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Impact of the density of states on the dynamical hopping conductivity
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We argue that the dynamical hopping conductivity at low frequencies can be strongly affected by the form
of the density of states, if the density of states depends strongly on energy and the transport is not restricted to
a small vicinity of the Fermi energy. To this end we focus on an exponential density of states. For such a
density of states we show that the strong energy dependence of the density of states affects significantly the
characteristic frequencies, governing the impact of the frequency dependence on the conductivity, the expected
magnitude of the loss, and the characteristic exponents in the multiple hopping regime. These facts manifest
also themselves in the transient current close to equilibrium.
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I. INTRODUCTION

A characteristic feature of many disordered materials
their strong frequency dependence for low frequencies.
frequency dependence manifests itself in an increase of
conductivity with increasing frequency. This sets disorde
materials apart from ordered materials, which are only
fected by the frequency of the electric field at very hi
frequencies. In contrast to disordered materials, an incre
of the frequency always results in a decrease of the con
tivity in ordered materials. A particular strong dependence
the dynamical conductivity on frequency at very low fr
quencies is observed in strongly localized systems, in wh
transport proceeds by hopping between localized states,
as impurity bands, Anderson insulators, glasses, and p
mers~see, e.g., Refs. 1–7!.

The physical reason for the strong frequency depende
can easily be understood in the language of percola
theory. In an ordered system the current between two e
trodes flows along straight lines. The conductivity is const
along these lines. In a strongly localized, disordered syst
however, the current between two electrodes in a cons
electric field chooses the optimal path. The opportunity
choose the path results from the fact that the local cond
tivity changes from point to point. Thus the current writh
somehow through the sample. In doing so, it somewh
passes a critical resistor, the is that piece of the path with
highest resistance. If the distribution function for the res
tors is wide enough the critical resistor exceeds all ot
resistors on the path by orders of magnitude, and thus, d
mines the resistivity of the whole sample. In an alternat
electric field, however, the current lines do not have to
closed. A substantial part of the current can be formed by
displacement current as well. In an ordered system the
placement current only contributes to the imaginary part
the conductivity. In a disordered system, however, the d
placement current can be used to eliminate the most resi
parts of the current path merely by increasing frequen
Since with increasing frequency the resistors are exclu
according to their strength, at first the critical resistor a
0163-1829/2002/66~10!/104203~10!/$20.00 66 1042
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thereafter the next smaller ones, the resistance of the w
network decreases.

Since some of the resistors have been excluded from
percolation cluster by the alternations of the electric field,
current in an alternating electric field is restricted to fin
clusters. At high frequencies these clusters reduce to pair
sites.8 In this limit, the Pollak-Geballe limit, the conductivity
is dominated by resonant pairs, which have the property
the transition probability per unit time for jumps betwee
them is of the order of the frequency of the external fie
Within that range the frequency dependence of the cond
tivity is close to Res(v)}vs, wheres,1 and frequency
dependent. Since in many experiments a frequency de
dence of this type is observed, it appears on first glance a
the frequency dependence of hopping systems can alm
always been explained by the two-site model. A further
vestigation of the two-site model, however, reveals that
range of applicability is restricted to very high frequencie
much higher than those usually used in the experiments~see,
e.g., Ref. 1!. Furthermore, the two-site model predicts a d
creases ofs with increasing frequency. In many experimen
however, an increase ofs with increasing frequency is
observed.1

Below the range of applicability of the two-site model, th
current is restricted to finite but very large clusters, as fi
pointed out in the Refs. 9 and 10. Within that regime t
conductivity has been investigated by percolation theory9–11

and by effective-medium methods~see, e.g., Refs. 12# and
Ref. 7, and references therein!. From the practical point of
view the results of both methods agree with each othe11

According to the results of the effective-medium theory t
dynamical conductivity in the hopping regime below th
range of applicability of the two-site model satisfies t
equation

s~s!

s~0!
ln

s~s!

s~0!
5

s

v0
. ~1!

