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Dimensional crossover and hidden incommensurability in Josephson junction arrays
of periodically repeated Sierpinski gaskets
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We report a study of overdamped Josephson junction arrays with the geometry of periodically repeated
Sierpinski gaskets. These model superconductors share essential geometrical features with truly random~per-
colative! systems. When exposed to a perpendicular magnetic fieldB, their Euclidian or fractal behavior
depends on the relation between the intervortex distance~imposed byB) and the size of a constituent gasket,
and was explored with high-resolution measurements of the sample magnetoinductanceL(B). In terms of the
frustration parameterf expressing~in units of the superconducting flux quantum! the magnetic flux threading
an elementary triangular cell of a gasket, the crossover between the two regimes occurs atf cN51/(234N),
whereN is the gasket order. In the fractal regime (f . f cN) a sequence of equally spaced structures correspond-
ing to the set of states with unit cells not larger than a single gasket is observed at multiples off cN , as
predicted by theory. The fine structure ofL( f ) radically changes in the Euclidian regime (f , f cN), where it is
determined by the commensurability of the vortex lattice with the effective potential created by the array.
Anomalies observed in both the periodicity and the symmetry ofL( f ) are attributed to the effect of a hidden
incommensurability, which arises from the deformation of the magnetic field distribution caused by the asym-
metric diamagnetic response of the superconducting islands forming the arrays.

DOI: 10.1103/PhysRevB.66.104503 PACS number~s!: 74.80.2g, 74.50.1r, 74.60.Ge, 74.25.Nf
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I. INTRODUCTION

A wide variety of disordered materials, including supe
conductors, is known to exhibit geometrical inhomogeneit
over a broad range of length scales. The properties of s
systems can be conveniently described in terms
percolation1, the simplest idea to understand randomne
Percolation can be regarded as a geometrical phase tran
taking place at a ‘‘critical concentration’’pc separating a
phase of finite clusters (p,pc) from a phase where an infi
nite cluster is present (p.pc). Like other critical phenom-
ena, it is characterized by a correlation lengthjp(p) which
diverges at the percolation thresholdpc . Right atpc , a sys-
tem with percolative disorder exhibits a natural self-simi
structure at all length scales, and can therefore be mod
by a family of scale-invariant fractal lattices, such as t
Sierpinski gasket~SG!, which has been suggested2 to mimic
the essential geometrical features of the percolating clus
backbone. In the critical region above and belowpc , where
jp is finite, the nature of the geometry depends on the len
scale l at which one is probing the system: ifl ,jp , its
structure isfractal, whereas it can be regarded as homo
neous with conventionalEuclidian features forl .jp . Thus,
the same sample can be used to study the properties o
system in different dimensionalities.

Allowing an accurate control of both the nature and t
amount of disorder and exhibiting properties quite sensi
to dimensionality, Josephson junction arrays and wire n
works prepared with modern microfabrication and nanof
rication techniques provide ideal model systems to inve
gate the dimensional crossover from the Euclidian to
fractal regime. The first step in this direction was made
Gordon et al.,3 who investigated the superconducting-t
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normal phase boundaryTc(B) of aluminum wire networks
formed by periodically repeated SG’s and of analogous n
works with percolative geometry exposed to a perpendicu
magnetic fieldB. In those experiments the magnetic leng
l (B)'(f0 /B)1/2, which is a measure of the typical neares
neighbor distance between the vortices present in the sys
was shown to be the relevant length scale to explore
Euclidian fractal~EF! crossover (f0 is the superconducting
flux quantum!. While the scaling behavior of the phas
boundary of the SG networks was found to exhibit a cro
over from the Euclidian to the fractal regime consistent w
theoretical predictions4 based on extensions5,6 of the
Ginzburg-Landau theory and allowing for comparison7 with
the anomalous diffusion exponent, no EF crossover was
served in percolative networks which, surprisingly, we
found to behave like a homogeneous system at all len
scalesl (B) probed in the experiment.

More recently, compelling evidence for the EF crossov
in a percolative system emerged from ac conducta
measurements8 performed in zero magnetic field on~unfrus-
trated! site-diluted Josephson junction arrays with site oc
pation probabilitiesp very close topc . In these experiments
the crossover was controlled by the driving angular f
quency v, which determines the ratio of the impedanc
associated with the two types of links forming the rando
network. According to Efros and Shklovskii,9 the increase of
this ratio with decreasingv also leads, ifp is sufficiently
close topc , to a crossover from the fractal to the Euclidia
regime, as confirmed by the experiments of Ref. 8.

In this paper we report the results of experimental a
theoretical studies of another model superconductor~sharing
essential geometrical features with a percolative syste!,
which can be expected to exhibit a dimensional crosso
©2002 The American Physical Society03-1
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The samples we have investigated are arrays of proxim
effect coupled SNS junctions~where S stands for supercon
ductor and N for normal metal! consisting of SG’s connecte
to each other at the vertices in such a way as to form
regular triangular lattice. As can be seen from Fig. 1~a!,
where a part of an array of second-order gaskets is show
these systems the linear sizeLN52Na of an individual gas-
ket of orderN can be regarded as playing the role ofjp (a is
the length of an elementary link of the gasket!. As shown in
detail in this work, a remarkable feature of the SG arrays
that in these systems the EF crossover is clearly manifes
contrast to truly percolative systems, where its signatures
elusive.

