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Fluctuation-dissipation theorem and flux noise in overdamped Josephson-junction arrays

S. E. Korshunov
L. D. Landau Institute for Theoretical Physics, Kosygina 2, 117940 Moscow, Russia

~Received 26 March 2002; published 18 September 2002!

The form of the fluctuation-dissipation theorem for a resistively shunted Josephson-junction array is derived
with the help of the method which explicitly takes into account the screening effects. This result is used to
express the flux noise power spectrum in terms of the frequency-dependent sheet impedance of the array. The
relation between the noise amplitude and the parameters of the detection coil is analyzed for the simplest case
of a single-loop coil, as well as the frequency dependence of the noise spectrum in different regimes.
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I. INTRODUCTION

The two basic experimental methods used for contact
investigation of the finite frequency properties of tw
dimensional superconducting systems~such as thin films,1–5

Josephson junction arrays,6–9 and wire networks10,11! are the
two-coil mutual-inductance technique1–4,9–11 and the flux
noise power spectrum analysis.3–8 The first of them is based
on the measurement of the voltage induced in the detec
coil by the currents flowing in the sample under the action
the ac electric field produced by the current in the ot
~driving! coil. For the given geometry of the coils the me
sured signal can be used to extract10 the complex frequency
dependent sheet impedanceZh(v) of the sample on the as
sumption that for wavelengths larger than the character
dimensions of the detection coilZh(v) is not wavelength
dependent.

In the case of the flux noise spectrum analysis, the
proaches to interpretation of the experimental data are m
more varied. The theoretical predictions of the flux no
spectrum used for comparison with experimental data
found by relating it with7,12 or ~no less often! by replacing it
by3,13,14a correlation function describing the vortex distrib
tion and, naturally, they turn out to be dependent on
particular choice of assumptions concerning the form of t
distribution. Numerical simulations also demonstrate a cl
tendency towards studying the vortex number noise13,15,16

rather then the flux noise. The only attempt to achiev
description of the flux noise power spectrum in terms of
sheet impedance of the sample taking into account the ac
geometry of the detection coil has been undertaken by K
and Minnhagen.17 However, this calculation is also based o
expressing all quantities in terms of the vortex gas corre
tion functions and, therefore, can be expected to be ap
cable only in a limited range of parameters.

In the present paper, we argue that in the case of a re
tively shunted Josephson-junction array the general exp
sion for the flux noise spectrum can be found without art
cial decomposition of all fluctuations into the vortex pa
~which is usually assumed to be responsible for the fl
noise! and the remaining so-called ‘‘spin-wave’’ part~which
is traditionally neglected!. Although in semiphenomenologi
cal treatment12–14,18 of two-dimensional superconducto
such decomposition seems to be inevitable, the case o
overdamped Josephson-junction array allows for the app
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tion of a more universal approach to the calculation of
flux noise power spectrum. It is based on the direct relat
~discussed in Sec. II! of the flux noise with current fluctua
tions, which, on the other hand, can be expressed in term
the complex frequency-dependent sheet impedance with
help of the fluctuation-dissipation theorem.

The additional advantage of such an approach is tha
allows one to include into consideration in a systematic w
the mutual influence between magnetic-field fluctuations
current fluctuations~the screening effects!, which insofar has
been neglected in the theoretical works12–17 devoted to the
flux noise spectrum analysis. The form of the Hamiltonia
which should be used for the description of a resistiv
shunted array in the presence of self-induced magnetic fie
is discussed in Sec. III, and the corresponding dynamic eq
tions in Sec. IV.

The explicit form of the fluctuation-dissipation theore
for resistively shunted Josephson-junction array is derive
Sec. V. It shows that the current correlations in the array
determined by the response of the current to the exte
electric field and not directly by the sheet impedance of
array ~which is defined as a response to thetotal electric
field!. The nature of the expression for the currents corre
tion function, related with the peculiarities of the two
dimensional geometry, allows one to expect the same exp
sion to be applicable for arbitrary two-dimensional syste
in which capacitive effects can be neglected.