Heres52 iv is the frequency of the alternating electric fie
and v0 is a frequency of the order of the dc conductivit
©2002 The American Physical Society03-1
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Surprisingly, Eq.~1! is found to also hold in many othe
disordered systems, which are not necessarily of hopp
type ~see, e.g., the recent review by Dyre and Schroder7!, so
that ac universality seems to exist. The only ingredie
which is shared by all of these systems, seems to be diso

Equation~1! leads to the following two conclusions fo
the ac conductivity. First, the characteristic frequencyv0,
which marks the beginning of the strong frequency dep
dence, is of the order of the dc conductivity. Second, the
and the imaginary part of the ac conductivity increases w
frequency, and third, forv@v0, i.e., in the multiple-hopping
regime, the real and imaginary part of the conductivity c
be approximated by Res(v)}vs8(v) and Ims(v)}vs9(v),
where boths8,s9,1 and frequency dependent. With increa
ing frequency,s8 ands9 increase, as observed in the expe
ments. The above-mentioned properties also reflect in
time dependence of the transient current, the Heaviside tr
form of the conductivity. They lead to anomalous diffusio
for t,1/v0, where j(t)}1/t12a(t) @0,a(t),1#, and the
exponential decay ofj(t)2 j(`) for t.1/v0.

In all of the investigations on the frequency depende
of the dynamical conductivity below the Pollak-Geba
limit, however, the consideration has been restricted to
situation where the density of states varies only weakly w
energy, and the main contribution to the conductivity resu
from the vicinity of the Fermi energy. In an important cla
of hopping systems, however, e.g., in band tails of am
phous semiconductors~see, e.g., Refs. 13 and 14! or in cer-
tain polymers~see, e.g., Refs. 15–17!, this situation is usu-
ally not met. These systems have the property that t
density of states varies strongly with energy. The conduc
band tail of amorphous hydrogenated silicon, e.g., is wid
believed to increase exponentially with increasi
energy.13,14 Furthermore, the Fermi energy is often not sit
ated within the band. In this case the most important con
butions to the dc conductivity do not result from the vicini
of the Fermi energy, but from the vicinity of a certain ener
level, the transport energy.18,19 This energy results from the
competition between two contributions. On the one hand,
Boltzmann distribution functions favors those contributio
to the conductivity, which result from small energies. On t
other hand, the mobility favors high energies, since the d
sity of states increases strongly with energy.

It is the purpose of the article to show that the frequen
dependence can be strongly affected by the density of st
if the density of states depends strongly on energy. To
end we focus on an exponential density of states and ass
that the Fermi energy is not contained in the band. Althou
this density of states is of much interest for the description
transport properties of many amorphous materials, e.g.,
amorphous hydrogenated silicon, so far only investigati
on the frequency dependence in the Pollak-Geballe li
have been published.20 We show that for such a system th
first and the third property of Eq.~1!, as discussed above, a
violated. In such a system the characteristic frequency, wh
governs the impact of the frequency on the conductivity
not given by the dc conductivity, ands8 ands9 are one in the
multiple hopping regime.

In order to perform the calculation we use the effectiv
10420
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medium theory by Gouchanouret. al.21 To simplify the
effective-medium equations we use the assumption that
energy transferred in one hop is small. Accordingly, t
physical situation is, in principle, different from that usual
considered in the band tail problem, e.g., in Refs. 18, 19
22–25. In our model the charge carrier cannot jump from
very bottom of the tail to the very top of the tail, or vic
versa, in one jump. It turns our that this fact reflects itself
certain dimensionless parameters, as discussed further b

II. BASIC EQUATIONS

We consider localized charge carriers far from the Fe
energy close to equilibrium. If we assume that the numbe
charge carriers is small we can neglect Fermi correlation
this case, the motion of the charge carriers can be descr
by the simple rate equation

dnm

dt
5(

n
@nnWnm2nmWmn#. ~2!