The quantity at the heart of the present study is the m
netoinductanceL(B) of the SG arrays, extracted from me
surements of their ac impedance. Its interest resides in
observation that, being inversely proportional to the ar
superfluid density, it provides a tool to appreciate how
degree of superconducting phase coherence in the sy
changes withB or, equivalently, with the level of frustration
imposed byB. Previous impedance measurements perform
on weakly frustrated arrays similar to those studied in t
work focused merely on the fractal regime and demonstra
in particular, the unusual scaling properties10 of the vortex
energy11 as well as the asymptotic (B→0) scaling behavior
of the field-induced correction to the array inductance res
ing from the hierarchical structure of the gaskets.12

FIG. 1. ~a! Scanning electron micrograph showing a portion o
triangular array composed by periodically repeated second-o
Sierpinski gaskets of proximity-effect coupled Pb/Cu/Pb Joseph
junctions. The length of the elementary links of the gaskets is 8mm.
Notice the ‘‘truncated-star’’ shape of the superconducting Pb isla
~with the exception of those centered at the common vertice
three constituent gaskets!. ~b! The rhombohedral unit cell of a pe
riodic array of second-order gaskets.
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Although some preliminary evidence for a dimension
crossover was already reported in Ref. 12, the phenome
was not exhaustively investigated. In the present work
rely on high-resolution studies of the complex fine structu
of L(B) to explore in detail both the Euclidian and the frac
regimes of the SG arrays. Reflecting flux quantization p
nomena occurring in loops with a hierarchical distribution
sizes up to the gasket sizeLN , the fine structure provides
unique tool to reveal how the geometrical properties of
system change as the magnetic lengthl (B) is swept through
LN . We show that, in terms of the frustration parametef
expressing the magnetic flux threading an elementary tr
gular cell of a gasket in units off0, the EF crossover occur
at f cN51/(234N). In the fractal regime (f . f cN) the most
relevant contributions to the fine structure ofL( f ) are shown
to arise from a particular set of ground states defined
f 5M f cN , whereM is an integer. Corresponding to vorte
configurations where the vortex lattice is strongly pinned
the hierarchical potential landscape created by the gask
these states are particularly robust against thermal fluc
tions and are therefore quite prominent in the fine struct
of L( f ).

A very interesting aspect emerged from the study of
magnetoinductance in the fractal regime. The analysis of
data revealed anomalous features~specifically, the suppres
sion of the periodicity corresponding to a shift off by 1 and
of the symmetry with respect tof 51/2) inconsistent with
theoretical predictions based on the description of the sys
in terms of a uniformly frustratedXY model. We sugges
that, because of the asymmetric shape of the supercondu
islands forming the junction pattern of a gasket@see Fig.
1~a!#, the screening currents flowing in the islands creat
distortion of the magnetic field distribution in the array su
that the fluxes threading the various loops slightly devi
from being proportional to their areas. This introduces
effective incommensurability~which we call ‘‘hidden’’ to
distinguish it from the ‘‘geometric’’ one studied earlier13 in
wire networks with incommensurate cells! and perturbs the
self-similarity of the gaskets. As a result, the system is
longer uniformly frustrated. We demonstrate that the anom
lous features mentioned above can be quantitatively
counted for by a simple model, in which the area of t
different plaquettes of a gasket is changed according to
appropriate deformation scheme. In our opinion, the appl
tion of this approach will also prove to be useful when co
sidering other types of Josephson junction arrays with n
equivalent lattice plaquettes.

Compelling evidence for the existence of the Euclidi
regime is provided by the array’s magnetoinductance
f , f cN . Besides the absence of the power-law scaling beh
ior characteristic of the fractal regime,L( f ) contains struc-
tures which reflect the presence of ground states corresp
ing to vortex configurations commensurate with t
underlying triangular lattice formed by the largest triangu
loops of the array~below f cN , it is energetically unfavorable
for vortices to penetrate loops of smaller size!, thereby al-
lowing an unambiguous identification of the Euclidian r
gime.

In general, these vortex configurations have the sa
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DIMENSIONAL CROSSOVER AND HIDDEN . . . PHYSICAL REVIEW B66, 104503 ~2002!
structure as in theXY model on a honeycomb lattice
but correspond to values off reduced by a factor o
1/f cN5234N. However, the casef 5(1/2)f cN requires spe-
cial attention. In a honeycomb lattice the ground state of
corresponding~fully frustrated! XY model is characterized
by an accidental degeneracy, which~to lowest order! sur-
vives even in the presence of thermal fluctuations.14 Owing
to the more complex structure of the system, however,
peculiar degeneracy is removed in our SG arrays, allowin
identify the vortex configuration in the ordered phase
f 5(1/2)f cN .

The paper is organized as follows. Experimental det
are given in Sec. II. Section III is devoted to the frac
regime (f . f cN). Relying on the methods developed in Re
12, in Sec. III A we present the calculation of the magne
inductance of a frustrated SG array for the particular se
frustrationsf 5M f cN corresponding to the sequence of t
most stable states, which are characterized by a relati
compact structure~with a unit cell not larger than a singl
gasket!. Experimental data for the magnetoinductance in
same regime are presented and discussed in Sec. III B, w
we show, in particular, how the anomalous features ofL( f ),
revealing the presence of hidden incommensurability, can
accounted for by a simple model, in which the areal chan
of different plaquettes~related to the redistribution of th
magnetic field! are determined by only one adjustable p
rameter. In Sec. IV we provide experimental evidence for
existence of the EF crossover and in Sec. V the fine struc
of L( f ) in the Euclidian regime belowf cN is shown to be
consistent with the existence of vortex states commensu
with the periodic lattice formed by the largest triangular ce
of the arrays. A few concluding remarks are given in Sec.

II. EXPERIMENTAL ASPECTS

The samples studied in this work consist of seco
(N52) and fourth-order (N54) gaskets sitting on the site
of, respectively, a 3133313 and a 78378 triangular lattice
and connected to each other at the vertices@see Fig. 1~a!#.
Each gasket contains, respectively, 3211527 and
34115243 SNS Josephson junctions consisting of superc
ducting Pb islands proximity effect coupled to each other
an underlying normal Cu layer. The geometrical and phys
parameters of the junctions are almost identical to those
the array studied in Ref. 12. Most of the data presented
low have been obtained in experiments performed on
array of second-order gaskets.

The sheet magnetoinductanceL( f ) was inferred from
measurements of the array’slinear sheet impedance
Z5R1 ivL performed with a very sensitive supercondu
ing quantum interference device~SQUID! operated two-coil
mutual inductance technique15 at driving frequencies typi-
cally in the range 0.1–1.0 kHz. With this method we we
able to resolve inductance changes of the order of 10 pH
swept-frustration measurements, in whichf could be tuned
with a precision better than 1023. The experimental data ar
presented and analyzed in terms ofL21( f ), the quantity
measuring the degree of superconducting phase coheren
the samples. When needed, the resistive componentR( f ), re-
10450
e

is
to
t

ls
l

-
f

ly

e
ere

e
s

-
e
re

te

I.

