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Projected wave functions for fractionalized phases of quantum spin systems
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The Gutzwiller projection allows the construction of an assortment of variational wave functions for strongly
correlated systems. For quantum spinS51/2 models, Gutzwiller-projected wave functions have resonating-
valence-bond structure and may represent states with fractional quantum numbers for the excitations. Using
insights obtained from field-theoretical descriptions of fractionalization in two dimensions, we construct can-
didate wave functions of fractionalized states by projecting specific superconducting states. We explicitly
demonstrate the presence of topological order in these states.
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I. INTRODUCTION

In the last several years, considerable theoretical prog
has been made in understanding the possibility of fractio
quantum numbers for the excitations of strongly interact
systems. A particular focus of attention has been on realiz
such phases in quantum spin systems in two spa
dimensions.1 In conventional quantum phases of spin-1
magnets, such as an antiferromagnet or a spin-Peierls p
the spin excitations carry quantum numbersS51 or higher
multiples. In contrast, in a fractionalized phase, there
excitations~dubbed spinons! that carry spinS51/2. Various
kinds of evidence for the presence of such fractionaliz
phases in spin models on a number of diverse lattices h
been presented in Ref. 2. A detailed theoretical study3–8 of
fractionalization in two dimensions has revealed that in
simplest cases such spinon excitations are necessarily
companied by gapped ‘‘vortex like’’ excitations: visons. Th
visons carry no spin but have a long-range statistical in
action with the spinon. When a spinon is taken all the w
around a vison, the wave function of the system chan
sign. Thus the visons have an Ising-like character: two vis
can annihilate each other and are equivalent to no viso
all. A concise mathematical description of this long-rang
statistical interaction is given by assigning aZ2 gauge charge
to the spinons and a correspondingZ2 gauge flux to the
visons.

A precise theoretical characterization4,9 of fractionalized
phases serving to distinguish them from more conventio
phases is provided by the notion of topological order—a c
cept elucidated by Wen10 in his work on the quantum Hal
effect. When placed on a manifold with a nontrivial topo
ogy, a fractionalized phase has a number of locally sim
but globally distinct states that differ by whether or not
vison threads each hole of the manifold.

If a spin model possesses a fractionalized phase, w
does its wave function look like in terms of the origin
spins? In this paper, we argue that the wave functions
scribing a fractionalized state may be obtained from
original resonating-valence-bond~RVB! construction of
Anderson.1 We consider states obtained by projecting t
wave function of a BCS superconductor~on a lattice! to the
Hilbert space of exactly one electron per site~this procedure
0163-1829/2002/66~11!/115111~9!/$20.00 66 1151
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is also known as Gutzwiller projection11!. Different topologi-
cal sectors are obtained by projecting states with/without
perconducting vortices~or, equivalently, with different
boundary conditions!. We motivate this construction from
the field-theoretic description of fractionalized phases.

Projected wave functions have long been studied to g
insight into the properties of the cuprate high-temperat
superconductors.12–16 Upon doping with mobile holes, the
fractionalized RVB spin liquid may exhibit spin-charg
separation—a mechanism possibly responsible for
anomalous properties of the underdoped cuprates.1 The state
that has been the subject of most attention in the contex
high-temperature superconductivity is the ‘‘nearest-neigh
d-wave RVB state’’ obtained by projecting a BCSdx22y2

superconductor with nearest-neighbor hopping and nea
neighbor pairing interactions. However, as we show belo
projecting a superconducting state does not necessarily g
antee that the resulting wave function describes any fract
alized phase. In particular, the nearest-neighbord-wave RVB
state has some special symmetry properties due to which
not expected to lead to a fractionalized state after project
~at half-filling!. We confirm this by a direct numerical calcu
lation on this state. It is also not clear whether this st
represents a good trial wave function foranystable phase of
a spin system. Addition of a number of perturbations, su
as, for instance, next-nearest-neighbor hopping, to
nearest-neighbord-wave superconductor removes the spec
symmetry properties—the resulting state is then expecte
lead, after projection, to a fractionalized state. We dem
strate explicitly the topological order in such projected stat
A closely related state was recently considered in Ref. 16
finite doping and was argued to provide a good description
cuprate phenomenology. We note that recent experiments17,18

place constraints on the applicability of fractionalizatio
ideas to the cuprates. Theoretical description of the cupr
with wave functions corresponding to fractionalized sta
must hence be performed with caution and examined
consistency with experiments.

Recently, a particular projected state has been argue
represent the ground state of theJ12J2 Heisenberg mode
on the square lattice.19 We argue that such a state is al
expected to have topological order, and hence be fractio
ized. We explicitly construct four globally distinct states o
©2002 The American Physical Society11-1
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D. A. IVANOV AND T. SENTHIL PHYSICAL REVIEW B 66, 115111 ~2002!
the torus to demonstrate the topological order.
If the projection does indeed lead to a fractionalized sta

then we may construct wave functions for its excitations
follows. The distinct excitations of a superconductor are
BCS quasiparticles and the vortices. As originally sugges
by Anderson,1 projection of the BCS quasiparticles direct
leads to the spinons. We argue that the visons may be
tained by projecting the wave function of the BCShc/2e
vortex. This observation may be directly exploited to che
for topological order in the projected wave functions. Co
sider putting the system on a torus. We may project the f
superconducting states obtained by threading or not thr
ing a hc/2e vortex through each hole of the torus. If th
projected state is fractionalized, and hence topologically
dered, these four states must be~after projection! orthogonal
to each other in the thermodynamic limit though they a
locally similar.

