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We report a study of overdamped Josephson junction arrays with the geometry of periodically repeated
Sierpinski gaskets. These model superconductors share essential geometrical features with trulypemdom
colative systems. When exposed to a perpendicular magnetic Beltheir Euclidian or fractal behavior
depends on the relation between the intervortex disténgeosed byB) and the size of a constituent gasket,
and was explored with high-resolution measurements of the sample magnetoindlg@hcén terms of the
frustration parametefrexpressingin units of the superconducting flux quantuthe magnetic flux threading
an elementary triangular cell of a gasket, the crossover between the two regimes odgwrs H{2x 4N),
whereN is the gasket order. In the fractal regimiex(f.y) a sequence of equally spaced structures correspond-
ing to the set of states with unit cells not larger than a single gasket is observed at multiflgs, @fs
predicted by theory. The fine structureloff) radically changes in the Euclidian regime<(f.y), where it is
determined by the commensurability of the vortex lattice with the effective potential created by the array.
Anomalies observed in both the periodicity and the symmetrly(d) are attributed to the effect of a hidden
incommensurability, which arises from the deformation of the magnetic field distribution caused by the asym-
metric diamagnetic response of the superconducting islands forming the arrays.
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I. INTRODUCTION normal phase boundaf¥,(B) of aluminum wire networks
formed by periodically repeated SG’s and of analogous net-
A wide variety of disordered materials, including super-works with percolative geometry exposed to a perpendicular
conductors, is known to exhibit geometrical inhomogeneitiesnagnetic fieldB. In those experiments the magnetic length,
over a broad range of length scales. The properties of sudi{B)=~(¢,/B)Y? which is a measure of the typical nearest-
systems can be conveniently described in terms oheighbor distance between the vortices present in the system,
percolatior, the simplest idea to understand randomnesswas shown to be the relevant length scale to explore the
Percolation can be regarded as a geometrical phase transiti@uclidian fractal(EF) crossover ¢, is the superconducting
taking place at a “critical concentrationp. separating a flux quantum. While the scaling behavior of the phase
phase of finite clustersp<p,) from a phase where an infi- boundary of the SG networks was found to exhibit a cross-
nite cluster is presentpt>p.). Like other critical phenom- over from the Euclidian to the fractal regime consistent with
ena, it is characterized by a correlation lengfiip) which  theoretical predictioffs based on extension$ of the
diverges at the percolation threshglg. Right atp., a sys- Ginzburg-Landau theory and allowing for comparievith
tem with percolative disorder exhibits a natural self-similarthe anomalous diffusion exponent, no EF crossover was ob-
structure at all length scales, and can therefore be modelestrved in percolative networks which, surprisingly, were
by a family of scale-invariant fractal lattices, such as thefound to behave like a homogeneous system at all length
Sierpinski gasketSG), which has been suggested mimic  scales (B) probed in the experiment.
the essential geometrical features of the percolating cluster’s More recently, compelling evidence for the EF crossover
backbone. In the critical region above and belpyw where in a percolative system emerged from ac conductance
&p is finite, the nature of the geometry depends on the lengtmeasuremeniperformed in zero magnetic field danfrus-
scalel at which one is probing the system: lik¢,, its  trated site-diluted Josephson junction arrays with site occu-
structure isfractal, whereas it can be regarded as homogepation probabilitiep very close top. . In these experiments
neous with conventiondtuclidian features fol>¢,. Thus, the crossover was controlled by the driving angular fre-
the same sample can be used to study the properties of tlagiency w, which determines the ratio of the impedances
system in different dimensionalities. associated with the two types of links forming the random
Allowing an accurate control of both the nature and thenetwork. According to Efros and ShklovsRithe increase of
amount of disorder and exhibiting properties quite sensitivehis ratio with decreasing also leads, ifp is sufficiently
to dimensionality, Josephson junction arrays and wire netelose top., to a crossover from the fractal to the Euclidian
works prepared with modern microfabrication and nanofabfegime, as confirmed by the experiments of Ref. 8.
rication techniques provide ideal model systems to investi- In this paper we report the results of experimental and
gate the dimensional crossover from the Euclidian to theheoretical studies of another model superconduioaring
fractal regime. The first step in this direction was made byessential geometrical features with a percolative system
Gordon et al.? who investigated the superconducting-to- which can be expected to exhibit a dimensional crossover.
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Although some preliminary evidence for a dimensional
crossover was already reported in Ref. 12, the phenomenon
was not exhaustively investigated. In the present work we
rely on high-resolution studies of the complex fine structure
of L(B) to explore in detail both the Euclidian and the fractal
regimes of the SG arrays. Reflecting flux quantization phe-
nomena occurring in loops with a hierarchical distribution of
sizes up to the gasket sitg, the fine structure provides a
unigue tool to reveal how the geometrical properties of the
system change as the magnetic lend) is swept through
Ly We show that, in terms of the frustration paramdter
expressing the magnetic flux threading an elementary trian-
gular cell of a gasket in units ab,, the EF crossover occurs
at f,y=1/(2x4N). In the fractal regime f>f.\) the most
relevant contributions to the fine structureldff) are shown
to arise from a particular set of ground states defined by
f=Mf.y, whereM is an integer. Corresponding to vortex
configurations where the vortex lattice is strongly pinned by
the hierarchical potential landscape created by the gaskets,
these states are particularly robust against thermal fluctua-
(b) tions and are therefore quite prominent in the fine structure
of L(f).

A very interesting aspect emerged from the study of the

FIG. 1. (a) Scanning electron micrograph showing a portion of amagnetoinductance in the fractal regime. The analysis of the
triangular array composed by periodically repeated second-ordéiata revealed anomalous featutepecifically, the suppres-
Sierpinski gaskets of proximity-effect coupled Pb/Cu/Pb Josephso@ion of the periodicity corresponding to a shiftfdfy 1 and
junctions. The length of the elementary links of the gasketgimg ~ Of the symmetry with respect t6=1/2) inconsistent with
Notice the “truncated-star” shape of the superconducting Pb islandéheoretical predictions based on the description of the system
(with the exception of those centered at the common vertices ol terms of a uniformly frustrateckY model. We suggest
three constituent gasketgb) The rhombohedral unit cell of a pe- that, because of the asymmetric shape of the superconducting
riodic array of second-order gaskets. islands forming the junction pattern of a gasksee Fig.