-

n-
y
al
of
e-
e

-

in

in

lated to dissipative vortex motion, is also shown for co
pleteness. Additional details concerning the samples and
measuring technique can be found in Ref. 12.

In the following, temperatures are expressed in terms
the reduced temperature relevant for the statistical mecha
of the system,t[kBT/J(T), whereJ(T) is the temperature-
dependent Josephson coupling energy. At temperatures
below the zero-field critical temperaturetcN , J(T) was de-
duced from measurements of the ‘‘bare’’ sheet kinetic ind
tance L(T)5(f0/2p)2(5/3)N/A3J(T) of the unfrustrated
samples.12 Extrapolation to higher temperatures was th
achieved by fitting the low-temperature data to theoreti
expressions16 for J(T).

Because of their two-dimensional~2D! nature at length
scales larger thanLN , both samples are expected to exhib
at zero frustration (f 50) and in the limit v→0, a
Berezinskii-Kosterlitz-Thouless~BKT! phase transition.17 A
sharp depression ofL21(0), which can be associated wit
the BKT transition, has been indeed observed at, resp
tively, tc2'0.57 andtc4'0.23, in good agreement with th
theoretical prediction10 tcN5(3/5)Ntc0, where tc0'1.5 is
the reduced temperature of the BKT transition of a regu
triangular Josephson junction array18 with the sameJ(T).

III. FRACTAL REGIME

A. Ground states of a regular array of Sierpinski gaskets and
their sheet inductance

We start by recalling that, within the framework of a
approximation ignoring thermal fluctuations, a Josephs
junction array behaves, with respect to an external~dc! cur-
rent source, like a network of inductors$Li j %, whose induc-
tances are given12,19 by

Li j ~u i j !5
~f0/2p!2

J cosu i j
, ~1!

whereu i j is the gauge-invariant phase difference across
link i j . As required by fluxoid quantization, the sum ofu i j
around a lattice cell is equal to 2p( f S2m), wheref is the
frustration parameter expressing the magnetic flux~in units
of f0) threading an elementary triangular cell of a gas
@ f 5Ba2A3/(4f0)#, S the area of the cell~expressed in units
of the area of an elementary triangular loop! andm the num-
ber of flux quanta~vortices! penetrating the cell under con
sideration.

In writing Eq. ~1! we have assumed that the proximit
effect coupled SNS junctions forming the arrays studied
this work have a sinusoidal current-phase relation at the t
peratures of interest.20 It clearly follows from Eq.~1! that,
even if all the junctions are identical, their effective indu
tances in a frustrated system may differ substantially fr
each other on account of the nonuniform distribution
$u i j %. Since the array magnetoinductanceL( f ) can be found
by applying Kirchhoff’s laws to the inductor network$Li j %,
it is evident that, at any frustrationf, L( f ) will be completely
determined once the distribution of$u i j % is known.

The ground state of a uniformly frustrated array of pe
odically repeated gaskets of orderN @see Fig. 1~a!# can be
3-3
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MEYER, KORSHUNOV, LEEMANN, AND MARTINOLI PHYSICAL REVIEW B 66, 104503 ~2002!
constructed by a simple juxtaposition after finding t
ground state of an isolatedNth-order gasket only if the con
straints of fluxoid quantization imposed on the largest tri
gular loops~located between theNth-order gaskets! are au-
tomatically fulfilled. Recalling the definition off given
above, it can be shown12 that this condition is satisfied onl
for a particular set of frustrations given by

f 5
M

234N
, ~2!

whereM is an integer corresponding to the total number
vortices in the rhombohedral unit cell of the SG array co
posed, as shown in Fig. 1~b!, by a singleNth-order gasket
and the adjacent ‘‘empty’’ triangular loop. Thus, in order
calculate the magnetoinductance of the system at the va
of f given by Eq.~2!, all we need is to determine the groun
state distribution of$u i j % in one of its constituent gaskets.

Assuming that the ground state of a gasket is the
having the highest possible symmetry consistent with its
flection and third-order rotation symmetries21 ~for wire net-
works with the geometry of a third-order SG this conjectu
has been confirmed by numerical calculations22!, it can be
shown23 that the number of independent bond variables$u i j %
is equal to (3N11)/2. They can be found from an equ
number of constraints imposed by current conservation at
nodes and fluxoid quantization in the loops of the gasket.
example, in the second-order gasket of Fig. 2 the links s
ing the same symbol have the same values ofu i j , thereby
showing that there are only five independent bond variab

FIG. 2. The links of this second-order gasket sharing the sa
symbol have identical gauge-invariant phase differencesu i j in the
states whose symmetry is consistent with the reflection and th
order rotation symmetries of the gasket. The 5 independent$u i j %
follow by imposing fluxoid quantization in the four nonequivale
loops a, b, c, and d and current conservation at one of the s
equivalent nodesK. Current conservation at the other nodes is e
sured by symmetry.
10450
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Imposing current conservation at one of the six equival
nodes~denoted byK in Fig. 2! and fluxoid quantization in
the four nonequivalent loopsa, b, c, and d ~with, respec-
tively, vortex occupation numbersma , mb , mc , and md)
leads to a system of five equations~only one of which, de-
scribing current conservation, is nonlinear! which have to be
solved numerically under the constraint that the distribut
of the quantum numbers$ma% (a5a,b,c,d) is such that the
gasket energy

E5J(̂
i j &

~12cosu i j ! ~3!

is minimized. Quite remarkably, for a given frustration sat
fying Eq. ~2!, the distribution of$ma% corresponding to the
lowest energy turns out to be identical23 to that emerging
from a calculation based on junctions with a linear curre
phase relation, for which a fully analytical treatment
possible.21,22 The result is illustrated in Fig. 3, where th
ground-state vortex configurations for the rhombohedral u
cell of a regular array of second-order gaskets are shown
M in the range@0,40#.

