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We have investigated the effect of nonmagnetic impurities on the quasi-one-dimensional unconventional
density wave ground state. The thermodynamics were found to be close to thosenafva superconductor
in the Born limit. Four different optical conductivity curves were found depending on the direction of the
applied electric field and on the wave-vector dependence of the gap.
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[. INTRODUCTION tems, the pseudogap phase of the transition-metal oxides
have attracted significant attention and the staggered flux
Recently a number of papers have been published investate was mentioned in the context of the possible
tigating the different properties of unconventional densityexp|<’=lr1ationé-3
waves(UDW) under various conditions. The common fea-  In this paper we extend our earlier analysi& pure un-
ture of these systems is the zero average of the gap on ti@nventional density waves to the presence of nonmagnetic
Fermi surface, resulting in the absence of any periodidMpurities. Impurities are treated in the Born scattering limit
modulation of the charge or spin density. Clearly this prop-Since it works very well for conventional DW. Since the
erty makes UDW a very likely candidate for those systems ifF€rmi surface of quasi-one-dimensional systems mainly con-
which clear thermodynamic signals of a phase transition ar&iSts of two separate sheets, two different scattering pro-
seen without any order parameter, which could be detectegfSSes should be taken into account: forward and backward
by conventional method§i.e., x-ray or NMR methogs! ~ Scattering during which an electron remains on the same or
From this the notion “hidden order” follows naturally. moves to the other Fermi sheet, respectively. The thermody-
Unconventional density wave formation is found to benamics are found to be similar to those otiavave super-
possible in a large variety of systems. In the quasi-oneconductor in the Born limit. Among the transport properties
dimensional case, which is the natural occurrence of densit{f!® quasiparticle part of the optical conductivity is evaluated.
waves? we have investigated the basic properties of unconl the chain direction the phason couples strongly to the
ventional spin- and charge-density watédSDW, UCDW)  €lectromagnetic field, giving rise to massive collective
and the related threshold electric field Witand without Modes in this direction. On the other hand, for electric fields
magnetic fiel? UCDW turned out to be relevant in the ex- a@Pplied perpendicular to the conducting chain, the conduc-
planation of the response of the low-temperature phase diVity Shows only Fermi-liquid renormalization, and our de-
quasi-one-dimensionale-(BEDT-TTF),KHg(SCN), salts  SCription is valid under these circumstances.
[BEDT-TTF denotes bigthylenedithigtetrathiafulvaleng
In two-dimensional systems, the different unconventional Il. FORMALISM
phases were elaborated by Oz&kAmong them, the To start with, we consider the Hamiltonian of interacting
d-density wave scenario, which is a special case of UCDW|ectrons,
(orbital antiferromagnet was proposed recently to describe
the famous pseudogap phase of highsuperconductors. H_Z oal
Since the original proposal, several works have been pub- T E §(K)ay 8,0
lished in which the properties akdensity waves were stud-
ied with the aim of testing the validity of the model by com- ~ , T 1
paring to experimental dat@see Ref. 8 and the references + 2v 2 V(KK Q)81 g,68% 081 - g,078k" 0"
therein. Also the ground state of certain heavy fermion ma- k('rkg’,q
terials were suspected to be USDWRefs. 9 and 1pwhich '
would simply explain the unsolved problem of micromag- (1)
netism. In the presence of magnetic field, the orbitalwhereafiﬂ anday , are, respectively, the creation and anni-
antiferromagnét and the spin nematic stafewere dis- hilation operators of an electron of momentirand spino.
cussed as well in two dimensions. In three-dimensional sysY is the volume of the sample. Our system is based on an
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orthogonal lattice, with lattice constardsh,c toward direc- In the second term of Eq1) we consider the interaction
tions x,y,z. The system is anisotropic, the quasi-one-between on-site and nearest-neighbor electrons on the lattice
dimensional direction is the axis. The kinetic-energy spec- as in Ref. 3. Then by rewriting the interaction in terms of
trum of the Hamiltonian is Fourier-transformed variables, its antisymmetrigéndrefore

£(K) = — 2t,cog k@) — 2t,cog kyb) — 2t,cogk,C) — . (2) spin-dependeitversiort* is given by

N~ . ! . o, !
yV(kKk.q00)=08_,,|U + >, {2V;cosq; 6+ 2J;cog ki —k{ +q;) &+ 2R Fe' (i tK)%) + 2R C;(e'ki%+ elki
I

