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Theoretical and computational studies of excitons in conjugated polymers
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We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-
binding model ofp-conjugated electrons, with 1/r interactions for larger. In both the weak-coupling limit
~defined byW@U) and the strong-coupling limit~defined byW!U), whereW is the bandwidth andU is the
on-site Coulomb interaction, we derive and analyze effective-particle models. We compare these to density
matrix renormalization group~DMRG! calculations, and find good agreement in the extreme limits. We use
these analytical results to interpret the DMRG calculations in the intermediate-coupling regime~defined by
W;U), most applicable to conjugated polymers. We make the following conclusions.~1! In the weak-
coupling limit the bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-
band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative
coordinate are degenerate. Thus, the 21Ag

1 and 13Ag
2 states are degenerate in this limit.~2! In the strong-

coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to
holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet
excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts.
~3! In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large
dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimer-
izations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are
present.~4! For all coupling strengths an infinite number of bound states exist for 1/r interactions for an infinite
polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one
dimension, the progression of states does not follow the Rydberg series. In practice, excitons whose particle-
hole separation exceeds the length of the polymer can be considered unbound.~5! The DMRG calculated
exciton excitation energies scale as the inverse of the chain length for short chains and the inverse of the square
of the chain length for long chains. This fits the effective-particle-in-a-box model.

DOI: 10.1103/PhysRevB.66.115205 PACS number~s!: 71.35.Cc, 71.10.2w
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I. INTRODUCTION

Conjugated polymers have a particularly rich spectrum
excited states, including covalent~or spin-density-wave!
states and ionic~or particle-hole states!. The particle-hole
states, and in particular bound particle-hole~or exciton!
states are especially important for determining the linear
nonlinear optical properties of conjugated polymers. Th
the problem of understanding the nature of the low-lyi
excitations in conjugated polymers remains a challenge
both experimentalists and theorists alike. In this paper
attempt to develop an understanding of the exciton state
conjugated polymers via a mixture of both theoretical a
computational analysis.

The study of excitons in conjugated polymers has of
been inspired by the treatment of excitons in bulk thr
dimensional semiconductors.1 In three-dimensional semicon
ductors the excitons arise from bound particle-hole exc
tions from the valence band to the conduction band. T
excitons are usually weakly bound, with large particle-h
separations, and are well described by a hydrogenic mo
Excitons in this limit are called Mott-Wannier excitons. Th
model of bound conduction band electrons and valence b
holes can also be applied to conjugated polymers.2–4 In con-
jugated polymers a one-dimensional hydrogenic model
plies, although one difference between one and three dim
sions is that in one dimension the first excited state~i.e., the
0163-1829/2002/66~11!/115205~12!/$20.00 66 1152
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lowest bound state! is generally strongly bound, with a sma
particle-hole separation.5 Such strongly bound excitons ar
akin to Frenkel excitons, which are delocalized intra-atom
excitations. However, for simplicity we prefer to label a
excitons formed from bound states of conduction-band e
trons and valence-band holes as Mott-Wannier excitons,
ognizing that this term includes both small- and large-rad
excitons. We call this limit the weak-coupling limit, as th
starting point in the construction of the exciton basis is
noninteracting band limit.

More recently, an opposite, strong-coupling limit has be
used to describe excitons in conjugated polymers.6–8 In this
limit a correlation gap separates the electron removal spe
weight ~the lower Hubbard band! from the electron addition
spectral weight~the upper Hubbard band!. Now the bound
particle-hole excitations are Mott-Hubbard excitons. That
a particle, excited from the lower Hubbard band to the up
Hubbard band, is bound to the hole it leaves behind. I
real-space picture, this corresponds to two electrons in
same orbital bound to an empty orbital moving in a sea
singly occupied orbitals. A one-dimensional hydrogen
model also applies in this limit.8

In the context ofp-conjugated polymers we can defin
the weak- and strong-coupling limits as follows. Suppo
that t is the hybridization energy betweenp orbitals, andU
is the electronic repulsion between two electrons in the sa
p orbital. Then the bandwidthW54t, and for weak cou-
©2002 The American Physical Society05-1
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pling W@U, while for strong couplingW!U.9 Generally,
conjugated polymers are in the intermediate regime, asW
;U, so neither the weak nor strong-coupling limits app
Since no theory has yet, to our knowledge, been develo
for the intermediate regime, numerical calculations are
only means to theoretically study this limit.

In this paper we study excitons using the Pariser-P
Pople model~or extended Hubbard model! of p-conjugated
polymers. This is a tight-binding model with long-rang
Coulomb interactions. We use the Ohno interaction, whic
an interpolation between 1/r interactions for larger and an
on-site HubbardU. We solve the Pariser-Parr-Pople mod
using the density matrix renormalization group~DMRG!
method.10 We test the validity of the weak- and stron
coupling theories by comparing them to the DMRG calcu
tions. Furthermore, we use the DMRG calculations to int
polate between these two limits in order to gain
understanding of the physically relevant intermediate
gimes.

Our starting point is the Pariser-Parr-Pople model, defi
as

H52(
is

t i~cis
† ci 11s1ci 11s

† cis!

1U(
i

ni↑ni↓1(
i j

Vjnini 1 j . ~1!

cis
† creates an electron with spins in the p orbital on sitei

and ni5(scis
† cis . Vj is the Coulomb repulsion,Vj

5U/A11br j
2, where the bond lengths are in Å andb

5(U/14.397)2. The long and short bond lengths used in t
evaluation ofVj are 1.45 and 1.36 Å, respectively, and t
bond angle is 120°. The hybridization integralt i5t@11
(21)id#, whered is the bond dimerization parameter. W
fix t at 2.5 eV, and vary bothU andd. In a realistic param-
eterization for p-conjugated systems,U;10 eV. Linear
polymers, such as polyacetylene and polydiacetylene,
therefore in the intermediate-coupling regime. For t
phenyl-based systems, however, the electronic screenin
the other electrons on the phenyl rings results in an ef
tively smaller local Coulomb interaction for the electrons
the bonding highest occupied molecular orbital~HOMO! and
lowest unoccupied molecular orbital~LUMO!. Modeling of
phenyl-based systems with a two-band model suggest
effectiveU of between 3 and 4 eV, and ad50.2,11 suggest-
ing that the weak-coupling limit is more applicable for the
systems.