Inspection of Fig. 3 reveals characteristic features, wh
are valid for arbitrary gasket order. One first observes th
with increasing frustration, vortex nucleation spreads fro
the largest to smallest loops,11,22 a property reflecting the
hierarchical character of the energy needed to create a vo

e

d-

-

FIG. 3. The ground-state vortex configurations at multiples
f 51/32 in the range@0,40# for the rhombohedral unit cell of a
uniformly frustrated periodic array of~undistorted! second-order
gaskets.P denotes the number of vortices in the largest triangu
loop. Vortex configurations with circled vortex occupation numb
P are no longer ground states when the gasket is weakly distorte
shown in Fig. 6~a! ~see Fig. 7 for a comparison!.
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DIMENSIONAL CROSSOVER AND HIDDEN . . . PHYSICAL REVIEW B66, 104503 ~2002!
excitation10,11. Next, one notes that the vortices penetrate
gaskets only forM.1, thereby implying that a SG arra
will exhibit fractal behavior only forf .1/(234N). One fur-
ther recognizes that, since forM51 the rhombohedral uni
cell contains just one single vortex sitting in the largest
angular loop, the ground state of the array atf 51/(234N)
corresponds to a triangular lattice of vortices with a near
neighbor distance equal to the gasket sizeLN . Recalling that
LN plays the role ofjp , one expects that forf ,1/(234N)
the system will behave like a regular Josephson junction
ray with conventional Euclidian geometry. Thus we ident

f cN5
1

234N
~4!

as the frustration at which the EF crossover occurs. The
ture of the ground states of the SG array in the Euclid
regime (0, f , f cN) is discussed in Sec. V.

Having shown how the structure of the ground state
be determined for the particular set of frustrations~2!, we
can now proceed with the calculation of thesheetmagneto-
inductanceL( f ) of the SG array, the quantity measured
our experiments. We first note that, for this particular set
frustrations,L( f ) is proportional to the magnetoinductan
of a constituent gasket. Therefore, if we calculate the ind
tance of a single gasket and normalize it to its value
f 50 to eliminate the trivial dependence on the gasket s
we obtain a result also expressing the normalized sheet m
netoinductanceL( f )/L(0) of the composite periodic system
In Ref. 12 we have pointed out that for a given distributi
of $u i j % the calculation of the inductance of a single gas
can be performed by successive application of the trian
star transformation well known in the theory of electr
networks.24 The result of such a calculation for a regul
array of second-order gaskets is shown in Fig. 4 for multip
of f 51/32 in the range@211,43#. In order to compare this

FIG. 4. Numerically calculated normalized inverse magneto
ductance at multiples off 51/32 in the range@211,43# of a uni-
formly frustrated regular array of~undistorted! second-order gas
kets. Notice the symmetry with respect tof 51/2 and the periodicity
of period f 51. The dotted line is simply a guide to the eye.
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calculation with the experimental data presented in S
III B, we plot the normalized inverse magnetoinductan
L21( f )/L21(0). Note that, as expected for a uniformly frus
trated Josephson junction array,L21( f ) is symmetric with
respect tof 51/2 and periodic with periodf 51. We also
recall that, although hardly visible in the linear plot of Fig.
in the fractal regime the frustration-induced correcti
DL( f )5L( f )2L(0) to the array inductance is predicted
scale,12 in the limit of small frustrations and low tempera
tures, asf n with n5 ln(125/33)/ln 4'0.96. Obviously, the
power-law behavior ofDL( f ) should no longer persist in th
Euclidian regime belowf cN .

So far we have considered only the frustrations given
Eq. ~2!, for which the ground state of a regular array
gaskets can be regarded as a periodic replication of
ground state of a single gasket. In order to determine
array ground state at rational frustrations differing from tho
given by Eq.~2!, one should consider a ‘‘supercell’’ compris
ing more than one gasket. The analysis of the ground st
based on such supercells rapidly becomes cumbersome
~for f . f cN) is not pursued in this work. However, as supe
cells imply that superconducting phase coherence extend
larger length scales, one can expect the correspon
ground states to be more vulnerable to thermal fluctuati
@and, consequently, less prominent in the fine structure
L( f )] than those atf 5M f cN . At these particular values o
frustration the vortex configurations~shown in Fig. 3! are
strongly pinned by the hierarchical potential landscape p
vided by the gaskets,11 thereby making these ground stat
particularly robust against thermal fluctuations.

B. Comparison with experiment and effects of hidden
incommensurability

Focusing on the fine structure ofL( f ) we now compare
the theoretical predictions of Sec. III A with high-resolutio
magnetoinductance measurements performed on the arra
second-order gaskets. Figure 5~a! shows the normalized in
verse sheet magnetoinductanceL21( f )/L21(0) of the array
of second-order gaskets~measured at 1 kHz! at three differ-
ent ~reduced! temperatures. We first observe that, althou
the overall shape of the magnetoinductance curves lo
roughly similar, the fine structure becomes richer and mu
sharper with increasing temperature, thereby revealing v
clearly almost all the ‘‘superfluid’’ peaks corresponding
the states with a unit cell not larger than a single gasket
belonging to the sequencef 5M /32 given by Eq.~2!. Note
that, to make the identification of the structures easier,
frustration unit on the horizontal axis of Fig. 5~a! is chosen
to be equal tof cN51/32. The striking evolution of the fine
structure with temperature suggests that the motion of vo
ces due to thermal fluctuations plays a major role in
dynamic response of these arrays. We interpret the beha
shown in Fig. 5~a! as clear evidence that, at sufficiently hig
temperatures, superconducting phase coherence in the n
borhood of the ground states atf 5M /32, for which the vor-
tex lattice is pinned, is drastically disrupted by vortex-latti
defects, created by excess or missing vortices, moving
most freely on the ‘‘frozen’’ vortex background. This proce

-
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MEYER, KORSHUNOV, LEEMANN, AND MARTINOLI PHYSICAL REVIEW B 66, 104503 ~2002!
dramatically sharpens the fine structure, thereby enhan
the amplitude of the oscillations. A similar behavior was a
observed in experiments performed on wire networks of
terconnected gaskets11 and in regular triangular Josephso
junction arrays25 as well as in numerical simulations.19