1(a)], the screening currents flowing in the islands create a
The samples we have investigated are arrays of proximityelistortion of the magnetic field distribution in the array such
effect coupled SNS junctionsvhere S stands for supercon- that the fluxes threading the various loops slightly deviate
ductor and N for normal metatonsisting of SG’s connected from being proportional to their areas. This introduces an
to each other at the vertices in such a way as to form &ffective incommensurabilitfwhich we call “hidden” to
regular triangular lattice. As can be seen from Figa)l distinguish it from the “geometric” one studied earftéin
where a part of an array of second-order gaskets is shown, Wwire networks with incommensurate celiand perturbs the
these systems the linear sikg=2"a of an individual gas- self-similarity of the gaskets. As a result, the system is no
ket of orderN can be regarded as playing the roleégf(ais  longer uniformly frustrated. We demonstrate that the anoma-
the length of an elementary link of the gagkéts shown in  lous features mentioned above can be quantitatively ac-
detail in this work, a remarkable feature of the SG arrays icounted for by a simple model, in which the area of the
that in these systems the EF crossover is clearly manifest, idifferent plaquettes of a gasket is changed according to an
contrast to truly percolative systems, where its signatures argppropriate deformation scheme. In our opinion, the applica-
elusive. tion of this approach will also prove to be useful when con-

The quantity at the heart of the present study is the magsidering other types of Josephson junction arrays with non-
netoinductancé (B) of the SG arrays, extracted from mea- equivalent lattice plaquettes.
surements of their ac impedance. Its interest resides in the Compelling evidence for the existence of the Euclidian
observation that, being inversely proportional to the areategime is provided by the array’s magnetoinductance for
superfluid density, it provides a tool to appreciate how thef <f., . Besides the absence of the power-law scaling behav-
degree of superconducting phase coherence in the systeior characteristic of the fractal regime(f) contains struc-
changes witB or, equivalently, with the level of frustration tures which reflect the presence of ground states correspond-
imposed byB. Previous impedance measurements performethg to vortex configurations commensurate with the
on weakly frustrated arrays similar to those studied in thisunderlying triangular lattice formed by the largest triangular
work focused merely on the fractal regime and demonstratedpops of the arraybelowf.y, it is energetically unfavorable
in particular, the unusual scaling propertfesf the vortex  for vortices to penetrate loops of smaller 3jzthereby al-
energy! as well as the asymptoti®( 0) scaling behavior lowing an unambiguous identification of the Euclidian re-
of the field-induced correction to the array inductance resultgime.
ing from the hierarchical structure of the gaskEts. In general, these vortex configurations have the same
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structure as in theXY model on a honeycomb lattice, lated to dissipative vortex motion, is also shown for com-
but correspond to values of reduced by a factor of pleteness. Additional details concerning the samples and the
1/f.n=2X%4N. However, the casé=(1/2)f.y requires spe- measuring technique can be found in Ref. 12.
cial attention. In a honeycomb lattice the ground state of the In the following, temperatures are expressed in terms of
correspondingfully frustrated XY model is characterized the reduced temperature relevant for the statistical mechanics
by an accidental degeneracy, whi¢io lowest order sur-  of the systemy=KkgT/J(T), whereJ(T) is the temperature-
vives even in the presence of thermal fluctuatith®wing  dependent Josephson coupling energy. At temperatures well
to the more complex structure of the system, however, thibelow the zero-field critical temperaturgy, J(T) was de-
peculiar degeneracy is removed in our SG arrays, allowing taluced from measurements of the “bare” sheet kinetic induc-
identify the vortex configuration in the ordered phase atance L(T)=(¢o/27)2(5/3)N//3J(T) of the unfrustrated
f=(1/2)f.n- samples? Extrapolation to higher temperatures was then
The paper is organized as follows. Experimental detailsachieved by fitting the low-temperature data to theoretical
are given in Sec. Il. Section Ill is devoted to the fractal expression® for J(T).
regime >f.y). Relying on the methods developed in Ref.  Because of their two-dimensioné2D) nature at length
12, in Sec. Il A we present the calculation of the magneto-scales larger thahy, both samples are expected to exhibit,
inductance of a frustrated SG array for the particular set ot zero frustration {=0) and in the limit o—0, a
frustrationsf =M f .y corresponding to the sequence of the Berezinskii-Kosterlitz-ThouleséBKT) phase transitioh’ A
most stable states, which are characterized by a relativelgharp depression df ~1(0), which can be associated with
compact structuréwith a unit cell not larger than a single the BKT transition, has been indeed observed at, respec-
gaskel. Experimental data for the magnetoinductance in theively, r.,~0.57 andr.,~0.23, in good agreement with the
same regime are presented and discussed in Sec. Ill B, whetigeoretical predictiot? 7¢ny=(3/5)N7co, Where 7,o=~1.5 is
we show, in particular, how the anomalous featurek (df), the reduced temperature of the BKT transition of a regular
revealing the presence of hidden incommensurability, can bgiangular Josephson junction art@with the samel(T).
accounted for by a simple model, in which the areal changes
of differ_ent_ plaquettes{rela_ted to the redistribut_ion of the lIl. FERACTAL REGIME
magnetic fieldl are determined by only one adjustable pa-
rameter. In Sec. IV we provide experimental evidence for theA. Ground states of a regular array of Sierpinski gaskets and
existence of the EF crossover and in Sec. V the fine structure their sheet inductance

of L(f) in the Euclidian regime belovicy is shown to be We start by recalling that, within the framework of an

consistent vylth_ the existence of vortex states commensuraighproximation ignoring thermal fluctuations, a Josephson

with the periodic lattice formed by the largest _trlangular Ce”sjunction array behaves, with respect to an extetdel cur-

of the arrays. A few concluding remarks are given in Sec. Vl.ent source, like a network of inductofk;; }, whose induc-
tances are givéR!® by