Here nm is the number of particles on the sitem with site
energyem and position vectorRm ,

Wnm5u~k2uVnmu!n expF22aURnmU1 b

2
~Vnm2uVnmu!G

~3!

is the transition probability for a hop from the siten to the
site m, a21 is the localization length,n is the attempt-to-
escape frequency,b is the inverse temperature, andk is the
maximal amount of energy transferable in one hop. Furth
more,Vm5em2e@E(t)Rm#, whereE(t) is the electric field
at time t, ande is the charge. Both the position vectors a
the site energies are random quantities. We assume tha
sites are uniformly and homogeneously distributed in spa
and that the site energies$en% are distributed randomly ac
cording to a distribution function proportional to the dens
of statesN(e).

To calculate the current, we restrict the consideration
weak electric fields, and linearize the rate equation~2! with
respect to the electric field. To this end we decomposenm
into two parts, into the Boltzmann distribution function

f m5C exp~2bem! ~4!

and a small deviationnm
(1) due to the electric field, accordin

to the relationship

nm5 f m1nm
(1) . ~5!

Doing so, we find that the quantity

Um5nm
(1)2b f meERm ~6!

satisfies the equation

s$Um1b f me@E~s!Rm#%5(
n

@UnWnm2UmWmn#, ~7!

after a Laplace transformation with respect to time. Heres is
the frequency which corresponds to the Laplace transfor
3-2
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tion with respect to time. If we solve Eq.~6! formally with
the Green’s functionP, which satisfies the equation

sPm8m5dm8m1(
n

@Pm8nWnm2Pm8mWmn#, ~8!

we find that

nm
(1)~s!52sb(

n
f nPnm~s!e~ERnm!. ~9!

Therefore, we obtain for the Ohm current the equation

j~s!5
e2s2b

2V (
nm

f nPnm~s!Rmn~ERmn!. ~10!

HereV is the volume of the system.

III. THE DIFFUSION PROPAGATOR

Equation~10! yields a convenient starting point for th
calculation of the configuration averaged current. If we
troduce continuous coordinates, according to the definitio

P~R8,e8uR,e!5(
nm

d~e82en!d~R82Rn!

3Pnmd~R2Rm!d~e2em!, ~11!

we find that the equation for the calculation of the config
ration averaged current takes the form

j~s!5
e2s2b

2 E de de8 dR f B~e!R~ER!^P~R,e8u0,e!&.

~12!

Here the bracket indicates the configuration average,
f B(e)5 f muem5e is the Boltzmann distribution function. Thu
the calculation of the configuration averaged current is
duced to the calculation of the configuration averag
Green’s function.

To calculate the configuration averaged Green’s funct
we use the effective medium approximation by Gouchano
Anderson, and Fayer.21 Originally, this technique has bee
developed for the investigation of hopping systems with
pological disorder. However, it is a simple matter to che
that the extension of this method to systems with both to
logical and energetic disorder only amounts to a change
notation, so that we can directly use the results of Ref.
Doing so, we find that the configuration averaged Gree
function satisfies the system of integral equations

^P~R,e8u0,e!&5N~e8!F~Rue8,e!, ~13!

sF~Rue8,e!5d~R82R!d~e82e!

1E dr1@F~ uR2R1uue8,e1!W̃~R1ue1 ,e!N~e!

2F~ uRuue8,e!W̃~R1ue8,e1!N~e1!#, ~14!
10420
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W̃~Rue8,e!5
W~Rue8,e!

11 f ~e!W~Rue,e8!1 f ~e8!W~Rue8,e!
,

~15!

and

f 21~e!5s1E de1 dR W̃~Rue,e1!N~e1!. ~16!

Here W(Rue8,e)5WnmuRnm5R,en5e8,em5e . Obviously, the
functionF has to be identified with the diffusion propagato
W̃ is the renormalized transition probability, andf (e) is the
effective medium. Due to detailed balance and probabi
conservation, the diffusion propagator satisfies the relati
ships

E de dR s F~Rue8,e!51 ~17!

and

E de8 dR s N~e8! f B~e8!F~Rue8,e!5N~e! f B~e!.

