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Impurity scattering in unconventional density waves
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We have investigated the effect of nonmagnetic impurities on the quasi-one-dimensional unconventional
density wave ground state. The thermodynamics were found to be close to those of ad-wave superconductor
in the Born limit. Four different optical conductivity curves were found depending on the direction of the
applied electric field and on the wave-vector dependence of the gap.
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I. INTRODUCTION

Recently a number of papers have been published in
tigating the different properties of unconventional dens
waves~UDW! under various conditions. The common fe
ture of these systems is the zero average of the gap on
Fermi surface, resulting in the absence of any perio
modulation of the charge or spin density. Clearly this pro
erty makes UDW a very likely candidate for those systems
which clear thermodynamic signals of a phase transition
seen without any order parameter, which could be dete
by conventional methods~i.e., x-ray or NMR methods!.1

From this the notion ‘‘hidden order’’ follows naturally.
Unconventional density wave formation is found to

possible in a large variety of systems. In the quasi-o
dimensional case, which is the natural occurrence of den
waves,2 we have investigated the basic properties of unc
ventional spin- and charge-density waves3 ~USDW, UCDW!
and the related threshold electric field with4 and without
magnetic field.5 UCDW turned out to be relevant in the ex
planation of the response of the low-temperature phas
quasi-one-dimensionala-(BEDT-TTF)2KHg(SCN)4 salts
@BEDT-TTF denotes bis~ethylenedithio!tetrathiafulvalene#.
In two-dimensional systems, the different unconventio
phases were elaborated by Ozaki.6 Among them, the
d-density wave scenario, which is a special case of UCD
~orbital antiferromagnet!, was proposed recently to describ
the famous pseudogap phase of high-Tc superconductors.7

Since the original proposal, several works have been p
lished in which the properties ofd-density waves were stud
ied with the aim of testing the validity of the model by com
paring to experimental data~see Ref. 8 and the reference
therein!. Also the ground state of certain heavy fermion m
terials were suspected to be USDW~Refs. 9 and 10! which
would simply explain the unsolved problem of microma
netism. In the presence of magnetic field, the orb
antiferromagnet11 and the spin nematic state12 were dis-
cussed as well in two dimensions. In three-dimensional s
0163-1829/2002/66~11!/115112~10!/$20.00 66 1151
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tems, the pseudogap phase of the transition-metal ox
have attracted significant attention and the staggered
state was mentioned in the context of the possi
explanations.13

In this paper we extend our earlier analysis3 on pure un-
conventional density waves to the presence of nonmagn
impurities. Impurities are treated in the Born scattering lim
since it works very well for conventional DW. Since th
Fermi surface of quasi-one-dimensional systems mainly c
sists of two separate sheets, two different scattering p
cesses should be taken into account: forward and backw
scattering during which an electron remains on the same
moves to the other Fermi sheet, respectively. The thermo
namics are found to be similar to those of ad-wave super-
conductor in the Born limit. Among the transport properti
the quasiparticle part of the optical conductivity is evaluat
In the chain direction the phason couples strongly to
electromagnetic field, giving rise to massive collecti
modes in this direction. On the other hand, for electric fie
applied perpendicular to the conducting chain, the cond
tivity shows only Fermi-liquid renormalization, and our d
scription is valid under these circumstances.

II. FORMALISM

To start with, we consider the Hamiltonian of interactin
electrons,

H5(
k,s

j~k!ak,s
† ak,s

1
1

2V (
k,k8,q
s,s8

Ṽ~k,k8,q!ak1q,s
† ak,sak82q,s8

† ak8,s8 ,

~1!

whereak,s
† andak,s are, respectively, the creation and ann

hilation operators of an electron of momentumk and spins.
V is the volume of the sample. Our system is based on
©2002 The American Physical Society12-1
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orthogonal lattice, with lattice constantsa,b,c toward direc-
tions x,y,z. The system is anisotropic, the quasi-on
dimensional direction is thex axis. The kinetic-energy spec
trum of the Hamiltonian is

j~k!522tacos~kxa!22tbcos~kyb!22tccos~kzc!2m. ~2!
-
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In the second term of Eq.~1! we consider the interaction
between on-site and nearest-neighbor electrons on the la
as in Ref. 3. Then by rewriting the interaction in terms
Fourier-transformed variables, its antisymmetrized~therefore
spin-dependent! version14 is given by
N