Our main result, the relation between the flux noise pow
spectrum and the frequency-dependent sheet impedance
two-dimensional superconductor, is presented in Sec.
which includes also the discussion of the noise spectr
frequency dependence and its relation with the paramete
the detection coil, as well as a comparison of our results w
those of other authors.

II. FLUX NOISE AND CURRENT CORRELATIONS

In a flux noise experiment, one measures and analyzes
time dependence of a voltage created in a detection coi
fluctuations of currents in some conducting~or supercon-
ducting! object. This voltage is determined by the time d
rivative of the magnetic flux penetrating the coil, and t
value of the flux can be expressed in terms of the curr
density distributionj (r )@r5(x1 ,x2 ,x3)# inside the object
with the help of the Biot-Savart’s law, which in the Coulom
©2002 The American Physical Society13-1
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gauge (divA50) can be written as

DA~r !52m0j t~r !, ~1!

whereA(r ) is the vector potential defining the distribution
the magnetic field~magnetic induction! B(r )5rotA(r ) cre-
ated byj (r ),

D[
]2

]x1
2

1
]2

]x2
2

1
]2

]x3
2

~2!

is the three-dimensional Laplacian and

j t~r ![ j ~r !2D21grad divj ~r ! ~3!

is the transverse part ofj (r ). Magnetic fields produced by
the longitudinal part ofj (r ) cancel each other.

In the case of a system which can be considered as e
tively two-dimensional and situated~for simplicity! in the
plane x350, the three-dimensional current densityj (r ) is
reduced to

j ~r !5 i~x!d~x3!, ~4!

wherex[xa (a51,2) is the two-dimensional vector defin
ing the position of a point in the planex350 andi[ i a is the
two-dimensional vector describing the two-dimensional c
rent density.

Substitution of Eq.~4! into Eq. ~1! allows us then to find
that

A~r !5m0E d2q

~2p!2E dq3

2p

exp i ~qx1q3x3!

q21q3
2

it~q!

5
m0

2 E d2q

~2p!2

exp~ iqx2qux3u!
q

it~q!, ~5!

where

i~q!5E d2x exp~2 iqx!i~x! ~6!

is the ~two-dimensional! Fourier transform ofi(x), q5uqu
and

it~q![ i~q!2q̂@ q̂i~q!# ~7!

is the transverse part ofi(q), q̂[q/q being the unit vector
parallel toq.

In the simplest case, a coil can be approximated b
closed circular ring. Integration ofA(r ) over the perimeter of
the ringx1

21x2
25r 2 situated at the distanceh from the plane

x350 gives

F5 R dr A ~r !5
m0

2 E d2q

~2p!2
F~q!i t~q!, ~8!

where

i t~q!5(
a,b

eabq̂ai b~q! ~9!
10451
c-

-

a

is the amplitude ofit(q), eab is the unit antisymmetric ten
sor,

F~q!5
2prJ1~rq !

q
exp~2hq! ~10!

is the geometrical factor depending on the parameters of
coil, andJ1(z) is the first-order Bessel function. In the ca
when the coil can be considered as consisting ofN turns
separated by the distanceb from each other, the expressio
for F(q) should also include the additional factor obtain
by the summation of contributions from different turns10

F~q!5
2prJ1~rq !

q
exp~2hq!

12exp~2Nbq!

12exp~2bq!
. ~11!

The power spectrum of the flux noise is given by t
flux-flux correlation function

S~v!5E dt^F~ t01t !F~ t0!&exp~ ivt ! ~12!

and with the help of Eq.~8! can be expressed in terms of th
current density correlation function

^ itit&qv[E d2xE dt@exp~2 iqx1 ivt !

3^ it~x01x,t01t !it~x0,t0!&# ~13!

as

S~v!5
m0

2

4 E d2q

~2p!2
F2~q!^ itit&qv . ~14!