In the next section we discuss the predictions and valid
of the weak-coupling limit and compare them to the DMR
calculations. We show that the Mott-Wannier excitons are
so-called essential states that participate in the nonlinear
tical spectroscopies.12 We then discuss the strong-couplin
limit in Sec. III, and show that here the Mott-Hubbard ex
tons form the essential states. In Sec. IV we discuss
DMRG calculations in the intermediate regime. Using o
understanding of the weak- and strong-coupling limits
show that for certain values of the dimerization parame
~relevant to polyacetylene and polydiacteylene! there are two
11520
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families of essential states, with one family being the Mo
Wannier excitons and the other family being the Mo
Hubbard excitons. We conclude in Sec. V by comparing
predictions to a variety of conjugated polymers.

II. THE WEAK-COUPLING LIMIT

The weak-coupling limit takes as its starting point for t
ground state the conventional semiconductor band pictur
a filled valence band and an empty conduction band
bound conduction-band electron and valence-band h
move through the lattice as an effective particle. In this s
tion we derive the effective-particle model and compare it
the DMRG calculations.

A. The effective-particle model

In the weak-coupling limit it is convenient to regard th
polymer chain as a linear chain of dimers, where each dim
represents a repeat unit. For polyacetylene the repeat uni
double bond. For poly~para-phenylene! the repeat unit is a
phenyl unit; however, an effective two-band model can
derived for the low-lying physics associated with the HOM
valence band and the LUMO conduction band.

Let aks
v† and aks

c† create electrons in Bloch states of th
valence and conduction bands, respectively. In terms of
atomic orbital basis they are

aks
v†5

1

A2
@c1ks

† exp~ ifk/2!1c2ks
† exp~2 ifk/2!#, ~2!

and

aks
c†5

1

A2
@c1ks

† exp~ ifk/2!2c2ks
† exp~2 ifk/2!#, ~3!

where

c1ks
† 5

1

ANu
(

l
c2l 21s

† exp@ i ~2l 21!ka#, ~4!

c2ks
† 5

1

ANu
(

l
c2ls

† exp~ i2lka!, ~5!

tan(fk)5dtan(ka), the sum is over unit cells,a is the lattice
parameter, andNu (5N/2) is the number of unit cells.aks

v†

andaks
c† diagonalize Eq.~1! whenU50, with energies of,

ek
v522t@cos2~ka!1d2sin2~ka!#1/2 ~6!

for the valence band, and

ek
c52t@cos2~ka!1d2sin2~ka!#1/2 ~7!

for the conduction band, wherek52pn/Na and 2N/4<n
<N/4.

The corresponding Wannier molecular orbitals, localiz
on the l th repeat unit, are the Bloch transforms of Eqs.~2!
and ~3!,
5-2



c

n
is

o

c
th
e

of

-
er

se
r

ul
m

r-
of

ext

-

e
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als
v†5

1

ANu
(

k
aks

v†exp~2 i2lka! ~8!

and

als
c†5

1

ANu
(

k
aks

c†exp~2 i2lka!. ~9!

The ground state is constructed by filling the valen
band,

uGS&5)
k

ak↑
v†ak↓

v†u0&, ~10!

or, equivalently in real space,

uGS&5)
l

al↑
v†al↓

v†u0&. ~11!

We may use either thek-space or real-space representatio
to construct an exciton basis. A basis state in real space

u l 1m/2,l 2m/2&5Slm
† uGS&, ~12!

where

Slm
† 5

1

A2
~al 1m/2↑

c† al 2m/2↑
v 6al 1m/2↓

c† al 2m/2↓
v !. ~13!

Slm
† creates an electron in a conduction-band Wannier m

lecular orbital in the (l 1m/2)th repeat unit, separated bym
repeat units from a hole in a valence-band Wannier mole
lar orbital. The plus sign creates a singlet basis, while
minus sign creates a triplet basis. The general exciton eig
state,uCMW&, is then formed from a linear superposition
these basis states,

uCMW&5(
l ,m

f ~ l ,m!u l 1m/2,l 2m/2&, ~14!

where the coefficients,f ( l ,m), are found from the appropri
ate exciton Hamiltonian, and MW refers to Mott-Wanni
excitons.13

To proceed further it is necessary to recast the Pari
Parr-Pople model in a molecular orbital basis. Furthermo
as a simplification, we assume that the Wannier molec
orbitals are localized on a particular dimer, i.e., we assu
that

als
v†'ãls

v†[
1

A2
~c2l 21s

† 1c2ls
† ! ~15!

and

als
c†'ãls

c†[
1

A2
~c2l 21s

† 2c2ls
† !. ~16!

The inverse relations are thus
11520
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c2l 21s
† '

1

A2
~als

v†1als
c†! ~17!

and

c2ls
† '

1

A2
~als

v†2als
c†!. ~18!

This approximation does not lead to any qualitative diffe
ences in the predictions, but does lead to the simplification
only having nearest-neighbor hopping terms in the n
equation.14

Substituting Eqs.~17! and~18! into Eq.~1!, the molecular
orbital Hamiltonian,11,15 is

H52(
lgs

t̃ gg~als
g†al 11s

g 1al 11s
g† als

g !1(
lg

egnl
g

1Ṽ0(
lg

nl↑
g nl↓

g 1
Ṽ0

2 (
lgÞg8

nl
gnl

g81 (
lÞ l 8gg8

Ṽl 8nl
gnl 1 l 8

g8

2J (
lgÞg8

FSl
g
•Sl

g81
1

4
nl

gnl
g8G , ~19!

where nls
g 5als

g†als
g , Sl

g5(rr8alr
g†srr8alr8

g , and s are the
Pauli spin matrices.16 In terms of the atomic orbital param
eters the molecular orbital parameters~denoted by a tilde!
are

t̃ vv52 t̃ cc5t~12d!/2,

ev52ec52t~11d!,

Ṽ05~V01V1!/2, ~20!

Ṽl5~V2l 2112V2l1V2l 11!/4,

J5~V02V1!/2.

