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Strongly interacting Luttinger liquid and superconductivity in an exactly solvable model
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A family of exactly solvable one-dimensional models with a hard-core repulsive potential is solved by the
Bethe ansatz for an arbitrary hard-core radius. The exact ground state phase diagrams in a plane “electron-
density—on-site interaction” have been studied for several values of a hard-core radius. It is shown that
strongly interacting Luttinger liquid can be realized in superconducting state at a high electron density and high
value of repulsive on-site Coulomb interaction.
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The models of strongly correlated electrons with a bondthe interactions, the constants of interactions between single
charge interaction which conserves a number of double ocelectrons are infinite and define a hard-core radius, the en-
cupied sites, are simple examples of strongly correlated ele@rgy of electron pair is finite. We shall consider a new modi-
tron systems that exhibit superconductiVity. The merit of  fication of a generalized one-dimensional Lai-Sutherland
these models is their complete integrability. The phase diamodel for a study of a competition between SILL state and
grams on a plane “electron-density—on-site interaction”superconducting phase. The model Hamiltonian contains ki-
have four phases, two of them exhibit off-diagonal long-netic and interaction terms that combine those of the Hub-
range order(ODLRO) and thus are superconducting. The bard model and the Lai-Sutherland model. The model Hamil-
superconducting phase is realized if the value of the on-sitéonian includes two term{=H,,+ Hin
interaction less than the critical okk, andU . could be even
positive at repulsive on-site interactidh Other phases in
which only singly occupied and empty sites are presented Hhop= _t<i wa:H
called asU— Hubbard state. In the case of a hard-core ' '
repulsive interaction between electrons with a hard core ra- —cfgcwni_onj_g], 2
dius which exceeds a half of a lattice spacing the Luttinger

[P(1=1i—,)Cl,Cip(1—N_ )P,

liquid state transforms to strongly interacting luttinger liquid L

(SILL) in a high electron density regionSILL is char- Hi=3>, > (c;r(,cj,,/c;rﬂﬂo,cj+1+|,,

acterized by a large value of the critical exponéhtfor 1=l g0'=1,1

the momentum distribution function close to the Fermi mo- L

mentumke +nj0'nj+l+|u")+uj21 NjNjp, )
(n)=(n,)—constk—ke|*sgrik—ke), (D

wherech{, andc;,, are the creation and annihilation operators

that is defined by a single dimensionless exponrefur K ,, of fermions with spino, oe{1,l}, L is a total number of
here a=4K, (Ref. 4] @=(1/a)(1— al4)?. At ®>1 the lattice sites(i,j) stands for neighboring sites, the projector
residual Feﬁmi surface disappears. At a high electron density! forb_ids two Sing"? eleqtrons at distances Iefss than or equal
when a hard-core repulsion interaction dominates, SILL dd° ! (I is measured in units of the lattice spacing parameter
not realized in superconducting state in the framework of thé IS the hopping integralj is the constant of the exchange
generalizedt-J and Lai-Sutherland modelsThe question interaction. It. IS |mportapt thed .operator doe§ not forbid
arises: could SILL state be in superconducting state at posfjoubly occupied lattice sites, as it takes place in the _so-called
tive and finite on-site Coulomb interaction? It turns out thatY —> Hubbard model or the.J model. The last term in Eq.

an existence of the Fermi surface is not necessary for th€®) iS traditionally the most important term for the Hubbard
superconducting phase. model, the on-site Coulomb repulsidhseparates the ener-

In this paper we shall consider a family of integrable gies of single and paired electrons states. The HamiltoHian

models and show that SILL can be realized in superconduc€Onserves not only the total number of eIectrd)hLand also

ing state at a high electron density or at small doping. Thighe number of single electrons with spiN, ,==_;n;,(1
superconducting state takes place at a repulsive on-site COLT—njfa) and the number of electron pairsN,
lomb interaction the value of which larger than a band width=2j=1Nj1Nj; ,N=2;N;,+2N,. In the casel=0 andJ

and depends on the value of the hard-core radius. We shait O the Hamiltonian(2), (3) is reduced to Arrachea-Aligia
show also that at zero temperature the ground state phase Ha@miltoniarf and for =0, U=, and J=t to the Lai-

the ODLRO and a finite Drude weight. In the modefsthe ~ Sutherland modél.For | >0 theP, operator is equivalent to
hoppings of single electrons on occupied states are forbidadditional two particle interactions between single electrons
den, whereas the energy of electron pair is finite. In ourE',zlijLzlurnljnle, where ny=2,_;n;,(1-n;_,)
models we shall use the same hierarchy for the parameters wfith infinite U, parameters, according to E®) U, ;=J.
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Using this representation we can conclude that the kinetic Q