II. GENERALITIES ON GUTZWILLER PROJECTION

The original point of view on the Gutzwiller projecte
wave function1 is that it describes a state obtained by qua
tum disordering a Heisenberg Neel antiferromagnet. Ho
ever, as Gutzwiller projection~at half-filling! freezes out the
charge fluctuations inherent in the unprojected supercond
ing state, it may equally well be viewed as describing a s
obtained by quantum disordering a superconductor. Re
theoretical work6,7 has sought to understand the properties
Mott insulators by viewing them as quantum disordered
perconductors. In this approach, insulating phases are
garded as condensates of the vortices of the supercondu
A fractionalized Mott insulator is obtained by pairing an
condensing the BCS vortices while the unpairedhc/2e vor-
tex remains gapped. At energy scales well below the cha
gap, the excitations in such a Mott insulator are the spin
and the vison. The spinons are precisely what become o
fermionic BCS quasiparticles once thehc/e vortices con-
dense. The vison, however, is the remnant of the unpa
hc/2e vortex—due to thehc/e condensate, this survive
with only a Z2 character.

It is clear that this point of view fits in nicely with the ide
of Gutzwiller projecting superconducting states to obt
wave functions for Mott insulators. However, not all choic
of the unprojected superconducting state are guarantee
lead to fractionalized states on projection~see sections be
low!. In this section, we discuss the nature of projected v
tex states and their use in constructing the wave function
the vison.

A. RVB wave functions

We begin by quickly reviewing the interpretation of th
Gutzwiller-projected superconducting state as a resona
valence-bond wave function. Consider the ground state
BCS Hamiltonian on aL3L square lattice (L even!,

H52(
i j

(
a

t i j cia
† cj a1H.c.1D i j ci↑

† cj↓
† 1H.c. ~1!

Its wave function has the form
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uBCS&5)
kW

~ukW1vkWckW↑
†

c
2kW↓
†

!u0& ~2!

in standard notation. We restrict attention to spin-sing
time-reversal-invariant ground states that also preserve
the symmetries of the lattice. The vectorskW take values in the
first Brillouin zone. We assume periodic boundary conditio
in both spatial directions so thatkW5(2p/L)(mx ,my) with
mx ,my integers~the system may be thought of as residing
a torus!. We may rewrite this wave function as

uBCS&}expS (
k

g~kW !ckW↑
†

c
2kW↓
† D u0& ~3!

with g(kW )5vkW /ukW . So long asg(kW )5g(2kW ), this state is
guaranteed to be a spin singlet.

It will be useful to consider a first quantized versio
C($xW i ,x i%) obtained by fixing the total number of particle
to beL2. The (xW i ,x i) are the position and spin state of th
i th electron. We have

C~$xW i ,x i%!}^$xW i ,x i%uS (
k

gkWckW↑
†

c
2kW↓
† D L2/2

u0&. ~4!

The wave functionC($xW i ,x i%) is single valued on the torus
The Gutzwiller-projected stateuRVB & is obtained by

projectingC further onto a subspace without doubly occ
pied sites. Since the total number of particles is fixed to
equal to the number of lattice sites, this double-step pro
tion is equivalent to the constraint of exactly one particle p
lattice site. The resulting wave function may be written a
sum over various valence-bond configurations on the latt

uRVB&5PGuBCS&}(
vbc

Avbcuvbc&, ~5!

whereuvbc & denotes any particular valence bond coverin
Avbc is the corresponding amplitude and is given by t
product ofg(xW i2xW j ) over all valence bonds connecting sit
( i j ) appearing in the stateuvbc & . Here g(xW i2xW j ) is the
Fourier transform of the functiong(kW ) introduced above.

B. BCS vortices and their projections

If the ground state of a spin system is correctly describ
by Gutzwiller projecting a BCS state, it is natural to co
struct excitations of the spin system by similarly projecti
the excitations of the BCS superconductor. As argued
Anderson, projecting the BCS quasiparticle state leads
wave function for neutral spin-1/2 spinons. The other disti
excitations of the superconductor are the vortices. What h
pens to these under the Gutzwiller projection? To answer
question, consider a wave function of a superconductor
scribing a state where anhc/2e vortex threads the torus
along thex direction. If n is even, the~first quantized! wave
function may be taken simply as
1-2
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PROJECTED WAVE FUNCTIONS FOR FRACTIONALIZED . . . PHYSICAL REVIEW B66, 115111 ~2002!
Cnx
5expS (

i

inu i

2 DC, ~6!

whereu i52pyi /L is the angular coordinate of thei th par-
ticle. Thus, the vortex-state wave function for evenn may be
simply obtained by multiplying the ground-state wave fun
tion by a phase factor~which depends on the configuration
the particles!. Upon Gutzwiller projection, there is one pa
ticle at every site; consequently the projected vortex s
~for n even! is trivially related to the projected ground sta
by an overall phase factor. Thus the projected even vo
state does not lead to a distinct state of the spin system