III. HAMILTONIAN OF JOSEPHSON-JUNCTION ARRAY

When a self-induced magnetic field is taken into accou
a square Josephson-junction array can be described by
Hamiltonian19,20

H52J(
n,a

cos~“awn2Ana!

1
1

2 (
n,k

~“3A!nMnk
21~“3A!k , ~15!

where wn is the phase of the order parameter on thenth
superconducting island,n[(n1 ,n2) with n1 andn2 integers
is the number of the island, the variablesAna ~defined on the
bonds of the lattice! are determined by the integral of th
vector potentialA(r ) over the line connecting the geometr
cal centers of two neighboring islands

Ana5
2e

\ E
an

a(n1ea)

dr A ~r !, ~16!

a is period of the lattice and

ea5H ~1,0! for a51

~0,1! for a52
~17!

are the two unit vectors.
3-2
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FLUCTUATION-DISSIPATION THEOREM AND FLUX . . . PHYSICAL REVIEW B66, 104513 ~2002!
The first term in Eq.~15! describes the Josephson ener
of the junctions in the array. The coupling constantJ entering
this term is determined by the critical currentI c of a single
junction:

J5
\

2e
I c , ~18!

which is assumed to be the same for all junctions, wher
“awn denotes the difference ofwn between the neighboring
sites of the lattice:

“awn[wn1ea
2wn . ~19!

Notice that the combination

una[“awn2Ana , ~20!

which enters as the argument of the Josephson en
EJ(u)52Jcosu is a gauge-invariant quantity.

The second term in Eq.~15! is the energy of the magneti
field

Emf5
1

2m0
E d3r B2~r ! ~21!

expressed in terms of the variablesAna . The matrix Mnk
[M (n2k) is usually called the mutual inductanc
matrix19–21 and

~“3A!n[(
a,b

eba“bAna ~22!

is the directed sum of the variablesAna along the perimeter
of a lattice plaquette~the lattice equivalent of rotA) and is
proportional to the magnetic flux penetrating this plaquet

Variation of Eq.~15! with respect toAna gives the equa-
tion

I na5
2e

\ (
k

“̃3Mnk
21~“3A!k , ~23!

which relates the value of the superconducting current i
junction

I na5I c sin~“awn2Ana! ~24!

with the vector potential of the magnetic field induced by t
presence of the currents in the array. Here@like in Eq. ~22!#

“̃3 stands for(beba“̃b , whereas“̃b designates the lattice
difference, analogous to the one defined by Eq.~19!, but
shifted in the negative direction

“̃bXn[Xn2Xn2eb
. ~25!

On the other hand, variation of Eq.~15! with respect town
gives the current conservation equation

~“̃I !n50, ~26!

where
10451
as

gy

.

a

~“̃I !n[(
a

@ I na2I (n2ea)a# ~27!

is the lattice equivalent of divergence. Equation~26! can be

alternatively obtained by the application of the operator“̃a
to Eq. ~23!. Therefore, Eqs.~23! and ~26! @both obtained by
variation of Eq.~15!# are not independent of each other.

The vector potential of the magnetic field created by
currents flowing in the array can be chosen purely transve
(div A50), which in terms ofAna corresponds to

“̃aAna50. ~28!

In that case, Eq.~23! is reduced to

I na5
2e

\ (
k

Mnk
21~2DLAa!k , ~29!

whereDL[(b“̃b“b is the two-dimensional lattice analo
of the Laplacian

~DLX!k5(
b

~Xk1eb
22Xk1Xk2eb

!. ~30!

Comparison of Eq.~29! with Eq. ~5! allows us to find that for
un2ku@1

Mnk
21'S \

2eD 2 1

pm0aun2ku
. ~31!