+elk oy ety |+ 5, > (V;—Jp)[cosg; 6 —coski—k/ +q;) 5], 3
1

wherei =x,y,z and §,=a,b,c, the different matrix elements 1 —_A(k)tani BE(k)/2)

involve the on-site ), nearest-neighbor directV(), ex- Alh=yg > P(k,D) 2E(K) : (8)
change {;), pair-hopping E;), and bond-chargeQ;) terms. X

This interaction is able to support a variety of low- whereE(k)=&(k)Z+[A(K)[% A(k)=A,(k), and the ker-
temperature phasésut we are only interested in unconven- nej of the integral equation is diagonal on the basis of the
tional DW (whose gap depends on the perpendiculaeading harmonics ds

momentum.*>3 The latter can be either UCDW or USDW

depending on the strength of the exchange and pair-hoppingp(k,l) P, 1 P, _

integrals. The single-particle electron thermal Green's func- —— = + 1 coskyb) coslyb) + trsin(k,b)sin(l b)

tion using Nambu’s notation &’

B ) + Ecos( k,c)coql,c)+ Esin( k,c)sin(l,c). (9
G,(k,iw,) = —f dr(T, ¥ (k, )W (k,0)u€e", (4) N N

° The P; coefficients are linear combinations of the interaction
where Green'’s function is chosen to be diagonal in spin inmatrix elements. As a consequence of the general form of the
dices and the momentum space is divided iktandk—Q kernel, the gap will be of the form

spaces(left- and right-going electronsby introducing the

spinors, A(l)=Aq+ A coglyb) + Assin(lyb) + Ascogl,C)
" e ay () : + A sin(l,c). (20
o(Ki7)= ay-qo(7))’ ®) From now on we assume that only one kind of gap among

_ _ the five possible options, whose transition temperature is the
; is the Matsubara frequenc@=(2kg, /b, m/c) is the  highest, opens and persists all the way down to zero tempera-
best nesting vector. The inverse of the above Green’s funaure. For example, we find that USDW is stable with respect

tion is obtained as to UCDW if J,+F,>0, where the uppeflower) sign refers
L _ to ak, dependent gap function of cosirigine.® The ther-
G, (Kjiwy)=iw,—E&(K)ps—As(K)py, (6)  modynamic and transport properties of such a system have

. . . . been worked out in Ref. 3. In the following we shall discuss
wherep; (i=1,2,3) qre_the Pauli matrlcgs acting ON MOMEN+he effect of impurities on UDW and determine the behavior
tum spaceA,(k) satisfies the self-consistent equation, of the basic physical quantities. The interaction of the elec-

trons with nonmagnetic impurities is described by the Hamil-
_ 1 VA ’ T tonian
A=5 2 V(K kQo.0 )8 8k +0.0). (7)

r !
k', o

In order to describe USDW, we assumes an odd function H.=
of the spin A,=—A_,). AssumingA ;, to be an even func-

tion of the spin, we would have UCDW. From now on, we _io-R;
will drop the spin indices since they are irrelevant for most U(0) U(Qe !

of our discussion and most of our results applies to both U(Rj)= T@eiQ'R]‘ u(0) ' (12

unconventional charge- and spin-density waves. The spin in-

dices will be reinserted wherever necessary. With this, th&®; is the position of thejth impurity atom. The explicit
gap equation reads wave-vector dependence of the matrix elem¥tss ne-

%MEJe“‘*'RJ*PI,(k+q>U(Rj>~lfg(k>, (11)

115112-2



IMPURITY SCATTERING IN UNCONVENTIONAL . .. PHYSICAL REVIEW B 66, 115112 (2002

X X X

} pd ~ P BN
1 + ,/ \\ + ,/ 1 \\ +
L L-——-—
FIG. 1. Self-energy corrections due to impurity scattering. The solid line denotes the electron while the dashed line is for the electron-
impurity interaction. Dashed lines coming from the same cross represent successive scattering of the electron on the same impurity.

glected since no important changes are expected from it. Thigon value after averaging over the position of the impurities,
usual method of treating the impurities is to average oveand translational invariance is regained.

their position in real space, and step into the wave-vector This method can be extended into any order of impurity
space afterwards:°Instead, we follow a rather unorthodox scattering as we will demonstrate it in the following. As to
way: working in the Fourier space and averaging wherthe diagrams, we will take into account only noncrossing,
needed. It is clear from the exponential prefactoHip that  ladder-type diagram¥:'"?°To start with, we will evaluate
only diagrams containing impurity scattering with momen-the self-energy corrections caused by E®) at every order.
tum conservation at each impurity atom have finite expectaThis can be visualized in Fig. 1 and is given by