In sharp contrast to the theoretical prediction for a u
formly frustrated SG array~see Fig. 4!, the L21( f )/L21(0)
curves of Fig. 5~a!, although still symmetric with respect t
f 50, are no longer periodic with period 1, a behavior lea
ing unavoidably to the suppression of the symmetry w
respect tof 51/2. We attribute these anomalous features
the inhomogeneous frustrationresulting from the change in
the effective areas of different plaquettes caused by
asymmetric~with respect to the direction of the links! dia-
magnetic response of the truncated-star-shaped supe
ducting~Pb! islands@see Fig. 1~a!#. Because of this particula
geometrical form, the screening currents flowing in the

FIG. 5. ~a! Normalized inverse magnetoinductance of the pe
odic array of second-order gaskets shown in Fig. 1~a! measured at 1
kHz at three different temperatures as a function of frustration.
clarity, the curves fort50.13 and 0.05 are shifted upward by, r
spectively, 0.25 and 0.50. Notice the absence of periodicity of
riod 1 and of the related symmetry with respect tof 51/2. ~b! Filled
circles: normalized inverse magnetoinductance calculated for a
ray of second-order gaskets deformed as shown in Fig. 6 w
e57.4%. This curve should be compared with the data at the l
est temperature (t50.05) in~a!. For comparison, the calculation o
Fig. 4 for an undistorted SG array is also shown~empty circles, the
curve is shifted upwards by 0.4 for clarity!. The dotted lines in~b!
are simply guides to the eye.
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grains create a distortion of the current patterns associ
with the individual loops which leads to a redistribution
the magnetic field and perturbs the self-similarity of the g
kets. In the temperature range (5.5 K,T,6.4 K) of the data
shown in Fig. 5~a!, the magnetic penetration depth of the P
islands @as estimated from the zero-temperature bulk
value (l(0)'40 nm) and the~proximity-effect reduced!
transition temperature (Tc56.9 K) of the Pb grains# is at
least 25 times smaller than their smallest planar geometr
dimension, which corresponds to the width of the junctio
(.2 mm). Thus one expects the distortion of the curre
patterns and, consequently, the nonuniformity of the frus
tion, to have a considerable effect onL21( f ).

The origin of the phenomenon being intimately related
the geometry of the superconducting islands rather than
the physical properties of the junctions, it seems plausible
describe the effect of the inhomogeneous frustration
changing merely the effective area of the different plaque
according to a prescribed rule. This is illustrated in Fig. 6~a!
for a second-order gasket, whose distortion is modeled
shifting the vertices of the triangular loops toward the ‘‘ce
ters of mass’’ of the corresponding superconducting islan
as shown in Fig. 6~b!. Since the distribution of the screenin
currents in the islands is shifted in the same direction, t
deformation scheme appears to be a reasonable approac
fering, above all, the advantage of a simple description
terms of a single paramater, the~small! areal changee ~ex-
pressed in units of the area of an elementary triangular c!
defined in Fig. 6~a!. Notice, incidentally, that this procedur
does not alter the frustrations@Eq. ~2!# for which the ground
state of the array can be constructed by a simple juxtap
tion of independent gaskets.

As the resulting deformation preserves the reflection a
third-order rotation symmetries of the gasket@see Fig. 6~a!#,
the determination of the vortex and$u i j % configurations in
the highly symmetric ground states atf 5M f cN can be car-
ried out by again following the procedure described in S
III A. The only modification appears in the formulation o
the fluxoid-quantization constraints for the deformed loo
whose areas~and, therefore, the associated magnetic flux!
change. For example, for the second-order gasket of Fig.~a!
the areas of the deformed plaquettesa, b, c, andd are equal,
in an approximation linear ine, to 12e, 12(3/2)e,
123e, and 413e, respectively. An analogous problem
however with a quite different deformation scheme, was c
sidered by Ceccattoet al.22 for a system with a linear
current-phase relation.

Ground-state vortex configurations for the rhombohed
unit cell of an array of second-order gaskets with a deform
tion parametere57.4% ~the reason for the choice of thi
value is explained below! are shown in Fig. 7 forM in the
range@0, 40#. A comparison with Fig. 3 reveals that some
the ground states of the undistorted array have been repl
by new ones. More precisely, while for the regular SG latt
the symmetry with respect tof 51/2 implies that the ground
state for (12 f ) may be conceived as resulting from the s
perposition of the ground states forf 51 and 2 f , for the
distorted system this property no longer holds. The abse
of periodicity ~corresponding to thef↔11 f symmetry! and
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DIMENSIONAL CROSSOVER AND HIDDEN . . . PHYSICAL REVIEW B66, 104503 ~2002!
of the relatedf↔12 f symmetry are clearly reflected in th
normalized inverse magnetoinductance shown in Fig. 5~b!.
This L21( f )/L21(0) curve was calculated for an array
second-order gaskets using the method outlined in Sec. I
and was fitted to the low-temperature (t50.05) data of Fig.
5~a! using e as an adjustable parameter. The best fit w
obtained fore57.4%. In this connection, it should be note
that, although weak, thermal fluctuations still affect the d
at t50.05 and tend to enhance the amplitude of the osc
tions with respect to that predicted by our calculation, wh
neglects thermal fluctuations. Nevertheless, the agreeme
quite remarkable, especially if one considers that it involv
only one fitting parameter. Moreover, the vertex displa
ment@denoted by the arrow in Fig. 6~b!# defininge turns out
to be;70% of the distance to the ‘‘center of mass’’ of th
truncated-star-shaped superconducting islands, thereby
onstrating the basic validity of our interpretation.

FIG. 6. ~a! The deformation scheme~here illustrated for a
second-order gasket! introduced to describe the effect of the no
uniform frustration resulting from the distortion of the screeni
current pattern created by the asymmetric shape of the supe
ducting islands. The vertices of the triangular loops are shifted
ward the ‘‘centers of mass’’ of the corresponding superconduc
grains as shown in~b!. The areal changes of the loopsa, b, c, andd
are expressed in terms of the deformation parametere ~measured in
units of the area of an elementary triangular cell! defined in~b!.
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A similar behavior was observed in the magnetoindu
tance of the array of fourth-order gaskets, whose fine str
ture was found to be richer than that of the array of seco
order gaskets, as demonstrated by the incipient splitting
some of the structures atf 5M /32. However, because of th
strong overlap resulting from the nonvanishing width of t
superfluid peaks, only a fraction of the states at multiples
f 51/512 could be resolved and unambiguously identified
a plot at ~relatively! low frustration resolution like that of
Fig. 5 ~for high-resolution data at very smallf, see Fig. 9 in
Sec. V!. Before closing this section, we would like to notic
that whene is a rational number, the periodicity ofL21( f ) is
restored, however with a period larger than 1.