The scalar product̂ l 1(m/2),l 2(m/2)uHuCMW& gives the
following equation forf ( l ,m):

2 t̃ F f S l 1
1

2
,m21D1 f S l 2

1

2
,m11D1 f S l 2

1

2
,m21D

1 f S l 1
1

2
,m11D G1~2Jdm0dM2Ṽl ! f ~ l ,m!

5~E2Ṽ02D1J! f ~ l ,m!, ~21!

whereD5ec2ev52t(11d) is the HOMO-LUMO gap, and
t̃ 5t(12d)/2.

To derive an effective-particle model,8,17 we introduce the
center-of-mass coordinate,R5(Rl 1m/21Rl 2m/2)/25 ld, and
the relative coordinate,r 5Rl 1m/22Rl 2m/25md, whered is
the contour length between repeat units (52a for dimerised
chains!. For periodic boundary conditions we may assum
that
5-3
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BARFORD, BURSILL, AND SMITH PHYSICAL REVIEW B66, 115205 ~2002!
f n~ l ,m!5
1

ANu

exp~ iKR!Fn~r !, ~22!

where K is the center-of-mass momentum:2p/d<K
<p/d. For open boundary conditions we assume that

f n~ l ,m!5A 2

Nu11
sin~b jR!Fn~r !, ~23!

where b j is the center of mass pseudomomentum:b j
5 j p/(Nu11)d, and j 51,2, . . . ,Nu .

Substituting Eq.~22! into Eq. ~21! the following differ-
ence equation for the relative wave function is obtained:

22 t̃cos~Kd/2!@Fn~m21!1Fn~m11!#

1~2Jdm0dM2Ṽm!Fn~m!5~E2Ṽ02D1J!Fn~m!,

~24!

where dM51 for singlet excitons, anddM50 for triplet
excitons.18 Fn(m) is the relative wave function for the
electron-hole pair in the localized molecular orbitalsm mo-
lecular repeat units apart. A similar equation for linear cha
is obtained using Eq.~23!, with b j replacingK in Eq. ~24!.

Notice that two quantum numbers specify the excit
eigenstates, Eq.~22!: the principle quantum numbern and
the ~pseudo-! momentum,K ~or b j ). For everyn there are a
family of excitons with different momenta. Odd and ev
values ofn correspond to the relative wave function,Fn(m),
being even or odd under a reversal of the relative coordin
respectively. We refer to even and odd parity excitons
excitons whose relative wave function is even or odd und
reversal of the relative coordinate. We do not mean that
overall parity of the eigenstate@Eq. ~14!#, determined by
both the center-of-mass and relative wave functions, is e
or odd. The number of nodes in the exciton wave functi
Fn(m), is n21.

There are three important observations to be made a
this effective-particle model. The first point is that since t
exchange interaction is local~i.e., it is only nonzero when
m50), we immediately see that this term vanishes for o
parity excitons @i.e., Fn(m)52Fn(2m)], as Fn(0)50.
Now, since the parity of the exciton is determined by t
particle-hole symmetry, and odd singlet and triplet excito
are determined by positive and negative particle-hole s
metries, respectively,11 this theory predicts that1Ag

1 and
3Ag

2 and the 1Bu
1 and 3Bu

2 excitons are degenerate.2 ~A
derivation of the relation between particle-hole symme
and particle-hole parity is given in Appendix A.!

The second observation is that when making the mapp
from the atomic orbital Hamiltonian, to the molecular orbit
Hamiltonian the distance between sites in the Coulomb
teraction is replaced by the distance between molecular
peat units. For the polyacetylene structure the distance
tween double bonds isA3a. Thus, the Coulomb interactio
has aneffectivedielectric constant ofe5A3. An alternative
and equivalent interpretation is that the effective mass is
duced by a factor ofe2. Both interpretations lead to a redu
tion of the effective Rydberg by a factor ofe2.
11520
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Finally, this model leads to unphysical predictions f
largeU, namely, that the lowest triplet has an energy bel
that of the ground state. This occurs whenJ*D, i.e., U
;19.5 eV for the Ohno potential.

We briefly discuss the continuum limit and the hydrogen
solutions of Eq.~24! in Appendix B. In the next section we
analyze the general solutions to Eq.~24! and compare them
to the DMRG calculations.

B. Comparison to the DMRG calculations

The DMRG calculations are performed on polymer cha
with the polyacetylene geometry. Since these chains pro
C2 symmetry the many-body eigenstates are either even,Ag ,
or odd, Bu . As discussed in Sec. II A, the singlet excito
wave function has even or odd parity when the particle-h
eigenvalue is odd or even. Conversely, the triplet exci
wave function has even or odd parity when the particle-h
eigenvalue is even or odd. As a consequence, we can exp
a u1Bu

2& state as,

u1Bu
2&5 (

oddn
(
odd j

an juCn j
MW&1~other contributions!,

~25!

whereuCn j
MW& is defined by Eqs.~14! and~23!. Similarly, we

can express theu1Ag
1& state as

u1Ag
1&5 (

evenn
(
odd j

an juCn j
MW&1~other contributions!.

~26!

Generally, the sums will be dominated by one compone
except at anticrossings, as discussed shortly. Theother con-
tributions to the state vectors include, for example, covale
and holon-doublon terms.19

Figure 1 shows the binding energies of the singlet a
triplet excitons as a function ofU.20 Since there is no ex-
change term in the binding energy of the triplets, their en
gies follow the predictions of the one-dimensional hydroge
like model, namely, that the binding energy of the lowe
exciton scales asU, while for largeU the energies of the
other excitons approaches the Rydberg series5 ~as discussed
in Appendix B!. In contrast, the exchange term affects t
binding energies of the even parity singlet excitons. As
result of the functional form of the Ohno potential, whic
becomes steeper for smallr as U increases, the exchang
term increases withU. This leads to nonmonotonic behavio
in the binding energies as a function ofU.

We can compare these theoretical predictions to
DMRG calculations. We employ three ways of identifyin
the lowest pseudomomentum branch (j 51) of a given exci-
ton family (n). First, these states have strong dipole m
ments connecting them. Second, there are jumps in
particle-hole separations,r p , defined as,11,21
5-4
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r p
25^m2&p5

(
lm

m2^puSlm
† uGS&2

(
lm

^puSlm
† uGS&2

. ~27!