Il. EXPERIMENTAL ASPECTS 2
(ol27)
The samples studied in this work consist of second- Lij (63 ~ Jcosh. @
(N=2) and fourth-order l=4) gaskets sitting on the sites N
of, respectively, a 318313 and a 7878 triangular lattice Wwhere ¢;; is the gauge-invariant phase difference across the
and connected to each other at the verticee Fig. {@)].  link ij. As required by fluxoid quantization, the sum @f
Each gasket contains, respectively,?*3=27 and around a lattice cell is equal torZ fS—m), wheref is the
34*1=243 SNS Josephson junctions consisting of supercorfrustration parameter expressing the magnetic finxunits
ducting Pb islands proximity effect coupled to each other byof ¢,) threading an elementary triangular cell of a gasket
an underlying normal Cu layer. The geometrical and physicall f = Ba2\/3/(4¢,)], Sthe area of the cellexpressed in units
parameters of the junctions are almost identical to those off the area of an elementary triangular 9@mdm the num-
the array studied in Ref. 12. Most of the data presented beber of flux quantavortice9 penetrating the cell under con-
low have been obtained in experiments performed on thsideration.
array of second-order gaskets. In writing Eq. (1) we have assumed that the proximity-
The sheet magnetoinductantdf) was inferred from effect coupled SNS junctions forming the arrays studied in
measurements of the array'finear sheet impedance this work have a sinusoidal current-phase relation at the tem-
Z=R+iwlL performed with a very sensitive superconduct-peratures of interedf. It clearly follows from Eq.(1) that,
ing quantum interference devi¢8QUID) operated two-coil even if all the junctions are identical, their effective induc-
mutual inductance technigtreat driving frequencies typi- tances in a frustrated system may differ substantially from
cally in the range 0.1-1.0 kHz. With this method we wereeach other on account of the nonuniform distribution of
able to resolve inductance changes of the order of 10 pH ifi6;;}. Since the array magnetoinductarige’) can be found
swept-frustration measurements, in whicbould be tuned by applying Kirchhoff’s laws to the inductor netwofk ;},
with a precision better than 16. The experimental data are it is evident that, at any frustratidnL (f) will be completely
presented and analyzed in terms lof }(f), the quantity —determined once the distribution ob;;} is known.
measuring the degree of superconducting phase coherence inThe ground state of a uniformly frustrated array of peri-
the samples. When needed, the resistive compdR@t re-  odically repeated gaskets of orddr[see Fig. 1a)] can be
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FIG. 3. The ground-state vortex configurations at multiples of

follow by imposing fluxoid quantization in the four nonequivalent
f=1/32 in the rangd0,40] for the rhombohedral unit cell of a

loops a, b, ¢, andd and current conservation at one of the six
equivalent node&. Current conservation at the other nodes is en- . S :
sgre d by symmetry uniformly frustrated periodic array ofundistorted second-order
' gasketsP denotes the number of vortices in the largest triangular
loop. Vortex configurations with circled vortex occupation number

constructed by a .Simple juxtaposition after .finding theP are no longer ground states when the gasket is weakly distorted as
ground state of an isolatddth-order gasket only if the con- ghown in Fig. €a) (see Fig. 7 for a comparispn

straints of fluxoid quantization imposed on the largest trian-
gular loops(located between thiith-order gaskejsare au- Imposing current conservation at one of the six equivalent
tomancglly fulfilled. Recalhng the d.e.f|n|t.|on o_f given  hodes(denoted byK in Fig. 2) and fluxoid quantization in
above, it can be shovhthat thls co_ndltlon is satisfied only e four nonequivalent loopa, b, ¢, andd (with, respec-
for a particular set of frustrations given by tively, vortex occupation numbems,, m,, m., and my)
leads to a system of five equatiof@ly one of which, de-
M scribing current conservation, is nonlingarich have to be
f= 2% 4N’ @ solved numerically under the constraint that the distribution
of the quantum numbefsn,} (a«=a,b,c,d) is such that the
whereM is an integer corresponding to the total number ofgasket energy
vortices in the rhombohedral unit cell of the SG array com-
posed, as shown in Fig.(ld), by a singleNth-order gasket
and the adjacent “empty” triangular loop. Thus, in order to
calculate the magnetoinductance of the system at the values
of f given by Eq.(2), all we need is to determine the ground- is minimized. Quite remarkably, for a given frustration satis-
state distribution of 6;;} in one of its constituent gaskets. fying Eq. (2), the distribution of{m,} corresponding to the
Assuming that the ground state of a gasket is the onéowest energy turns out to be identitato that emerging
having the highest possible symmetry consistent with its refrom a calculation based on junctions with a linear current-
flection and third-order rotation symmetdésfor wire net-  phase relation, for which a fully analytical treatment is
works with the geometry of a third-order SG this conjecturepossible?’?2 The result is illustrated in Fig. 3, where the
has been confirmed by numerical calculati@psit can be  ground-state vortex configurations for the rhombohedral unit
showrf® that the number of independent bond variajlgs}  cell of a regular array of second-order gaskets are shown for
is equal to (3+1)/2. They can be found from an equal M in the rangg 0,40].
number of constraints imposed by current conservation at the Inspection of Fig. 3 reveals characteristic features, which
nodes and fluxoid quantization in the loops of the gasket. Foare valid for arbitrary gasket order. One first observes that,
example, in the second-order gasket of Fig. 2 the links shamwith increasing frustration, vortex nucleation spreads from
ing the same symbol have the same value®,pf thereby the largest to smallest loops?? a property reflecting the
showing that there are only five independent bond variablesierarchical character of the energy needed to create a vortex