IV. CROSSOVER BETWEEN THE TWO REGIMES

Below f cN @see Eq.~4!# the SG arrays are expected to b
in the Euclidian~or homogeneous! regime. In order to pro-
vide preliminary evidence for the existence of the EF cro
over at f cN , in Fig. 8 we compare, in a log-log plot, th
quantity DL21( f )/L21(0)[@L21(0)2L21( f )#/L21(0),
which measures the relative change in superfluid den
caused by frustration, for the two SG arrays studied in t
work. Both curves were taken at 160 Hz and at temperatu
such that the structures corresponding to the ordered s
are emphasized by thermal fluctuations. With decreas
frustration the data for the sample of fourth-order gask
exhibit, down to f c451/512, clear fractal features: specifi

n-
-
g

FIG. 7. The ground-state vortex configurations at multiples
f 51/32 in the range@0,40# for the rhombohedral unit cell of a
periodic array of second-order gaskets deformed as shown in
6~a! with e57.4%. P denotes the number of vortices in the large
triangular loop. The comparison with the ground states of an a
of undistorted gaskets of the same order~Fig. 3! reveals that the
vortex configurations with circled vortex occupation numberP are
new ground states of the system.
3-7
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cally, four self-similar stages~the number of stages bein
consistent with the order of the gaskets! reflecting the dila-
tional symmetry of the gaskets and an overall scaling wif
which, in spite of the indisputable evidence for fluctuati
effects, follows the asymptotic predictionDL21( f )} f n. For
comparison, the result of a calculation for an undistor
infinite gasket based on the methods discussed in Sec. III
also shown in Fig. 8. Belowf c4 the data tend to flatten ou
thereby signaling a possible change of regime. Howe
considering the fact that this change sets in almost at
limit of our inductance resolution (DL/L;1%), werefrain
from drawing a firm conclusion with regard to the existen
of a dimensional crossover in the array of fourth-ord
gaskets.

On this subject, the data for the array of second-or
gaskets convey a much stronger message. In Sec. III B
magnetoinductance of this sample was shown to obey
predictions for the fractal regime whose signatures, altho
less pronounced than in theN54 case, can also be ident
fied, abovef c251/32, in the log-log plot of Fig. 8@notice
that the self-similar and scaling properties ofDL21 are ex-
pected to become clearly manifest only in the asympto
limit ( f→0) of higher-order gaskets12#. Below f c2, however,
the behavior ofDL21( f )/L21(0) drastically changes. Be

FIG. 8. Log-log plot of the frustration-induced relative chan
of the inverse sheet inductance of the arrays of second-o
(N52) and fourth-order (N54) gaskets measured at 160 Hz. T
dotted curve is the theoretical prediction for an undistorted ga
of infinite order~see Ref. 12!. The result@the same as in Fig. 5~b!#
of the calculation for an array of distorted second-order gaske
shown~open triangles! at multiples off 51/32 in the range@1,16#.
For clarity, the theoretical curves are shifted downward by a qua
of a decade.f cN is the frustration at which the crossover from th
Euclidian (f , f cN) to the fractal (f . f cN) regime occurs.
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sides the loss of self-similarity and scaling, the data rev
by closer inspection, the presence of structures@the ‘‘dips’’ in
DL21( f )] corresponding to new commensurate states, wh
can not be ascribed to the fractal regime.

To strengthen the evidence for a regime crossover, in
9 we present the results of sheet inductance measurem
performed at high frustration resolution in the ran
u f u< f c2. Once again, to promote structures corresponding
ordered states we tuned the effect of thermal fluctuations
increasing the temperature and reducing the measuring
quency~10 Hz! in an appropriate way. Moreover, in Fig.
we also include the dissipative componentR( f ), whose re-
markably well resolved fine structure provides addition
evidence for the EF crossover. Notice that maxima in
~normalized! superfluid density,L21( f )/L21(0), correspond
to minima inR( f ), as it should be. For the array of fourth
order gaskets both the superfluid and the dissipative com
nents display clear fractal features with marked structure
multiples of f c451/512 corresponding to the frustration un
on the f-axis. In sharp contrast with this behavior, the d
namic response of the array of second-order gaskets
within experimental accuracy, symmetric with respect
f 5(1/2)f c2 and contains well resolved structures
u f u5(1/4)f c2 , u f u5(1/3)f c2 andu f u5(1/2)f c2. In particular,
the presence of prominent structures atu f u5(1/3)f c2 pro-
vides compelling evidence for the existence of a new regim
since no commensurate state corresponding to this frustra
can ever emerge from the characteristic sequencef 5M f cN

er

et

is

er

FIG. 9. Normalized inverse magnetoinductance and magnet
sistance of the periodic arrays of second-order (N52) and fourth-
order (N54) gaskets measured at 10 Hz in the frustration ran
u f u< f c251/3250.03125. Structures in the data forN52 are la-
beled in terms off H5 f / f c2, the frustration parameter referred t
the hexagonal unit cell of the honeycomb lattice shown in Fig.
Structures at multiples off c451/512 demonstrate the fractal cha
acter of the response forN54, whereas the prominent structures
u f Hu51/3 and the symmetry with respect tof H51/2 of the data for
N52 are signatures of the Euclidian regime.
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DIMENSIONAL CROSSOVER AND HIDDEN . . . PHYSICAL REVIEW B66, 104503 ~2002!
of the fractal regime for gaskets of any order. We interp
these features as an unambiguous signature of the Eucl
regime, in which the fine structure of the array’s impedan
reflects, as shown in Sec. V, the existence of vortex gro
states with a unit cell larger than a second-order gasket.