Finally, as shown in Fig. 3, energy plots against inve
chain length identify the different exciton families.

The DMRG calculations of the binding energies a
shown forU51,10/3, and 10 eV for 30 sites in Fig. 1. Ex
cept forU51 eV, the deviations between the weak-coupli
theory and calculation are rather large. However, as Fig
indicates, these deviations arise predominately from disc
ancies in the predicted charge gap, rather than the exc
excitation energies. Figure 2 shows the two lowest sing
and triplet energies, and the charge gap. ForU51 and U
510/3 eV the agreement between the model and the DM
calculations are good for the exciton energies. As predic
the odd parity singlet and triplet excitons are degener
However, forU510 eV, the results are less good, partic
larly for the odd parity excitons. Further, the singlet a
triplet are no longer degenerate, because the triplet excito
evolving into a gapless spin density wave state.

FIG. 1. Exciton binding energies in the weak-coupling lim
Even and odd parity excitons~with respect to the relative coordi
nate! are shown by solid and dashed curves, respectivelyt
52.5 eV andd50.2. The circles and squares are the DMRG c
culations on 30-site chains for then51 andn52 excitons, respec-
tively. ~a! Singlet and~b! triplet excitons.
11520
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There is a large disagreement between theory and ca
lation for the band gaps for largeU. The origin of this dis-
agreement is that the unbound particle-hole pair is stron
solvated by intrachain screening. The excitons are also
vated, but this solvation becomes less strong as the exci
become more strongly bound. This intrachain screening c
not simply be modeled by an effective dielectric consta
although this would reduce the exciton binding energies
would not affect the band gap.

The evolution of the calculated exciton energies as fu
tion of chain length shows a number of interesting featur
Fig 3~a! and 3~b! show the1Bu

2 ~odd n) and 1Ag
1 ~evenn)

spectra, respectively. The different pseudomomentum~j!
states for the samen, and anticrossings between states
different n are clearly seen. Figure 3~a! shows then51 and
n53 excitons converging to 2.6 eV and 3.9 eV, respe
tively, while Fig. 3~b! shows then52 and n54 excitons
converging to 3.5 eV and 4.1 eV, respectively. The band
is also shown converging to 4.4 eV. Thus, for 102 sit
there are at least four families of bound excitons. Figu
3~c! and 3~d! show the energies of the three lowest pseu
momentum branches of the lowest1Bu

2 (n51) and
1Ag

1 (n52) excitons~i.e., j 51,3, and 5! as a function of the
square of the inverse chain length. The ratios of their slo
are 1:9:25,showing that the energies scale as 1/N2, indicat-
ing particle-in-a-box behavior.8

The particle-hole separations are shown in Fig. 4 at 1
sites. The jumps in the separation occur atp59 andp58
for the even and odd parity excitons, respectively, cor
sponding to thej 51 branches of then53 andn54 exci-
tons. Notice that, as predicted in Ref. 8 and Appendix B,
particle-hole separations decrease with increasingj for the
samen. As a comparison to the DMRG calculations, we p
the exciton probability functions derived from the wea
coupling limit in Fig. 5.

FIG. 2. The transition energies of then51 singlet~solid curve!,
n51 triplet ~dotted curve!, n52 singlet and triplet~short-dashed
curve! excitons, and the charge gap~long-dashed curve! in the
weak-coupling limit.t52.5 eV andd50.2. The circles and square
are the DMRG calculations on 30-site chains for then51 andn
52 excitons, respectively. The diamonds are the DMRG calcula
charge gap. Singlet~solid symbols! and triplet~open symbols!. The
calculatedn52 singlet and triplet energies overlie each other
U51 and 10/3 eV. The small discrepancies atU51 eV arise from
finite-size effects.

-

5-5
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FIG. 3. The DMRG calculated singlet exciton transition energies as a function of square of the inverse chain length.t52.5 eV, U
510/3 eV, andd50.2. All curves are for odd pseudomomentum quantum number,j. Solid and dashed curves are to illustrate the anticro
ings. Also shown is the charge gap as the dotted curve.~a! 1Bu

2 states~odd n), showing then51 exciton converge to 2.6 eV and then
53 exciton converge to 3.9 eV.~b! 1Ag

1 states~evenn), showing then52 exciton converge to 3.5 eV and then54 exciton converge to
4.1 eV. ~c! The first three1Bu

2 states, showing straight line fits of relative gradients1:9:25. ~d! The first three1Ag
1 states.
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A comparison between the DMRG results and the we
coupling theory is shown in Table I. For then51 and n
52 excitons the agreement between the excitation energi
good, but, as discussed above, the binding energies do
agree well.

We conclude this section with a few remarks on the ‘‘e
sential’’ states responsible for the nonlinear optical susce
bilities. There are at most four states in a particular excitat
path way in the sum-over-states calculation ofx (3). Mazum-
dar and co-workers observed12 that only a few excitation
pathways~and hence states! contribute to this sum. The path
way must contain strong dipole moments to the ground st
In the weak coupling limit these are the 11Ag

1 , 1 1Bu
2 ,

2 1Ag
1 , and n 1Bu

2 states, i.e., the ground state and then
51, 2 and 3 Mott-Wannier excitons.22

III. THE STRONG-COUPLING LIMIT

The strong-coupling limit for nearest-neighbor intera
tions was studied in Refs. 6 and 7, while an effective-part
model for general interactions was derived in Ref. 8. Ex
tons in this limit are quite different from their counterparts
the weak-coupling limit. In the weak-coupling limit exciton
are particle-hole excitations from the valence to the cond
11520
k
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-
ti-
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-
e
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tion band. As we saw in Sec. II a real-space picture co
sponds to a particle in a local antibonding molecular orb
bound to a hole in local bonding molecular orbital. Since
electron and hole can exist on the same dimer there are
restrictions on the symmetries of the relative wave functi
and both singlet and triplet excitons exist. The stron
coupling limit starts from the approximation that the Co
lomb interactions are so large that the undimerized b
splits into a lower and upper Hubbard band. At half-fillin
the lower Hubbard band is full, corresponding to one el
tron perp orbital. Now an exciton is a particle in the uppe
Hubbard band bound to a hole in the lower Hubbard band
an empty orbital bound to doubly occupied orbital on anot
site. These are Mott-Hubbard excitons. As shown in Ref
this problem maps onto the problem of two bound spinl
fermions~or hard-core bosons!. The particle and hole canno
exist on the same site, so there is a local hard-core repuls
and the relative wave function is zero forr 50. In the con-
tinuum limit with a 1/r potential the bound states form
Rydberg series, with each energy level being composed o
even and odd pair of states.8