On the other hand, forun2ku;1 the form ofMnk
21 depends

on the particular shape of superconducting islands.21

Linearization of Eqs.~23! and their solution allows us to
show that when the magnetic fields of the currents in
array are taken into account, the logarithmic interaction
vortices becomes screened19 at so-called magnetic-field pen
etration lengthL, exactly as it happens in superconducti
films.22 When screening is relatively weak~that is when
L@a), the value ofL is given by

L'
2

m0J S \

2eD 2

~32!

and does not depend on the shape of superconducting isl
forming the array.19

Instead of considering Hamiltonian~15! as dependent on
two different types of variables defined on the sites (wn) and
on the bonds (Ana) of the lattice, it is convenient to use
single variable, namely, the gauge-invariant phase differe
una defined by Eq.~20!. In terms ofuna , the Hamiltonian
~15! can be rewritten as

H52J(
n,a

cosuna1
1

2 (
n,k

~¹3u!nMnk
21~¹3u!k ,

~33!

variation of which with respect touna reproduces Eq.~23! in
the form

I na52
2e

\ (
k

“̃3Mnk
21~“3u!k , ~34!
3-3
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where the expression for the superconducting current

I na5I csinuna ~35!

is naturally consistent with Eq.~24!. As previously, the cur-
rent conservation Eq.~26! can be obtained by application o

the operator“̃a to Eq. ~34!.

IV. DYNAMIC FLUCTUATIONS IN ARRAY
OF RESISTIVELY SHUNTED JUNCTIONS

The dynamic description of the same system requires
to complement the HamiltonianH by the dissipative function
W ~we assume that the array is overdamped and therefor
dynamics is purely relaxational!. In the case of the array
formed by SNS~superconductor–normal metal–superco
ductor! junctions one can describe dissipation in terms of
effective resistance shunting each junction~so-called RSJ
model!. This corresponds toW$u% of the form

W5h(
n,a

S ]

]t
unaD 2

, ~36!

where the effective viscosity

h5S \

2eD 2 1

R
~37!

is determined by the value of the shunting resistanceR,
which is assumed to be the same for all junctions. ForW of
the form ~36!, the conservation of energy is achieved wh
the time evolution of the variablesuna is governed by the
standard equations of relaxational dynamics

h
]

]t
una52

]H

]una
. ~38!

On the other hand, Eq.~38! can be rewritten in the form
~34!, where the expression for the current should be repla
by

I na5I csinuna1
\

2eR

]

]t
una . ~39!

The time derivative ofuna being proportional to the voltage
the second term in Eq.~39! can be easily identified as th
normal current flowing in the junction. Consideration
purely relaxational dynamics means that we are neglec
capacitive effects and currents have to be conserved on
site of the lattice~in other words, only transverse currents a
allowed!. This is ensured by the form of Eq.~34!, substitu-
tion of which into Eq.~26! automatically leads to its fulfill-
ment for any form ofI na .

In the presence of thermal fluctuations the right-hand s
of Eq. ~38! should be complemented with the random for
term jna(t)

h
]

]t
una52

]H

]una
1jna1 f na , ~40!

the correlations of which are Gaussian and satisfy
10451
s
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^jna~ t !jkb~ t8!&52hTdnkdabd~ t2t8!, ~41!

whereT is the temperature expressed in energy units~that is
multiplied by the Boltzmann constantkB). We also have in-
cluded in the right-hand side of Eq.~40! the nonrandom ex-
ternal forcef na ~to be discussed later!.

In terms of the expression for the current the rand
force jna corresponds to the appearance in Eq.~39! of the
additional~fluctuating! contribution to normal currentdI na

I na5I c sinuna1
\

2eR

]

]t
una1dI na , ~42!

where dI na[2(2e/\)jna . Note that since Eq.~34! de-
scribes the relation between the currents and the magn
field induced by them, it has to remain fulfilled also when t
fluctuations of currents are taken into account. The valid
of the current conservation Eqs.~26! remains ensured by th
form of the right-hand side of Eq.~34!.