V
Ṽ~k,k8,q,s,s8!5d2s,s8S U1(

i
$2Vicosqid i12Jicos~ki2ki81qi !d i12Re~Fie

i (ki81ki )d i !12Re@Ci~eikid i1eiki8d i

1ei (ki82qi )d i1ei (ki1qi )d i !#% D 1ds,s8(
i

~Vi2Ji !@cosqid i2cos~ki2ki81qi !d i #, ~3!
the

on
the

ng
the
era-
ect

ave
ss
ior
ec-
il-
wherei 5x,y,z andd i5a,b,c, the different matrix elements
involve the on-site (U), nearest-neighbor direct (Vi), ex-
change (Ji), pair-hopping (Fi), and bond-charge (Ci) terms.
This interaction is able to support a variety of low
temperature phases,6 but we are only interested in unconve
tional DW ~whose gap depends on the perpendicu
momentum!.15,3 The latter can be either UCDW or USDW
depending on the strength of the exchange and pair-hop
integrals. The single-particle electron thermal Green’s fu
tion using Nambu’s notation is16,17

Gs~k,ivn!52E
0

b

dt^TtCs~k,t!Cs
†~k,0!&Heivnt, ~4!

where Green’s function is chosen to be diagonal in spin
dices and the momentum space is divided intok andk2Q
spaces~left- and right-going electrons! by introducing the
spinors,

Cs~k,t!5S ak,s~t!

ak2Q,s~t!
D , ~5!

vn is the Matsubara frequency,Q5(2kF ,p/b,p/c) is the
best nesting vector. The inverse of the above Green’s fu
tion is obtained as

Gs
21~k,ivn!5 ivn2j~k!r32Ds~k!r1 , ~6!

wherer i ( i 51,2,3) are the Pauli matrices acting on mome
tum space,Ds(k) satisfies the self-consistent equation,

Ds~k!5
1

V (
k8,s8

Ṽ~k8,k,Q,s,s8!^ak8,s8
† ak81Q,s&. ~7!

In order to describe USDW, we assumeD as an odd function
of the spin (Ds52D2s). AssumingDs to be an even func-
tion of the spin, we would have UCDW. From now on, w
will drop the spin indices since they are irrelevant for mo
of our discussion and most of our results applies to b
unconventional charge- and spin-density waves. The spin
dices will be reinserted wherever necessary. With this,
gap equation reads
r

ng
-

-

c-

-

t
h
n-
e

D~ l!5
1

V (
k

P~k,l !
D~k!tanh~bE~k!/2!

2E~K !
, ~8!

whereE(k)5Aj(k)21uD(k)u2, D(k)5Ds(k), and the ker-
nel of the integral equation is diagonal on the basis of
leading harmonics as3

P~k,l!

V
5

P0

N
1

P1

N
cos~kyb!cos~ l yb!1

P2

N
sin~kyb!sin~ l yb!

1
P3

N
cos~kzc!cos~ l zc!1

P4

N
sin~kzc!sin~ l zc!. ~9!

ThePi coefficients are linear combinations of the interacti
matrix elements. As a consequence of the general form of
kernel, the gap will be of the form

D~ l!5D01D1cos~ l yb!1D2sin~ l yb!1D3cos~ l zc!

1D4sin~ l zc!. ~10!

From now on we assume that only one kind of gap amo
the five possible options, whose transition temperature is
highest, opens and persists all the way down to zero temp
ture. For example, we find that USDW is stable with resp
to UCDW if Jy7Fy.0, where the upper~lower! sign refers
to a ky dependent gap function of cosine~sine!.3 The ther-
modynamic and transport properties of such a system h
been worked out in Ref. 3. In the following we shall discu
the effect of impurities on UDW and determine the behav
of the basic physical quantities. The interaction of the el
trons with nonmagnetic impurities is described by the Ham
tonian

H15
1

V (
k,q,s, j

e2 iq•RjCs
†~k1q!U~Rj !Cs~k!, ~11!

U~Rj !5S U~0! U~Q!e2 iQ•Rj

U~Q!eiQ•Rj U~0!
D , ~12!

Rj is the position of thej th impurity atom. The explicit
wave-vector dependence of the matrix elements18,5 is ne-
2-2
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FIG. 1. Self-energy corrections due to impurity scattering. The solid line denotes the electron while the dashed line is for the
impurity interaction. Dashed lines coming from the same cross represent successive scattering of the electron on the same impu
T
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glected since no important changes are expected from it.
usual method of treating the impurities is to average o
their position in real space, and step into the wave-vec
space afterwards.17,19 Instead, we follow a rather unorthodo
way: working in the Fourier space and averaging wh
needed. It is clear from the exponential prefactor inH1, that
only diagrams containing impurity scattering with mome
tum conservation at each impurity atom have finite expe
n
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11511
he
r
r

n

-
-

tion value after averaging over the position of the impuritie
and translational invariance is regained.