V. EUCLIDIAN REGIME

In order to understand how our arrays of gaskets beh
in the Euclidian regime, we first recall that the energy o
vortex in a Sierpinski gasket decreases with increasing
of the cell in which the vortex core is localized.10,11 Accord-
ingly, a single vortex in a lattice of periodically repeate
SG’s can be considered as interacting with an external
tential whose minima coincide with the centers of the larg
triangular cells located between theNth-order gaskets and
therefore, form a triangular lattice. Forf , f cN the number of
vortices in the system is smaller than the number of the la
est triangular cells, so that it is energetically favorable for
vortices to occupy only these largest cells, the concentra
of the occupied ones being equal to the ratiof / f cN . There-
fore, one can expect that, forf , f cN , the behavior of an
array of periodically repeated SG’s resembles that of a u
formly frustratedXY model on ahoneycomblattice ~with a
reduced value of frustrationf H5 f / f cN,1), whose ground
states can also be thought of as formed by vortices occu
ing the sites of a triangular lattice with the same concen
tion f H .

Another approach leading to the same conclusion re
on the iterative procedure, based on successive applica
of the triangle-star transformation,24 developed in Ref. 12. At
low frustrations, such that there are no vortices in the g
kets, this method allows to replace each gasket by an
ementary ‘‘star’’ consisting of three links with a modifie
interaction. This transforms a lattice of periodically repea
SG’s into a honeycomb lattice~see Fig. 10!. The difference
with respect to the conventionalXY model on a honeycomb
lattice is that in the iteration process the interaction becom
almost harmonic,12 the anharmonic corrections becomin
smaller and smaller as the number of iterations, which is
by the gasket orderN, increases. Moreover, forf Þ0 the
resulting effective interaction is no longer an even funct
of u i j .12

After establishing that the ground states in the Euclid

FIG. 10. Successive applications of the triangle-star transfor
tion allow to replace each gasket by an elementary ‘‘star,’’ there
turning a lattice of periodically repeated gaskets into a honeyco
lattice.
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regime (f , f cN) are formed by vortices occupying the site
of a triangular lattice with concentrationf H5 f / f cN,1, it is
natural to expect that the states which are particularly rob
against thermal fluctuations correspond to values off H al-
lowing the formation of an undistorted triangular vortex la
tice ~analogous to the Abrikosov lattice in bulk superco
ductors! commensurate with the underlying lattice provid
by the array. The energy required to create a defect in th
highly symmetric states is larger than for frustrations requ
ing the vortex lattice to be distorted. Therefore, the
Abrikosov-like states will be less vulnerable to thermal flu
tuations. For 1/2, f H,1, almost equally stable states can
constructed when the vacancies in the densely packed t
gular vortex lattice corresponding tof H51 also form an un-
distorted triangular lattice. This leads to the symme
f H↔12 f H , although it is not rigorous.

It is readily seen that triangular vortex lattices comme
surate with the underlying lattice can be constructed
f H51/(m21mn1n2), wherem and n are integers (m>1,
0<n<m). In particular,m5n51 givesf H51/3, m52 and
n50 give f H51/4, m52 andn51 give f H51/7, etc. The
states forf H51/3 and f H51/4 are shown, respectively, i
Figs. 11~a! and 11~b!. Within this family, the most ‘‘dense’’
state, i.e., the state forf H51/3, can be expected to be, o
account of its stronger vortex-vortex interaction, the m
stable one, followed, in order of decreasing stability, by tho
for f H51/4 andf H51/7. This is precisely what we observ
in the magnetoimpedance data of Fig. 9 for the array
second-order gaskets where, focusing on the inte
u f Hu,1/2), we find that the most prominent structures, s
nalling a very stable commensurate state, appear
u f Hu51/3. Weaker structures corresponding to the ne
stable triangular vortex lattice are also well resolved

a-
y
b

FIG. 11. ~a! and~b! show ground-state Abrikosov-like triangula
vortex configurations in a honeycomb lattice at, respective
f H51/3 andf H51/4. ~c!, ~d!, and~e! are examples of ground-stat
vortex configurations with the same energy in a honeycomb lat
at f H51/2. ~c! regular 1D superlattice structure~‘‘striped’’ phase!.
~d! A zero-energy domain wall separating two ‘‘striped’’ states
the type shown in~c!. ~e! The state obtained from~c! by introducing
the largest possible number of zero-energy domain walls.
3-9
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MEYER, KORSHUNOV, LEEMANN, AND MARTINOLI PHYSICAL REVIEW B 66, 104503 ~2002!
u f Hu51/4, whereas structures atu f Hu51/7 are barely visible
and present only in the inverse magnetoinductance data.
worth mentioning that the observation of the particula
prominent vortex state atu f Hu51/3 is entirely consistent with
theoretical predictions14,18 as well as with results of Monte
Carlo simulations18 for the frustratedXY model on the hon-
eycomb lattice.

The magnetoimpedance data of Fig. 9 also show w
structures atu f Hu51/2. The ground states of theXY model
on a honeycomb lattice at this particular frustration and
corresponding vortex configurations were studied in Ref.
and shown to possess a so-called accidental~i.e., not related
to the symmetry! degeneracy, which can be discussed
terms of zero-energy domain walls. Figure 11~c! shows an
example of a ground state forf H51/2 characterized by a
regular 1D superlattice structure. In this state all the variab
$u i j % take the valuesu i j 50,6p/4. Redistributing the same
set of variables in a different way among the bonds of
lattice allows one to transform the state of Fig. 11~c! into
another one with the same energy, shown in Fig. 11~d!,
where a domain wall separates two ‘‘striped’’ states of
type shown in Fig. 11~c!. An infinite family of states with the
same energy can be constructed by creating sequence
such zero-energy domain walls parallel to each other. Fig
11~e! shows another example of a periodic ground sta
which can be obtained by introducing the largest poss
number of domain walls into the state shown in Fig. 11~c!.