The suggestion to describe the dynamics of a resistiv
shunted Josephson-junction array by Eqs.~42! has been put
forward by Shenoy,23 who did not consider fluctuations o
the magnetic field, that is assumeduna[wn1ea

2wn . In that
case, substitution of Eqs.~42! into the current conservation
Eqs.~26! leads to the dynamic equations forwn with nonlo-
cal effective viscosity.23 Quite remarkably, the inclusion into
consideration of the magnetic-field fluctuations leads to
simplification of the dynamic equations which~in terms of
una) become local. The idea that in the presence of magn
field fluctuations a resistively shunted Josephson-junction
ray can be described by Eqs.~40!, whereuna is the gauge
invariant phase difference, has been introduced
Domı́nguez and Jose´.20

V. FLUCTUATION-DISSIPATION THEOREM

It is well known that when the time evolution of som
variables$u% is governed by the standard Langevin equ
tions of the form~40!, the equilibrium~that is calculated for
f na50) correlation function

Cna,kb~ t2t8!5^una~ t !ukb~ t8!& f 50 ~43!

is related with the response function

Gna,kb~ t2t8!5
d^una&
d f kb

U
f 50

~44!

by the fluctuation-dissipation theorem

Gna,kb~ t !2Gna,kb~2t !52
1

T

]

]t
Cna,kb~ t !. ~45!

However, in a practical situation one is interested not
the response of the gauge-invariant phase differenceuna to
the ~unspecified! conjugate forcef na , but rather in more
readily observable quantities such as conductivity, which
the response of a current to the application of electric fie
In a situation when electric fieldE(r ) is created due to the
presence of ac magnetic field, it is given by
3-4
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E~r !52
]

]t
A~r !, ~46!

whereA(r ) is the vector potential defining the~total! mag-
netic inductionB(r )5rotA(r ).

In the presence of the external magnetic fie
H(r )5(1/m0)rotAext(r ) the expression~21! describing the
magnetic-field energy should be replaced by the expres
for the Gibbs free energy

Fmf5E d3r F 1

2m0
B2~r !2B„r …H„r …G , ~47!

a variation of which in the absence of any other terms gi
B„r …5m0H(r ). This leads to the appearance in the Ham
tonian ~33!, describing the array, of the additional term

DH5(
n,k

~¹3u!nMnk
21~¹3Aext!k . ~48!

Here, the variables

Ana
ext5

2e

\ E
an

a(n1ea)

dr A ext~r !, ~49!

defined on lattice bonds, are related to the vector poten
Aext(r ) of the external magnetic-field exactly in the sam
way as earlier introduced variablesAna are related to the
total vector potentialA(r ).

The form of the correction to the Hamiltonian given b
Eq. ~48! corresponds to the presence in Eq.~40! of the ex-
ternal force term

f na52(
k

“̃3Mnk
21~“3Aext!k . ~50!

Comparison of Eq.~50! with Eq. ~34! shows that~up to the
factor of 2e/\) f na is related toAna

ext exactly in the same way
as I na is related touna . This allows us to conclude that th
correlation functions of the currents in the array

Cna,kb
I ~ t2t8![^I na~ t !I kb~ t8!& ~51!

and the response function

Gna,kb
I ~ t2t8![

d^I na&

d~Akb
ext! t U

f 50

~52!

have to satisfy the relation

Gna,kb
I ~ t !2Gna,kb

I ~2t !52
\

2e

1

T

]

]t
Cna,kb

I ~ t ! ~53!

completely analogous to Eq.~45!. Here, (Akb
ext) t is the trans-

verse part ofAkb
ext . As can be seen from the right-hand side

Eq. ~50!, the longitudinal part ofAkb
ext is completely decou-

pled from fluctuations ofuna .
In terms of the effective conductivitygna,kb

eff , defined as
the response function
10451
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gna,kb
eff ~ t2t8![

d

dVkb
ext^I na&U

Vext50

~54!

of the current with respect to external voltage

Vkb
ext52

\

2e

]

]t
~Akb

ext! t, ~55!

Eq. ~53! can be rewritten as

Cna,kb
I ~ t !5T@gna,kb

eff ~ t !1gna,kb
eff ~2t !#. ~56!