This method can be extended into any order of impur
scattering as we will demonstrate it in the following. As
the diagrams, we will take into account only noncrossin
ladder-type diagrams.14,17,20To start with, we will evaluate
the self-energy corrections caused by Eq.~12! at every order.
This can be visualized in Fig. 1 and is given by
SR~k,ivn!5SR~ ivn!5niS U~R!1U~R!E d3p

2p3
G~p,ivn!U~R!1U~R!E d3p

2p3
G~p,ivn!U~R!

3E d3p8

2p3
G~p8,ivn!U~R!1••• D 5niU~R!1U~R!E d3p

2p3
G~p,ivn!SR~ ivn!, ~13!

where the self-energy correction turns out to be momentum independent and theR index inSR( ivn) means the position of an
impurity over which the average will be taken in the following,ni is the impurity concentration. Equation~13! can be solved
easily, and the result is

SR~ ivn!5S U12g U2e2 iQ•R1 f

Ū2eiQ•R1 f̄ U12g D ni

~U12g!22u f u22uU2u22~U2 f̄ e2 iQ•R1Ū2f eiQ•R!
, ~14!
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where U15U(0)/@U(0)22uU(Q)u2# and U2
5U(Q)/@U(0)22uU(Q)u2# and

E d3p

2p3
G~p,ivn!5S g f

f̄ gD . ~15!

ExpandingSR( ivn) in powers of the exponential terms i
the denominator of Eq.~14!, the space average can be p
formed and the self-energy matrix is obtained as

S~ ivn!5S S1~ ivn! S2~ ivn!

S3~ ivn! S1~ ivn!
D ~16!

and its matrix elements are given by

S1~ ivn!5ni

U~0!2g~U~0!22uU~Q!u2!

AD224uU~Q! f u2
, ~17!

S2~ ivn!5ni

f

AD224uU~Q! f u2
S U~0!22uU~Q!u2

1
2uU~Q!u2

D1AD224uU~Q! f u2
D , ~18!
-

S3~ ivn! f 5S2~ ivn! f̄ , ~19!

where D5122gU(0)1(g22u f u2)@U(0)22uU(Q)u2#. In
the case off 50 ~i.e., the average of the gap over the Fer
surface is zero!, the self-energy is obtained correctly for a
bitrary U(0) andU(Q), since the exponential terms disa
pear from the denominator of Eq.~14!. Otherwise this result
is valid only for a certain range of parameters due to
expansion. On the other hand, one can deduce an expre
from Eq. ~14! involving the different matrix elements of th
self-energy, where the space average was performed r
ously,

S1~ ivn!~122U~0!g1~g21u f u2!@U~0!22uU~Q!u2!#

2~S2~ ivn! f̄ 1S3~ ivn! f 1ni !

3@U~0!2g~U~0!22U~Q!2#50, ~20!

and this equation is satisfied with the previously obtain
S1( ivn), S2( ivn), andS3( ivn) even outside of the validity
range of the expansion. Of course, this cannot be regarde
a proof but we can trust in the usefulness of this calculat
outside the validity range. Moreover, in a normal metal t
result gives back the known result.14 These formulas apply
also to superconductors with minor change@U(R)
2-3
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BALÁ ZS DÓRA, ATTILA VIROSZTEK, AND KAZUMI MAKI PHYSICAL REVIEW B 66, 115112 ~2002!
5U(0)r1#, and the self-energies in the Born and unita
limit are obtained correctly.16,21–24We treat our UDW system
in the Born scattering limit since conventional DWs are co
monly investigated in this limit.25 The interaction gives rise
to the self-energy, which is in the Born approximation~con-
sidering only the lowest-order terms!,

S~k,ivn!5
ni

V (
q

1

N (
R

U~R!G~k2q,ivn!U~R!,

~21!

where the summation is the only remaining operation fr
averaging over the impurity atoms. From this, one obta
for a DW

G~k,ivn!52
i ṽn1j~k!r31D̃n~k!r1

ṽn
21j~k!21D̃n~k!2

, ~22!

where both the frequency and the gap are renormalized in
conventional case,

vn5ṽn2
G11G2

2

ṽn

Aṽn
21D̃n

2
, ~23!

D5D̃n1
G1

2

D̃n

Aṽn
21D̃n

2
. ~24!

G15pni uU(0)u2g(0) is the forward-scattering paramete
G25pni uU(Q)u2g(0) is the backward scatterin
parameter,26 g(0) is the density of states per spin in th
metallic state. As in other similar problems,20 it is convenient
to introduce the quantityun5ṽn /D̃n , which relates to physi-
cal quantities,

vn5DunS 12a
1

Aun
211

D , ~25!