For n odd, the vortex-state wave function in the superco
ductor is not obtained by simply multiplying the ground sta
by a phase factor. Considern51. The naive guess

expS (
i

iu i

2 DC ~7!

violates the physical requirement that all legitimate elect
wave functions must be single-valued on the torus. The
rect wave function is constructed by multiplying by th
phase factor above,and replacingC by a wave function that
satisfies antiperiodic boundary conditions along they direc-
tion ~and periodic along thex direction!. Such a replacemen
may be obtained by considering the ground state ofH with
antiperiodic boundary conditions along they direction,

uBCS12&5)
k

~ukW81vkW8ckW8↑
†

c
2kW8↓
†

!u0&, ~8!

with kW85kW1(p/L) ŷ and kW5(2p/L)(mx ,my) as before.
Multiplying by the phase factor above has the effect of sh
ing all the momenta by (p/L) along they direction. A legiti-
matehc/2e vortex state may therefore be constructed as

uBCS8&5)
k

~ukW81vkW8ckW12p ŷ/L↑
†

c
2kW↓
†

!u0&. ~9!

It is readily verified that this is a spin-singlet wave functio
The first quantizedhc/2e vortex-state wave function~with
L2 particles! may now be obtained straightforwardly as

C8}^$xW i ,x i%uS (
xW ,xW8

g8~xW ,xW8!c↑
†~xW !c↓

†~xW8!D L2/2

u0& ~10!

with

g8~xW ,xW8!5ei (p/L)(y1y8)gap~xW2xW8!, ~11!

gap~xW2xW8!5(
kW8

g~kW8!eikW8•(xW2xW8)

5(
kW8

g~kW8!cos@kW8•~xW2xW8!#. ~12!

Here, as before,g(kW8)5ukW8 /vkW8 . The functiongap(xW2xW8)
satisfies antiperiodic boundary conditions along they direc-
tion, and periodic along thex direction,
11511
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gap~rW1Lŷ!52gap~rW !, ~13!

gap~rW1Lx̂!5gap~rW !. ~14!

This vortex state may now be projected to obtain the n
RVB wave function given by

uRVB8&5PGuBCS8&}(
vbc

Avbc8 uvbc&. ~15!

The amplitudeAvbc8 is given by the product ofg8(xW i2xW j )
over all valence bonds connecting sitesi and j appearing in
the stateuvbc & . This wave function can be further simplifie
by noting that the factor exp@i(p/L)(iyi# arises in every term
on the right-hand side and is just a trivial multiplication b
an overall phase factor, and hence may be dropped.~For an
L3L square lattice withL even, this phase factor is simpl
equal to one!. This then amounts to Gutzwiller projecting th
state uBCS12& obtained by changing the boundary cond
tions on the unprojected state. The resulting amplitude fo
valence bond (i j ) is given bygap(xW i2xW j ).

Thus the projection of ahc/2e vortex potentially survives
as a nontrivial state in the spin system. In view of the d
cussion at the beginning of this section, it is clear that if t
ground state described byuRVB & is indeed fractionalized,
then uRVB8& describes a state with a vison threaded throu
along thex direction. We will exploit this observation below
to check for topological order in the projected wave fun
tions.

C. Short-ranged RVB states and dimer models

It is instructive to make a short digression, and specia
to superconducting states which are fully gapped, and wh
the functiong(rW) has a very short range of order a few latti
spacings. In that case, the resulting RVB wave function
scribes a state with only short-ranged valence bonds~and
presumably a full spin gap!. For such a state, it is expecte
that the functiong(kW ) is smooth inkW space so that we ma
approximateg(kW8)'g(kW ). In real space, this amounts to

gap~xW2xW8!'g~xW2xW8!cosS p

L
~y2y8! D . ~16!

In the limit of largeL, the cosine factor is one everywhe
except for valence bonds that connect sites to the left oy
5L to sites to the right ofy5L for which it is 21. Thus the
difference between the projected ground state and the
jectedhc/2e state may be summarized as follows. Consid
drawing a vertical line parallel to thex direction that cuts all
the links of the lattice betweeny5L and y51. In the pro-
jected vortex state, the amplitude for any valence bond
cuts this line acquires a factor (21) relative to the ground
state. In other words, the amplitude for any valence-bo
configuration where an odd number of valence bonds in
sect this line is (21) relative to the ground state. We no
that this construction of the projected vortex-state wa
function reduces to the state considered by Read
Chakraborty in their pioneering work20 on topological order
1-3
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D. A. IVANOV AND T. SENTHIL PHYSICAL REVIEW B 66, 115111 ~2002!
in RVB wave functions. Unfortunately, as already recogniz
in that paper,20 it is not clear that the particular RVB stat
discussed there describes any stable phase of a spin sy

An approximate description of a short-ranged RVB st
is through a quantum dimer model.21 It is well known21,22

that the quantum dimer model on a torus has four dist
topological sectors classified by whether the number
dimers intersecting particular lines similar to the one int
duced above is even or odd. Fractionalization in the origi
spin model is signaled by topological order in the quant
dimer model when the four topological sectors become
generate in energy. In this case, these even/odd se
clearly correspond to the symmetric/antisymmetric combi
tion of the state with no vison and a threaded vison. This
completely consistent with our construction of the vis
wave function by projecting thehc/2e vortex.