-

E=J2, (1—cosf;) )
(i)
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calculation with the experimental data presented in Sec.
1B, we plot the normalized inverse magnetoinductance
L~1(f)/L~%(0). Note that, as expected for a uniformly frus-
trated Josephson junction arrdy, X(f) is symmetric with
respect tof =1/2 and periodic with period=1. We also
recall that, although hardly visible in the linear plot of Fig. 4,
in the fractal regime the frustration-induced correction
AL(f)=L(f)—L(0) to the array inductance is predicted to
scale!? in the limit of small frustrations and low tempera-
tures, asf” with »=1In(125/33)/In 4=0.96. Obviously, the
0.6 s power-law behavior oAL(f) should no longer persist in the
i Euclidian regime below .
So far we have considered only the frustrations given by

L(fy/ L(0)

0.5¢ 6 -

et Liveens Lrrson evins Lervvin Lerveins Levins Eqg. (2), for which the ground state of a regular array of
-025 0 0.25 0.50 0.75 1.00 1.25 gaskets can be regarded as a periodic replication of the
f ground state of a single gasket. In order to determine the

) o _array ground state at rational frustrations differing from those
FIG. 4. Numerically calculated normalized inverse magnetom—giVen by Eq.(2), one should consider a “supercell” compris-
ductance at multiples of=1/32 in the rangd —11,43 of a uni-  jh4 more than one gasket. The analysis of the ground states
formly m.'s”ated regular array dlundistorted Second'ord.er 985~ hased on such supercells rapidly becomes cumbersome and
kets. Notice the symmetry V\."th Tes‘?e““@ 12 z.ind the periodicity (for f>f.y) is not pursued in this work. However, as super-
of periodf=1. The dotted line is simply a guide to the eye. cells imply that superconducting phase coherence extends at

o . larger length les, one can expect the correspondin
excitatio®L Next, one notes that the vortices penetrate the: 9 '© gth scales, o P P 9

askets onlv foM>1_ thereby imolving that a SG arra ground states to be more vulnerable to thermal fluctuations
8\”" exhibit félctal beha'lvior onl))//forfp>yl/(%><4N) One fur- y [and, consequently, less prominent in the fine structure of

: . _ . L(f)] than those af=Mf.y. At these particular values of
ther recognizes that, since i th? _rhombohedral Ut ¢rustration the vortex configurationshown in Fig. 3 are
cell contains just one single vortex sitting in the largest tri-

N strongly pinned by the hierarchical potential landscape pro-
angular loop, the g_round state_of the arr_ayf atl_/(2><4 ) vided by the gaskets, thereby making these ground states
corresponds to a triangular lattice of vortices with a neares

o : -
neighbor distance equal to the gasket size Recalling that particularly robust against thermal fluctuations.
Ly plays the role of§,, one expects that for<<1/(2X 4Ny
the system will behave like a regular Josephson junction ar-  B. Comparison with experiment and effects of hidden
ray with conventional Euclidian geometry. Thus we identify incommensurability

Focusing on the fine structure bff) we now compare
_ 1 4) the theoretical predictions of Sec. Il A with high-resolution
2x 4N magnetoinductance measurements performed on the array of
second-order gaskets. Figuréabshows the normalized in-
as the frustration at which the EF crossover occurs. The naserse sheet magnetoinductarice'(f)/L ~*(0) of the array
ture of the ground states of the SG array in the Euclidiarof second-order gasketmeasured at 1 kHzt three differ-
regime (0<f<f.y) is discussed in Sec. V. ent (reduced temperatures. We first observe that, although
Having shown how the structure of the ground state canhe overall shape of the magnetoinductance curves looks
be determined for the particular set of frustratid®s, we  roughly similar, the fine structure becomes richer and much
can now proceed with the calculation of theeetmagneto-  sharper with increasing temperature, thereby revealing very
inductanceL (f) of the SG array, the quantity measured in clearly almost all the “superfluid” peaks corresponding to
our experiments. We first note that, for this particular set ofthe states with a unit cell not larger than a single gasket and
frustrations,L(f) is proportional to the magnetoinductance belonging to the sequende=M/32 given by Eq.(2). Note
of a constituent gasket. Therefore, if we calculate the inducthat, to make the identification of the structures easier, the
tance of a single gasket and normalize it to its value afrustration unit on the horizontal axis of Fig(eh is chosen
f=0 to eliminate the trivial dependence on the gasket sizeto be equal tof.y=1/32. The striking evolution of the fine
we obtain a result also expressing the normalized sheet magtructure with temperature suggests that the motion of vorti-
netoinductancé (f)/L(0) of the composite periodic system. ces due to thermal fluctuations plays a major role in the
In Ref. 12 we have pointed out that for a given distributiondynamic response of these arrays. We interpret the behavior
of {6;;} the calculation of the inductance of a single gasketshown in Fig. %a) as clear evidence that, at sufficiently high
can be performed by successive application of the triangleklemperatures, superconducting phase coherence in the neigh-
star transformation well known in the theory of electric borhood of the ground statesfat M/32, for which the vor-
networks?* The result of such a calculation for a regular tex lattice is pinned, is drastically disrupted by vortex-lattice
array of second-order gaskets is shown in Fig. 4 for multipleslefects, created by excess or missing vortices, moving al-
of f=1/32 in the rang¢ —11,43. In order to compare this most freely on the “frozen” vortex background. This process

fen
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1.5F T L LA A AN T T grains create a distortion of the current patterns associated
with the individual loops which leads to a redistribution of
the magnetic field and perturbs the self-similarity of the gas-
kets. In the temperature range (5.5<K<6.4 K) of the data
shown in Fig. %a), the magnetic penetration depth of the Pb
islands [as estimated from the zero-temperature bulk Pb
value (\(0)=~40 nm) and the(proximity-effect reduced
transition temperatureT(=6.9 K) of the Pb grainkis at
least 25 times smaller than their smallest planar geometrical
dimension, which corresponds to the width of the junctions
(=2 um). Thus one expects the distortion of the current
patterns and, consequently, the nonuniformity of the frustra-
tion, to have a considerable effect bn(f).

