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The Gutzwiller projection allows the construction of an assortment of variational wave functions for strongly
correlated systems. For quantum sfia 1/2 models, Gutzwiller-projected wave functions have resonating-
valence-bond structure and may represent states with fractional quantum numbers for the excitations. Using
insights obtained from field-theoretical descriptions of fractionalization in two dimensions, we construct can-
didate wave functions of fractionalized states by projecting specific superconducting states. We explicitly
demonstrate the presence of topological order in these states.

DOI: 10.1103/PhysRevB.66.115111 PACS nuni®er71.27+a, 75.10.Jm

[. INTRODUCTION is also known as Gutzwiller projectiéh. Different topologi-
cal sectors are obtained by projecting states with/without su-
In the last several years, considerable theoretical progreggerconducting vortices(or, equivalently, with different
has been made in understanding the possibility of fractionaboundary conditions We motivate this construction from
quantum numbers for the excitations of strongly interactinghe field-theoretic description of fractionalized phases.
systems. A particular focus of attention has been on realizing Projected wave functions have long been studied to gain
such phases in quantum spin systems in two spatidhsight into the properties of the cuprate high-temperature
dimensiond. In conventional quantum phases of spin-1/2superconductors:—*® Upon doping with mobile holes, the
magnets, such as an antiferromagnet or a spin-Peierls phageactionalized RVB spin liquid may exhibit spin-charge
the spin excitations carry quantum numb&es1 or higher separation—a mechanism possibly responsible for the
multiples. In contrast, in a fractionalized phase, there ar@anomalous properties of the underdoped cuprafés state
excitations(dubbed spinonsthat carry spirS=1/2. Various that has been the subject of most attention in the context of
kinds of evidence for the presence of such fractionalizedhigh-temperature superconductivity is the “nearest-neighbor
phases in spin models on a number of diverse lattices hawtwave RVB state” obtained by projecting a BG§2_ 2
been presented in Ref. 2. A detailed theoretical sttflgf  superconductor with nearest-neighbor hopping and nearest-
fractionalization in two dimensions has revealed that in theneighbor pairing interactions. However, as we show below,
simplest cases such spinon excitations are necessarily agrojecting a superconducting state does not necessarily guar-
companied by gapped “vortex like” excitations: visons. The antee that the resulting wave function describes any fraction-
visons carry no spin but have a long-range statistical interalized phase. In particular, the nearest-neighbaave RVB
action with the spinon. When a spinon is taken all the waystate has some special symmetry properties due to which it is
around a vison, the wave function of the system changesot expected to lead to a fractionalized state after projection
sign. Thus the visons have an Ising-like character: two visongat half-filling). We confirm this by a direct numerical calcu-
can annihilate each other and are equivalent to no vison aation on this state. It is also not clear whether this state
all. A concise mathematical description of this long-rangedrepresents a good trial wave function fmy stable phase of
statistical interaction is given by assigningagauge charge a spin system. Addition of a number of perturbations, such
to the spinons and a correspondidg gauge flux to the as, for instance, next-nearest-neighbor hopping, to the
visons. nearest-neighbail-wave superconductor removes the special
A precise theoretical characterizatfohof fractionalized ~symmetry properties—the resulting state is then expected to
phases serving to distinguish them from more conventiondkead, after projection, to a fractionalized state. We demon-
phases is provided by the notion of topological order—a constrate explicitly the topological order in such projected states.
cept elucidated by Wéfiin his work on the quantum Hall A closely related state was recently considered in Ref. 16 at
effect. When placed on a manifold with a nontrivial topol- finite doping and was argued to provide a good description of
ogy, a fractionalized phase has a number of locally similacuprate phenomenology. We note that recent experirfelits
but globally distinct states that differ by whether or not aplace constraints on the applicability of fractionalization
vison threads each hole of the manifold. ideas to the cuprates. Theoretical description of the cuprates
If a spin model possesses a fractionalized phase, whatith wave functions corresponding to fractionalized states
does its wave function look like in terms of the original must hence be performed with caution and examined for
spins? In this paper, we argue that the wave functions dezonsistency with experiments.
scribing a fractionalized state may be obtained from the Recently, a particular projected state has been argued to
original resonating-valence-bondRVB) construction of represent the ground state of the—J, Heisenberg model
Andersont We consider states obtained by projecting theon the square latticE. We argue that such a state is also
wave function of a BCS superconducion a lattice to the  expected to have topological order, and hence be fractional-
Hilbert space of exactly one electron per giteis procedure ized. We explicitly construct four globally distinct states on
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the torus to demonstrate the topological order. vt