G5G11G2/2, a5G/D is the pair-breaking parameter. A
opposed to this, in unconventional DW self-energy corr
tions from impurities do not renormalize the gap but t
Matsubara frequency

vn5ṽn2
G11G2

p

ṽn

Aṽn
21D2

KS D

Aṽn
21D2D ,

D̃n~k!5D~k!5D sin~bky! or D cos~bky!. ~26!

This is written in a more useful dimensionless form

vn5DunF12
2

p

a

Aun
211

KS 1

Aun
211

D G , ~27!

whereG5(G11G2)/2, a5G/D, un5ṽn /D andG1 andG2
are the same quantities as in a conventional DW,K(z) is the
complete elliptic integral of the first kind. Here the comb
nation of the scattering rates is different from the conv
tional DW’s case due to the lack of renormalization of t
11511
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order parameter. We choose the Born scattering limit beca
this limit works very well for conventional DW. We believ
that by neglecting the explicit wave-vector dependence
the impurity matrix elements, we made a useful approxim
tion as far as the character of the physics is concerned
we are able to capture the characteristic changes cause
impurities. However, in order to describe very fine, chara
teristic phenomena to DW such as the threshold elec
field,27–30 we cannot use simples-wave scatterers as it i
shown in Refs. 4 and 5.

III. THERMODYNAMICS OF IMPURE UDW

Since the thermodynamic properties of a pure UDW
identical to those of ad-wave superconductor3,31 and the
impurity effects on a conventional DW are similar to those
s-wave superconductors, we expect behaviors very simila
those in ad-wave superconductor treated in the Born lim
However, the main difference is that we distinguish two d
ferent scattering processes~forward and backward scattering!
while in the superconducting world there is only one. Co
sequently the different combinations of theG ’s are far from
being trivial. The gap equation is obtained as

15r~0!TPi(
n

FES 1

A11un
2DA11un

2

2KS 1

A11un
2D un

2

A11un
2G , ~28!

where E(z) is the complete elliptic integral of the secon
kind r(0)5g(0)abc. The change in the transition temper
ture is given by the Abrikosov-Gor’kov formula

2 lnS Tc

Tc0
D 5cS 1

2
1r D2cS 1

2D , ~29!

whereTc andTc0
are the transition temperatures of the im

pure and clean system, respectively,r5G/2pTc , c(z) is the
digamma function. Note that this formula is also valid f
any kind of unconventional superconductor in the prese
of impurities considered either in the Born or in resona
scattering limit.32 The critical impurity scattering rate is
given by

Gc5
pTc0

2g
5

AeD00

4
. ~30!

The gap maximum is the same as the one of ad-wave SC in
the Born limit,33

ln
D00

D~0,G!
5

8

p2

G

DEC0

`

~K2E!S E2K
x2

11x2D dx

12K sin2y arcsinh
C0

sinyL , ~31!

where^•••& means 1/2p*0
2pdy . . . , the argument ofK and

E reads as 1/Ax211. C0 is the value ofun at zero frequency,
2-4
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A11C0
25

2

p
aKS 1

A11C0
2D , ~32!

vanishing as the impurity scattering parameter disappear
C054 exp(2p/2a), while for largea, C05a as in Ref. 34.
Close toTc , D vanishes in a square-root manner as d
usually in mean-field treatments,

D258~2pTc!
2

12rc8~ 1
2 1r!

2
3c9~ 1

2 1r!

2
2r

c-~ 1
2 1r!

3

S 12
T

Tc
D .

~33!

Close to absolute zero, the following formula is obtained

D~T!5D~0!2
p2

3

C0

G S K

E
21D H 12

4

p F2a

p E
C0

`

~K2E!

3S E2K
x2

11x2D dx

1C0A11C0
2S E2K

C0
2

11C0
2D G J 21

T2, ~34!

where theT3 decrease of the pure case turned into a fasteT2

one, the argument ofK andE under the integral is the sam
as in Eq.~31!, otherwise it reads as 1/A11C0

2.
From this, one can assume that the effect of the impu

scattering in the limit of low temperatures is to reduce
power-law exponent by 1. As a result we expect the expon
of temperature to be the same as that in a conventional
in the gapless region.16,25The analogy looks obvious since i
neither of these two systems there is a lower bound of
excitation energy. The correspondence works only at
temperaturesT!Tc when the only energy scale is the tem
perature. Now we derive expressions for the grand canon
potential and for the specific heat. In doing this, we use
well-known relation involving an integral over the couplin
constant of the interaction14

V2V05E
0

1dl

l
^lHint&, ~35!

where Hint is the interaction causing the phase transitio
This formula gives us the thermodynamic potential diffe
ence between the normal and the DW phase. Since we w
on a grand canonical ensemble, the appropriate therm
namic potential atT50 is obtained as

V~0!52Nr~0!FD2

4
2

2

p
D2C0AC0

2111
G2

3
1

2D3C0
3

3G

2
4GD

p2 E
C0

`

~K2E!S E2K
x2

11x2D dxG . ~36!
11511
as

s

y
e
nt
W

e
w

al
e

.
-
rk
y-

At small G, the leading correction is the last integral, enhan
ing the potential as in the normal SDW case. The low te
perature specific heat reads

C~T!5
2p2

3
g~0!