The origin of the phenomenon being intimately related to
the geometry of the superconducting islands rather than to
the physical properties of the junctions, it seems plausible to
describe the effect of the inhomogeneous frustration by
changing merely the effective area of the different plaguettes
according to a prescribed rule. This is illustrated in Fig) 6
for a second-order gasket, whose distortion is modeled by
shifting the vertices of the triangular loops toward the “cen-
ters of mass” of the corresponding superconducting islands,
as shown in Fig. @). Since the distribution of the screening
currents in the islands is shifted in the same direction, this
deformation scheme appears to be a reasonable approach of-
fering, above all, the advantage of a simple description in
f terms of a single paramater, temal) areal change (ex-

, pressed in units of the area of an elementary triangulay cell

FIG. 5. (a) Normalized inverse magnetoinductance of the peri-(:k:“f'm:“CI in Fig. 6. Notlce., incidentally, tha.t this procedure
odic array of second-order gaskets shown in Fig) fneasured at 1 does not alter the frustratiofiEq. (2)] for Wh'Ch, the ground .
kHz at three different temperatures as a function of frustration. Foptate of the array can be constructed by a simple juxtaposi-
clarity, the curves forr=0.13 and 0.05 are shifted upward by, re- tion of independent gaskets.
spectively, 0.25 and 0.50. Notice the absence of periodicity of pe- AS the resulting deformation preserves the reflection and
riod 1 and of the related symmetry with respect to1/2. (b) Filled ~ third-order rotation symmetries of the gaskete Fig. 63)],
circles: normalized inverse magnetoinductance calculated for an athe determination of the vortex ard;;} configurations in
ray of second-order gaskets deformed as shown in Fig. 6 witlthe highly symmetric ground states fat M f .\ can be car-
€=7.4%. This curve should be compared with the data at the lowfied out by again following the procedure described in Sec.
est temperaturer= 0.05) in(a). For comparison, the calculation of Il A. The only modification appears in the formulation of
Fig. 4 for an undistorted SG array is also shofempty circles, the  the fluxoid-quantization constraints for the deformed loops,
curve is shifted upwards by 0.4 for clarityrhe dotted lines i) ~ whose areasgand, therefore, the associated magnetic fluxes
are simply guides to the eye. change. For example, for the second-order gasket of Fajy. 6

the areas of the deformed plaquetée®, ¢, andd are equal,
dramatically sharpens the fine structure, thereby enhancing an approximation linear ine, to 1—e, 1—(3/2)e,
the amplitude of the oscillations. A similar behavior was alsol— 3¢, and 4+ 3e, respectively. An analogous problem,
observed in experiments performed on wire networks of in-however with a quite different deformation scheme, was con-
terconnected gaskétsand in regular triangular Josephson sidered by Ceccattet al?® for a system with a linear
junction array®® as well as in numerical simulation$. current-phase relation.

In sharp contrast to the theoretical prediction for a uni- Ground-state vortex configurations for the rhombohedral
formly frustrated SG arraysee Fig. 4, theL~%(f)/L~%(0) unit cell of an array of second-order gaskets with a deforma-
curves of Fig. §a), although still symmetric with respect to tion parametere=7.4% (the reason for the choice of this
f=0, are no longer periodic with period 1, a behavior lead-value is explained belojare shown in Fig. 7 foM in the
ing unavoidably to the suppression of the symmetry withrange[ 0, 40]. A comparison with Fig. 3 reveals that some of
respect tof =1/2. We attribute these anomalous features tdhe ground states of the undistorted array have been replaced
the inhomogeneous frustratioresulting from the change in by new ones. More precisely, while for the regular SG lattice
the effective areas of different plaquettes caused by théhe symmetry with respect tb=1/2 implies that the ground
asymmetric(with respect to the direction of the linkslia-  state for (:-f) may be conceived as resulting from the su-
magnetic response of the truncated-star-shaped supercgoerposition of the ground states for=1 and —f, for the
ducting(Pb) islands[see Fig. 1a)]. Because of this particular distorted system this property no longer holds. The absence
geometrical form, the screening currents flowing in theseof periodicity (corresponding to thé« 1+ f symmetry and

L(F)/ L™(0)

L'(f)/ L(0)

-0.25 0 0.25 0.50 0.75 1.00 1.25
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FIG. 7. The ground-state vortex configurations at multiples of
f=1/32 in the rangd0,40] for the rhombohedral unit cell of a
periodic array of second-order gaskets deformed as shown in Fig.
6(a) with e=7.4%. P denotes the number of vortices in the largest
triangular loop. The comparison with the ground states of an array
of undistorted gaskets of the same ordEig. 3 reveals that the
vortex configurations with circled vortex occupation numBeare
% new ground states of the system.