term of the Hamiltonian(2) is a particle-hole mvarlant in- P(A)+f dA'K(A=A")p(A")=(1-Inpa(A), (8)

deed applying this transformatm;ﬁ >=CjoCjs :>c , to the -

Hamiltonian (2), (3) we obtain H(t,J, U):.»H(t J,U)  with the kernel being

+U(L—N) . Due to a particle-hole symmetry the phase dia-

gram is symmetrical with respect to a half filling. K(A)=
We examine the exact ground state phase diagram for the

antiferromagnetic coupling=t (we chose the hopping inte- i .

gral equal to unit then the coupling constants are dimension! & -Fermi level denoted & controls the band filling, the

less and different values of the hard-core radius. The result§€nsity of single electrons is defined by

of calculations are compared with the ones Jer 0—the 0

simplest version of the model . Direct calculations show that nl:f dAp(A). 9

the model(2), (3) is an exactly solvable one by the Bethe -Q

ansatz method and the set of the qga&mome{nk@(l Q=0 corresponds to an empty subband of single carriers,
=12,...Ny) satisfies the Bethe equatidns ny=n for Q—c, whereny=1/(1+3/2) is a “half-filled”
density. Equation$7)—(9) are a consequence of the real so-

= do exp(—|wl|)

.27 expo|+1 eXpiwA).

Nj—il2 L=INy Ny 1 —i lutions for “charge” and “spin” rapidities that describe the
NERZ =(=1) exq—llP)H By )\ T ground state of the system in the absence of an external
magnetic field. In order to define the region of SILL we
Nj— Xatil2 calculate the critical expone® via the « exponent(l). a
X :1mv =27%(Q) is defined by the dressed charg€A), where
“ LA Z(A) is a solution of the following integral equation:
Nj

Xa—NjFil2 T xa—xpti

Q
|| v il | et 4) g(A)+J_QdA K(A—AE(A)=1—In,. (10

In the high electron density regian>2n,+n. [wheren, is
solution of equation®(n.)=1] when the hard-core repul-
sive potential dominates the behavior of fermions is de-
scribed as SILL with®>1.°
We have focused on the calculation of the exact ground
N, state phase diagram in tine- U plane for different values of
E=-2>, coskj+UNj, (5)  the hard core radius dr First we consider peculiarities of
i= behavior of the system using a simple version of the Hamil-
tonian (2),(3) whenJ=0 and then its transformation far
=1. Due to a particle-hole symmetry it is sufficient to dis-
=3 ; Ni,—M. (6)  cuss the phase diagram fios 1. ForJ=0 the density of the
ground-state energy6) can be defined analyticallf=
—2[(1—=Iny)/=w]sinNmn,/(1—In))]+3U(n—n,), therefore a
curve that separates a mixed region is defined according to

whereP=%,_, lk is the momentum); = 2tan(kJ/Z) and
Xo(a=1.2,. ) are the “charge” and ‘spin” rapidities,
M is the number of down spin single electrons.

The eigenvalues and the magnetization are given by

Let us introduce the partial electron densitigs= N4 /L is
the density of single carrierdNg==,_; |N1,), N,=N,/L . .
is the density of electron pairs. CIeaanIyi n;+2n,, heren the following equation
=NI/L is the total density of electrons. I ™, 4 ™,

Numerical exact diagonalization calculations of the model U(n1)=4;sin T=In )— = cos(l_ln )
at J#0 for smalll shown that the ground state is the non- 1 L 1
generated one. Since the Bethe equati@ghsve can calcu- U varies from—4 atn;=0 to 4(1+1) at n;=n,,=1/(1
late exactly the ground state phase diagram as a function of|), hence a maximal valug.=4(1+1). The value ofn,
the electron density and an on-site interaction for an arbitrarys equal ton.=(1— \/m—)n (n,=0.414 for |=1n,

value of the hard-core radius. The densitigsandn, can be  =0.207 forl=2, n,=0.138 forl=3). Forl=1 the com-
calculated by minimizing the ground state energy per &ite plete phase diagram is shown in Fig. 1. The lower region
=E/L for a fixed total density of electrons U<—4) is characterized by only doubly occupié¢sblid

circles and empty(empty circle$ sites son;=0 andn,
=n/2. For —4<U<U(n;) we have a mixed region, the
ground state includes both finite densities of single electrons
(spheres with dot centeand electron pairs. Note that the
wherea(A) = (1/27)[1/(A%+ 1/4)]. pairs are not localized due to exchange between single and
In the thermodynamic limit the Bethe equations reduce taglouble electron states. Both the mixed and the lower phases
an integral equation of the Fredholm type for the function ofhave a finite ODLRG;i.e., ( n/ ;)0 for |[i —j| = (here
the distribution of\; on the real axis nT—c” Jl) However, the second of them is insulator phase

5=2n1—27-er dAa(A)p(A)+Un,, (7)
-Q
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FIG. 1. Ground state phase diagram in the cks® for |=1. FIG. 3. Normalized charge stiffnessD=D*/D, [D.

