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Strongly interacting Luttinger liquid and superconductivity in an exactly solvable model

Igor N. Karnaukhov1,* and Alexander A. Ovchinnikov1,2

1Max-Planck Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany
2Joint Institute of Chemical Physics, Kosygin Street 4, 117334 Moscow, Russia

~Received 8 May 2002; published 25 September 2002!

A family of exactly solvable one-dimensional models with a hard-core repulsive potential is solved by the
Bethe ansatz for an arbitrary hard-core radius. The exact ground state phase diagrams in a plane ‘‘electron-
density–on-site interaction’’ have been studied for several values of a hard-core radius. It is shown that
strongly interacting Luttinger liquid can be realized in superconducting state at a high electron density and high
value of repulsive on-site Coulomb interaction.
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The models of strongly correlated electrons with a bo
charge interaction which conserves a number of double
cupied sites, are simple examples of strongly correlated e
tron systems that exhibit superconductivity.1–4 The merit of
these models is their complete integrability. The phase
grams on a plane ‘‘electron-density–on-site interactio
have four phases, two of them exhibit off-diagonal lon
range order~ODLRO! and thus are superconducting. Th
superconducting phase is realized if the value of the on-
interaction less than the critical oneUc andUc could be even
positive at repulsive on-site interactionU. Other phases in
which only singly occupied and empty sites are presen
called asU→` Hubbard state. In the case of a hard-co
repulsive interaction between electrons with a hard core
dius which exceeds a half of a lattice spacing the Luttin
liquid state transforms to strongly interacting luttinger liqu
~SILL! in a high electron density region.5 SILL is char-
acterized by a large value of the critical exponentQ for
the momentum distribution function close to the Fermi m
mentumkF

^nk&.^nkF
&2constuk2kFuQsgn~k2kF!, ~1!

that is defined by a single dimensionless exponenta @or Kr ,
here a54Kr ~Ref. 4!# Q5(1/a)(12a/4)2. At Q.1 the
residual Fermi surface disappears. At a high electron den
when a hard-core repulsion interaction dominates, SILL
not realized in superconducting state in the framework of
generalizedt-J and Lai-Sutherland models.5 The question
arises: could SILL state be in superconducting state at p
tive and finite on-site Coulomb interaction? It turns out th
an existence of the Fermi surface is not necessary for
superconducting phase.

In this paper we shall consider a family of integrab
models and show that SILL can be realized in supercond
ing state at a high electron density or at small doping. T
superconducting state takes place at a repulsive on-site
lomb interaction the value of which larger than a band wid
and depends on the value of the hard-core radius. We s
show also that at zero temperature the ground state phas
the ODLRO and a finite Drude weight. In the models1–3 the
hoppings of single electrons on occupied states are for
den, whereas the energy of electron pair is finite. In
models we shall use the same hierarchy for the paramete
0163-1829/2002/66~10!/104518~4!/$20.00 66 1045
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the interactions, the constants of interactions between si
electrons are infinite and define a hard-core radius, the
ergy of electron pair is finite. We shall consider a new mo
fication of a generalized one-dimensional Lai-Sutherla
model for a study of a competition between SILL state a
superconducting phase. The model Hamiltonian contains
netic and interaction terms that combine those of the H
bard model and the Lai-Sutherland model. The model Ham
tonian includes two termsH5Hhop1Hint

Hhop52t (
^ i , j &s5↑,↓

@Pl~12ni 2s!cis
† cj s~12nj 2s!Pl

2cis
† cj sni 2snj 2s#, ~2!

Hint5J(
j 51

L

(
s,s85↑,↓

~cj s
† cj s8cj 111 ls8

† cj 111 ls

1nj snj 111 ls8!1U(
j 51

L

nj↑nj↓ , ~3!

wherecj s
† andcj s are the creation and annihilation operato

of fermions with spins, sP$↑,↓%, L is a total number of
lattice sites,̂ i , j & stands for neighboring sites, the project
Pl forbids two single electrons at distances less than or eq
to l ( l is measured in units of the lattice spacing paramet!,
t is the hopping integral,J is the constant of the exchang
interaction. It is important thePl operator does not forbid
doubly occupied lattice sites, as it takes place in the so-ca
U→` Hubbard model or thet-J model. The last term in Eq
~3! is traditionally the most important term for the Hubba
model, the on-site Coulomb repulsionU separates the ener
gies of single and paired electrons states. The HamiltoniaH
conserves not only the total number of electronsN and also
the number of single electrons with spinsN1s5( j 51

L nj s(1
2nj 2s) and the number of electron pairsN2

5( j 51
L nj↑nj↓ ,N5(sN1s12N2. In the casel 50 and J

50 the Hamiltonian~2!, ~3! is reduced to Arrachea-Aligia
Hamiltonian2 and for l 50, U5`, and J5t to the Lai-
Sutherland model.6 For l .0 thePl operator is equivalent to
additional two particle interactions between single electro
( r 51

l ( j 51
L Urn1 jn1 j 1r , where n1 j5(s5↑↓nj s(12nj 2s)

with infinite Ur parameters, according to Eq.~2! Ul 115J.
©2002 The American Physical Society18-1
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Using this representation we can conclude that the kin
term of the Hamiltonian~2! is a particle-hole invariant: in-
deed applying this transformationcj s

† ⇒cj s ,cj s⇒cj s
† , to the

Hamiltonian ~2!, ~3! we obtain H(t,J,U)⇒H(t,J,U)
1U(L2N) . Due to a particle-hole symmetry the phase d
gram is symmetrical with respect to a half filling.