For wave vectors small in comparison with 1/a, the vari-
ables I na can be identified withai(x), whereasVna

ext with
aEi

ext(x), where Ei
ext(x) is the projection of the externa

electric-fieldEext(x) on the planex350 @here and below we
assume thatEi

ext(q,v) is transverse#. This allows us to re-
write Eq. ~56! as

^ itit&qv52T Re@geff~q,v!#, ~57!

where the Fourier transformgeff(q,v) of the effective con-
ductivity is the coefficient of proportionality in the relation

i~q,v!5geff~q,v!Ei
ext~q,v!. ~58!

One should distinguish betweengeff(q,v) and ~also
momentum- and frequency-dependent! sheet conductance
gh(q,v), which is defined as the coefficient of proportio
ality betweeni(q,v) and total electric fieldEi(q,v),

i~q,v!5gh~q,v!Ei~q,v!. ~59!

The form of the current induced correction toEi
ext(q,v) can

be easily found with the help of Eqs.~5! and~46!, which lead
to

Ei~q,v!5Ei
ext~q,v!1 iv

m0

2q
i~q,v!. ~60!

Substitution of Eq.~59! into Eq. ~60! then gives

Ei~q,v!5
1

12 iv
m0

2q
gh~q,v!

Ei
ext~q,v! ~61!

and, accordingly,

geff~q,v!5
1

2 iv
m0

2q
1Zh~q,v!

, ~62!

where Zh(q,v)[1/gh(q,v) is the momentum- and
frequency-dependent sheet impedance.

The form of Eq.~62! suggests that the response of a c
rent in a two-dimensional system to the external electric fi
is the same as if the proper sheet impedance of a sys
Zh(q,v) has been connected in series with the other con
bution, which can be considered as the effective impeda
of the empty space surrounding this system. This additio
contribution is purely inductive and corresponds to
3-5
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Ls~q!5
m0

2q
. ~63!

In the case of a superconducting system in the lo
frequency limitZh(q,v)'2 ivLh , whereLh is the effec-
tive sheet inductance, substitution of which into Eq.~61!
allows us to rewrite it as

Ei~q,v!5
Lq

11Lq
Ei

ext~q,v!, ~64!

where

L5
2Lh

m0
~65!

is the ~two-dimensional! magnetic-field penetration length22

already discussed in Sec. III. Since the transverse ele
field appears only as a consequence of the ac magnetic
the same length describes as well the screening of the tr
verse electric field.

The form of the fluctuation-dissipation theorem obtain
after substitution of Eq.~62! into Eq. ~57!,

^ itit&qv52T Re
1

2 ivLs~q!1Zh~q,v!
~66!

being completely independent of the details of the struct
of the particular system used for its derivation, one can
pect it to be valid also for other two-dimensional superco
ducting~or simply conducting! systems, in particular, supe
conducting films.

VI. RESULTS AND DISCUSSION

The substitution of Eq.~66! into Eq. ~14! gives the ex-
pression for the flux noise power spectrum

S~v!5
m0

2T

2 E d2q

~2p!2
F2~q!ReF 1

2 ivLs~q!1Zh~q,v!G ,
~67!

which is the central result of this work. It allows us, inste
of constructing special theories explaining frequency dep
dence ofS(v) in different regimes, to relate it with the prop
erties ofZh(q,v).

It is of interest to compare Eq.~67! with the expression
for the quantity@the correction to frequency-dependent m
tual impedanceZm(v)], which is measured in the framewor
of the two-coil method and is defined as the ratio of t
measured voltage to the driving current. In our notation, t
expression10 can be rewritten as

dZm~v!52v2
m0

2

4 E d2q

~2p!2

F~q!F̃~q!

2 ivLs~q!1Zh~q,v!
,

~68!

whereF̃(q) is the geometrical factor analogous toF(q), but
describing the driving coil. Note that the applicability of Eq
~67! and~68! for the description of a Josephson-junction a
10451
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ray requires the lattice constant of the arraya to be much
smaller then the geometrical parameters of the coil~s! (r and
h) entering the expressions forF(q) and F̃(q).