DC0

G
T. ~37!

This expression also reaches the normal state value with
creasingG. The specific heat jump is

DC~T!5
16p2g~0!Tc

2
3c9~ 1

2 1r!

2
2r

c-~ 1
2 1r!

3

@12rc8~ 1
2 1r!#2.

~38!

In Fig. 2 we showD(0,G) andTc as a function of the scat
tering rate.

IV. DENSITY OF STATES IN UDW

By use of Green’s function, the density of states per s
is given by

N~v!52
1

2pV (
k

Im Tr~GR~k,v!!5g~0!
1

a
Im~u!,

~39!

where u5 iun( ivn5v1 id). After some algebra, the low
energy behavior reads

N~v!5g~0!
C0D

G F11
p2

8E2 S K

E
1

1

C0
2

21D S v

G D 2G .

~40!

The residual density of states~i.e., the DOS at the Ferm
energy! is finite at any finiteG, disappears exponentially a
G goes to zero, but takes the normal-state value asG ap-
proaches to infinity. SinceN(0) is almost zero forG
,0.5Gc , we do not expect relevant changes in the sta
quantities~such as the specific heat, the spin susceptibility
T→0! at low impurity concentrations. The notion ‘‘gapless

FIG. 2. D(0,G)/D00 ~dashed line!, Tc /Tc0 ~solid line! and
N(0,G)/g(0) ~dashed-dotted line! are shown as a function ofG/Gc

for an unconventional density wave.
2-5
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makes no sense in this case since even in pure UDW the
vanishes at the Fermi energy leading to the possibility
arbitrary small energy excitations. At the value of the ord
parameter, the divergent peak of the pure system is bro
ened andN(v) is always finite as a result of the impuritie
shown in Fig. 3. Compared to the DOS of the conventio
DW,25 the states below the gap maximum are filled in, a
the peak atD disappears more rapidly asa increases than in
the case of momentum independent gap. At high energie
reaches the normal state value as

N~v!5g~0!S 11
D2

4

v22G2

~v21G2!2D . ~41!

In Fig. 2, we show theG dependence of the residual dens
of states.

V. DENSITY CORRELATOR

We turn our attention to the behavior of the static, lon
wavelength density correlation function25 using the thermal
Green’s function

x0~T!52
1

b (
p,k,s,n

Tr~G~p,k,ivn!G~k,p,ivn!! ~42!

where the overbar means averaging over the position of
impurity atoms. This requires calculating the averag
Green’s function and the vertex corrections. In the followi
we focus on the vertex corrections,L(p,ivn). With this, our
equation becomes simpler,

x0~T!52
1

b (
p,s,n

Tr@G~p,ivn!L~p,ivn!G~p,ivn!#.

~43!

In the standard ladder approximation the vertex correcti
are determined by the integral equation

FIG. 3. Density of states plotted as a function of the redu
energy for different scattering amplitudes:a50, 0.01, 0.05, 0.1, 0.5
and 1 with peak position atv5D from top to bottom.
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L~p,ivn!511
ni

V (
q

1

N (
R

U~R!G~q,ivn!

3L~q,ivn!G~q,ivn!U~R!, ~44!

which is shown in diagrammatic language in Fig. 4. Assu
ing L(p,ivn)5L( ivn), and making the following ansatz:

L~ ivn!5S L1~ ivn! L2~ ivn!

L2~ ivn! L1~ ivn!
D , ~45!

the vertex corrections can be obtained as

L15S 12
2

p
a

K2E

A11un
2D 21

, ~46!

L250, ~47!

where the argument ofK andE reads as 1/A11un
2. Substi-

tuting this into Eq.~43!, the susceptibility reads

x0~T!52g~0!S 12
2

Db (
n

K2E

Aun
211

12a
K2E

Aun
211

D . ~48!

At zero temperature it equals the total density of states at
Fermi surface,

x0~0!52g~0!
C0D

G
. ~49!

In the low-temperature limit we obtain

x0~T!52g~0!
C0

G FD~T!1
p4

24E2 S K

E
211

1

C0
2D S T

G D 2G ,

~50!

where the argument ofK and E is the same as in Eq.~34!.
Close toTc , an expression similar to the normal SDW d
scribes the susceptibility,

d

FIG. 4. The vertex correction in the Born limit is shown. Th
dot is the vertex function, the open triangle represents the ve
correction due to impurity scattering.
2-6
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x0~T!