If the projection does indeed lead to a fractionalized state, |BCS>:H (Ug+oieg,c_¢))[0) 2
then we may construct wave functions for its excitations as K
follows. The distinct excitations of a superconductor are thg, <iandard notation. We restrict attention to spin-singlet,
BCS quasiparticles and the vortices. As originally suggestefine reversal-invariant ground states that also preserve all
by Anderson, projection of the BCS quasiparticles directly he symmetries of the lattice. The vectérgake values in the

leads to the spinons. We argue that the visons may be ol): S o .
tained by projecting the wave function of the B®®/2e irst Brillouin zone. We assume periodic boundary conditions

vortex. This observation may be directly exploited to checkin both spatial directions so thkt= (277/L)(m,,m,) with

for topological order in the projected wave functions. Con-Mx.My integers(the system may be thought of as residing on
sider putting the system on a torus. We may project the fou@ torus. We may rewrite this wave function as
superconducting states obtained by threading or not thread-

ing a hc/2e vortex through each hole of the torus. If the -t
projected state is fractionalized, and hence topologically or- |BCS>°CeXF{ zk: g(k)%c—d 0)
dered, these four states must(aéter projection orthogonal

to each other in the thermodynamic limit though they areyith g(k)=uv;/u;. So long asg(k)=g(—K), this state is

3

locally similar. guaranteed to be a spin singlet.
It will be useful to consider a first quantized version
Il. GENERALITIES ON GUTZWILLER PROJECTION W ({x;,xi}) obtained by fixing the total number of particles

The original point of view on the Gutzwiller projected to beL? The (x;,x;) are the position and spin state of the
wave functiol is that it describes a state obtained by quan-ith electron. We have
tum disordering a Heisenberg Neel antiferromagnet. How-
ever, as Gutzwiller projectiofat half-filling) freezes out the . . £t L2/2
charge fluctuations inherent in the unprojected superconduct- W ({X;,xi})*{({Xi inH(E QECQTC@) 0). (4
ing state, it may equally well be viewed as describing a state K
obtained by quantum disordering a superconductor. Rece . - —
theoretical worR” has sought to understand the properties oﬁlhe wave function ({x; ,xi}) is single valued on the torus.

Mott insulators by viewing them as quantum disordered su- 'I_'he_ Gutz\;villir-projected stat¢RVB >. ri]s obtaineld by
perconductors. In this approach, insulating phases are r@_romctmg\lf urther onto a subspace without doubly occu-

garded as condensates of the vortices of the superconductBi€d Sites. Since the total number of particles is fixed to be
A fractionalized Mott insulator is obtained by pairing and e_qua_ll to the number of latiice sites, this double-step_ projec-
condensing the BCS vortices while the unpaitex2e vor- tion is equivalent to the constraint of exactly one particle per

tex remains gapped. At energy scales well below the charglém'ce site. The resulltmg wt:;\ve dfunctflpn may be W”;]te? as a
gap, the excitations in such a Mott insulator are the spinor?um over various valence-bond configurations on the lattice,

and the vison. The spinons are precisely what become of the
fermionic BCS quasiparticles once tle/e vortices con-

) . . RVB)=Ps|BCSx >, A,lVvbo), 5
dense. The vison, however, is the remnant of the unpaired [RVB)=Pg[BCS) vzbc vl VDO ©)
hc/2e vortex—due to thehc/e condensate, this survives
with only aZ, character. where|vbc) denotes any particular valence bond covering.

It is clear that this point of view fits in nicely with the idea Ay, iS the corresponding amplitude and is given by the
of Gutzwiller projecting superconducting states to obtainproduct ofg(x; —x;) over all valence bonds connecting sites
wave functlo[’ns for Mott |nsulator§. However, not all choices ij) appearing in the statévbc) . Here g()zi_;j) is the
of the unprojected superconducting state are guaranteed ior t ‘ ¢ the functioa(K) introduced ab
lead to fractionalized states on projectigee sections be- ourier transform of the functiog(k) introduced above.
low). In this section, we discuss the nature of projected vor-
tex states and their use in constructing the wave function of B. BCS vortices and their projections

the vison. If the ground state of a spin system is correctly described

by Gutzwiller projecting a BCS state, it is natural to con-
A. RVB wave functions struct excitations of the spin system by similarly projecting
We begin by quickly reviewing the interpretation of the the excitations of the BCS superconductor. As argued by
Gutzwiller-projected superconducting state as a resonatingnderson, projecting the BCS quasiparticle state leads to a
valence-bond wave function. Consider the ground state of wave function for neutral spin-1/2 spinons. The other distinct
BCS Hamiltonian on & X L square latticel( even, excitations of the superconductor are the vortices. What hap-
pens to these under the Gutzwiller projection? To answer this
_ + - question, consider a wave function of a superconductor de-
H—_; Za tijCiaCiat H.CHAjCiicj +H.C. (1) geribing a state where ahd2e vortex threads the torus
along thex direction. Ifn is even, thefirst quantized wave
Its wave function has the form function may be taken simply as
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q,nxzexp( o ﬂ) v, © Gap(T+ L) =~ Gap(1), 13