Our primary interest in this paper will be long-range
RVB states where the spinons are gapless. We will exp
the properties of wave functions for such states by numer
calculations using the construction above.

III. TOPOLOGICAL ORDER:
GENERAL CONSIDERATIONS

Though the projectedhc/2e vortex survives as a non
trivial state of the spin system, it is still not necessary that
stateuRVB & has topological order. The presence or lack
topological order may be established by examining the
lowing two conditions:~i! ^RVB8uRVB&50 as the system
size goes to infinity, and~ii ! the expectation values of a
local physical operators be the same in both statesuRVB &
and uRVB8& again in the thermodynamic limit.

The first condition is closely related to the presence o
vison gap in the bulk. Indeed, the statesuRVB& and uRVB8&
differ by one vison tunneled across the cylinder~or torus!,
and thereforêRVBu RVB8& may be interpreted as the amp
tude of such a tunneling event. The second condition g
antees that the distinction between the states is not in
local properties but rather in global ones. The second co
tion may be related to the gap in the spinon spectrum: as
shall see later, in a system with nodal spinons, the expe
tion values of local operators in different topological sect
converge only as a power of the system size.

In this section, we concentrate on the first condition. U
ing the SU~2! particle-hole symmetry of the projected wav
function,23,24we conjecture a simple criterion for a superco
ducting wave function to lead to a fractionalized state up
the projection.

Consider first the unprojected superconducting states.
easy to check that the overlap^BCS8u BCS& goes to zero
very rapidly asL becomes large. This is expected physica
as the vorticity is a good quantum number for the u
projected BCS state. However, this doesnot guarantee
^RVB8u RVB&50 due to the projection. To get better insig
into what is needed for condition~i! to be satisfied, we will
employ the following useful characterization of th
Gutzwiller projection. In the unprojected Hilbert space, t
states at each site areu0&,u↑&,u↓&,u↑↓& in obvious notation.
Projection keeps only the statesu↑&,u↓& at each site. At each
11511
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site i, introduce the physical spin operatorSW i and the pseu-
dospin operatorTW i acting in the particle-hole sector,23,24

SW i5
1

2
ci

†sW ci , ~17!

Ti
z5

ci
†ci21

2
, ~18!

Ti
15ci↑

† ci↓
† , ~19!

Ti
25ci↓ci↑ . ~20!

HereTi
65Ti

x6Ti
y . The TW i satisfy SU~2! commutation rela-

tions just like the physical spin operatorsSW i . Furthermore,
all components ofTW i commute with all components ofSW i .
Clearly the statesu↑&,u↓& are singlets under the pseudosp
rotation generated by theTW i , while the statesu0&,u↑↓& form
a doublet under the pseudospin rotation. Thus the Gutzw
projection is equivalent to projection onto the singlet sec
~at each site! of the pseudospin SU~2! rotation. This has the
general implication

PGucunproj&5PGUucunproj& ~21!

for an arbitrary SU~2! rotation

U5ei(
i

uW i•TW i, ~22!

where the parametersuW i may be chosen independently o
each site. Thus a local pseudospin SU~2! rotation of the un-
projected state does not change the state after projection
will therefore call this a gauge rotation.

In view of the above, a sufficient condition for the o
thogonality ofuRVB & and uRVB8& is simply

^BCSuUuBCS8&50 ~23!

for any arbitrary pseudospin SU~2! rotation ~22!. ~We note
that this is not in general anecessarycondition for the or-
thogonality!.

The discussion has so far been general. Equation~23!
imposes some conditions on the nature of the BCS s
which could lead to a wave function for a fractionalized sta
after projection. However Eq.~23! is still not in a form
which is directly useful in providing guidance in writin
down such states. To get a more useful form, we specializ
a particular class of unprojected states. In general, the s
uBCS& will be a linear superposition of states with differe
total particle number. However, the projected stateuRVB &
has exactly one particle per site, and hence an exact tota
L2 particles on a lattice withL2 sites. Now, for a genera
BCS state, if we plot the probability distribution of having
total of n particles, it will have a sharp peak at some avera
valuen0 and will die rapidly forun2n0u large. If n0 is dif-
ferent fromL2, then the Gutzwiller projection picks out th
tails of the original BCS wave function. In this case, t
projected wave function may have very little to do with th
unprojected one. For the projected state to retain the sig
1-4



it
of

e
o
th
d

th

a

or
rin

ro

e
e
te
d

he
o

ir

l.
g

s

it
tr

on

so

in

uc

in
re
hi

on
th
e
w
.

er-
e
is

is

d

tate

t is
in

n.

u-
–de
e
ace
may

ns-

uge
l to
and

e.

e

rm

a

PROJECTED WAVE FUNCTIONS FOR FRACTIONALIZED . . . PHYSICAL REVIEW B66, 115111 ~2002!
cant features of the spin physics of the unprojected state,
clearly advantageous25 to require that the mean number
particles ~before projection! is L2. If this is satisfied, the
projection will have a gentler effect than if the mean numb
is different from one per site. To further soften the effect
the projection, it is clearly advantageous to require that
mean number be one forevery unprojected state obtaine
from uBCS& by a pseudospin SU~2! gauge rotation. This
ensures that the projection does not pick up the tails of
wave function in any gauge.