52g~0!S11
2c9~ 1

2 1r!~12rc8~ 1
2 1r!!

2
3c9~ 1

2 1r!

2
2r

c-~ 1
2 1r!

3

S 12
T

Tc
D D .

~51!

We refrain from the evaluation of theQth Fourier componen
of the density correlation function because in UDW this
not the quantity that signals the phase transition, rand
phase approximation corrections will not lead to divergen
since the dominant unconventional channel does not co
to charge or spin density.3 In conventional CDW or SDW, the
Qth Fourier component of the charge density or the s
density turned out to be the order parameter of the ph
transition, respectively. As opposed to this, in the unconv
tional scenario, the following phases and related order
rameters are found:

Phase Gap Order parameter: theQth
Fourier component of the

UCDW D cos(bky) Electric current density
UCDW D sin(bky) Kinetic-energy density
USDW D cos(bky) Spin current density
USDW D sin(bky) Spin kinetic-energy density

These phases are already known as orbital antife
magnet,11 bond-order wave,6 spin nematic state12 and axial
spin bond-order wave,6 respectively, in the context of th
two-dimensional Hubbard model. Electron-hole condens
with momentum dependent gap was also mentioned in
context of excitonic insulator.35,36 Generally these order pa
rameters can be called as the effective charge or spin
sity.3 The autocorrelation function of the above quantit
will be divergent atTc in the corresponding phase, becau
these quantities are relevant to the phase transitions.

VI. OPTICAL CONDUCTIVITY

The optical conductivity contains relevant informatio
about the possible excitation of a system. Since in real
terials impurities are always present, the evaluation of
optical conductivity in impure systems is of prime impo
tance. As it is known, the electrical conductivity of a co
ventional DW is divided into a pair-breaking~interband! and
a normal~intraband! contribution.37 Hence a Lorentzian-like
normal contribution appears at all the frequencies, while
pair-breaking term is zero as long asv,2D. This separation
can be done in the unconventional case, although here
processes contribute to all frequencies due to the finite d
sity of states at the Fermi energy. Introducing two notatio

I n~v!5E
0

`S tanh
b~x1v!

2
2tanh

bx

2 DRe$F@u~v1x!,u~x!#

2F@u~v1x!,u~x!#%dx, ~52!
11511
-
,
le

n
se
-

a-

o-

te
e

n-

e

a-
e

e

th
n-
,

I pb~v!5E
0

v

tanh
b~v2x!

2
Re@F„u~v2x!,2u~x!…

2F„u~v2x!,2u~x!…#dx, ~53!

the conductivity is given by

Resaa52e2g~0!va
2 4

Dp

I n~v!1I pb~v!

v
, ~54!

where vx5vF , vy5A2btb , and vz5A2ctc . The different
F(u,u8) functions and the dc conductivities are discussed
the following

~i! D(k)5D cos(kyb), a5y.

F~u,u8!5
1

u822u2 FA12u82H E8S 2uu82
2

3
1

u82

3 D
1K8S uu82

u82

3 D J 1A12u2H ES uu81
2

3
2

u2

3 D
1KS 2uu81

u2

3 D J G . ~55!

In the definition of the differentF(u,u8) functions the argu-
ment of E and K is 1/A12u2, while for E8 and K8
1/A12u82 has to be used. This is the simplest case,
vertex corrections vanish due to the mismatch of wa
vector dependence of the velocity and the gap. As the s
tering strength enhances, it becomes the dominant en
scale and the curves take more and more the form o
Lorentzian as can readily be checked in Fig. 5. The dc c
ductivity is calculated atT50,

syy
dc,cos5e2g~0!vy

2 4

Dp S EA11C0
22

pC0
2

2a D . ~56!

In the dc conductivities, the argument ofE andK is the same
as in Eq.~34!.

~ii ! D(k)5Dsin(kyb), a5y.

FIG. 5. Real part of the electric conductivity in they direction
for D(k)5D cos(bky) is plotted as a function of the reduced ener
for different scattering amplitudes:a50 ~dotted line!, 0.1 ~solid
line!, 0.5 ~dashed line!, and 1~dashed-dotted line!, G152G2.
2-7
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F~u,u8!5
1

u822u2 FA12u2ES 2uu81
4

3
1

u2

3 D2A12u82E8S 2uu81
4

3
1

u82

3 D2
u82

A12u82
K8S 2uu81

2

3
1

u82

3 D

1
u2

A12u2
KS 2uu81

2

3
1

u2

3 D G1
G1

Dp

1

~u1u8!2

S E8A12u822EA12u21
u82

A12u82
K82

u2

A12u2
K D 2

11
G1

Dp

1

u1u8
S u8

A12u82
K81

u

A12u2
K D , ~57!
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the third row of the equation comes from the vertex corr
tions. AsG increases, the peak at 2D is broadened and move
closer to zero frequency. The dc conductivity is obtained
T50,

syy
dc,sin54e2g~0!vy

2
C0

2~K2E!