. . d®p . d®p .
S a(kion) = Sa(ion) =N, U<R>+U<R>f;G(p,lwnw(mw(mf;G(p,lwnwm)

e o ecp
X_[E;;;G(p,uan(R)+--~ :rHU(Rf+U(R)J.E;gG(pJam)ERUamx (13)

where the self-energy correction turns out to be momentum independent aRdritiex inX x(i w,) means the position of an
impurity over which the average will be taken in the followimyg,is the impurity concentration. Equatigh3) can be solved
easily, and the result is

Ui—g  Uze '@R4f
UzeiQ.R'f'f_ Ul_g

n;
(Us=9)*=[f]?=[Usl*~ (Usfe 1@ R+ U,fel @R’

(14)

2R(iwn):(

where  U;=U(0)/[U(0)*-|U(Q)|?] and U, : =S (i
~U(Q)/[U(0)°~|U(Q)[] and Follenf=2allonh 9
where D=1-2gU(0)+(g?—|f|?)[U(0)?>—|U(Q)|?]. In
d3p ) g f the case of =0 (i.e., the average of the gap over the Fermi
f FG(p,lwn)Z T gl (15  surface is zerp the self-energy is obtained correctly for ar-
™ bitrary U(0) andU(Q), since the exponential terms disap-
Expanding3 (i w,) in powers of the exponential terms in P€ar from the denominator of E¢L4). Otherwise this result

the denominator of Eq14), the space average can be per_is valid_ only for a certain range of parameters due to th(_e
formed and the self-energy matrix is obtained as expansion. On the other hand, one can deduce an expression

from Eq. (14) involving the different matrix elements of the
self-energy, where the space average was performed rigor-
(16) ously,

31 (i wn)(1—2U(0)g+ (g2 +f[2)[U(0)2—|U(Q)|?)]
—(So(iwg) F+35(iwp)f+n;)

2l(iwn) 22(iwn)
35(iw,)  a(ien)

and its matrix elements are given by

2(iwn):<

VO~ g(UO" - VI (17) X[U(0)—g(U(0)>-U(Q)?]=0 (20)
SO [U(0)~g(U(0)*~U(Q)*]=0,

and this equation is satisfied with the previously obtained
3 (iwy), 2o(iw,), and25(i w,) even outside of the validity
U(0)?—|U(Q)|? range of the expansion. Of course, this cannot be regarded as
a proof but we can trust in the usefulness of this calculation
2|U(Q)2 outside _the validity range. Moreover, in a normal metal this
+ ) (18) result gives back the known restfftThese formulas apply
D+D?—4|U(Q)f|? also to superconductors with minor chandeJ(R)

21(iwn):ni

- f
e N S Qi
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=U(0)p,], and the self-energies in the Born and unitaryorder parameter. We choose the Born scattering limit because
limit are obtained correctl}f?1~?*We treat our UDW system this limit works very well for conventional DW. We believe
in the Born scattering limit since conventional DWs are com-that by neglecting the explicit wave-vector dependence of
monly investigated in this limif> The interaction gives rise the impurity matrix elements, we made a useful approxima-
to the self-energy, which is in the Born approximati@on-  tion as far as the character of the physics is concerned and
sidering only the lowest-order terms we are able to capture the characteristic changes caused by
impurities. However, in order to describe very fine, charac-
teristic phenomena to DW such as the threshold electric
field 2~ we cannot use simpls-wave scatterers as it is
(22) shown in Refs. 4 and 5.

i 1 .
S(K,iw,) = nv % N ; U(R)G(k—0a,iw,)U(R),

where the summation is the only remaining operation from

. . . . . IIl. THERMODYNAMICS OF IMPURE UDW
averaging over the impurity atoms. From this, one obtains

for a DW Since the thermodynamic properties of a pure UDW are
~ ~ identical to those of al-wave superconductdr® and the
. ton+E(K)p3tAn(k)py impurity effects on a conventional DW are similar to those in
G(kjiwn)=— Z)ﬁ+ £(K)2+ R (k)2 ' (22) s-wave superconductors, we expect behaviors very similar to

those in ad-wave superconductor treated in the Born limit.
where both the frequency and the gap are renormalized in theowever, the main difference is that we distinguish two dif-

conventional case, ferent scattering process@srward and backward scattering
_ while in the superconducting world there is only one. Con-
~ D1+l oy @3 sequently the different combinations of thés are far from
Wn= O™ ' being trivial. The gap equation is obtained as
2 [~2, %2
wnt A}

Ji+u?