~18!

IV. QUASIELASTIC APPROXIMATION

The equation of motion for the calculation of the diffusio
propagator is an integral equation with respect to ene
which cannot simply be solved, if the density of states d
pends on energy. Only for a density of states that is indep
dent of energy, that is, for a constant density of states,
this equation be reduced to an algebraic equation after F
rier transformation. Therefore, in order to simplify this sy
tem further, we use additional approximations. To render
calculations feasible we use the quasielastic approximat
This approximation relies on the notion that the energy
changed in one hop is small, so that

k

f ~e!

d f~e!

de
!1. ~19!

Furthermore, we assume that

bk!1. ~20!

In this case the renormalized transition probabilities take
form

W̃~Rue8,e!5u~e82e!u~k2e81e!W̃~Rue8!

1u~e2e8!u~k2e1e8!W̃~Rue!e2b(e2e8),

~21!

where

W̃~Rue!5
W~R!

112 f ~e!W~R!
. ~22!
3-3
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HereW(R)5n exp(22aR). If we use this approximation an
the inequalities~19! and~20!, then the self-consistency equ
tion ~16! simplifies considerably. Fors50 the solution of
this equation is given by

rc~e,0!5
2a

@kN~e!#1/d S d

Sd
D 1/d

, ~23!

and for smalls, that is, fors satisfying urc(e,0)2rc(e,s)u
!rc(e,0), we obtain the equation

@rc~e,0!2rc~e,s!#exp@rc~e,0!2rc~e,s!#5
s

v0~e!
.

~24!

Here

rc~e,s!5 ln@2 f ~e,s!n# ~25!

is the characteristic hopping length,

v0~e!5
2dn

rc~e,0!
exp@2rc~e,0!#, ~26!

and Sd is the solid angle ind dimensions (S252p, S3
54p). For larges, that is, fors@v1(e), where

v1~e!'2n exp@2rc~e,0!#, ~27!

the self-consistency equation~16! simply yields the exact
high-frequency result, which is

rc~e,s!5 ln
2n

s
. ~28!

Now, where the effective transition probability is know
we can insert the Eqs.~13!, ~14!, and~21! into Eq. ~12! and
calculate the current. Doing so, we find that

j~s!5EE de s~e,s!, ~29!

where the spectral conductivity satisfies the equation

s~e,s!5eN~e! f B~e!m~e,s!, ~30!

and the mobilitym(e,s) is related to the diffusion coefficien
by the Einstein relationship

m~e,s!5
e

kT
D~e,s!. ~31!

The diffusion coefficient

D~e!5
1

2dE dRde1 R2W̃~Rue,e1!N~e1! ~32!

is given by

D~e,s!5
1

d12

n

~2a!2

rc
d12~e,s!

rc
d~e,0!

exp@2rc~e,s!#. ~33!

Equations~29!–~33! yield the starting point for our investi
gation of conduction processes in model densities of sta
10420
s.

To calculate the dc current we only have to sets50 in Eq.
~29!. In order to calculate the ac conductivity we puts5
2 iv in Eq. ~29!, wherev is the frequency of the applied
external electric field. Furthermore, we investigate the tr
sient current. To this end we assume that the system i
equilibrium for t,0 and that a constant electric field
switched on suddenly at timet50. Then

j~ t !5
1

2p i Ec

ds

s
estj~s!, ~34!

where c is the appropriate chosen contour in the comp
plane.

V. TRANSPORT IN AN EXPONENTIAL DENSITY OF
STATES NEAR EQUILIBRIUM

In this section we consider the exponential density
states

N~e!5N0 exp~3e/D!u~e! ~35!

at low temperatures, that is in the limitkT/D!1, in three
dimensions, so thatd53. Hereu(x) is the step function. In
the literature, this type of density of states is traditiona
used for the description of conduction processes in the c
duction band tail of amorphous hydrogenated silicon~see,
e.g., Refs. 13, 18, and 19!.