DpAC0
2111G1~K2E!

, ~58!

where the second term in the denominator is clearly the
fect of the vertex corrections. The conductivity is shown
Fig. 6.

~iii ! D(k)5D sin(kyb) or D cos(kyb), a5z.

F~u,u8!5
1

2~u822u2!
S 2A12u2E22A12u82E8

1K8
u8~u2u8!

A12u82
1K

u~u2u8!

A12u2 D , ~59!

the vertex corrections vanish because the velocity depe
on different perpendicular wave-vector component (kz) than
the gap (ky). As G increases, the peak at 2D is broadened and
moves closer to zero frequency. The dc conductivity is
tained atT50 as

FIG. 6. Real part of the electric conductivity in they direction
for D(k)5Dsin(bky) is plotted as a function of the reduced ener
for different scattering amplitudes:a50 ~dotted line!, 0.1 ~solid
line!, 0.5 ~dashed line!, and 1~dashed-dotted line!, G152G2.
11511
-

t

f-

ds

-

szz
dc52e2g~0!vz

2 E

DpAC0
211

. ~60!

The optical conductivity is usually the same in thex and z
direction apart from constant factors, since the velocity
these directions does not interfere with the gap. But in
presence of impurities this general relation does not hold
more due to the presence of different vertex corrections
very similar breakdown of equality is found in the relatio
between the static spin susceptibility and the condensate
sity (rs512x0 /xn), which are not related to each other
impurity scattering is considered.19,24 The conductivity is
shown in Fig. 7.

For the sake of completeness we present the result for
quasiparticle part of the conductivity in the chain directi
keeping in mind that collective modes also appear in t
direction.

~iv! D(k)5D sin(kyb) or D cos(kyb), a5x.

F~u,u8!5
pD

2~G12G2! H F12
G12G2

Dp S 2K
u~u82u!

A12u2

2K8
u8~u82u!

12u82
12EA12u2

22E8A12u82D G21

21J . ~61!

This formula gives the quasiparticle part of the optical co
ductivity in the chain direction, although collective mod
also show up here significantly modifying the conductivi
The consideration of impurity scattering and collecti
modes~even in the simplest random-phase approximati!
together is a very difficult task to deal with38,39and is beyond
the scope of the present investigation. The dc conductivit
obtained atT50,

sxx
dc52e2g~0!vx

2 E

DpAC0
2112~G12G2!E

. ~62!

The conductivity seems to transfer more and more spec
weight to the zero-frequency peak with growing impuri
scattering rate, transforming the curve into a Lorentzian-l
one ~Fig. 8!.
2-8
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The dc conductivities are shown in Fig. 9 atT50 as a
function of the impurity scattering parameter. In the perp
dicular direction, the dc conductivities take the same valu
the critical scattering parameter, while the dc conductivity
the chain direction is exactly 3/2 times larger as follows fro
Eqs.~63! and~64! in thev50 limit, if G152G2. In spite of
the similar thermodynamics ofd-wave SC~Refs. 33 and 34!
and UDW, the transport properties of these two systems
completely different due to the distinct coherence fact
coming from the different condensates. In a SC, there is
ways a Dirac delta peak at zero frequency, and the stron
the impurity scattering, the larger the spectral weight of t
peak transferred to the finite frequency part of the cond
tivity. In UDW, the Dirac delta contribution disappears
soon as any finite impurity concentration is present, and
areas under the different curves are equal, but their fo
approaches that in the normal metal asG enhances.

The normal-state electric conductivities are given by
usual Lorentzians,

FIG. 7. Real part of the electric conductivity in thez direction is
plotted as a function of the reduced energy for different scatte
amplitudes:a50 ~dotted line!, 0.1 ~solid line!, 0.5 ~dashed line!,
and 1~dashed-dotted line!, G152G2.

FIG. 8. Real part of the electric conductivity in the chain dire
tion is plotted as a function of the reduced energy for differ
scattering amplitudes:a50 ~dotted line!, 0.1 ~solid line!, 0.5
~dashed line!, and 1~dashed-dotted line!, G152G2.
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Resxx~v!5e2g~0!2vF
2 2G2

v21~2G2!2
, ~63!

Resyy,zz~v!5e2g~0!2vy,z
2 G11G2

v21~G11G2!2
. ~64!