The general particle-hole eigenstate in this limit is of t
form
5-6
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uCMH&5(
i i 8

f n~ i ,i 8!u i 1 i 8/2,i 2 i 8/2&, ~28!

where u i 1 i 8/2,i 2 i 8/2&5(sdi 1 i 8/2,s
† hi 2 i 8/2,s

† uGS&, and the
MH refers to Mott-Hubbard excitons.

his
† 5cis~12ni s̄! ~29!

creates a holon~i.e., removes a particle with spins from the
lower Hubbard band!, while

dis
† 5cis

† ni s̄ ~30!

creates a doublon~i.e., creates a particle with spins in the
upper Hubbard band!.

Following the same procedure as in Sec. II, the relat
wave functionF( i ), Eq. ~22!, satisfies

22t cos~Ka/2!@Fn~ i 21!1Fn~ i 11!#2ViFn~ i !

5~E2U !Fn~ i !, ~31!

FIG. 4. The DMRG calculated root-mean-square particle-h
separations,r p @Eq. ~27!# in units of the molecular repeat distanc
for 102 sites.t52.5 eV, U510/3 eV, andd50.2. p 1Bu

2 states
~squares! and p1Ag

1 states~circles!. The molecular repeat distanc
is twice the lattice distance.

FIG. 5. The singlet exciton probability density,Fn(m)2, in the
weak-coupling limit.t52.5 eV, U510/3 eV, andd50.2.
11520
e

where i is the distance between atomic orbitals. The ha
core repulsion, imposed by the conditionFn(0)50, implies
that even and odd parity solutions are degenerate, bec
Fn( i ) can be matched by either6Fn(2 i ) at the origin.

In analogy with Eqs.~25! and ~26! we can express the
exciton states as

u1Bu
2&5 (

oddn
(
odd j

bn juCn j
MH&1~other contributions!

~32!

and

u1Ag
1&5 (

evenn
(
odd j

bn juCn j
MH&1~other contributions!,

~33!

whereuCn j
MH& is defined in Eq.~28!.

Since the unbound continuum starts atU24t, we see that
this model is unphysical forU&4t, as then the bound state
would have a negative excitation energy. So, although
can obtain binding energies, we cannot obtain physically
alistic excitation energies in the intermediate-coupling
gime. However, as we shall see in Sec. IV, this theory d
provide qualitative insight to the behavior of th
intermediate-coupling regime.

We check the theory against DMRG calculations. Figur
shows the binding energies as a function ofU, with compari-

TABLE I. The excitation energies and binding energies~in eV!
for the first four j 51 Mott-Wannier excitons of a 102-site chain
d50.2, U510/3 eV, andt52.5 eV.

State DMRG calculation Weak-coupling theory
Excitation

energy
Binding
energy

Excitation
energy

Binding
energy

1 1Bu
2 (n51) 2.62 1.82 2.68 2.49

2 1Ag
1 (n52) 3.49 0.95 3.70 1.47

9 1Bu
2 (n53) 3.93 0.51 4.25 0.92

8 1Ag
1 (n54) 4.13 0.31 4.54 0.63

e

FIG. 6. The exciton binding energies in the strong-coupli
limit. t52.5 eV andd50. The circles are the DMRG calculation
for the n51 exciton on 30-site chains.
5-7
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BARFORD, BURSILL, AND SMITH PHYSICAL REVIEW B66, 115205 ~2002!
sons to DMRG calculations ford50. At largeU the theory
becomes exact, and also agrees very well with dimeri
chains.

This strong-coupling exciton theory completely negle
the low-lying spin density wave excitations; nor does it d
scribe the triplet excitons. In this limit the 13Bu

1 state is a
gapless spin-density wave, and not then51 Mott-Wannier
triplet exciton, while the 21Ag

1 state has evolved from th
weak-coupling n52 Mott-Wannier exciton to a pair o
bound triplets.23,24 This can be seen from the DMRG calc
lations for six sites, presented in Table II. The first odd pa
singlet exciton is the 51Ag

1 state, which is ca. 4t2/(U
2V1) higher in energy than its associated even parity ex
ton, the 11Bu

2 state. We interpret the 13Ag
2 state as the

1 3Bu
1 triplet bound to the 11Bu

2 exciton, while the 83Bu
1

state is the 13Bu
1 triplet bound to the 51Ag

1 exciton.

IV. THE INTERMEDIATE-COUPLING REGIME

As the strength of the Coulomb interactions are increa
from the weak-coupling limit the character of the grou
state and excitations changes. As discussed in Sec. III, a
class of excitations emerges, and these are the spin-den
wave ~or covalent! states. The lowest lying triplet ( 13Bu

1)
becomes a spin-density wave, and the 21Ag

1 state evolves
from then52 Mott-Wannier exciton to a pair of bound trip
lets. A higher-lying 1Ag

1 state evolves into then52 Mott-
Hubbard exciton.

The intermediate-coupling regime is in the crossover
tween these regimes. In fact, the cross-over also occurs
function of the dimerizationd. Consider the undimerized
chain, with d50. As a result of the perfect nesting in on
dimension there is always a correlation gap in the electro
spectrum of the half-filled chain for any nonzero Coulom
interaction. For the Hubbard model the correlation gap
;AUtexp(22pt/U) for t@U, while it is U24t for t!U.
We expect these predictions to remain qualitatively corr
for long-range interactions. The correlation gap separates
lower and upper Hubbard bands. A particle-hole excitat
across the correlation gap will result in a bound Mo
Hubbard exciton for any interaction strength, although

TABLE II. Excitation energies~in eV! of the key low-lying
states for the undimerized 6-site chain.U5100 eV and t
52.5 eV.