Since

rc~e,0!5r0e2e/D, ~36!

wherer0
353(2a)3/(kN04p), we can use the characterist

hopping length ats50 to parametrize the density of state
We chose the parametrization in such a way, thatr0 is the
largest characteristic hopping length in the tail. According
e50 for a particle at the bottom of the tail. For definitene
we assume that the smallest hopping length in the tail is 1
that the largest attainable energy ise5D ln r0, although this
not essential, since the results are independent of the u
bound at lowT.

To characterize our system completely we still have
adjust the normalization constantC in Eq. ~4!. To adjustC
we assume that the density of charge carriers at tempera
T is given byn(T). Here the temperature dependence of
charge-carrier density reflects the origin of the charge ca
ers in the tail. In general there can be two situations; eit
the number of charge carriers in the tail is constant or
position of the chemical potential is independent of tempe
ture. The latter situation arises, e.g., if the chemical poten
is situated below the band, so that the charge carriers in
tail result from the tails of the Fermi distribution function
that is, from thermal activation from a lower band, such as
amorphous hydrogenated silicon.19 In this case the tempera
ture dependence ofn(T) also manifests itself in the conduc
tivity. On the other hand, if the number of charge carriers
the tail is constant, the Fermi energy is situated within
band. Since we have already neglected Fermi correlation
consideration of this situation is only justified if the ma
contributions to the conductivity result from a region that
far from the Fermi energy, which in this case has to
3-4
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checked if the formulas derived here are applied to a
system. Our formulas apply, ifeF,0 andueF /kTu@1. If we
take into account these remarks we can calculateC from the
equation

n~T!5E
0

D ln r0
de N~e! f B~e!, ~37!

so that we find

C'
n~T!

kTN0
~38!

in the limit D/kT@1.

A. dc conductivity

If we now apply Eqs.~29!, ~31!, and~33! to the calcula-
tion of the dc conductivity, and userc(e,0) instead ofe as an
integration variable, we find that the dc conductivity is giv
by the integral

s~0!5
e2

kT

N0CD

5~2a!2

n

r0
D/kT23E1

r0
dr expF ln~r!S D

kT
22D2rG .

~39!

The exponent of the integrand has a maximum at

r t5
D

kT
22, ~40!

at energy

e t5D ln
r t

r0
. ~41!

The latter energy has already been introduced by Gru¨newald
and Thomas18 and Shapiro and Adler19 and is called transpor
energy.

If we check the saddle-point criterion we find that t
saddle-point approximation is applicable providedr t@1,
which is the case of interest here. The saddle-point appr
mation yields

s~0!5
A2p

5

e2n~T!

kT

n

~2a!2
r0r t

3/2

3exp$2r t@11 ln~r0 /r t!#%. ~42!

Thus, sincer t}D/kT, the conductivity appears to be the
mally activated, although thermal activation into the cond
tion band ~the top of the tail! is absent. The temperatur
dependence reflects entirely on the temperature depend
of the transport energy, which results from the competit
between the mobility and the Boltzmann function. On t
one hand, the mobility of particles at higher energy is mu
larger than the mobility of particles with lower energy. O
the other hand, there are much more particles at lower en
than at higher energy, so that the product of the distribut
function and the mobility has a maximum somewhere. Ho
ever, we stress that despite the existence of the trans
energy most of the particles are sitting at the bottom of
10420
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tail. Similar results for the dc conductivity have also be
obtained earlier by Gru¨newald and Thomas18 and Shapiro
and Adler.19

B. Calculation of s„s…

In the preceding section we have seen that the main c
tribution to the dc conductivity results from a vicinity of th
transport energy. Below we are going to show that for ev
finite s the situation is different. For every finites the main
contribution to the quantitys(s)2s(0) results from the bot-
tom of the tail. The reason for this is that the abov
mentioned competition is affected. Due to Eqs.~24! and~28!,
the hopping length at high frequencies is lower than the h
ping length at low frequencies. Furthermore, since b
v0(e) and v1(e) at low energies are much smaller than
high energies, a frequencys, which acts like a small fre-
quency in the vicinity of, e.g., the transport energy, is a ve
large frequency at the bottom of the tail. Thus the hopp
length at the bottom of the tail is much reduced.