We examine the exact ground state phase diagram for
antiferromagnetic couplingJ5t ~we chose the hopping inte
gral equal to unit then the coupling constants are dimens
less! and different values of the hard-core radius. The res
of calculations are compared with the ones forJ50—the
simplest version of the model . Direct calculations show t
the model~2!, ~3! is an exactly solvable one by the Beth
ansatz method and the set of the quasimomenta$kj%( j
51,2, . . . ,N1) satisfies the Bethe equations5

S l j2 i /2

l j1 i /2D
L2 lN1

5~21!N121exp~2 i lP !)
i 51

N1 l j2l i2 i

l j2l i1 i

3 )
a51

M
l j2xa1 i /2

l j2xa2 i /2
,

)
j 51

N1 xa2l j1 i /2

xa2l j2 i /2
52 )

b51

M
xa2xb1 i

xa2xb2 i
, ~4!

where P5( j 51
N1kj is the momentum,l j5

1
2 tan(kj /2) and

xa(a51,2, . . . ,M ) are the ‘‘charge’’ and ‘‘spin’’ rapidities,
M is the number of down spin single electrons.

The eigenvalues and the magnetization are given by

E522(
j 51

N1

coskj1UN2 , ~5!

Sz5
1

2 (
s

N1s2M . ~6!

Let us introduce the partial electron densitiesn15N1 /L is
the density of single carriers (N15(s5↑,↓N1s), n25N2 /L
is the density of electron pairs. Clearlyn5n112n2, heren
5N/L is the total density of electrons.

Numerical exact diagonalization calculations of the mo
at JÞ0 for small l shown that the ground state is the no
generated one. Since the Bethe equations~4! we can calcu-
late exactly the ground state phase diagram as a functio
the electron density and an on-site interaction for an arbitr
value of the hard-core radius. The densitiesn1 andn2 can be
calculated by minimizing the ground state energy per sitE
5E/L for a fixed total density of electrons

E52n122pE
2Q

Q

dLa~L!r~L!1Un2 , ~7!

wherea(L)5(1/2p)@1/(L211/4)#.
In the thermodynamic limit the Bethe equations reduce

an integral equation of the Fredholm type for the function
the distribution ofl j on the real axis
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r~L!1E
2Q

Q

dL8K~L2L8!r~L8!5~12 ln 1!a~L!, ~8!

with the kernel being

K~L!5E
2`

` dv

2p

exp~2uvu!
expuvu11

exp~ ivL!.

TheL-Fermi level denoted asQ controls the band filling, the
density of single electrons is defined by

n15E
2Q

Q

dLr~L!. ~9!

Q50 corresponds to an empty subband of single carri
n15n0 for Q→`, wheren051/(l 13/2) is a ‘‘half-filled’’
density. Equations~7!–~9! are a consequence of the real s
lutions for ‘‘charge’’ and ‘‘spin’’ rapidities that describe th
ground state of the system in the absence of an exte
magnetic field. In order to define the region of SILL w
calculate the critical exponentQ via thea exponent~1!. a
52z2(Q) is defined by the dressed chargez(L), where
z(L) is a solution of the following integral equation:

z~L!1E
2Q

Q

dL8K~L2L8!z~L8!512 ln1 . ~10!

In the high electron density regionn.2n21nc @wherenc is
solution of equationQ(nc)51] when the hard-core repul
sive potential dominates the behavior of fermions is d
scribed as SILL withQ.1.5

We have focused on the calculation of the exact grou
state phase diagram in then2U plane for different values of
the hard core radius orl. First we consider peculiarities o
behavior of the system using a simple version of the Ham
tonian ~2!,~3! when J50 and then its transformation forJ
51. Due to a particle-hole symmetry it is sufficient to di
cuss the phase diagram forn<1. ForJ50 the density of the
ground-state energy~6! can be defined analyticallyE5
22@(12 ln1)/p#sin@pn1 /(12ln1)#1

1
2U(n2n1), therefore a

curve that separates a mixed region is defined accordin
the following equation

U~n1!54
l

p
sinS pn1

12 ln1
D2

4

12 ln1
cosS pn1

12 ln1
D .