1
E -
(\/1+uﬁ

2

N 1=p(O)TPX,
A=A+ — ——. (24)

2 Von+ Aﬁ 1 u

n

I'y=7n;|U(0)|%g(0) is the forward-scattering parameter, 2| 2
I',=mn|U(Q)|?g(0) is the backward scattering 1+un/ Vit
parametef® g(0) is the density of states per spin in the where E(z) is the complete elliptic integral of the second
metallic state. As in other similar problerffsit is convenient  kind p(0)=g(0)abc. The change in the transition tempera-
to introduce the quantity,= w,/A,,, which relates to physi- ture is given by the Abrikosov-Gor’kov formula

cal quantities,
o Te 1
— I’]( _C) =i — w(i
(25) 0

1
Vup+1 whereT. and T, are the transition temperatures of the im-

I'=I1+T,/2, a=T/A is the pair-breaking parameter. As pure and clean system, respectively; I'/27T., §/(2) is the
opposed to this, in unconventional DW self-energy correcdigamma function. Note that this formula is also valid for
tions from impurities do not renormalize the gap but theany kind of unconventional superconductor in the presence

; (28)

5Tp , (29

2

1-«a

wp=Au,

Matsubara frequency of impurities considered either in the Born or in resonant
scattering limit? The critical impurity scattering rate is
I+, o, ( A ) given by
Wn= Op— = = )
T \Ja+a? | Vor+a? . :WTCOZ VeAqo 0
¢ 2y 4

A(k)=A(k)=Asin(bk,) or Acogbk,). (26
(k) =40k) nbky) sbky). (26 The gap maximum is the same as the one dfveave SC in

This is written in a more useful dimensionless form the Born limit33
wn=Au| 1— = K , 2 i:__f e
B RN TR NP 0 NIy SR B A
wherel'=(I';+1',)/2, a=T/A, u,=w,/A andI'; andT, i -Gy
are the same quantities as in a conventional B\#) is the +2( sirfy arcsmh—siny ’ (31)
complete elliptic integral of the first kind. Here the combi-
nation of the scattering rates is different from the convenwhere(---) means 1/Z37dy ..., the agument ofK and

tional DW’s case due to the lack of renormalization of theE reads as 4/x?+ 1. C, is the value o, at zero frequency,
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VI C= 2 ak| ——— @ Do ’
+Co=—a , 2 osr - a
T |\ J1+C? | .
(=) S~ /_/
vanishing as the impurity scattering parameter disappears ei o7r \\\ ]
Co=4 exp(~n/2a), while for largea, Co=a as in Ref. 34. & osf o S
Close toT., A vanishes in a square-root manner as doesE% ok ‘/.v‘i
usually in mean-field treatments, 2 oal |
g 0.3t /'/. \\ E
1=py'(3 +p) T g \
A2:8(2WTC)2 nmel mol _T_ E: o2 /// \‘-
_3‘/f (§+P)_ W5 +p) ¢ % 0.1} ,,/" 1
2 P73 N
(33) [s] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I/T.

Close to absolute zero, the following formula is obtained:

AM=a0) T So[K 142ameE
(M=20=75 (g~ i S
X2
X| E—K dx
1+x?
c2 -t
+Co\1+CH E-K—— T2, (34)
1+C2

where theT2 decrease of the pure case turned into a fakter
one, the argument d{ andE under the integral is the same

as in Eq.(31), otherwise it reads as ¢1+ Coz.

From this, one can assume that the effect of the impurity
scattering in the limit of low temperatures is to reduce the
power-law exponent by 1. As a result we expect the exponent

FIG. 2. A(OI')/Aq (dashed ling T./T.y (solid line and
N(0,I")/g(0) (dashed-dotted lineare shown as a function &¥/T
for an unconventional density wave.