T2

I
where §;=2my,; /L is the angular coordinate of thi¢h par- Gap(" +LX)=Gap(F)- a4
ticle. Thus, the vortex-state wave function for evemay be  This vortex state may now be projected to obtain the new
simply obtained by multiplying the ground-state wave func-RVB wave function given by
tion by a phase factdwhich depends on the configuration of
t_he particles Upon Gutzwiller projection, _there is one par- |RVB’):PG|BCS’>ocE Al vbo). (15)
ticle at every site; consequently the projected vortex state vbe
(for n even is trivially related to the projected ground state ..
by an overall phase factor. Thus the projected even vortexhe amplitudeA;,. is given by the product 0§’ (x; —x;)
state does not lead to a distinct state of the spin system. over all valence bonds connecting siteandj appearing in

Forn odd, the vortex-state wave function in the superconthe statdvbc) . This wave function can be further simplified

ductor is not obtained by simply multiplying the ground stateby noting that the factor exi{n/L)>;y;] arises in every term

by a phase factor. Considar=1. The naive guess on the right-hand side and is just a trivial multiplication by
an overall phase factor, and hence may be dropffeat. an

i 6, L XL square lattice with. even, this phase factor is simply

exp< 2 7) v () equal to ong This then amounts to Gutzwiller projecting the

state|BCS" ) obtained by changing the boundary condi-

violates the physical requirement that all legitimate electrortions on the unprojected state. The resulting amplitude for a
wave functions must.be single-valued on the_ torus. The corgglence bondi() is given bygap(;i_;j)-

rect wave function is constructed by multiplying by the  Thys the projection of Aic/2e vortex potentially survives
phase factor abovendreplacing¥ by a wave function that 55 g nontrivial state in the spin system. In view of the dis-
satisfies antiperiodic boundary conditions along yidirec-  ¢yssion at the beginning of this section, it is clear that if the
tion (and periodic along the direction). Such a replacement ground state described HRVB ) is indeed fractionalized,
may be obtained by considering the ground statélofith  then|RVB') describes a state with a vison threaded through

antiperiodic boundary conditions along thelirection, along thex direction. We will exploit this observation below
to check for topological order in the projected wave func-
|BCS*’>=1_k[ (ug+vgch ¢ g )]0), (8  tions.

with K’ :|Z+(7T/L)§/ and |Z=(27T/L)(mx ’my) as before. C. Short-ranged RVB states and dimer models

Multiplying by the phase factor above has the effect of shift- It is instructive to make a short digression, and specialize
ing all the momenta by+#/L) along they direction. A legiti-  to superconducting states which are fully gapped, and where

matehc/2e vortex state may therefore be constructed as  the functiong(r) has a very short range of order a few lattice
spacings. In that case, the resulting RVB wave function de-
N\ . N t scribes a state with only short-ranged valence bo(zasl
BCS - r+ (AT 5 o O . 9 . ..
| ) l_k[ (Ui vk Ck+2”V/LTC*ki)| ) © presumably a full spin gapFor such a state, it is expected
It is readily verified that this is a spin-singlet wave function. that thg funct|(1r,1;1(k) 'S smooth ink space _SO that we may
The first quantizechc/2e vortex-state wave functiowith ~ @pproximateg(k’)~g(k). In real space, this amounts to
L? particle3 may now be obtained straightforwardly as -
L2 gap(X—X’)~g(x—x')005<f(y—y’)
W (fx x| 2 g (Gx)el el (x) |0y (10
X, X"

. (16)

In the limit of largeL, the cosine factor is one everywhere
, except for valence bonds that connect sites to the left of
with =L to sites to the right of =L for which it is —1. Thus the

.- . , SN difference between the projected ground state and the pro-

g’ (x,x)=e "I YIg, (x=x"), (1) jectedhc/2e state may be summarized as follows. Consider

drawing a vertical line parallel to thedirection that cuts all
the links of the lattice betweep=L andy=1. In the pro-
jected vortex state, the amplitude for any valence bond that
cuts this line acquires a factor-(1) relative to the ground
state. In other words, the amplitude for any valence-bond
configuration where an odd number of valence bonds inter-
R o sect this line is (1) relative to the ground state. We note
Here, as beforeg(k’)=ui: /vg, . The functiong,y(x—x") that this construction of the projected vortex-state wave
satisfies antiperiodic boundary conditions along yhdirec-  function reduces to the state considered by Read and
tion, and periodic along the direction, Chakraborty in their pioneering watkon topological order

gap()z_)z,): z g(E,)eiR' ((x=x")
k!