The requirement that the average electron number on e
site is one may be simply written as

^Ti
z&50 ~24!

on all sitesi. Further the requirement that this be true f
every gauge-rotated ground state is equivalent to requi
that

^TW i&50, ~25!

i.e., the average values of the generators of the gauge
tions vanish.

From now on, we will specialize to unprojected stat
where the requirement, Eq.~25!, is satisfied. In this case, w
may hope that we can use our intuition about the unprojec
state to infer the properties of the projected state. When
we expect that Eq.~23! will be satisfied for such a BCS
state? Note thatuBCS8& differs from uBCS& in having a
hc/2e vortex threaded through the hole of the cylinder. If t
ground state of a physical system is given by the superc
ducting stateuBCS&, we can label its excitations by the
total vorticity quantum number. The stateuBCS8& has total
vorticity 61 compared touBCS&, and hence is orthogona
However, so long asUuBCS& is also a superconductin
state, it will also have a fixed vorticity which differs from
that of uBCS8& by an odd number. Consequently, in this ca
Eq. ~23! will be satisfied. If, however, for someU, the gauge
rotated stateUuBCS& is not a superconducting state, then
may be regarded as a coherent superposition of elec
wave functions each of which carry a definite vorticity.~The
vorticity is not a good quantum number in a nonsuperc
ducting state!. It is then possible thatuBCS8& is not orthogo-
nal to that particular gauge rotated state, so that Eq.~23! is
not satisfied. At the very least, we lose the general rea
requiring orthogonality.

Based on the reasoning above, we make the follow
conjecture:An unprojected state where the constraint~25! is
satisfied, and which cannot be rotated to a nonsupercond
ing state by anSU~2! gauge rotation, will lead to a topologi-
cally ordered state after projection. This conjecture provides
strong motivation for choosing particular superconduct
states that we may project to obtain topologically orde
states. However, we do not provide any formal proof of t
conjecture in this paper. It is supported by the reasoning
this section, and by our numerical results. Note that our c
jecture provides no information on the states not obeying
mean-field constraint~25!—although such states may giv
either fractionalized or nonfractionalized projected states,
are unable to determine it from the mean-field properties
11511
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Here we need to make a clear distinction between ‘‘sup
conducting’’ and ‘‘nonsuperconducting’’ states. Formally, w
call a state ‘‘gauge equivalent to nonsuperconducting’’ if it
invariant under a global U~1! subgroup of the full group of
gauge rotations~22!. Indeed, a nonsuperconducting state
characterized by a fixed number of electrons. Then the U~1!
group ofglobal rotations byTz ~i.e., the subgroup generate
by the setsuW i5u ẑ) produces only trivial multiplications by
phase factors leaving the state invariant. We call such a s
a ‘‘U ~1! state’’@or even a ‘‘SU~2! state’’ in the case when the
maximal subgroup leaving the unprojected state invarian
SU~2!#. In this terminology, a state that is superconducting
any gauge is called a ‘‘Z2 state.’’ This classification is a
subclassification of a more detailed one introduced by We26

A set of conditions for the U~1! invariance~being gauge
equivalent to nonsuperconducting! of a given state may be
formally written in terms of projector operators onto occ
pied quasiparticle states. Consider the set of Bogoliubov
Gennes doublets (ukW ,vkW) participating in the ground stat
~2!. We can define a projector onto the linear subsp
spanned by those doublets. In real space, this projector
be thought of as a set of 232 matricesPi j labeled by the site
indicesi and j and defined as

Pi j 5(
kW

S ukW~ i !

vkW~ i !
D ~ukW

* ~ j ! vkW
* ~ j !!. ~26!

Under the SU~2! gauge transformation, these matrices tra
form as

Pi j →Ui Pi j U j
† . ~27!

For a nonsuperconducting state, all matricesPi j are simulta-
neously diagonal. To see when a given state can be ga
rotated to such a nonsuperconducting state, it is usefu
consider the chain products of such matrices starting
ending at the same pointi,

Ai@C#5PC~Pi j Pjk•••Pli ! ~28!

where (i , j ,k, . . . ,l ,i ) define a closed curve on the lattic
Ai@C# is a 232 matrix for each lattice sitei and for each
closed curveC starting and ending at that site. Now on
easily verifies that all matricesPi j may be simultaneously
diagonalized if and only if for anyi and for any pair of
closed contoursC andC8 both starting and ending ati,

†Ai@C#,Ai@C8#‡50. ~29!

Thus to check that a given wave function describes aZ2 state
~i.e., cannot be gauge rotated to a nonsuperconducting fo!,
it is sufficient to verify thatAi@C# andAi@C8# do not com-
mute for at least one choice ofi, C, andC8.

Instead of checking whether thewave functionmay be
rotated to a nonsuperconducting form, one may perform
similar test for theHamiltonian~1!. The Hamiltonian can be
rotated to a nonsuperconducting one~i.e., containing no pair-
ing terms! if and only if

†Bi@C#,Bi@C8#‡50, ~30!

for all i andC, where
1-5
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Bi@C#5PC~Hi j H jk•••Hli !, Hi j 5S t i j D i j

D i j* 2t i j*
D .