A similar behavior was observed in the magnetoinduc-
tance of the array of fourth-order gaskets, whose fine struc-

FIG. 6. (@ The deformation scheméhere illustrated for a ture was found to be richer than that of the array of second-
second-order gaskeintroduced to describe the effect of the non- order gaskets, as demonstrated by the incipient splitting of
uniform frustration resulting from the distortion of the screening some of the structures &t= M/32. However, because of the
current pattern created by the asymmetric shape of the supercogyrong overlap resulting from the nonvanishing width of the
ducting |s!‘ands. The vertlccis of the triangular _Ioops are shifted _to'superfluid peaks, only a fraction of the states at multiples of
ward the “centers of mass” of the corresponding superconducting _ 3 /515 ¢ould be resolved and unambiguously identified in
grains as Show.n itb). The areal Change.s of the loopso, ¢, andq a plot at(relatively) low frustration resolution like that of
are expressed in terms of the deform.at'on pafam?(‘"e?s“red n Fig. 5 (for high-resolution data at very smdllsee Fig. 9 in
units of the area of an elementary triangular cetfined in(b). Sec. \). Before closing this section, we would like to notice
of the relatedf—1—f symmetry are clearly reflected in the that whene is a rational number, the periodicity bf *(f) is
normalized inverse magnetoinductance shown in Fi§).5 restored, however with a period larger than 1.
This L~ 1(f)/L~1(0) curve was calculated for an array of
second-order gaskets using the method outlined in Sec. lllA, v cROSSOVER BETWEEN THE TWO REGIMES
and was fitted to the low-temperature=0.05) data of Fig.
5(a) using € as an adjustable parameter. The best fit was Below f.y [see Eq(4)] the SG arrays are expected to be
obtained fore=7.4%. In this connection, it should be noted in the Euclidian(or homogeneouysregime. In order to pro-
that, although weak, thermal fluctuations still affect the datavide preliminary evidence for the existence of the EF cross-
at 7=0.05 and tend to enhance the amplitude of the oscillaever atf.y, in Fig. 8 we compare, in a log-log plot, the
tions with respect to that predicted by our calculation, whichquantity ~ AL~*(f)/L~*(0)=[L~*(0)—L~(f)]/L"(0),
neglects thermal fluctuations. Nevertheless, the agreementvghich measures the relative change in superfluid density
quite remarkable, especially if one considers that it involvesaused by frustration, for the two SG arrays studied in this
only one fitting parameter. Moreover, the vertex displacework. Both curves were taken at 160 Hz and at temperatures
ment[denoted by the arrow in Fig.()] defininge turns out  such that the structures corresponding to the ordered states
to be ~70% of the distance to the “center of mass” of the are emphasized by thermal fluctuations. With decreasing
truncated-star-shaped superconducting islands, thereby deffinustration the data for the sample of fourth-order gaskets
onstrating the basic validity of our interpretation. exhibit, down tof ,=1/512, clear fractal features: specifi-
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order N=4) gaskets measured at 10 Hz in the frustration range

FIG. 8. Log-log plot of the frustration-induced relative change |f|=fc2=1/32=0.03125. Structures in the data for=2 are la-
of the inverse sheet inductance of the arrays of second-ordefeled in terms offy=f/f,, the frustration parameter referred to
(N=2) and fourth-orderi=4) gaskets measured at 160 Hz. The the hexagonal uan cell of the honeycomb lattice shown in Fig. 10.
dotted curve is the theoretical prediction for an undistorted gaskeptrUctures at multiples ofc,=1/512 demonstrate the fractal char-
of infinite order(see Ref. 12 The resul{the same as in Fig.()] acter of the response fof=4, v_vhereas the prominent structures at
of the calculation for an array of distorted second-order gaskets is | =1/3 and the symmetry with respectfig=1/2 of the data for
shown (open trianglesat multiples off = 1/32 in the rangg1,16. N~ 2 are signatures of the Euclidian regime.
For clarity, the theoretical curves are shifted downward by a quarte
of a decadef.y is the frustration at which the crossover from the
Euclidian (f<f.y) to the fractal {>f.y) regime occurs.

Sides the loss of self-similarity and scaling, the data reveal,
by closer inspection, the presence of struct{ities “dips” in
AL~Y(f)] corresponding to new commensurate states, which
can not be ascribed to the fractal regime.
cally, four self-similar stagegthe number of stages being  To strengthen the evidence for a regime crossover, in Fig.
consistent with the order of the gasKetsflecting the dila- 9 we present the results of sheet inductance measurements
tional symmetry of the gaskets and an overall scaling With performed at high frustration resolution in the range
which, in spite of the indisputable evidence for fluctuation|f|<f.,. Once again, to promote structures corresponding to
effects, follows the asymptotic predictiakl ~1(f)f”. For  ordered states we tuned the effect of thermal fluctuations by
comparison, the result of a calculation for an undistortedncreasing the temperature and reducing the measuring fre-
infinite gasket based on the methods discussed in Sec. lll Aiguency(10 Hz) in an appropriate way. Moreover, in Fig. 9
also shown in Fig. 8. Belovi, the data tend to flatten out, we also include the dissipative compon&itf), whose re-
thereby signaling a possible change of regime. Howevemarkably well resolved fine structure provides additional
considering the fact that this change sets in almost at thevidence for the EF crossover. Notice that maxima in the
limit of our inductance resolutionAL/L~1%), werefrain  (normalized superfluid densityl. ~*(f)/L ~(0), correspond
from drawing a firm conclusion with regard to the existenceto minima inR(f), as it should be. For the array of fourth-
of a dimensional crossover in the array of fourth-orderorder gaskets both the superfluid and the dissipative compo-
gaskets. nents display clear fractal features with marked structures at
On this subject, the data for the array of second-ordemultiples off.,=1/512 corresponding to the frustration unit
gaskets convey a much stronger message. In Sec. IlI B then thef-axis. In sharp contrast with this behavior, the dy-
magnetoinductance of this sample was shown to obey theamic response of the array of second-order gaskets is,
predictions for the fractal regime whose signatures, althougkvithin experimental accuracy, symmetric with respect to
less pronounced than in thé=4 case, can also be identi- f=(1/2)f., and contains well resolved structures at
fied, abovef ,=1/32, in the log-log plot of Fig. §notice  |f|=(1/4)f.,, |f|=(1/3)f., and|f|=(1/2)f,,. In particular,
that the self-similar and scaling propertiesdf ~! are ex-  the presence of prominent structures|#t=(1/3)f., pro-
pected to become clearly manifest only in the asymptotiosides compelling evidence for the existence of a new regime,
limit (f—0) of higher-order gasketd. Belowf,, however, since no commensurate state corresponding to this frustration
the behavior ofAL~*(f)/L~%(0) drastically changes. Be- can ever emerge from the characteristic sequdnre fy
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(b):£,=1/4