=2 g(k")cogk’ - (x—x")]. (12)
kl
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in RVB wave functions. Unfortunately, as already recognize%ite i' introduce the physica| Spin opera]ér and the pseu-

in that papef? it is not clear that the particular RVB state dospin operatofl; acting in the particle-hole sect?t?4
discussed there describes any stable phase of a spin system. ! '

An approximate description of a short-ranged RVB state o1 ..
is through a quantum dimer mod@lit is well knowr?f!?2 Si=§CiT<TCi, (17)
that the quantum dimer model on a torus has four distinct
topological sectors classified by whether the number of fe.—1
dimers intersecting particular lines similar to the one intro- TZ=
duced above is even or odd. Fractionalization in the original
spin model is signaled by topological order in the quantum 4ot
dimer model when the four topological sectors become de- Ti=ciciys (19
generate in energy. In this case, these even/odd sectors _
clearly correspond to the symmetric/antisymmetric combina- Ti =Ci\Ciy. (20)

tion of the state with no vison and a threaded vison. This i +_ X Ty - . .
completely consistent with our construction of the visonsi_|erGTi =Ty=T{. TheT; satisfy SU2) commutation rela-

wave function by projecting thic/2e vortex. tions just like the Physical spin operatd8s. Furthermore,
Our primary interest in this paper will be long-ranged all components ofl; commute with all components cﬁ
RVB states where the spinons are gapless. We will explor€learly the state$]),||) are singlets under the pseudospin
the prop_erties (_)f wave functions_ for such states by numericalotation generated by thE , while the state$0),|1 ) form
calculations using the construction above. a doublet under the pseudospin rotation. Thus the Gutzwiller
projection is equivalent to projection onto the singlet sector
Ill. TOPOLOGICAL ORDER: (at each sitgof the pseudospin S@) rotation. This has the

GENERAL CONSIDERATIONS general implication

(18

Though the projectedhc/2e vortex survives as a non- Pl ¥unprop = PcU | #unpro) (21)
trivial state of the spin system, it is still not necessary that th
state|RVB ) has topological order. The presence or lack o
topological order may be established by examining the fol- U= iz 6T,
lowing two conditions:(i) (RVB’'|RVB)=0 as the system €4 ’
size goes to infinity, andii) the expectation values of all
local physical operators be the same in both StER¥B )

?or an arbitrary SW2) rotation
(22)

where the parameteréi may be chosen independently on
and|RVB') again in the thermodynamic limit each site. Thus a local pseudospin(3Uotation of the un-
The first condition is closely related to the presence of aorOJected state does not change the state after projection. We

vison gap in the bulk. Indeed, the stat&/B) and|RVB') will therefore call this a gauge rotation.
differ by one vison tunneled across the cylinder torug, In View of the above, a suf,ﬂc!ent_ condition for the or-
and thereford RVB| RVB’) may be interpreted as the ampli- thogonality of[RVB ) and|RVB') is simply
tude of such a tunneling event. The second condition guar- (BCSU|BCS)=0 (23)
antees that the distinction between the states is not in any
local properties but rather in global ones. The second condifor any arbitrary pseudospin $2) rotation (22). (We note
tion may be related to the gap in the spinon spectrum: as wehat this is not in general aecessarycondition for the or-
shall see later, in a system with nodal spinons, the expectahogonality.
tion values of local operators in different topological sectors The discussion has so far been general. Equatia)
converge only as a power of the system size. imposes some conditions on the nature of the BCS state
In this section, we concentrate on the first condition. Us-which could lead to a wave function for a fractionalized state
ing the SU2) particle-hole symmetry of the projected wave after projection. However Eq(23) is still not in a form
function?®?*we conjecture a simple criterion for a supercon-which is directly useful in providing guidance in writing
ducting wave function to lead to a fractionalized state upordown such states. To get a more useful form, we specialize to
the projection. a particular class of unprojected states. In general, the state
Consider first the unprojected superconducting states. It iBCS) will be a linear superposition of states with different
easy to check that the overlgBCS|BCS) goes to zero total particle number. However, the projected st&¥B )
very rapidly asl. becomes large. This is expected physicallyhas exactly one particle per site, and hence an exact total of
as the vorticity is a good quantum number for the un-L? particles on a lattice with.? sites. Now, for a general
projected BCS state. However, this doaest guarantee BCS state, if we plot the probability distribution of having a
(RVB'| RVB)=0 due to the projection. To get better insight total of n particles, it will have a sharp peak at some average
into what is needed for conditiofi) to be satisfied, we will valuen, and will die rapidly for|[n—ng| large. If ng is dif-
employ the following useful characterization of the ferent fromL2, then the Gutzwiller projection picks out the
Gutzwiller projection. In the unprojected Hilbert space, thetails of the original BCS wave function. In this case, the
states at each site af@),|7),|1),|T!) in obvious notation. projected wave function may have very little to do with the
Projection keeps only the statgly,||) at each site. At each unprojected one. For the projected state to retain the signifi-
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cant features of the spin physics of the unprojected state, itis Here we need to make a clear distinction between “super-
clearly advantageo@to require that the mean number of conducting” and “nonsuperconducting” states. Formally, we
particles (before projection is L2. If this is satisfied, the call a state “gauge equivalent to nonsuperconducting” if it is
projection will have a gentler effect than if the mean numberinvariant under a global (1) subgroup of the full group of

is different from one per site. To further soften the effect ofgauge rotation$22). Indeed, a nonsuperconducting state is
the projection, it is clearly advantageous to require that theharacterized by a fixed number of electrons. Then t{iB U
mean number be one favery unprojected state obtained group ofglobal rotations byT? (i.e., the subgroup generated

from [BCS) by a pseudospin S@ gauge rotation. This py the setsf;= 6z) produces only trivial multiplications by
ensures that the projection does not pick up the tails of thghase factors leaving the state invariant. We call such a state

wave function in any gauge. a “U(1) state”[or even a “SU_2) state” in the case when the
_ The requirement that the average electron number on eagiaximal subgroup leaving the unprojected state invariant is
site is one may be simply written as SU(2)]. In this terminology, a state that is superconducting in