It is known26 that in systems allowing the formation o
zero-energy domain walls the stabilization of long-range
der at nonzero temperatures is achieved if the accidenta
generacy is removed by thermal fluctuations. This mec
nism ~the so-called ‘‘order by disorder’’27! is relatively weak
and, therefore, the ordering in frustratedXY models with
accidental degeneracy should be less stable~and destroyed a
lower temperatures! than in otherXY models. This effect
should be even more pronounced for the fully frustrated~i.e.,
for f H51/2) model on a honeycomb lattice, which, in co
trast to other 2D XY models with accidenta
degeneracy,26,28–30 does not display any difference in th
spin-wave free energy, calculated in the harmonic appro
mation, of different periodic ground states.14 The Monte
Carlo simulations of Shih and Stroud18 have indeed demon
strated that the phase transition of the frustratedXY model
on a honeycomb lattice atf H51/2 takes place at a muc
lower temperature than atf H51/3 or f H51/4, where the
accidental degeneracy is absent.

Returning to the system of periodically repeated SG’s
f 5 f cN/2 ( f H51/2), it is also possible to start the search f
its ground state by finding the structure of the state wh
minimizes the energy~3! for the periodic vortex configura
tion shown in Fig. 11~c!. Obviously, this state is periodic
and its unit cell comprises two gaskets. By redistributing
same set of$u i j % among the bonds of the lattice in a differe
way, one can construct the state with the same energy co
sponding to the vortex configuration shown in Fig. 11~d!.
However, in contrast to the fully frustratedXY model on a
honeycomb lattice, the state obtained in this way will not
an extremum of the Hamiltonian and, therefore, a slight
adjustment of$u i j % can further decrease its energy. Th
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means that in a system of periodically repeated SGs the
main wall shown in Fig. 11~d! has a negative energy. Accord
ingly, the state with the lowest energy corresponds to
periodic vortex configuration shown in Fig. 11~e!, which is
characterized by the highest possible density of such dom
walls. The unit cell of this state comprises four gaskets.
the fully frustratedXY model on a honeycomb lattice
ground state with the same structure is selected if one ta
into account the interaction, of arbitrary sign, with th
second-nearest neighbors.31

Thus, the phase transition taking place, with decreas
temperature, atf H51/2 should be related to the appearan
of long-range order corresponding to the vortex configu
tion shown in Fig. 11~e!. The selection of this state relies o
a weak mechanism, which loses its efficiency with increas
N, since the effective interaction becomes almost harmo
under decimation. One can therefore expect the orde
phase atf H51/2 to be again rather vulnerable to therm
fluctuations. This explains why the structures atu f Hu51/2 in
Fig. 9 are much weaker32 than those atu f Hu51/3. Their
strength is at most comparable to that of the structures
responding to the triangular vortex lattice atf H51/4, whose
weaker vortex-vortex interaction makes the ordering less
bust than atf H51/3. Numerical simulations18 show that in
the conventionalXY model on a honeycomb lattice the o
dered phases appear, with decreasing temperature, in
same order: first atf H51/3, then atf H51/4, and only fur-
ther down atf H51/2.

VI. CONCLUSION

Our magnetoinductance measurements on Josep
junction arrays of periodically repeated Sierpinski gask
have clearly demonstrated the existence of two regimes
agreement with theoretical analysis, in one of them~the frac-
tal regime! the peaks observed in the inverse sheet magn
inductance, reflecting those states which are the most st
against thermal fluctuations, are equally spaced. Neighbo
states in this sequence differ from each other by the pene
tion of an additional vortex into each unit cell of the array.
the other, Euclidian, regime the sequence of the obser
stable states corresponds to periodic lattices of vortices
cupying the largest triangular cells of the array.

The agreement with theory is achieved not only for t
positions of the different peaks, but also for their relati
strengths. In the Euclidian regime the structure of the
dered states is analogous to that on a honeycomb lattice
reduced frustration, and the relative stability of the differe
states can be understood in terms of vortex lattice disor
ing. However, the amplitudes of the peaks observed in
fractal regime can be quantitatively explained only if t
redistribution of the magnetic field in the array due to t
asymmetric shape of the superconducting islands is ta
into account. In this connection, we would like to mentio
the recent work by Park and Huse,33 who compared the en
ergies of different states in a wire network with akagome´
lattice geometry at full frustration. These authors came to
conclusion that the effects related to the finite width of t
wires can be compensated for bybendingthe wires. This is
3-10
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DIMENSIONAL CROSSOVER AND HIDDEN . . . PHYSICAL REVIEW B66, 104503 ~2002!
equivalent to our conjecture that the influence of the asy
metry associated with the screening currents can be red
to a redistribution of the magnetic field with respect to
ideal system.

The results of our magnitoinductance measurements s
that this phenomenon is more pronounced at high frustra
levels, an observation consistent with the analysis prese
in Sec. III B. Indeed, in our model, the triangular cells e
hibiting the largest relative areal changes are the sma
~elementary! ones, which are precisely those providing t
dominant contribution toL21( f ) at high values off. Data
taken at very small frustrations, like those shown in Fig.
are practically unaffected by the nonuniform frustration
sulting from the asymmetry of the screening currents.

Early studies7 of a large-order (N510) single gasket of
superconducting aluminum wires revealed that the period
sociated with adjacent minima of the superconducting
normal phase boundaryTc( f ) was larger than that extracte
from adjacent maxima. We have found a similar perturbat
of the periodic field dependence in our calculations
L21( f ) based on the model for the magnetic field redistrib
tion proposed in Sec. III B. The same mechanism may
responsible for the anomalous feature observed in Ref.
should be noticed, however, that the experiments of Re
were performed at temperatures very close toTc(0), where
the estimated magnetic penetration depth of the Al wi
turns out to be comparable to their width. Accordingly, t
effective gasket distortion resulting from screening effects
expected to be weaker than in our arrays. A quantitative v
fication is therefore needed before drawing a conclusion
for the ability of our model to explain the anomaly observ
in Ref. 7.
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The influence of the incommensurability of different la
tice cells on the magnetoresistance of Josephson junc
arrays was discussed by Kosterlitz and Granato34 in relation
to experiments performed on periodic arrays with a comp
unit cell.35 However, quantitative agreement between expe
ment and theory in treating incommensurability effects
Josephson junction arrays has been demonstrated only b
present work36. In our system the phenomenon of incom
mensurability is present in a hidden form, and its manifes
tions appear as a consequence of the asymmetric shape o
superconducting islands. Hopefully, our discussion will dr
the attention of researchers investigating lattice superc
ductors with non-equivalent plaquettes to the problem of h
den incommensurability.
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