In the chain direction only backscattering can cause cur
damping as it is known from transport theory, which is ma
fested in the absence of the forward-scattering paramete
Resxx(v).

VII. CONCLUSION

We have studied the effect of nonmagnetic impurities
unconventional density waves. In this respect there is no
ference between USDW and UCDW due to the spin indep
dence of the interaction with impurities. Ins-wave supercon-
ductors nonmagnetic impurities have no influence on
thermodynamics of the system, while impured-wave super-
conductors suffer important changes. This is known
Anderson’s theorem, but equivalent conclusion has b
reached independently by Abrikosov and Gor’kov. It sa
that if a static perturbation does not break the time-reve
symmetry and does not cause a long-range spatial varia
of the order parameter, the thermodynamic properties of
superconductor remain unchanged in the presence of pe
bation. As opposed to this, any kind of DW is destroyed
the presence of impurities, although the identity of the th
modynamics ofs-wave superconductor to conventional DW
and d-wave superconductor to unconventional DW is w
established without impurities. Impurities have a pa
breaking effect on the condensate, resulting in a unive
formula between the transition temperature and the scatte
parameter, named after Abrikosov and Gor’kov. It seems
be valid for superconductors with all kinds of symmetri
and now for density waves as well, independent of whet
the Born or the resonant scattering limit is taken. Since c
ventional DW were studied in the Born limit, we found a

g

t

FIG. 9. The dc conductivity plotted atT50 as a function of the
reduced scattering rate forG152G254G/3 for a cosinusoidal~sinu-
soidal! gap in they direction, solid~dashed line!, in thez direction,
dashed-dotted line; and in thex direction, dotted line.
2-9
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propriate to use the same approximation for the unconv
tional scenario. We have examined the system with
standard noncrossing approximation, and calculated the
energy corrections for infinite order in the scattering pot
tial, but only the lowest nontrivial correction was retained f
the Born limit. The thermodynamics of UDW were found
be very similar to that ind-wave superconductors with non
magnetic impurities, but the existence of two different typ
of scattering processes~forward and backward! was called
for in the microscopic theory. In unconventional DW, at a
finite scattering strength the valley of the density of state
the Fermi energy is filled in, leading to normal electronli
behaviors very close to absolute zero, but the reduced
sity of states compared to the normal state bears the effe
the condensate. The order parameter does not get reno
ized due to impurities because we assumeds-wave scattering
for simplicity. The specific heat increases linearly with te
perature due to the finite density of states at the Fermi
ergy. Interestingly, impure UDW was found to be very sim
lar to the gapless region of conventional DW very close
the critical scattering rate as far as the temperature expon
are concerned close to absolute zero because of the ab
of any finite lower barrier of the excitation energy.

But at the transport properties all the similarities end
The optical conductivity in the chain direction is dominat
,

s

ys

n

11511
n-
e
lf-
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r

s
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n-
of
al-

-
n-

o
nts
nce

.

by the phason contribution, and incorporating the effect
impurities in the theory is beyond the scope of this stu
Instead we concentrated on the perpendicular direction
the optical conductivity, self-energy and vertex correctio
were taken into account in the ladder-type noncrossing
proximation. Depending on the symmetry of the order p
rameter and the chosen direction, four qualitatively differe
curves are deduced, althoughsxx is certainly dressed by col
lective modes due to coupling to the phason propagator
the perpendicular directions, the possibility of low-frequen
excitations rapidly increases, transferring increasing amo
of spectral weight tov50. The dc conductivities atT50
sharply differ from each other, hence they can help to p
vide one with decisive conclusion when comparing these
sults to experimental data.
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5B. Dóra, A. Virosztek, and K. Maki, Phys. Rev. B64, 041101

~2001!.
6M. Ozaki, Int. J. Quantum Chem.42, 55 ~1992!.
7S. Chakravarty, R.B. Laughlin, D.K. Morr, and C. Nayak, Phy

Rev. B63, 094503~2001!.
8W. Kim and J.P. Carbotte, cond-mat/0202514~unpublished!.
9H. Ikeda and Y. Ohasi, Phys. Rev. Lett.81, 3723~1998!.

10A. Virosztek, K. Maki, and B. Do´ra, Int. J. Mod. Phys. B16, 1667
~2002!.

11A.A. Nersesyan and G.E. Vachnadze, J. Low Temp. Phys.77, 293
~1989!.

12A.A. Nersesyan, G.I. Japaridze, and I.G. Kimeridze, J. Ph
Condens. Matter3, 3353~1991!.

13D.F. Schroeter and S. Doniach, cond-mat/0201524.
14A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,Methods

of Quantum Field Theory in Statistical Physics~Dover, New
York, 1963!.
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