At smallT’, the leading correction is the last integral, enhanc-
ing the potential as in the normal SDW case. The low tem-
perature specific heat reads

2

2’7T ACO
C(T)="5-9(0) F"T. 37)

This expression also reaches the normal state value with in-
creasingl’. The specific heat jump is

AC(T)= 16m9(O)Te [1-py' (& +p) P
T TaGen wGen TN
- 2 )

(39)

of temperature to be the same as that in a conventional DV, Fig. 2 we showA(0,') and T, as a function of the scat-

in the gapless regiotf:?> The analogy looks obvious since in

tering rate.

neither of these two systems there is a lower bound of the
excitation energy. The correspondence works only at low
temperature§ <T, when the only energy scale is the tem-
perature. Now we derive expressions for the grand canonical By use of Green’s function, the density of states per spin
potential and for the specific heat. In doing this, we use thés given by

well-known relation involving an integral over the coupling
constant of the interactidf

IV. DENSITY OF STATES IN UDW

N(w)=— % ; Im Tr(GR(k,w))=g(0) %Im(u),
(39

1
Q_Qo:f . .

0 whereu=iu,(iw,=w+i48). After some algebra, the low-

energy behavior reads

where H;,; is the interaction causing the phase transition.
This formula gives us the thermodynamic potential differ- CoA
ence between the normal and the DW phase. Since we work ~ N(«)=9(0) =~
on a grand canonical ensemble, the appropriate thermody-
namic potential al =0 is obtained as

di
~ (\Hind, 35)

(40)
The residual density of statdse., the DOS at the Fermi

A2 2 r2 2A3C8 energy is finite at any finitel”, disappears exponentially as
Q(0)=—Np(0) a —AZCO\/CS+ 1+ ?+ ar I' goes to zero, but takes the normal-state valud aap-
m proaches to infinity. SinceN(0) is almost zero forl’
ATA (= 2 <0.5f9, we do not expec.t_relevant changes in thg 'sftatic
——— | (k- E)( E—K )dx _ (36) quantities(such as the specific heat, the spin susceptibility at
m? Jc, 1+x? T—0) at low impurity concentrations. The notion “gapless”
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2.5 T T T T T T T T
]
|
i, . » - - X
|
% o | FIG. 4. The vertex correction in the Born limit is shown. The
3 dot is the vertex function, the open triangle represents the vertex
PSRt = correction due to impurity scattering.
o5} . . n; 1 .
A(piwg)=1+y 2 3 2 URIG(g,iwy)
q R
% 02 04 08 o8 1 T2 14 16 18 2 X A(q,i wn)G(q,i wn)U(R), (44)
w/A

thich is shown in diagrammatic language in Fig. 4. Assum-

FIG. 3. Density of states plotted as a function of the reduce . . . -
Y P ing A(p,iw,)=A(iw,), and making the following ansatz:

energy for different scattering amplitudes=0, 0.01, 0.05, 0.1, 0.5,
and 1 with peak position ab=A from top to bottom.

_ Ai(fon)  Aj(iwy,)
makes no sense in this case since even in pure UDW the gap A(lwn)=(A , A ) (45
vanishes at the Fermi energy leading to the possibility of 2(i@n) 1(i@n)
arbitrary small energy excitations. At the value of the order i i
parameter, the divergent peak of the pure system is broadt'® Vertex corrections can be obtained as
ened and\(w) is always finite as a result of the impurities,
shown in Fig. 3. Compared to the DOS of the conventional 2 kK-g |\ !
DW,? the states below the gap maximum are filled in, and A= 1-=a , (46)
the peak afA disappears more rapidly asincreases than in T y1+ug
the case of momentum independent gap. At high energies it
reaches the normal state value as A,=0, 47)
A% @w?-T? .
N(w):g(O)( 1+ — (41  where the argument df andE reads as N1+ uzn. Substi-
4 (0?+T%)?2 tuting this into Eq.(43), the susceptibility reads

In Fig. 2, we show thd" dependence of the residual density

of states. K—-E
2 Jus+1
V. DENSITY CORRELATOR Xo(M=29(0) 1= 75 2, —— — | (48
i - - 1—a———
We turn our attention to the behavior of the static, long- \/ﬁ

wavelength density correlation functiorusing the thermal

Green's function At zero temperature it equals the total density of states at the

Fermi surface,

1 - -
xo(M=-75 pkE THG(p.k,iwn)Glk,piiwn) (42

CoA
_ y Xo(0)=29(0) . (49)
where the overbar means averaging over the position of the
impurity atoms. This requires calculating the averaged
Green’s function and the vertex corrections. In the followingin the low-temperature limit we obtain
we focus on the vertex corrections(p,i w,). With this, our
equation becomes simpler,