. any gauge is called aZ, state.” This classification is a
(TH=0 (24 subclassification of a more detailed one introduced by %en.

on all sitesi. Further the requirement that this be true for A Set of conditions for the W) invariance(being gauge

every gauge-rotated ground state is equivalent to requiringqm"alent to nonsuperconductingf a given state may be
that ormally written in terms of projector operators onto occu-

pied quasiparticle states. Consider the set of Bogoliubov—de
<-|*—i>:0, (25) Gennes doubletsug,vi) participating in the ground state
(2). We can define a projector onto the linear subspace
i.e., the average values of the generators of the gauge rotgpanned by those doublets. In real space, this projector may
tions vanish. be thought of as a set 0£22 matricesP;; labeled by the site
From now on, we will specialize to unprojected statesindicesi andj and defined as
where the requirement, E(R5), is satisfied. In this case, we
may hope that we can use our intuition about the unprojected ug(i)y %
state to infer the properties of the projected state. When do Pij :2 (i) (ug (D) v ().
we expect that Eq(23) will be satisfied for such a BCS _ _
state? Note thatBCS') differs from |BCS) in having a Under the SU) gauge transformation, these matrices trans-
hc/2e vortex threaded through the hole of the cylinder. If theform as
ground state of a physical system is given by the supercon- T
ducting statelBCS), we can label its excitations by their Pij—UiPyUj. (27)
total vorticity quantum number. The statBCS') has total  For a nonsuperconducting state, all matrifgsare simulta-
vorticity =1 compared tdBCS), and hence is orthogonal. neously diagonal. To see when a given state can be gauge
However, so long adJ|BCS) is also a superconducting rotated to such a nonsuperconducting state, it is useful to
state, it will also have a fixed vorticity which differs from consider the chain products of such matrices starting and
that of|BCS') by an odd number. Consequently, in this caseending at the same poiit
Eq. (23) will be satisfied. If, however, for somd, the gauge
rotated statéJ|BCS) is not a superconducting state, then it A[CI=TIc(P;ijPjk- - - Pyi) (28)
may be regarded as a coherent superposition of electrQfnare ¢ j k, ... l,i) define a closed curve on the lattice.
wav_e_fur!cuons each of which carry a def|_n|te vorticitfhe A[C] is a 2x2 matrix for each lattice sité and for each
Vort'P'W IS not a good quar!tum number IN & NONSUPErcoNng|nsed curveC starting and ending at that site. Now one
ducting statg It is then possible thdBCS) is not orthogo- easily verifies that all matriceB;; may be simultaneously
nal to that particular gauge rotated state, so that(Eg). is diagonalized if and only if for any and for any pair of
not satisfied. At the very least, we lose the general reasofiysed contour€ andC’ both starting and ending &t
requiring orthogonality.
Based on the reasoning above, we make the following [A[[C],A[C']]=0. (29
conjecture’An unprojected state where the constraig¥) is ) ) i
satisfied, and which cannot be rotated to a nonsuperconduct! NUS t0 check that a given wave function describé&s atate
ing state by arBU(2) gauge rotation, will lead to a topologi- _(l.g., cann_ot be gauge rotated to a nonsuplerconductln@,form
cally ordered state after projectioiThis conjecture provides 't iS sufficient to verify thatA[C] and Ai[,C ] do not com-
strong motivation for choosing particular superconductingMute for at least one choice &fC, andC’.
states that we may project to obtain topologically ordered 'nstéad of checking whether theave functionmay be
states. However, we do not provide any formal proof of this/otated to a nonsuperconducting form, one may perform a

conjecture in this paper. It is supported by the reasoning iifimilar test for thedamiltonian(1). The Hamiltonian can be
this section, and by our numerical results. Note that our contotated to a nonsuperconducting dne., containing no pair-

jecture provides no information on the states not obeying théd terms if and only if

mean-field constrain{25—although such states may give _ -

either fractionalized or nonfractionalized projected states, we [Bi[C).BILC'11=0, (30
are unable to determine it from the mean-field properties. for all i andC, where

(26)
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AL -t

t,A L tA p t,A
Bi[C]=IIc(HijHjx- - -Hp), Hij:( ) i

(31 I I
<«

This is a conveniensufficientcondition for being a (L)
wave function, but not a necessary one: in certain cases, a NND D1 D2
superconducting Hamiltonian may have a nonsuperconduct- F|G. 1. The mean-field states generating the four wave functions
ing ground statéwith a definite particle numbgr NND, D1, D2, and DD. The terms of the Hamiltoniéb are shown