U varies from24 at n150 to 4(11 l ) at n15nmax51/(1
1 l ), hence a maximal valueUc54(11 l ). The value ofnc

is equal to nc5(12A624A2)/l (nc50.414 for l 51,nc
50.207 for l 52, nc50.138 for l 53). For l 51 the com-
plete phase diagram is shown in Fig. 1. The lower region~for
U,24) is characterized by only doubly occupied~solid
circles! and empty~empty circles! sites son150 and n2
5n/2. For 24,U,U(n1) we have a mixed region, the
ground state includes both finite densities of single electr
~spheres with dot center! and electron pairs. Note that th
pairs are not localized due to exchange between single
double electron states. Both the mixed and the lower pha
have a finite ODLRO,1,7 i.e., ^h i

†h j&→” 0 for u i 2 j u→` ~here
h j

†5cj↑
† cj↓

† ). However, the second of them is insulator pha
8-2
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since in the absence of single electrons pairs are local
~the Drude weight is equal to zero!. The mixed phase is a
superconducting having normal metallic Drude weight.

At n.nc in the region denoted as SILL in Figs. 1 and
Q.1 and we deal with SILL superconductor. Note, th
SILL state is realized at largest values of a repulsive on-
Coulomb interaction and a high electron density. Compar
the calculations for differentl we can conclude that a hard
core repulsive interaction increases a region of SILL sup
conducting state due to both a largerUc and smallernc . For
U.U(n1) and n,nmax the ground state consists of sing
occupied and empty sites; dotted lines separate a met
phase~at n,nmax) and an insulator phase~at n>nmax) with a
gapD«5U2Uc .

An exact solution of the problem enables to study the r
of the exchange interaction on the behavior of a stron
interacted electron system. Let us consider a transforma
of the exact ground-state phase diagram forJ51. We restrict
our consideration the casen<n0 . Q increases monotoni
cally from 1

8 to @(312l )2/12# @123/(312l )2#2 with then1
density. We should solve equationQ(nc)51 numerically
calculating the dressed charge as a function of the elec
densityn1 for arbitrary l; for example,nc50.348 for l 51,
nc50.192 for l 52, nc50.131 for l 53, nc50.1 for l 54.

FIG. 2. Ground state phase diagram in the caseJ51 and
l 52—similar to that for Fig. 1.

FIG. 1. Ground state phase diagram in the caseJ50 for l 51.
Dashed line corresponds to the model~Ref. 2! ~or l 50), dotted
lines separate metallic and insulator phases. The area of a stro
interacting Luttinger liquid state is denoted as SILL.
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According to the numerical results obtained the critical de
sity nc is less thann0. For l 52 the ground state phase dia
gram is given in Fig. 2. All electron states: empty, sing
occupied, and doubly occupied sites are presented sim
neously in a mixed region~a closed region in Fig. 2!. For
nc,n,n0 two branches of curves separate the Luttinger l
uid state and the SILL that is realized between the
branches. Comparing the phase diagrams forJ51 and J
50 calculated for the same value ofl we can conclude tha
the exchange interaction decreases the region of SILL in
perconducting state (nc and Uc decrease slightly!. Uc in-
creases with an increasing of hard-core radius.

To demonstrate the superconducting behavior of
mixed phase we calculated the Drude weight of this pha
According to Ref. 8 we will use the expression of the cha
stiffness D* 5(1/4p)av, where v is the Fermi velocity
v5(d/dl)ln r(l)ul5Q . The numerical results of the
normalized charge stiffness D5D* /Dc @Dc
5(2/p)sin(pn1/2)# and the Fermi velocity forl 51 and
l 52 are presented in Fig. 3.

Taking into account an existence of ODLRO in the mix
phase we can conclude that this phase and SILL stat
particular are the superconducting phases. In summary,
have presented a soluble generalization of the Lai-Suther
model, having the nontrivial Luttinger liquid behavior. Th
exact solution was obtained by means of the nested B
ansatz. We have derived the exact ground-state phase
gram; the latter exhibits an unusual phase state in wh
strongly interacting Luttinger liquid comes in supercondu
ing state. This phase is realized at high electron density
positive values of the on-site Coulomb interaction. T
maximum critical valueUc realized in the model is highe
than that of all other exactly solvable models.2,3 This is im-
portant because higher values ofUc expands the region o
coexistence of SILL in superconducting state. It has be
shown that the presence of the Fermi level is not neces
for realization of superconducting phase. The results of c
culations of one dimensional models do not allow direct a
plication to the real 2D and 3D systems. Nevertheless
can assume that real high-Tc superconductors belong to th
family of SILL described above.

gly

FIG. 3. Normalized charge stiffnessD5D* /Dc @Dc

5(2/p)sin(pn1/2)# and the Fermi velocityv as functions of the
density of single electrons forJ51, l 51, andl 52.
8-3
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