETRY between particle-hole symmetry and particle-hole parity
AND PARTICLE-HOLE PARITY holds for all exciton center-of-mass momeritaand not just

In this appendix we prove that the relative parity of sin- <=0, as stated in Ref. 3.

glet particle-hole excitations is even or odd when the

particle-hole symmetry is odd or even, respectively, gice APPENDIX B: “HYDROGENIC” SOLUTIONS
versa for triplet excitations. Using the definition that the TO THE EFFECTIVE-PARTICLE MODEL
particle-hole operator maps the atomic orbital creation opera- IN THE WEAK-COUPLING LIMIT

tors as

In this appendix we briefly examine the properties of the
weak-coupling effective-particle model, E@4), in the con-
tinuum limit. In making the connection to the continuum

it it H ¥ _72 2 X __ 32 2
it is easily shown, using Eqg8) and (9), that the creation limit it is convenient to set=#°/2Md*, so 2=£"/2ud",
operators for the conduction- and valence-band Wannier otvhere the reduced masg=M/2, andM is the effective

cl—=(-Dicy, (A1)

bitals map as mass. Then, scaling lengths by the effective Bohr radius,
ag(K)=%2 cosKd/2)/ue? and the energy by the effective
v c Rydberg,E,(K) = ne*/24? cosKd/2), we obtain
art—— al”;. (A2)
2F(m)

Then, the singlet particle-hole basis state, [Fa(m=1)+F,(m+1)]—

al(K)? a’'(K)(1+m?)*2
|1 +m/2,] —m/2) =[E}(K)—V{—A"TF,(m), (B1)
1 where  a'(K)=dlag(K),  EL(K)=E/E/(K),  V{

— _(ac‘r a’ +act a’ )|GS> e
V2 PR meL e mzl =Vo/E|(K), and A’=A/E|(K). We have used the Ohno

function for the Coulomb interaction, which remains finite as

m—0, and we sef=0, as we are uninterested in details of

——(al, pal o +al, aft |G
\/E I+m/2] ¢ —m/2| I+m/2] 4 —m/2] | $ the exchange splittinﬁl.
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In the continuum limifa’(K)—0] Eg. (B1) is identical o
(except for the regularization of the Coulomb terto the
effective one-dimensional equation for the radial part of the
three-dimensional hydrogen atom wave functiom(r)
=ry(r), with zero angular momentum. This equation was
studied in detail by LoudonThe odd parity states have the
same boundary conditions agr), namely u(0)=0 and
u(r—«)—0. They are formed by matching(r) with
—u(—r) at the origin. Thus, for even the binding energies
are

Energy/Effective Rydberg

_EK) 5
En(K)_—(n/2)2 (B2)

and the corresponding wave functions are

L L L L | L L L L 1 L L L L 1 L 2 L L
0 0.5 1 1.5 2
Lattice spacing/Effective Bohr length

FIG. 8. The exciton binding energies in units®fin the weak-
Fn(r,K)=[Nr/a’'(K)]exd —2r/na’(K)]L,(4r/na’(K)), coupling limit for a regularized Coulomb potential versais, .
(B3) Even parity, oddh stateq(solid curveg and odd parity, even states

whereL , is the mth-order Laguerre polynomial arid is a  (dashed curves

normalization constant. - _ _ For arbitrarya’ (K) it is necessary to solve E¢B1) nu-

The lowest even parity state is strongly bound, with americally. Figure 8 shows the binding energy of the three
binding energy scaling as&/(K), while the energies of the |owest states ak =0 as a function of’. As a’ decreases
remaining even parity states are bounded by a higher anghe binding energies approach the Rydberg series, except for
lower odd parity state. Notice that as a result of ithéepen-  the energy of the first even parity state, which diverges. Typi-
dency of E|(K) the binding energies for a given are cal values for conjugated polymers, witk2.5 eV, are(i)
larger for the higher center-of-mass momentum states. Simis=0.1, which givesE,=3.90 eV anda’=1.31, and(ii) §
larly, the characteristic lengtlay(K), decreases for higher- =0.2, which givesE,=4.40 eV anda’ =1.48. The resulting
momentum states, resulting in a smaller particle-holebinding energies from Fig. 8 agree very well with those of

separation. Fig. 1(a).
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