It is instructive to consider some specific examples ofon one plaquette of the lattice. The solid lines denote hopping, the
superconducting states to see how these conditions work ilashed lines denote pairing, and the circles around vertices denote
practice. Consider, for instance, a nearest neiglibaave  the chemical potential.
superconductor wherg; ,A;; are nonzero only on nearest-
neighbor bonds, and take the values described by it is given by the Gutzwiller projection of the

mean-field wave function to the physical Hilbert space.

tij :t, (32)
IV. NUMERICAL RESULTS

Aji==*A. 33
. 33 We further verify our conjecture numerically by testing

The plus sign in the second equation is for horizontal bondsthe conditions(i) and i) of Sec. Il on the square lattice in

and the minus sign for vertical bonds. It is readily seen thathe toroidal geometry for several examples of the projected

the condition in Eq(25) is satisfied by this state. However, BCS wave functions. We label the ground states in the four

as is also easily seen, all tiB[ C] commute for this state. topological sectors ast +), [+ —), |—+), and|——), ac-

This is of course consistent with the well-known fact thatcording to the boundary conditions imposeckiandy direc-

this state can be gauge rotated to a pure hopping stations. We employ the variational Monte Carlo method de-

(known as the staggered flux staté/e therefore expect that scribed in detail in Ref. 13 applied to the squargL tori.

this state will not lead to a fractionalized state after projec- We consider four different types of projected wave func-

tion. This is confirmed by our numerical calculations below.tions: the nearest-neighbdr. . state and its three modifi-
Now consider adding the next-near-neighbor diagonatations by including hopping or pairing along the plaquette

hoppingt’ to this state. The resulting Hamiltonian still de- diagonals(Fig. 1). All these wave functions may be param-

scribes ad,2_2 superconductor. However, a simple calcula-etrized by translationally invariant Hamiltoniafls), and we

tion shows that there are two noncommutB§C] matrices ~ can conveniently describe them in terms of the Fourier trans-

so that this can no longer be rotated to pure hopping. Addiform of H;; [defined above in E¢31)],

tion of t’ changes the mean density away from one particle

per site. This can, however, be compensated by adding an (k) A(k)

onsite chemical potential term to the unprojected Hamil- A*(K) —&(—Kk))

tonian. The state thus constructed is therefore a good candi-

date for projecting to get a wave function for a fractionalized The nearest-neighbat,>_,2-wave BCS statéfurther de-

state. Below, in Sec. IV we demonstrate this by a numericahoted as NND is defined by its kinetic and pairing

(39

H(k)=

calculation. amplitudes,
Surprisingly, the criteria obtained above for the supercon-
ducting state to describe a topologically ordered state after é(k)=—2(cosk,+cosky), (35
projection may also be motivated from a completely different
point of view*?® Consider any spir6=1/2 model in two A(K) = Ag(Cosk,— cosk,). (36)

dimensions. As is well known, it is possible to use a repre-

sentation of the spins in terms of fermionic spin-1/2 operadn the projected NND wave function, the nearest-neighbor
tors. This representation is exact so long as the constraimntiferromagnetic correlations are maximized at the interme-
that the fermion occupation is one at each site is imposed odiate value ofA ;~0.55(Refs. 12, 27 (the optimal values of
the Hilbert space. A popular approach is to treat the resulting\ reported in these two references differ by several percent;
fermion Hamiltonian in mean-field theory. At the mean-field the precise value oA, is not important for our qualitative
level, the excitations are neutral spin-1/2 fermions describedesults concerning topological orde¥We find that the NND

by a Hamiltonian of the general form E@l). The exact state after projection has no topological order. This agrees
constraint inherent in the fermionic representation is replacewith our conjecture, since the NND state can be rotated to
precisely by Eq.(25). This mean-field state is capable of the pure-hopping staggered-flux state by a(BUgauge
correctly describing a possible physical phase of the spimotation?428

model as long as it is stable to fluctuations. As discussed by In addition to the NND state, we consider its three modi-
Wen*2®the criteria for the stability of the mean-field state to fications which areZ, states(cannot be gauge rotated to a
fluctuations are precisely that expressed in 8§). If the  nonsuperconducting formin the first modification(we de-
mean-field state is indeed stable to fluctuations, then we exiote it by D1, we add hopping along one of the plaquette
pect that the candidate wave function for the physical statéliagonals which amounts to replacing Eg5) by
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&(k)=—2[ cosky+cosky+t'cogky+ky)]—u. (37) 1 T 1 T

The chemical potentigk is added for adjusting the average 081 08

particle density in the unprojected wave function in order to 0.6
satisfy the mean-field constraiff5).