Co mt [K 1
1 Xo(T)=29(0) 7 A(T)+ DIE? g1t 2
Xo(T)=—72 2 THG(p.iwn) A(p,iwn)G(p,iwy)]. (50)

p,o,Nn
(43)

where the argument df and E is the same as in Eq34).
In the standard ladder approximation the vertex correction€lose toT., an expression similar to the normal SDW de-
are determined by the integral equation scribes the susceptibility,

115112-6
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xo(T) 5\
45F ™ -
2y (3+p)(1=py'(3+p)) T A
zzg(o) 1+ nel mel 1_T_ ’i
3Gt ¢Gtp) c g s
2 P73 R
G

We refrain from the evaluation of th@th Fourier component s
of the density correlation function because in UDW this is §
not the quantity that signals the phase transition, random T
phase approximation corrections will not lead to divergence  osf
since the dominant unconventional channel does not coupl o
to charge or spin densifyln conventional CDW or SDW, the

Qth Fourier component of the charge density or the spin
density turned out to be the order parameter of the phase F|G. 5. Real part of the electric conductivity in tiyedirection
transition, respectively. As opposed to this, in the unconvenfor A (k) =A cospk) is plotted as a function of the reduced energy
tional scenario, the following phases and related order paor different scattering amplitudest=0 (dotted ling, 0.1 (solid

cOos
Reogy

w/Aoo

rameters are found: line), 0.5 (dashed ling and 1(dashed-dotted linel";=2T",,.
Phase Gap Order parameter: Qth o Blw—X)

Fourier component of the lop(w)= fo tanh——RegF(u(w—x),~u(x))
ucbw A cpsbkj) E!ectric current dengity —FU(w—x),—u(x))]dx, (53)
UuCbw A sin(ok)) Kinetic-energy density o
USDW A cospk) Spin current density the conductivity is given by
USbw A sin(ok)) Spin kinetic-energy density , , 4 @)+ ()

Reog,=—e g(o)vaﬂ e (54)

These phases are already known as orbital antiferro- _ B . .
magnet! bond-order wavé,spin nematic stafd and axial ~ HErEVx=UF, Uy= V2bty, andv,=y2ct;. The different
spin bond-order wav respectively, in the context of the F(u,u’) fgnctlons and the dc conductivities are discussed in
two-dimensional Hubbard model. Electron-hole condensatéhe.fonowm_g _
with momentum dependent gap was also mentioned in the (i) A(k)=A coskb). a=y.
context of excitonic insulatot*® Generally these order pa-

12
rameters can be called as the effective charge or spin denz(y y)= JiI—u 2 E' —uu' - 2, v
sity3 The autocorrelation function of the above quantites u’?—u? 3 3
will be divergent afT, in the corresponding phase, because o 5 )
these quantities are relevant to the phase transitions. 1K' , U + 1= ry S .
K’ uu 3 Vv1—u“ Eluu 373
VI. OPTICAL CONDUCTIVITY 2
) . , , , +K(—uu’+—) . (55
The optical conductivity contains relevant informations 3

abput the po.s.S|bIe excitation of a system. Since n real map, the definition of the differenF(u,u’) functions the argu-
terials impurities are always present, the evaluation of th?nent of E and K is 1N1—u% while for E' and K’
optical conductivity in impure systems is of prime impor- !

tance. As it is known, the electrical conductivity of a con- Ly1—u'® has to be used. This is the simplest case, the

ventional DW is divided into a pair-breakirtnterband and vertex corrections vanish due _to the mismatch of wave-
a normal(intraband contribution3” Hence a Lorentzian-like 'S¢t dependence of the velocity and the gap. As the scat-

normal contribution appears at all the frequencies, while théenng strength enhances, it becomes the dominant energy

pair-breaking term is zero as long @s<2A. This separation SC?I?“;”?] the Clrjlr\r/es ditlakt()a mﬁ re kar;dinm':ci)re 5th_(|a_hfordm ofna
can be done in the unconventional case, although here borSwo ?. i a aslcal teda Ty— Oe checke 9. >. The dc con-
processes contribute to all frequencies due to the finite de fuctivity 1s calculated af =0,

sity of states at the Fermi energy. Introducing two notations, 4 ’7TC(2)
dc,cos_ o2 2_ " .
oy =e g(O)vyAW(E 1+Cj 5w ) (56)

In(w)= f0m<tanh'[m—tanh? Re[F[u(w+x),u(x)]