State Character Excitation energy~eV!

2 1Ag
1 Pair of bound magnons 0.365

1 1Bu
2 n51 Mott-Hubbard

singlet exciton
86.375

5 1Ag
1 n52 Mott-Hubbard

singlet exciton
86.650

1 3Bu
1 Magnon 0.138

1 3Ag
2 Magnon bound to then51

Mott-Hubbard exciton
86.545

8 3Bu
1 Magnon bound to then52

Mott-Hubbard exciton
86.819
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weak interactions the exciton will be considerably mo
complicated than the holon-doublon exciton discussed
Sec. III. Alternatively, if the dimerization gap (4td) is large
compared to the correlation gap, we expect Mott-Wann
excitons to be the dominant low-energy ionic excitations.

We can see this behavior by studying the DMRG calcu
tions. First, we considerd50. Figure 7~a! shows the four
lowest essential states. The 11Bu

2 , 9 1Ag
1 , and 71Bu

2 states
are the j 51, n51, 2, and 3 Mott-Hubbard excitons. Th
2 1Ag

1 state, with an energy lower than the 11Bu
2 state, is

predominately a bound triplet. The particle-hole separati
in the holon-doublon channel,r p , defined as8

r p
25^ i 82&p5

(
i i 8

i 82^pu(
s

dis
† hi 1 i 8s

† uGS&2

(
i i 8

^pu(
s

dis
† hi 1 i 8s

† uGS&2

, ~34!

are also shown.
Next we considerd50.2. Figure 7~b! shows that the four

lowest essential states appear to fit the weak-coupling mo
as they are the 11Bu

2 , 2 1Ag
1 , and 41Bu

2 states. These are
j 51, n51, 2, and 3 Mott-Wannier excitons.

At d50.1 there are both Mott-Hubbard and Mott-Wanni
excitons, forming two families of essential states. In gene
the 1Bu

2 states are linear superpositions of Eqs.~25! and
~32!, while the 1Ag

1 states are linear superpositions of Eq
~26! and ~33!, with one component predominating. As th
bond dimerization decreases the spin-density-wave com
nent of the 21Ag

1 state increases.25 Figure 7~c! shows the
1 1Bu

2 , 2 1Ag
1 , and 41Bu

2 states, forming the Mott-Wannie
family of excitons, while Fig. 7~d! shows the 11Bu

2 , 6 1Ag
1 ,

and 91Bu
2 states, forming the Mott-Hubbard family of exc

tons. The progression of excitons in both families can also
identified by the jumps in the relevant particle-hole sepa
tion. These families are distinct in the sense that there
very small dipole moments between the 21Ag

1 and 91Bu
2

states and between the 61Ag
1 and 41Bu

2 states. However,
since the 11Bu

2 state has large dipole moments to both t
2 1Ag

1 and 61Ag
1 states, this state clearly has large amp

tudes in both then51 Mott-Hubbard andn51 Mott-
Wannier families.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we have analyzed effective-particle mod
for excitons in the weak- and strong-coupling limits, a
compared them to DMRG calculations. There is good agr
ment between the effective-particle models and the com
tational results in these limits. These extreme limits ha
been used to understand the DMRG calculations in
intermediate-coupling regime. Our key conclusions are
follows.

~1! In the weak-coupling limit~where the single-particle
gap is larger than the correlation gap! the bound states ar
Mott-Wannier excitons, i.e., conduction-band electro
bound to valence-band holes. Singlet and triplet excito
5-8
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FIG. 7. The DMRG calculated essential states~defined as the four lowest states with the strongest inter-state dipole moments! for 30 site
chains. The arrows show the dipole moments normalized to 11Ag

1→1 1Bu
2 dipole moment. The molecular-orbital and holon-doubl

particle-hole separations~in units of the lattice spacing! are shown in italics using Eq.~27! and bold using Eq.~34!, respectively.~a! t
52.5 eV,U510 eV, andd50, showing the Mott-Hubbard series,~b! t52.5 eV,U510 eV, andd50.2, showing the Mott-Wannier series
~c! t52.5 eV, U510 eV andd50.1, showing the Mott-Wannier series, and~d! t52.5 eV, U510 eV andd50.1, showing the Mott-
Hubbard series.
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whose relative wave functions are odd under a reflection
the relative coordinate are degenerate. Thus, the 21Ag

1 and
1 3Ag

2 states are degenerate in this limit.
~2! In the strong-coupling limit~where the correlation gap

is larger than the single particle gap! the bound states ar
Mott-Hubbard excitons, i.e., particles in the upper Hubb
band bound to holes in the lower Hubbard band. Th
bound states occur in doublets of even and odd parity e
tons. Triplet excitons are magnons bound to the singlet e
tons, and hence are degenerate with their singlet coun
parts.

~3! In the intermediate-coupling regime Mott-Wannier e
citons are the more appropriate description for large dim
ization (d50.2), while for the undimerized chain Mott
Hubbard excitons are the correct description. F
dimerizations relevant to polyacetylene and polydiacetyl
~i.e.,d;0.1) both Mott-Hubbard and Mott-Wannier exciton
are present.

~4! For all coupling strengths an infinite number of bou
states exist for 1/r interactions for an infinite polymer. Gen
erally, the effective-particle models overestimate binding
ergies, as they neglect intrachain screening. As a result o
discreteness of the lattice, and the restrictions on the exc
wave functions in one dimension, the progression of sta
does not follow the Rydberg series. In practice, excito
whose particle-hole separation exceeds the length of
polymer can be considered unbound. These predictions a
contrast to the those obtained from models with short-ra
interactions, which would predict one or more bound sta
in the weak-coupling limit, and zero or more bound states
the strong-coupling limit.6,7
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~5! The DMRG calculated exciton excitation energi
scale as the inverse of the chain length for short chains,
the inverse of the square of the chain length for long cha
This fits the effective-particle-in-a-box model.8

~6! The DMRG calculations show that then51 exciton
binding energy increases monotonically with increasing C
lomb interaction. At large coupling the binding energy agre
with the strong-coupling theory. We may therefore place
theoretical estimate on the binding energy of excitons in c
jugated polymers as ca. 4.6 eV.