FIG. 10. Successive applications of the triangle-star transforma-
tion allow to replace each gasket by an elementary “star,” thereby
turning a lattice of periodically repeated gaskets into a honeycomb
lattice.

of the fractal regime for gaskets of any order. We interpret
these features as an unambiguous signature of the Euclidian
regime, in which the fine structure of the array’s impedance G, 11. (a) and(b) show ground-state Abrikosov-like triangular
reflects, as shown in Sec. V, the existence of vortex groungortex configurations in a honeycomb lattice at, respectively,
states with a unit cell larger than a second-order gasket.  f_—1/3 andf,,=1/4. (c), (d), and(e) are examples of ground-state
vortex configurations with the same energy in a honeycomb lattice
at f;=1/2. (c) regular 1D superlattice structutéstriped” phase.
(d) A zero-energy domain wall separating two “striped” states of
In order to understand how our arrays of gaskets behavie type shown iric). (e) The state obtained froitt) by introducing
in the Euclidian regime, we first recall that the energy of athe largest possible number of zero-energy domain walls.
vortex in a Sierpinski gasket decreases with increasing size
of the cell in which the vortex core is localizéd** Accord-  regime (<f.y) are formed by vortices occupying the sites
ingly, a single vortex in a lattice of periodically repeated of a triangular lattice with concentratid, = f/f <1, it is
SG’s can be considered as interacting with an external poaatural to expect that the states which are particularly robust
tential whose minima coincide with the centers of the largesagainst thermal fluctuations correspond to valuedpfal-
triangular cells located between tinth-order gaskets and, lowing the formation of an undistorted triangular vortex lat-
therefore, form a triangular lattice. Fb& f . the number of tice (analogous to the Abrikosov lattice in bulk supercon-
vortices in the system is smaller than the number of the largductors commensurate with the underlying lattice provided
est triangular cells, so that it is energetically favorable for thedy the array. The energy required to create a defect in these
vortices to occupy only these largest cells, the concentratiohighly symmetric states is larger than for frustrations requir-
of the occupied ones being equal to the rdtib,y. There- ing the vortex lattice to be distorted. Therefore, these
fore, one can expect that, fdr<f_y, the behavior of an Abrikosov-like states will be less vulnerable to thermal fluc-
array of periodically repeated SG’s resembles that of a unituations. For 1/2 f,;<1, almost equally stable states can be
formly frustratedXY model on ahoneycombattice (with a  constructed when the vacancies in the densely packed trian-
reduced value of frustratioh,=f/f y<1), whose ground gular vortex lattice corresponding tg=1 also form an un-
states can also be thought of as formed by vortices occupygistorted triangular lattice. This leads to the symmetry
ing the sites of a triangular lattice with the same concentrafy«<—1—fy, although it is not rigorous.
tion f. It is readily seen that triangular vortex lattices commen-
Another approach leading to the same conclusion reliesurate with the underlying lattice can be constructed for
on the iterative procedure, based on successive applicatiofig=1/(m?+mn+n?), wherem andn are integers fi=1,
of the triangle-star transformatidfideveloped in Ref. 12. At 0<n=m). In particularm=n=1 givesf,=1/3, m=2 and
low frustrations, such that there are no vortices in the gasn=0 give f;=1/4, m=2 andn=1 give f,=1/7, etc. The
kets, this method allows to replace each gasket by an ektates forfy=1/3 andfy=1/4 are shown, respectively, in
ementary “star” consisting of three links with a modified Figs. 1X¥a) and 11b). Within this family, the most “dense”
interaction. This transforms a lattice of periodically repeatedstate, i.e., the state fdiy=1/3, can be expected to be, on
SG’s into a honeycomb latticesee Fig. 10 The difference  account of its stronger vortex-vortex interaction, the most
with respect to the conventionXlY model on a honeycomb stable one, followed, in order of decreasing stability, by those
lattice is that in the iteration process the interaction becomefor f;=1/4 andfy=1/7. This is precisely what we observe
almost harmonié¢? the anharmonic corrections becoming in the magnetoimpedance data of Fig. 9 for the array of
smaller and smaller as the number of iterations, which is sesecond-order gaskets where, focusing on the interval
by the gasket ordeN, increases. Moreover, fof#0 the |fy|<1/2), we find that the most prominent structures, sig-
resulting effective interaction is no longer an even functionnalling a very stable commensurate state, appear at
of ; 12 |fu|=1/3. Weaker structures corresponding to the next-
After establishing that the ground states in the Euclidiarstable triangular vortex lattice are also well resolved at

V. EUCLIDIAN REGIME
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|fu|=1/4, whereas structures dt,|=1/7 are barely visible means that in a system of periodically repeated SGs the do-
and present only in the inverse magnetoinductance data. It imain wall shown in Fig. 1) has a negative energy. Accord-
worth mentioning that the observation of the particularlyingly, the state with the lowest energy corresponds to the
prominent vortex state &t,,| = 1/3 is entirely consistent with ~periodic vortex configuration shown in Fig. (&), which is
theoretical predictioté*® as well as with results of Monte characterized by the highest possible density of such domain

Carlo simulation¥ for the frustrated{Y model on the hon- Wwalls. The unit cell of this state comprises four gaskets. In
eycomb lattice. the fully frustratedXY model on a honeycomb lattice a