The second wave functiodubbed D2 is analogous to
the previous one, but with hopping along both plaquetteo-2
diagonals: 0

06
04

02

§(k) = —2[ cosk, + cosk,

+t'(cogky+ky)
+cogke—ky))]—p. (39)

The third wave function isd,>_,2+d,, wave function
proposed by Capriotit all® as a variational ansatz for the
J;—J, Heisenberg model. This wave functidgdenoted fur- T - fen-d 4 2
ther as DD has the nearest-neighbor for(85) of ¢(k), 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14
together withA (k) involving both nearest-neighbor pairing
and pairing along the plaquette diagonals,

FIG. 2. Overlaps between wave functions with different bound-
ary conditions on torL XL as a function of the system site All
_ . . wave functions have\,=0.55. (@) Overlaps{+—|—+). Stars,

A(k)=Ag(cosky—cosky+2Dyysink,sinky). (39 \Np wave function; circles, D1 wave functiorigashed linet’

One easily verifies that the projected DD wave function has-0-5, #=0.417; solid linef"=1.0, . =0.696). Squares, D2 wave
all the symmetries of the square lattice, even though the urfunctions (dashed linet’=0.3, . =0.509; solid line,t’=0.5, u
projected wave function does not. This wave function obeys 0-794)- Triangles, DD wave function&lashed lineD,,=0.4;
the mean-field constrain®25) without a chemical potential solid line, D,,=1.0). (b) Overlaps for the D1 wave fur_lcnon_ with
term t’=1.0, ©=0.696.(c) Overlaps for the D2 wave function witH

The first test for the topological order is the overlap of the=0.2,1%= &'7%&5(8)3(\;)6”;?% T%retzgrrst g:]?j\;etginf?gn_i_\;\”th
two wave functions on a torus projected from the mean-fiel axéhed I}ne &JF_HJF)’ dotted line t0(+p_|__> For thes’e
states }NItE dlfferen;' tl)ound{:lry. conditions. '\floltle that ,Whe hree wave functions, the overldg- +|——) is found to be zero
nodes in the mean-tie d excitation spect_rum allon p0|_nts Oor all system sizes, within the numerical accurdapout 0.008
the momentum lattice, the wave function becomes ill de-

fined. For our choice of lattice on the tori, this happens for gqr the wave functions deep in the “topologically or-
th(‘T NND state where the nodes are .f'XEd ati/2, = wl2) _dered” phase, we can also verify the orthogonality of all the
points. Therefore, not all four topological sectors are realizeqg topological sectors- +, +—, —+, and— —. The four

for the NND state(for our choice of the lattice placement  ¢4rresponding overlaps are plotted for each of the wave
However, the sectors — and — + are well defined for any  f,nctions D1, D2, and DD in Figs.(B)—(d). All the overlaps

L XL torus, and we take the overlap between these two wavgy these wave functions decrease to zero with increasing
functions as the first check of the topological order. AIterna—System size, which indicates orthogonality of the four
tively, this overlap may be viewed as the overlap of the wavesgctors.

function with its reflection with respect to they diagonal. ~ The second test for the topologically ordered state is the
_ We have calculated this overlap with the use of the variagquality of local expectation values between different topo-
tional Monte Carlo procedur€. The results for the NND  |ogjcal sectorgcondition(ii) of Sec. Ill]. We verify this con-
wave function and for its three modifications D1, D2, andjtion for the nearest-neighbor spin-spin correlations. In the

DD, are presented in Fig.(@. In all cases, we takéy  foyr topological sectors on the torus, there are four different

andt’'=1.0 (u=0.696); for D2 wave functions we takeé

=0.3 (u=0.509) andt’=0.5 (u=0.794); for DD wave S, =—(+- gizgiz+;|+_>,

functions we takeD,,=0.4 andD,,=1.0. We see that the

overlap for the NND wave function saturates at a large sys- S_,=—(+—|ofo’ |+ ),

tem size(which implies the absence of topological orgder Hity

while for the three other wave functions it decreases to zero S, =—(++|o%o?++)

with increasing system size. This is the first signature of the o e ’

topological order in those wave functions. As a side remark, S._=—(- —|Uiz(sz| —-). (40)

we mention that if we forcee=0 in the D2 wave function,

the projected wave function has no topological ordae  In a topologically ordered state, the difference between these
overlap saturates at lardg, but such a wave function vio- four quantities must rapidly decay with increasing system
lates the mean-field-density constra{@6), and we do not size. We compute these correlators numerically for the same
discuss it here. three wave functions used before in the overlap computa-
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0.25 . L L

1 0.0 AT R T R S '
4 6 8 10 12 14 18 4 6 8 10 12 14 16 18 20

FIG. 3. Nearest-neighbor spin correlatiofg, for wave func-
tions with different boundary conditions on tdrix L as a function
of the system sizé.. All wave functions haveA,=0.55. (a) D1
wave function witht’=1.0, ©=0.696. (b) D2 wave function with
t'=0.5, ©=0.794. (c) DD wave function withD,,=1.0. In plots
(8—(c) solid symbols, solid lines correspond & _ ; solid sym-
bols, dashed lines t&_, ; empty symbols, solid lines t&, , ;
empty symbols, dashed lines & _. (d) The spread of local cor-
relationsAS as a function of the system site Solid circles, D1
wave function,t’=1.0, ©=0.696. Empty circles, D1 wave func-
tion, t'=1.2, ©=0.744. Solid squares, D2 wave functiot,
=0.5, ©=0.794. Empty squares, D2 wave functidi=0.6, u
=0.909. Solid triangles, DD wave functiod,,,=1.0. Empty tri-
angles, DD wave functiorD,,=1.2. In all plots, the error bars are