We can apply these exciton theories to actual conjuga
polymers. Barford, Bursill, and co-workers have used
DMRG method to solve realistic parameterizations of t
Pariser-Parr-Pople model for various systems.26–29 Recent
work26 on poly~p-phenylene! puts the 11B1u

2 (n51) exciton
at 3.7 eV, the 21Ag

1 (n52) exciton at 5.1 eV and the 13Ag
2

triplet close in energy to the 21Ag
1 state, at 5.5 eV. This

progression indicates a Mott-Wannier series of excitons
contrast, polyacetylene and polydiacetylene have predo
nately Mott-Hubbard excitons. In polyacetylene the vertic
energies of the 11B1u

2 and 21Ag
1 states are virtually

degenerate,27 while for polydiacteylene the 21Ag
1 state lies a

few tenths of an eV higher than the 11B1u
2 state.28 In both

cases the1 Ag
1 state most strongly connected to the 11B1u

2

state is not the 21Ag
1 state, but a higherm 1Ag

1 state, fitting
the pattern of Mott-Hubbard excitons. Furthermore, in bo
cases the 21Ag

1 state undergoes strong electron-lattice rela
ation, and its relaxed energy lies below that of the relax
1 1B1u

2 state.27,29 This places polyacetylene and polydiacet
lene on the correlated side of the intermediate-coupl
regime.
5-9
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BARFORD, BURSILL, AND SMITH PHYSICAL REVIEW B66, 115205 ~2002!
Our results apply to the vertical excitations of single po
mer chains. Various additional intrinsic and extrinsic effe
can significantly modify excited energies. Covalent sta
such as highly correlated 13Bu

1 and 21Ag
1 states, undergo

significant electron-lattice relaxation, and as already sta
this leads to a reversal of the 11B1u

2 and 21Ag
1 energies in

polyacetylene and polydiacetylene.
An important extrinsic effect is solvation by the enviro

ment, and again, this significantly alters the energy of exc
states. States with larger binding energy are less solv
than those that are weakly bound. Current estimates are
the n51 exciton solvates by ca. 0.3 eV, then52 exciton
solvates by ca. 0.6 eV, and the band gap solvates by ca
eV.30 Thus, the experimentally reported exciton binding e
ergies of ca. 0.5–1.0 eV, for polydiactelyene and PPV, e
are much smaller than the bare single-chain values calcul
here.

In conclusion, we have developed exciton theories
single chains with long-range interactions. It remains a ch
lenge to predict the experimental signatures of these exc
states, especially when the additional intrinsic and extrin
effects are included.
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APPENDIX A: PARTICLE-HOLE SYMMETRY
AND PARTICLE-HOLE PARITY

In this appendix we prove that the relative parity of s
glet particle-hole excitations is even or odd when t
particle-hole symmetry is odd or even, respectively, andvice
versa for triplet excitations. Using the definition that th
particle-hole operator maps the atomic orbital creation op
tors as

cis
† °~21! ici s̄ , ~A1!

it is easily shown, using Eqs.~8! and ~9!, that the creation
operators for the conduction- and valence-band Wannier
bitals map as

a
ls
c†
v

°2a
l s̄
v
c

. ~A2!

Then, the singlet particle-hole basis state,

u l 1m/2,l 2m/2&

5
1

A2
~al 1m/2↑

c† al 2m/2↑
v 1al 1m/2↓

c† al 2m/2↓
v !uGS&

°
1

A2
~al 1m/2↓

v al 2m/2↓
c† 1al 1m/2↑

v al 2m/2↑
c† !uGS&
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52
1

A2
~al 2m/2↑

c† al 1m/2↑
v 1al 2m/2↓

c† al 1m/2↓
v !uGS&

52u l 2m/2,l 1m/2& ~A3!

under the particle-hole transformation. Thus, the partic
hole adapted-symmetry state

u l ,m;7&5
1

A2
~ u l 1m/2,l 2m/2&6u l 2m/2,l 1m/2&)

~A4!

has a negative particle-hole symmetry eigenvalue for
even parity combination and a positive particle-hole symm
try eigenvalue for the odd parity combination.

The reverse relation holds for triplets, because the trip
particle-hole basis state

u l 1m/2,l 2m/2&

5
1

A2
~al 1m/2↑

c† al 2m/2↑
v 2al 1m/2↓

c† al 2m/2↓
v !uGS&

°
1

A2
~al 1m/2↓

v al 2m/2↓
c† 2al 1m/2↑

v al 2m/2↑
c† !uGS&

51
1

A2
~al 2m/2↑

c† al 1m/2↑
v 2al 2m/2↓

c† al 1m/2↓
v !uGS&

51u l 2m/2,l 1m/2&, ~A5!

under the particle-hole transformation. Note that this relat
between particle-hole symmetry and particle-hole pa
holds for all exciton center-of-mass momenta,K, and not just
K50, as stated in Ref. 3.

APPENDIX B: ‘‘HYDROGENIC’’ SOLUTIONS
TO THE EFFECTIVE-PARTICLE MODEL

IN THE WEAK-COUPLING LIMIT

In this appendix we briefly examine the properties of t
weak-coupling effective-particle model, Eq.~24!, in the con-
tinuum limit. In making the connection to the continuu
limit it is convenient to sett̃ 5\2/2Md2, so 2t̃ 5\2/2md2,
where the reduced mass,m5M /2, and M is the effective
mass. Then, scaling lengths by the effective Bohr rad
a0(K)5\2 cos(Kd/2)/me2 and the energy by the effectiv
Rydberg,EI(K)5me4/2\2 cos(Kd/2), we obtain

2
1

a8~K !2
@Fn~m21!1Fn~m11!#2

2Fn~m!

a8~K !~11m2!1/2

5@En8~K !2Ṽ082D8#Fn~m!, ~B1!

where a8(K)5d/a0(K), En8(K)5En /EI(K), Ṽ08

5Ṽ0/EI(K), and D85D/EI(K). We have used the Ohn
function for the Coulomb interaction, which remains finite
m→0, and we setJ̃50, as we are uninterested in details
the exchange splitting.31
5-10
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THEORETICAL AND COMPUTATIONAL STUDIES OF . . . PHYSICAL REVIEW B 66, 115205 ~2002!
In the continuum limit@a8(K)→0# Eq. ~B1! is identical
~except for the regularization of the Coulomb term! to the
effective one-dimensional equation for the radial part of
three-dimensional hydrogen atom wave function,u(r )
5rc(r ), with zero angular momentum. This equation w
studied in detail by Loudon.5 The odd parity states have th
same boundary conditions asu(r ), namely u(0)50 and
u(r→`)→0. They are formed by matchingu(r ) with
2u(2r ) at the origin. Thus, for evenn the binding energies
are

En~K !5
EI~K !