The magnetoimpedance data of Fig. 9 also show weaground state with the same structure is selected if one takes
structures atfy|=1/2. The ground states of theY model into account the interaction, of arbitrary sign, with the
on a honeycomb lattice at this particular frustration and thesecond-nearest neighbdfs.
corresponding vortex configurations were studied in Ref. 14, Thus, the phase transition taking place, with decreasing
and shown to possess a so-called accidentl not related temperature, at,;=1/2 should be related to the appearance
to the symmetry degeneracy, which can be discussed inof long-range order corresponding to the vortex configura-
terms of zero-energy domain walls. Figure(dlshows an tion shown in Fig. 1le). The selection of this state relies on
example of a ground state fdi,=1/2 characterized by a aweak mechanism, which loses its efficiency with increasing
regular 1D superlattice structure. In this state all the variable®, since the effective interaction becomes almost harmonic
{6,} take the valueg);;=0,= /4. Redistributing the same under decimation. One can therefore expect the ordered
set of variables in a different way among the bonds of thephase atf;=1/2 to be again rather vulnerable to thermal
lattice allows one to transform the state of Fig(dlinto  fluctuations. This explains why the structuregfaf|=1/2 in
another one with the same energy, shown in Figldll Fig. 9 are much weaké than those affy|=1/3. Their
where a domain wall separates two “striped” states of thestrength is at most comparable to that of the structures cor-
type shown in Fig. 1(c). An infinite family of states with the responding to the triangular vortex latticefat=1/4, whose
same energy can be constructed by creating sequences Wweaker vortex-vortex interaction makes the ordering less ro-
such zero-energy domain walls parallel to each other. Figurbust than aff,,=1/3. Numerical simulatiort§ show that in
11(e) shows another example of a periodic ground statethe conventionaXY model on a honeycomb lattice the or-
which can be obtained by introducing the largest possiblelered phases appear, with decreasing temperature, in the
number of domain walls into the state shown in Fig(cll  same order: first at,,=1/3, then atf,=1/4, and only fur-

It is knowrf® that in systems allowing the formation of ther down atf,,=1/2.
zero-energy domain walls the stabilization of long-range or-
der at nonzero temperatures is achieved if the accidental de-
generacy is removed by thermal fluctuations. This mecha-
nism (the so-called “order by disordef”) is relatively weak Our magnetoinductance measurements on Josephson
and, therefore, the ordering in frustratéd’ models with  junction arrays of periodically repeated Sierpinski gaskets
accidental degeneracy should be less stédie destroyed at  have clearly demonstrated the existence of two regimes. In
lower temperaturgsthan in otherXY models. This effect agreement with theoretical analysis, in one of théne frac-
should be even more pronounced for the fully frustrdted,  tal regimé the peaks observed in the inverse sheet magneto-
for f;=1/2) model on a honeycomb lattice, which, in con- inductance, reflecting those states which are the most stable
trast to other 2D XY models with accidental againstthermal fluctuations, are equally spaced. Neighboring
degenerac§??*~* does not display any difference in the states in this sequence differ from each other by the penetra-
spin-wave free energy, calculated in the harmonic approxition of an additional vortex into each unit cell of the array. In
mation, of different periodic ground statésThe Monte the other, Euclidian, regime the sequence of the observed
Carlo simulations of Shih and Strotfthave indeed demon- stable states corresponds to periodic lattices of vortices oc-
strated that the phase transition of the frustraxemodel  cupying the largest triangular cells of the array.
on a honeycomb lattice dt,=1/2 takes place at a much The agreement with theory is achieved not only for the
lower temperature than &ty=1/3 or fy=1/4, where the positions of the different peaks, but also for their relative
accidental degeneracy is absent. strengths. In the Euclidian regime the structure of the or-

Returning to the system of periodically repeated SG’s atlered states is analogous to that on a honeycomb lattice with
f=f.\/2 (f4=1/2), it is also possible to start the search forreduced frustration, and the relative stability of the different
its ground state by finding the structure of the state whictstates can be understood in terms of vortex lattice disorder-
minimizes the energy3) for the periodic vortex configura- ing. However, the amplitudes of the peaks observed in the
tion shown in Fig. 1{c). Obviously, this state is periodic, fractal regime can be quantitatively explained only if the
and its unit cell comprises two gaskets. By redistributing theredistribution of the magnetic field in the array due to the
same set of 6;;} among the bonds of the lattice in a different asymmetric shape of the superconducting islands is taken
way, one can construct the state with the same energy corr@to account. In this connection, we would like to mention
sponding to the vortex configuration shown in Fig(dl the recent work by Park and Hu¥éwho compared the en-
However, in contrast to the fully frustratedlY model on a ergies of different states in a wire network withkagome
honeycomb lattice, the state obtained in this way will not belattice geometry at full frustration. These authors came to the
an extremum of the Hamiltonian and, therefore, a slight reconclusion that the effects related to the finite width of the
adjustment of{#;} can further decrease its energy. Thiswires can be compensated for bgndingthe wires. This is

VI. CONCLUSION
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equivalent to our conjecture that the influence of the asym- The influence of the incommensurability of different lat-
metry associated with the screening currents can be reducdide cells on the magnetoresistance of Josephson junction
to a redistribution of the magnetic field with respect to anarrays was discussed by Kosterlitz and Graifaito relation
ideal system. to experiments performed on periodic arrays with a complex
The results of our magnitoinductance measurements shounit cell3® However, quantitative agreement between experi-
that this phenomenon is more pronounced at high frustratioment and theory in treating incommensurability effects in
levels, an observation consistent with the analysis presentelbsephson junction arrays has been demonstrated only by the
in Sec. Il B. Indeed, in our model, the triangular cells ex- present work. In our system the phenomenon of incom-
hibiting the largest relative areal changes are the smalleshensurability is present in a hidden form, and its manifesta-
(elementary ones, which are precisely those providing thetions appear as a consequence of the asymmetric shape of the
dominant contribution td_~1(f) at high values of. Data  superconducting islands. Hopefully, our discussion will draw
taken at very small frustrations, like those shown in Fig. 9the attention of researchers investigating lattice supercon-
are practically unaffected by the nonuniform frustration re-ductors with non-equivalent plaguettes to the problem of hid-

sulting from the asymmetry of the screening currents. den incommensurability.
Early studie$ of a large-order ll=10) single gasket of
superconducting aluminum wires revealed that the period as- ACKNOWLEDGMENTS
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