Comparison of Eq.~68! with Eq. ~67! shows that the rea
part of dZm(v) is determined by the same~real! component
of geff(q,v) as the noise spectrum, so in the absence o
difference betweenF(q) andF̃(q) the noise spectrumS(v)
would be simply proportional to Re@dZm(v)#

S~v!52
2T

v2
Re@dZm~v!#. ~69!

In the case of the simplest coil~a single circular loop of
radiusr ) Eq. ~67! is reduced to

S~v!5pm0
2r 2TE

0

`

dqH J1
2~rq !

q
exp~22hq!

3ReF 1

2 ivLs~q!1Zh~q,v!G J . ~70!

The analogous equation derived by Kim and Minnhagen17 in
the framework of a less general approach~by expressing all
quantities in terms of the vortex gas dielectric function! dif-
fers from Eq.~70! basically ~i! by the absence of the term
Ls(q) and ~ii ! by the presence in the integrand of the ad
tional factor q4. The former of the two discrepancies
rather natural, since in Ref. 17 the screening effects have
been taken into account, whereas the latter we believe to
the consequence of the incorrect calculation of the magn
field produced by the currents in the array.

In Ref. 17, this magnetic field is calculated as the sum
the magnetic fields produced by the current loops associ
with lattice plaquettes, whereas the magnitude of a curren
each loop is assumed to be given the directed sum of
currents in the junctionsI na along the perimeter of a
plaquette~in the present paper this sum is denoted“3I ). In
such a procedure the current of each junction is coun
twice ~as giving contributions to the loop currents associa
with the two neighboring lattice plaquettes! but with oppo-
site signs, so these two contributions almost cancel e
other, which leads to the appearance of the additio
q-dependent factor in comparison with our Eq.~70!. In a
more consistent implementation of this approach, the val
of the loop currents associated with arrays plaquettes sh
be chosen in such a way that the value of the current on e
junction is given by the difference of the loop currents as
ciated with the two neighboring plaquettes. These so-ca
mesh currents21,24I n

m are related with the currents in the jun
tions I na as

I n
m[2DL

21~“3I !n , ~71!

which explains the appearance of the additional factor ofq4

in calculation which uses (“3I )n instead ofI n
m. An analo-

gous mistake is incorporated in numerical calculations
Ref. 17.

The main contribution to the integral in Eq.~70! is com-
ing from the region

0,q&1/h, ~72!
3-6



es

in
t

e

in

nc

d

x
,

is
r

ite
-

-

ost
aic
e of
tive

use
g
-
s

e-
s
e
ple.

ur
the

that

rd

ain
s a
e

in
m

still
pen-

s, a
es-
may

FLUCTUATION-DISSIPATION THEOREM AND FLUX . . . PHYSICAL REVIEW B66, 104513 ~2002!
so in the situation whenh exceeds all the microscopic scal
responsible for theq dependence ofZh(q,v), one can re-
place in Eq.~70! Zh(q,v) by

Zh~v![2 ivLh~v!1Rh~v!5 lim
q→0

Zh~q,v! ~73!

and useS(v) to extract information aboutLh(v) and
Rh(v).

Let us first discuss the limit when the effects of screen
can be neglected. This is possible if in the essential par
the interval~72! one can neglectLs(q) in comparison with
Lh(v) and requiresL@h, r ~and notL!h, as has been
claimed in Refs. 4 and 17!. In that case, Eq.~70! is reduced
to

S~v!5pm0
2r 2TY~h/r !

Rh~v!

v2Lh
2 ~v!1Rh

2 ~v!
, ~74!

where

Y~u!5E
0

`

dp
J1

2~p!

p
exp~22up!'H 1/2 for u!1

1/16u2 for u@1.
~75!