2 In the dc conductivities, the argumentBfandK is the same
as in Eq.(34).
—Flu(ew+x),u(x)]}dx, (52 (i) A(k)=Asinkb), a=y.
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F "= ! V1 2E ,+4+U2 V1 2g’ '+4+U/2 u” K’ ’+2+U/2
(u,u )_U,z—uz u uu § ? u uu § ? ﬁ uu § ?
2 u2 2
E'V1-u'?—EJ1-u?+ K'— K
. u? K( L 2+ u? . I, 1 Vyi-u’? 1—u? -
—uu'+ o+ = |+ — :
1—u? 3 3 Am (u+u’)? 1+ ra, 1 u’ K+ u K)
Amy+u’ |\ J1-u'? Jy1-u?
|
the third row of the equation comes from the vertex correc-
tions. AsT" increases, the peak aA2s broadened and moves 03¢=2e?g(0)v? (60)
closer to zero frequency. The dc conductivity is obtained at AmyCo+1
T=0,

The optical conductivity is usually the same in theand z
) direction apart from constant factors, since the velocity in
Co(K—-E) these directions does not interfere with the gap. But in the
(58 . o X .
presence of impurities this general relation does not hold any
more due to the presence of different vertex corrections. A
where the second term in the denominator is clearly the ef!€ry similar breakdown of equality is found in the relation

fect of the vertex corrections. The conductivity is shown inP€tween the static spin susceptibility and the condensate den-
Fig. 6. sity (ps=1— xo/xn), Which are not related to each other if

(iii) A(k) = A sinf,b) or A coskb), a=2z. impurity scattering is consideréd?* The conductivity is
shown in Fig. 7.
For the sake of completeness we present the result for the
quasiparticle part of the conductivity in the chain direction

dc,sin__ 4.2 2
oy =4eg(0)v ,
v 9(0) YAm\C3+1+T(K—E)

F(u,u’)= 2{J1-Uu’E—-2{1-u'?E’

2(u'2—u?) kgeping in mind that collective modes also appear in this
direction.
u(u—u’ u(u—u’ (iv) A(k)=A sin(kb) or A coskb), a=x.
AU Cal DI Clul 1) I & &
. N A 1 r,—r, u(u’'—u
the vertex corrections vanish because the velocity depends (u,u)= 2(I'1—Ty) A J1—u?
on different perpendicular wave-vector compondg) ¢han
the gap k,). As T increases, the peak aA2s broadened and u’(u'—u)
moves closer to zero frequency. The dc conductivity is ob- —-K —1—u’2 +2EJ1-u
tained atT=0 as
-1
s : : : — . . —2E’\/1—u’2> —1]. (61)
o ! | This formula gives the quasiparticle part of the optical con-
% ductivity in the chain direction, although collective modes
% also show up here significantly modifying the conductivity.
K The consideration of impurity scattering and collective
§ modes(even in the simplest random-phase approximation
3 together is a very difficult task to deal wift*®and is beyond
'§b§ the scope of the present investigation. The dc conductivity is
- obtained aff=0,
E

03=2e%g(0)v? (62

Am\C3+1—(I';—T,)E’

FIG. 6. Real part of the electric conductivity in tiyedirecton ~ The conductivity seems to transfer more and more spectral
for A(k)=Asin(bk)) is plotted as a function of the reduced energy Weight to the zero-frequency peak with growing impurity
for different scattering amplitudest=0 (dotted ling, 0.1 (solid  scattering rate, transforming the curve into a Lorentzian-like
line), 0.5 (dashed ling and 1(dashed-dotted linel';=2T,. one (Fig. 8.
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3 ] 4
: 3.5+ 4
2.5
an
2 . o i
% 2l i N;a
% . = 25
~ - ~. =S
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3 A 1sf
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FIG. 7. Real part of the electric conductivity in thelirection is FIG. 9. The dc conductivity plotted =0 as a function of the

plotted as a function of the reduced energy for different scatteringeduced scattering rate fbr, =2I",=41'/3 for a cosinusoidalsinu-
amplitudes:a=0 (dotted ling, 0.1 (solid line), 0.5 (dashed ling soida) gap in they direction, solid(dashed ling in thez direction,

and 1(dashed-dotted linel";=2T",. dashed-dotted line; and in thedirection, dotted line.
The dc conductivities are shown in Fig. 9 BE0 as a oT

function of the impurity scattering parameter. In the perpen- Reaxx(w)zezg(O)Zv,zz 5 2 > (63

dicular direction, the dc conductivities take the same value at 0 +(2I)

the critical scattering parameter, while the dc conductivity in

the chain direction is exactly 3/2 times larger as follows from r,+r,

. L . — a2 2

Eqgs.(63) and(64) in the w=0 limit, if I';=2T",. In spite of Reoyy,{w)=e 9(0)2vy,zm- (64)