~31!

This is a convenientsufficientcondition for being a U~1!
wave function, but not a necessary one: in certain case
superconducting Hamiltonian may have a nonsupercond
ing ground state~with a definite particle number!.

It is instructive to consider some specific examples
superconducting states to see how these conditions wor
practice. Consider, for instance, a nearest neighbord-wave
superconductor wheret i j ,D i j are nonzero only on neares
neighbor bonds, and take the values

t i j 5t, ~32!

D i j 56D. ~33!

The plus sign in the second equation is for horizontal bon
and the minus sign for vertical bonds. It is readily seen t
the condition in Eq.~25! is satisfied by this state. Howeve
as is also easily seen, all theBi@C# commute for this state
This is of course consistent with the well-known fact th
this state can be gauge rotated to a pure hopping s
~known as the staggered flux state!. We therefore expect tha
this state will not lead to a fractionalized state after proj
tion. This is confirmed by our numerical calculations belo

Now consider adding the next-near-neighbor diago
hopping t8 to this state. The resulting Hamiltonian still de
scribes adx22y2 superconductor. However, a simple calcu
tion shows that there are two noncommutingBi@C# matrices
so that this can no longer be rotated to pure hopping. Ad
tion of t8 changes the mean density away from one part
per site. This can, however, be compensated by adding
onsite chemical potential term to the unprojected Ham
tonian. The state thus constructed is therefore a good ca
date for projecting to get a wave function for a fractionaliz
state. Below, in Sec. IV we demonstrate this by a numer
calculation.

Surprisingly, the criteria obtained above for the superc
ducting state to describe a topologically ordered state a
projection may also be motivated from a completely differe
point of view.4,26 Consider any spinS51/2 model in two
dimensions. As is well known, it is possible to use a rep
sentation of the spins in terms of fermionic spin-1/2 ope
tors. This representation is exact so long as the constr
that the fermion occupation is one at each site is imposed
the Hilbert space. A popular approach is to treat the resul
fermion Hamiltonian in mean-field theory. At the mean-fie
level, the excitations are neutral spin-1/2 fermions descri
by a Hamiltonian of the general form Eq.~1!. The exact
constraint inherent in the fermionic representation is repla
precisely by Eq.~25!. This mean-field state is capable
correctly describing a possible physical phase of the s
model as long as it is stable to fluctuations. As discussed
Wen,4,26 the criteria for the stability of the mean-field state
fluctuations are precisely that expressed in Eq.~30!. If the
mean-field state is indeed stable to fluctuations, then we
pect that the candidate wave function for the physical s
11511
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described by it is given by the Gutzwiller projection of th
mean-field wave function to the physical Hilbert space.

IV. NUMERICAL RESULTS

We further verify our conjecture numerically by testin
the conditions~i! and ~ii ! of Sec. III on the square lattice in
the toroidal geometry for several examples of the projec
BCS wave functions. We label the ground states in the f
topological sectors asu11&, u12&, u21&, andu22&, ac-
cording to the boundary conditions imposed inx andy direc-
tions. We employ the variational Monte Carlo method d
scribed in detail in Ref. 13 applied to the squareL3L tori.

We consider four different types of projected wave fun
tions: the nearest-neighbordx22y2 state and its three modifi
cations by including hopping or pairing along the plaque
diagonals~Fig. 1!. All these wave functions may be param
etrized by translationally invariant Hamiltonians~1!, and we
can conveniently describe them in terms of the Fourier tra
form of Hi j @defined above in Eq.~31!#,

H~k!5S j~k! D~k!

D* ~k! 2j~2k!
D . ~34!

The nearest-neighbordx22y2-wave BCS state~further de-
noted as NND! is defined by its kinetic and pairing
amplitudes,

j~k!522~coskx1cosky!, ~35!

D~k!5D0~coskx2cosky!. ~36!

In the projected NND wave function, the nearest-neighb
antiferromagnetic correlations are maximized at the interm
diate value ofD0'0.55~Refs. 12, 27! ~the optimal values of
D0 reported in these two references differ by several perc
the precise value ofD0 is not important for our qualitative
results concerning topological order!. We find that the NND
state after projection has no topological order. This agr
with our conjecture, since the NND state can be rotated
the pure-hopping staggered-flux state by a SU~2! gauge
rotation.24,28

In addition to the NND state, we consider its three mo
fications which areZ2 states~cannot be gauge rotated to
nonsuperconducting form!. In the first modification~we de-
note it by D1!, we add hopping along one of the plaque
diagonals which amounts to replacing Eq.~35! by

FIG. 1. The mean-field states generating the four wave functi
NND, D1, D2, and DD. The terms of the Hamiltonian~1! are shown
on one plaquette of the lattice. The solid lines denote hopping,
dashed lines denote pairing, and the circles around vertices de
the chemical potential.
1-6
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j~k!522@coskx1cosky1t8cos~kx1ky!#2m. ~37!

The chemical potentialm is added for adjusting the averag
particle density in the unprojected wave function in order
satisfy the mean-field constraint~25!.

The second wave function~dubbed D2! is analogous to
the previous one, but with hopping along both plaque
diagonals:

j~k!522@coskx1cosky

1t8~cos~kx1ky!