~n/2!2
~B2!

and the corresponding wave functions are

Fn~r ,K !5@Nr/a8~K !#exp@22r /na8~K !#Ln/2„4r /na8~K !…,
~B3!

whereLm is the mth-order Laguerre polynomial andN is a
normalization constant.

The lowest even parity state is strongly bound, with
binding energy scaling as 2/a8(K), while the energies of the
remaining even parity states are bounded by a higher
lower odd parity state. Notice that as a result of theK depen-
dency of EI(K) the binding energies for a givenn are
larger for the higher center-of-mass momentum states. S
larly, the characteristic length,a0(K), decreases for higher
momentum states, resulting in a smaller particle-h
separation.
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For arbitrarya8(K) it is necessary to solve Eq.~B1! nu-
merically. Figure 8 shows the binding energy of the thr
lowest states atK50 as a function ofa8. As a8 decreases
the binding energies approach the Rydberg series, excep
the energy of the first even parity state, which diverges. Ty
cal values for conjugated polymers, witht52.5 eV, are~i!
d50.1, which givesEI53.90 eV anda851.31, and~ii ! d
50.2, which givesEI54.40 eV anda851.48. The resulting
binding energies from Fig. 8 agree very well with those
Fig. 1~a!.

FIG. 8. The exciton binding energies in units ofEI in the weak-
coupling limit for a regularized Coulomb potential versusa/aI .
Even parity, oddn states~solid curves! and odd parity, evenn states
~dashed curves!.
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13A basis state ink space isukh ,ke&5Ske ,kh

† uGS&, where Ske ,kh

†

0

,

p,

of

5(1/A2)(ake↑
c† akh↑

v 6ake↓
c† akh↓

v ). ke andkh are the Bloch momenta

of the electron and hole, respectively. The exciton eigenstate
uCMW&5(ke ,kh

f ke ,kh
ukh ,ke&.

14The amplitude for the Wannier molecular orbital to overlap
neighboring dimer is very small. Ford50.2 this amplitude is
0.16, resulting in nearest-, next-nearest-, and next-next-near
neighbor hopping terms to be in the ratio of 1:0.17:0.06. Ne
glecting the longer range hopping terms means that the appro
mate single-particle bands differ from the exact single-partic
bands, resulting in different effective masses and qualitative
different binding energies. Also, the two-electron paramete
will be different. Thus, using the Wannier molecular orbital
rather than the local molecular orbitals will give a more accu
rate, but more complicated effective-particle theory; see Ref. 1

15The general recipe for mapping between atomic orbital and m
lecular orbital Hamiltonians is given in R. J. Bursill, W. Barford
and H. Daly, Chem. Phys.243, 35 ~1999!.

16The molecular orbital Hamiltonian also contains terms th
change the occupancy of the valence and conduction ban
However, as such terms do not connect basis states within
exciton sub-basis, they are neglected.

17D. C. Mattis,The Theory of Magnetism~Springer-Verlag, Berlin,
1981!, p. 147.

18If next-nearest-neighbor hopping terms,t̃ 2, are retained in Eq.

~19!, the difference equation becomes22 t̃ cos(Kd/2)@Fn

(m21)1Fn (m11)#22 t̃ 2 cos (Kd ) @ Fn ( m22 )1Fn ( m12 ) #

1(2Jdm0dM2Ṽm)Fn(m)5(E2Ṽ02D1J)Fn(m).
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19Notice that oddn @i.e., even parityFn(m)] and oddj ~i.e., even
center-of-mass wave function! implies u1Bu

2&, and evenn @i.e.,

odd parityFn(m)] and oddj implies u1Ag
1&, as theĈ2 operator

reflects both the center-of-mass and relative coordinates,
hence exchanges the electron and hole.

20The binding energy is defined as the excitation energy relativ
the charge gap, and the charge gap5E(N11)1E(N21)
22E(N). Although the charge gap is only truly meaningful fo
infinite chains, where the highest exciton energies beco
closely spaced and their particle-hole separations diverge,
still a qualitatively useful concept for finite length chains, as
marks the energy above which a particle-hole excitation
more energy than an uncorrelated particle-hole pair.

21Notice that^puSlm
† uGS&5(n jan j , and hence this is a measure

the exciton wave function.
22The anticrossings between a higherj of a lowern with the j 51

state of a highern, shown in Fig. 3, can lead to spurious ‘‘es
sential states,’’ as oscillator strength is transferred from thj
51 state of highern to the higherj state of the lowern. These
other essential states, arising from the accidental degenera
are quite different from the competing essential states seen in
11520
nd

to

e
is

s

es,
he

intermediate-coupling regime, as discussed in Sec. IV.
23K. Schulten and M. Karpus, Chem. Phys. Lett.14, 299 ~1972!.
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51, 9476~1995!.
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27R. J. Bursill and W. Barford, Phys. Rev. Lett.82, 1514~1999!; W.

Barford, R. J. Bursill, and M. Yu. Lavrentiev, Phys. Rev. B63,
195108~2001!.

28A. Race, W. Barford, and R. J. Bursill, Phys. Rev. B64, 035208
~2001!.

29A. Race, W. Barford and R. J. Bursill~unpublished!.
30E. Moore, B. Gherman, and D. Yaron, J. Chem. Phys.106, 4216

~1997!; E. Moore and D. Yaron,ibid. 109, 6147~1998!.
31In the continuum limit the exchange term diverges, leading t

diverging on-site repulsion for the singlet states. This redu
the binding energy of the even parity singlet states, so that e
even parity state becomes degenerate with the higher-lying
parity state. The onset of such behavior is seen in Fig. 1~a! for
largeU.
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