Dashed line correspgnds tq the modBkf. 3 (or =0), dotted = (2/7r)sin(=n,/2)] and the Fermi velocity as functions of the
lines separate metallic and insulator phases. The area of a Strong@énsity of single electrons far=1, =1, andl =2

interacting Luttinger liquid state is denoted as SILL.

since in the absence of single electrons pairs are localizeficcording to the numerical results obtained the critical den-
(the Drude weight is equal to zéroThe mixed phase is a Sity n is less tham,. Forl=2 the ground state phase dia-
superconducting having normal metallic Drude weight. gram is given in Fig. 2. All electron states: empty, singly

At n>n, in the region denoted as SILL in Figs. 1 and 2 occupied, and doubly occupied sites are presented simulta-
®>1 and we deal with SILL superconductor. Note, thatN€ously in a mixed regioita closed region in Fig.)2 For
SILL state is realized at largest values of a repulsive on-sitdle<N<No two branches of curves separate the Luttinger liq-
Coulomb interaction and a high electron density. Comparing/id State and the SILL that is realized between these
the calculations for differeritwe can conclude that a hard- Pranches. Comparing the phase diagramsJierl andJ

core repulsive interaction increases a region of SILL super= 0 calculated for the same value oive can conclude that

conducting state due to both a lardér and smallen, . For the exchange interaction decreases the region of SILL in su-

U>U(n,) andn<ny,, the ground state consists of singly Perconducting staten¢ and U, decrease slightly U in-

occupied and empty sites; dotted lines separate a metallfi'€@Ses with an increasing of hard-core radius.

phaseatn<npy,,) and an insulator phagatn=n,,, with a To demonstrate the superconducting behavior of the

gapAe=U—U mixed phase we calculated the Drude weight of this phase.
.- ; \ .

An exact solution of the problem enables to study the role\ccording to Ref. 8 we will use the expression of the charge
of the exchange interaction on the behavior of a stronglyStfiness D* =(1/4m)av, wherev is the Fermi velocity
interacted electron system. Let us consider a transformatioh= (4/dA\)In p(Mh—q- The _numencal_ rESU“S of the
of the exact ground-state phase diagramiferl. We restrict normalized  charge stiffness D=D*/D.  [D.
our consideration the case<n,. ® increases monotoni- — (2/m)sin(my/2)] and the Fermi velocity foi=1 and
cally from & to[(3+21)2/12][1—3/(3+21)2]? with then, | =2 are presented in Fig. 3. , ,
density. We should solve equatid®(n)=1 numerically Taking into account an existence of ODLRO in the mixed

calculating the dressed charge as a function of the electrdp’@S€ We can conclude that this phase and SILL state in

densityn, for arbitrary!; for example,n.=0.348 forl =1, particular are the superconducting phases. In summary, we

n.=0192 forl=2 n.=0.131 forl=3. n.=0.1 for | =4 have presented a soluble generalization of the Lai-Sutherland
=0. , Nc=0. , ne=0. .

model, having the nontrivial Luttinger liquid behavior. The
exact solution was obtained by means of the nested Bethe

19| ansatz. We have derived the exact ground-state phase dia-
gram; the latter exhibits an unusual phase state in which
8| strongly interacting Luttinger liquid comes in superconduct-
. ing state. This phase is realized at high electron density and
U 4| > positive values of the on-site Coulomb interaction. The
&0 / maximum critical valueU.. realized in the model is higher
0 than that of all other exactly solvable modéfThis is im-
/O portant because higher values @f expands the region of
4 coexistence of SILL in superconducting state. It has been-
*0 , , shown that the presence of the Fermi level is not necessary
0.1 0.2 0.3 for realization of superconducting phase. The results of cal-
n (filling) culations of one dimensional models do not allow direct ap-

plication to the real 2D and 3D systems. Nevertheless one
FIG. 2. Ground state phase diagram in the cdsel and can assume that real high- superconductors belong to the
| =2—similar to that for Fig. 1. family of SILL described above.
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