1 2

the similar thermodynamics aFwave SC(Refs. 33 and 3¢
and UDW, the transport properties of these two systems arg, the chain direction only backscattering can cause current
Completely dlffel’ent due to the d|St|nCt Coherence factor%amping as |t iS known from transport theory, Wh|Ch iS mani_

coming from the different condensates. In a SC, there is alfested in the absence of the forward-scattering parameter in
ways a Dirac delta peak at zero frequency, and the strong@fes ().

the impurity scattering, the larger the spectral weight of this
peak transferred to the finite frequency part of the conduc-
tivity. In UDW, the Dirac delta contribution disappears as
soon as any finite impurity concentration is present, and the We have studied the effect of nonmagnetic impurities in
areas under the different curves are equal, but their fornunconventional density waves. In this respect there is no dif-

VII. CONCLUSION

approaches that in the normal metallagnhances. ference between USDW and UCDW due to the spin indepen-
The normal-state electric conductivities are given by thedence of the interaction with impurities. awave supercon-
usual Lorentzians, ductors nonmagnetic impurities have no influence on the

thermodynamics of the system, while impwutevave super-
conductors suffer important changes. This is known as
Anderson’s theorem, but equivalent conclusion has been

3
3

28 1  reached independently by Abrikosov and Gor'kov. It says
N that if a static perturbation does not break the time-reversal
2r ] symmetry and does not cause a long-range spatial variation

of the order parameter, the thermodynamic properties of the
superconductor remain unchanged in the presence of pertur-
bation. As opposed to this, any kind of DW is destroyed in
the presence of impurities, although the identity of the ther-
modynamics ofs-wave superconductor to conventional DW
and d-wave superconductor to unconventional DW is well
established without impurities. Impurities have a pair-
breaking effect on the condensate, resulting in a universal
formula between the transition temperature and the scattering
parameter, named after Abrikosov and Gor’kov. It seems to
FIG. 8. Real part of the electric conductivity in the chain direc- be valid for superconductors with all kinds of symmetries
tion is plotted as a function of the reduced energy for differentand now for density waves as well, independent of whether
scattering amplitudesa=0 (dotted ling, 0.1 (solid ling), 0.5 the Born or the resonant scattering limit is taken. Since con-
(dashed ling and 1(dashed-dotted lineI';=2T,. ventional DW were studied in the Born limit, we found ap-

Reozz (w)2A00/%g(0)v%
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propriate to use the same approximation for the unconverby the phason contribution, and incorporating the effect of
tional scenario. We have examined the system with thémpurities in the theory is beyond the scope of this study.
standard noncrossing approximation, and calculated the selfrstead we concentrated on the perpendicular direction. In
energy corrections for infinite order in the scattering potenthe optical conductivity, self-energy and vertex corrections
tial, but only the lowest nontrivial correction was retained forwere taken into account in the ladder-type noncrossing ap-
the Born limit. The thermodynamics of UDW were found to proximation. Depending on the symmetry of the order pa-
be very similar to that ird-wave superconductors with non- rameter and the chosen direction, four qualitatively different
magnetic impurities, but the existence of two different typescurves are deduced, although, is certainly dressed by col-
of scattering processe$orward and backwapdwas called lective modes due to coupling to the phason propagator. In
for in the microscopic theory. In unconventional DW, at anythe perpendicular directions, the possibility of low-frequency
finite scattering strength the valley of the density of states agxcitations rapidly increases, transferring increasing amount
the Fermi energy is filled in, leading to normal electronlike of spectral weight tow=0. The dc conductivities at =0
behaviors very close to absolute zero, but the reduced desharply differ from each other, hence they can help to pro-
sity of states compared to the normal state bears the effect efde one with decisive conclusion when comparing these re-
the condensate. The order parameter does not get renormalilts to experimental data.
ized due to impurities because we assurs@dve scattering
for simplicity. The spe_c?fic heat_increases linearly with tem- ACKNOWLEDGMENTS
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