This means that forh!r the amplitude of the noise has to b
almost independent ofh, whereas forh@r it has to decay
proportionally to 1/h2. The experimental results of Fest
et al.,4 obtained on thin YBCO film ath/r;1, are compat-
ible with 1/h2 dependence even better than with 1/h3 depen-
dence erroneously predicted in Ref. 17 forh!r .

The frequency dependence ofS(v) in the weak screening
regime is directly determined by the frequency depende
of Zh(v). According to the results of Ambegaokaret al.,25

below the temperatureTBKT of the Berezinskii-Kosterlitz-
Thouless phase transition,26,27 that is in the quasiordere
phase of the array, the contribution toRh(v) coming from
vortex pairs has to be~for low-enough frequencies! of the
algebraic form

Rh
vp~v!}v2K(T)21, ~76!

whereK(T) is the prelogarithmic factor in the vortex-vorte
interaction divided by 4T. With increasing temperature
K(T) monotonously decreases frompJ(T)/2T at T!J(T)
to 1 at T5TBKT , demonstrating on approachingTBKT a
square-root singularity

K~T!21}ATBKT2T

TBKT
. ~77!

Substitution of Eq.~76! andLh(v)'const@belowTBKT ,
the main contribution toLh(v) is purely superconductive#
into Eq.~74! gives that in the absence of screening the no
spectrum associated with vortex pairs should be of the fo

S~v!}v2K(T)23. ~78!

Above TBKT , the presence of free vortices leads to a fin
zero-frequency resistance@proportional to free vortex con
10451
g
of
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centrationnv ~Ref. 25,28!# and, therefore, to frequency inde
pendent~at low frequencies! noiseS(v)}T/nv .

Experimental data of Refs. 7 and 8~taken presumably
aboveTBKT) indeed demonstrates a crossover from alm
white noise at low frequencies to the noise with algebr
frequency dependence at higher frequencies. The valu
S(v50) increases with deceasing temperature in qualita
agreement withS(v) being inversely proportional tonv(T).
However, the algebraic dependence ofS(v) on v observed
at higher frequencies~and at lower temperatures! cannot be
unambiguously ascribed to vortex pairs contribution, beca
in contrast to Eq.~78! the value of the exponent describin
this dependence@S(v)}1/v# remains independent of tem
perature in a wide interval of dimensionless temperaturet
[T/J(T) and in terms of Eq.~78! corresponds toT
5TBKT .

In the opposite limit of strong screening,Lh(v) can be
neglected in comparison withLs(v), andS(v) can depend
only on Rh(v), but not on Lh(v). In particular, for r
@L,h integration in Eq.~70! gives

S~v!'
pm0rT

v
~79!

for v!Rh(v)/m0h,Rh(v)/m0L and

S~v!'
2r

h

Rh~v!T

v2
~80!

for v@Rh(v)/m0h andh@L.
Notice that Eq.~79! corresponds to the very special r

gime of the universal 1/v noise, the amplitude of which doe
not depend onZh(v) and, accordingly, does not allow on
to extract any information about the properties of the sam
It is, therefore, natural to inquire if~almost! temperature-
independent 1/v noise observed in Refs. 7 and 8 over fo
decades in frequency can be interpreted as resulting from
realization of such a strong screening regime. The idea
1/v dependence appears because the SQUID~superconduct-
ing quantum interference device! integrates contributions
from a wide interval of wave vectors has been put forwa
by Wagenblast and Fazio.14

However, our derivation has shown that in order to obt
the 1/v dependence over four decades in frequency a
result of the integration overq in a strong screening regim
one should haver /h*104, which definitely has not been
fulfilled in the experiments of Refs. 7 and 8. Thus, the orig
of the 1/v dependence of the flux noise power spectru
observed experimentally in Josephson-junction arrays
remains to be elucidated. The analogous frequency de
dence of the noise spectrum in thin YBCO films5 is ascribed
to the vortex hopping between neighboring pinning center
finite vortex concentration being associated with the pr
ence of a residual magnetic field. The same mechanism
be responsible for the results of the experiments6–8 on
Josephson-junction arrays.
3-7
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