1cos~kx2ky!!#2m. ~38!

The third wave function isdx22y21dxy wave function
proposed by Capriottiet al.19 as a variational ansatz for th
J1–J2 Heisenberg model. This wave function~denoted fur-
ther as DD! has the nearest-neighbor form~35! of j(k),
together withD(k) involving both nearest-neighbor pairin
and pairing along the plaquette diagonals,

D~k!5D0~coskx2cosky12Dxysinkxsinky!. ~39!

One easily verifies that the projected DD wave function h
all the symmetries of the square lattice, even though the
projected wave function does not. This wave function ob
the mean-field constraint~25! without a chemical potentia
term.

The first test for the topological order is the overlap of t
two wave functions on a torus projected from the mean-fi
states with different boundary conditions. Note that wh
nodes in the mean-field excitation spectrum fall on points
the momentum lattice, the wave function becomes ill d
fined. For our choice of lattice on the tori, this happens
the NND state where the nodes are fixed at (6p/2, 6p/2)
points. Therefore, not all four topological sectors are reali
for the NND state~for our choice of the lattice placement!.
However, the sectors12 and21 are well defined for any
L3L torus, and we take the overlap between these two w
functions as the first check of the topological order. Altern
tively, this overlap may be viewed as the overlap of the wa
function with its reflection with respect to thex-y diagonal.

We have calculated this overlap with the use of the va
tional Monte Carlo procedure.13 The results for the NND
wave function and for its three modifications D1, D2, a
DD, are presented in Fig. 2~a!. In all cases, we takeD0
50.55; for D1 wave functions we taket850.5 (m50.417)
and t851.0 (m50.696); for D2 wave functions we taket8
50.3 (m50.509) andt850.5 (m50.794); for DD wave
functions we takeDxy50.4 andDxy51.0. We see that the
overlap for the NND wave function saturates at a large s
tem size~which implies the absence of topological orde!,
while for the three other wave functions it decreases to z
with increasing system size. This is the first signature of
topological order in those wave functions. As a side rema
we mention that if we forcem50 in the D2 wave function,
the projected wave function has no topological order~the
overlap saturates at largeL), but such a wave function vio
lates the mean-field-density constraint~25!, and we do not
discuss it here.
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For the wave functions deep in the ‘‘topologically o
dered’’ phase, we can also verify the orthogonality of all t
four topological sectors11, 12, 21, and22. The four
corresponding overlaps are plotted for each of the w
functions D1, D2, and DD in Figs. 2~b!–~d!. All the overlaps
for these wave functions decrease to zero with increas
system size, which indicates orthogonality of the fo
sectors.

The second test for the topologically ordered state is
equality of local expectation values between different top
logical sectors@condition~ii ! of Sec. III#. We verify this con-
dition for the nearest-neighbor spin-spin correlations. In
four topological sectors on the torus, there are four differ
nearest-neighbor correlators,

S12[2^12us i
zs i 1 x̂

z u12&,

S21[2^12us i
zs i 1 ŷ

z u12&,

S11[2^11us i
zs j

zu11&,

S22[2^22us i
zs j

zu22&. ~40!

In a topologically ordered state, the difference between th
four quantities must rapidly decay with increasing syst
size. We compute these correlators numerically for the sa
three wave functions used before in the overlap compu

FIG. 2. Overlaps between wave functions with different boun
ary conditions on toriL3L as a function of the system sizeL. All
wave functions haveD050.55. ~a! Overlaps^12u21&. Stars,
NND wave function; circles, D1 wave functions~dashed line,t8
50.5, m50.417; solid line,t851.0, m50.696). Squares, D2 wave
functions ~dashed line,t850.3, m50.509; solid line,t850.5, m
50.794). Triangles, DD wave functions~dashed line,Dxy50.4;
solid line, Dxy51.0). ~b! Overlaps for the D1 wave function with
t851.0, m50.696. ~c! Overlaps for the D2 wave function witht8
50.5, m50.794. ~d! Overlaps for the DD wave function with
Dxy51.0. In plots~b!–~d!, solid line corresponds tô12u21&,
dashed line tô 12u11&, dotted line to^12u22&. For these
three wave functions, the overlap^11u22& is found to be zero
for all system sizes, within the numerical accuracy~about 0.003!.
1-7
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D. A. IVANOV AND T. SENTHIL PHYSICAL REVIEW B 66, 115111 ~2002!
tions. The results are presented in Figs. 3~a–c! demonstrating
that the four correlations indeed converge to a single valu
large systems. This supports the contention that the dist
tion between the states is in global properties and not in lo
ones.

To quantify the rate of this convergence, we consider
mean-square deviation of the four quantitiesS12 , S21 ,
S11 , andS22 . In Fig. 3~d!, we plot this mean-square de
viation multiplied by the number of lattice sites

DS[L2F(
ab

Sab
2

4
2S (

ab
Sab

4
D 2G 1/2

~41!

as a function of system size. The finite-size effects are v
strong because of the nodes in the spectrum. To clarify
size dependence ofDS, we take one more wave function i
each of the three classes D1, D2, DD, with slightly differe
variational parameters~in addition to the wave functions
considered previously!. The data in Fig. 3~d! indicate that
DS remains approximately independent of system size. T
corresponds to the difference in local correlationsSab decay-
ing asL22 with system size.