PHYSICAL REVIEW B 66, 115111 (2002

level from the nodal singularities in the spectrum. At the
nodal points, the vectorug,vi) has a strong singularity: as

the wave vectok goes around the nodal point, the vector
(u,v) rotates by half turn in the plane. This singularity trans-
lates into theL ~2 dependence of local correlations on the
boundary conditions(changing the boundary conditions

amounts to shifting the lattice of vectoky. From our nu-
merical results we see that this rate of convergence is pre-
served by the projection. This may serve as an indication that
in the Z, states the projection preserves the nodal spinons, as
suggested by Weff. This L 2 law applies to the general case
of local correlations. The energy expectation value is a very
special local correlation which has a weaker singularity at
the nodal point. At the mean-field level, the energy splitting
between different topological sectors can be found th b

(per sitg. This translates into the splitting itotal energy
decaying ad-~!. We expect that this asymptotic law also
holds after the projection. To verify this numerically, one
needs to compute the expectation values of the actual “en-
ergy,” which is a correlation functiooptimizedfor a particu-

lar Hamiltonian by adjusting the variational parameters. In
this paper we do not identify spin Hamiltonians for which
our wave functions are optimal, and thus are not able to
verify our expectation for the energy splitting. Note that the
L~ convergence in energy also means convergence of the
energy of an individual vison, i.e., deconfinement of visons
which is necessary for the topological order.

We have also tested all the above classes of wave func-
tions for the valence-bond crystal(“spin-Peierls”)
ordering®® We have computed the correlations of theom-

of the singlet order paramete(S,(i)S,(i

onent
smaller than the symbol size, except for the rightmost points in pIoEL x)S,(j)S,(j +x)) in systems as large as %d8. We find

(d) where the error bars are of the order of the symbol size.

tions. The results are presented in Fige-3) demonstrating
that the four correlations indeed converge to a single value

ones.

To quantify the rate of this convergence, we consider th

mean-square deviation of the four quantit®s_, S .,
S, ., andS__. In Fig. 3d), we plot this mean-square de-
viation multiplied by the number of lattice sites

4 4

27172

AS=L?

(41)

this correlation function rapidly decaying with increasing the
distance|i —j|. The decay is slowest for the D2 wave func-

i;[]ion for which it appears to be close & 2 (for the t’

large systems. This supports the contention that the distinc-
tion between the states is in global properties and not in loc

0.5, ©=0.794 wave functionor faster(for the t' =0.6,
=0.909 wave function For D1 and DD wave functions

e decay of such correlations is much stronger than in the
D2 wave function, which indicates the absence of the
Salence-bond ordering. Note that the D2 wave functions for
the values of parameters considered in this paper exhibit a
relatively large correlation length for the overlaps between
topological sectordsee Fig. 2c) for the data on thet’
=0.5, ©=0.794 wave functioh Therefore one may expect
that correlation functions have different behavior at larger
and smaller length scale, and that our computations in rela-
tively small systems are therefore not completely reliable for
determining the correct long-distance behavior of the corre-

as a function of system size. The finite-size effects are veryions A more detailed analysis of the valence-bond crystal

sf[rong because of the nodes in the spectrum. To clgrify_ thSrdering and of its interplay with the topological order is left
size dependence dfS, we take one more wave function in ¢, ¢ tre study.

each of the three classes D1, D2, DD, with slightly different
variational parametersin addition to the wave functions
considered previously The data in Fig. @) indicate that
AS remains approximately independent of system size. This
corresponds to the difference in local correlati®)g decay- In this paper, we have formulated conditions for the pres-
ing asL 2 with system size. ence of topological order in RVB systems and have verified
This slow convergence of correlations among different tothem for several specific examples of Gutzwiller-projected
pological sectors can be explained already at the mean-fieldave functions. Our results suggest that appropriate

V. CONCLUSION
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Gutzwiller-projected wave functions may represent ground Of course, the study of the variational wave functions

states of fractionalized phases of spin systems. have physical implications only when the Hamiltonians are
This work is only the first step towards describing theidentified for which those wave functions are good trial

topologically ordered RVB states. For a better understandingtates. Our test for the topological order may provide a guid-

of the properties of the topological order, a more extensiveynce in the search for microscopic spin Hamiltonians that

quantitative study is needed. It should include an analysis ofxhibit fractionalized ground states.

correlation lengths involved in the conditiofi$ and (ii) for

the topological orde(in particular, on cylinders/tori with dif-

ferent aspect ratlc)sVa'rlatlonaI wave functions may provide ACKNOWLEDGMENTS
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