This slow convergence of correlations among different
pological sectors can be explained already at the mean-

FIG. 3. Nearest-neighbor spin correlationsSab for wave func-
tions with different boundary conditions on toriL3L as a function
of the system sizeL. All wave functions haveD050.55. ~a! D1
wave function witht851.0, m50.696. ~b! D2 wave function with
t850.5, m50.794. ~c! DD wave function withDxy51.0. In plots
~a!–~c! solid symbols, solid lines correspond toS12 ; solid sym-
bols, dashed lines toS21 ; empty symbols, solid lines toS11 ;
empty symbols, dashed lines toS22 . ~d! The spread of local cor-
relationsDS as a function of the system sizeL. Solid circles, D1
wave function,t851.0, m50.696. Empty circles, D1 wave func
tion, t851.2, m50.744. Solid squares, D2 wave function,t8
50.5, m50.794. Empty squares, D2 wave function,t850.6, m
50.909. Solid triangles, DD wave function,Dxy51.0. Empty tri-
angles, DD wave function,Dxy51.2. In all plots, the error bars ar
smaller than the symbol size, except for the rightmost points in
~d! where the error bars are of the order of the symbol size.
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level from the nodal singularities in the spectrum. At t
nodal points, the vector (ukW ,vkW) has a strong singularity: a
the wave vectorkW goes around the nodal point, the vect
(u,v) rotates by half turn in the plane. This singularity tran
lates into theL22 dependence of local correlations on th
boundary conditions~changing the boundary condition
amounts to shifting the lattice of vectorskW ). From our nu-
merical results we see that this rate of convergence is
served by the projection. This may serve as an indication
in theZ2 states the projection preserves the nodal spinons
suggested by Wen.26 This L22 law applies to the general cas
of local correlations. The energy expectation value is a v
special local correlation which has a weaker singularity
the nodal point. At the mean-field level, the energy splitti
between different topological sectors can be found to beL23

~per site!. This translates into the splitting intotal energy
decaying asL21. We expect that this asymptotic law als
holds after the projection. To verify this numerically, on
needs to compute the expectation values of the actual ‘
ergy,’’ which is a correlation functionoptimizedfor a particu-
lar Hamiltonian by adjusting the variational parameters.
this paper we do not identify spin Hamiltonians for whic
our wave functions are optimal, and thus are not able
verify our expectation for the energy splitting. Note that t
L21 convergence in energy also means convergence of
energy of an individual vison, i.e., deconfinement of viso
which is necessary for the topological order.

We have also tested all the above classes of wave fu
tions for the valence-bond crystal~‘‘spin-Peierls’’!
ordering.29 We have computed the correlations of thez com-
ponent of the singlet order parameter̂Sz( i )Sz( i
1x)Sz( j )Sz( j 1x)& in systems as large as 18318. We find
this correlation function rapidly decaying with increasing t
distanceu i 2 j u. The decay is slowest for the D2 wave fun
tion for which it appears to be close toR22 ~for the t8
50.5, m50.794 wave function! or faster~for the t850.6,
m50.909 wave function!. For D1 and DD wave functions
the decay of such correlations is much stronger than in
D2 wave function, which indicates the absence of t
valence-bond ordering. Note that the D2 wave functions
the values of parameters considered in this paper exhib
relatively large correlation length for the overlaps betwe
topological sectors@see Fig. 2~c! for the data on thet8
50.5, m50.794 wave function#. Therefore one may expec
that correlation functions have different behavior at larg
and smaller length scale, and that our computations in r
tively small systems are therefore not completely reliable
determining the correct long-distance behavior of the co
lations. A more detailed analysis of the valence-bond cry
ordering and of its interplay with the topological order is le
for future study.

V. CONCLUSION

In this paper, we have formulated conditions for the pr
ence of topological order in RVB systems and have verifi
them for several specific examples of Gutzwiller-project
wave functions. Our results suggest that appropri

t

1-8
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PROJECTED WAVE FUNCTIONS FOR FRACTIONALIZED . . . PHYSICAL REVIEW B66, 115111 ~2002!
Gutzwiller-projected wave functions may represent grou
states of fractionalized phases of spin systems.

This work is only the first step towards describing t
topologically ordered RVB states. For a better understand
of the properties of the topological order, a more extens
quantitative study is needed. It should include an analysi
correlation lengths involved in the conditions~i! and ~ii ! for
the topological order~in particular, on cylinders/tori with dif-
ferent aspect ratios!. Variational wave functions may provid
a useful tool for studying quantum phase transitions betw
states with and without topological order. An extremely
teresting question in this respect is the possibility of the
existence of the topological order simultaneously with
antiferromagnetic Neel order or with the valence-bond cr
tal order. Such a coexistence of a topological and a conv
tional ordering may be tested by projecting appropriate
perconducting states with the spin or translational symm
broken before projection.
s.

v.
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Of course, the study of the variational wave functio
have physical implications only when the Hamiltonians a
identified for which those wave functions are good tr
states. Our test for the topological order may provide a gu
ance in the search for microscopic spin Hamiltonians t
exhibit fractionalized ground states.
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