To investigate the change of the conductivity we first f
cus on smalls, with s!v1(0). In this case we can use Eq
~24! in the whole range of integration. Then the change
the conductivity takes the form

s~s!2s~0!5
1

5

e2n~T!

~kT!2

nD

~2a!2

1

r0
r t21E

1

r0
dr exp~r t lnr2r!

3S expH WF s

6n
r exp~r!G J 21D . ~43!

Here W(x), with W(x)exp@W(x)#5x, is the Lambert func-
tion. The integrand of Eq.~43! is a monotonously increasin
function of r. Consequently, the main contribution resu
from the vicinity of r5r0. If we calculate the integral~see
the Appendix!, using the inequalityr tW0 /r0!1, where
W05W@sr0exp(r0)/(6n)#, we find that

s~s!2s~0!5s~0,s!kTH W02
r t

r0
@~11W0

22W0!

2exp~2W0!#J . ~44!

Heres(0,s) is the spectral conductivity at the bottom of th
tail. Accordingly, the frequency dependence of the cond
tivity at low frequencies is governed byv0(0), the lower
limiting frequency at the bottom of the tail.

If s@v1(0), theelectrons at the bottom of the tail mov
in the high-frequency limit. In this case

s~s!5
e2n~T!

~kT!2

n

5~2a!2E0

e1(s)

de
ln5~2n/s!

rc
3~e,0!

3expF3e

D
2

e

kT
2 ln~2n/s!G1s1~s!. ~45!

Heree1(s) is upper bound for the high-frequency limit, tha
is, electrons withe,e1(s) are in the high-frequency limit,
and electrons withe.e1(s) are either in the multiple hop
3-5
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ping regime or at lowest frequencies. The latter electr
contribute to the ac conductivity withs1(s). Since the inte-
grand decreases monotonously with increasing energy
main contribution to the integral results again from the
cinity of e50, so thats1(s) is negligible, ande1(s) irrel-
evant. If we take into account this fact, we obtain fors
@v1(0) the simple equation

s~s!5s~0,s!kT. ~46!

C. Frequency dependence

For low frequencies of the applied external electric fie
that is, forv!v1(0), thefrequency dependence of the co
ductivity is governed by the lower limiting frequencyv0(0),
the lower limiting frequency at the bottom of the tail. Th
sets the situation in the exponential tail apart from that in
conventional theory on ac hopping conductivity, where
frequency dependence at low frequencies is governed
characteristic frequency of the order of the dc conductiv
Sincev0(0)!v0(e t) the conductivity depends on frequenc
at much lower frequencies than in the conventional the
For v!v0(0) this dependence is weak. In this case Eq.~44!
can be expanded with respect to powers ofv/v0. The ex-
pansion has the form

s~s!2s~0!5s~0,0!kTF 2 iv

v0~0!
2

1

2

r t

r0
S 2 iv

v0~0! D
2

1
1

3

r t

r0
S 2 iv

v0~0! D
3

2•••G . ~47!

For v@v0(0) Eq. ~44! takes the form

s~v!2s~0!'s~0,0!kTS 2 iv

v0~0! D S 12
r t

r0
W0Us52 ivD .

~48!

To obtain explicit expressions for the real and imaginary p
of the dynamical conductivity we restrict the consideration
the leading term in the asymptotic expansion ofW(x) for x
@1. In this approximationW(x)' ln(x). If we use this ap-
proximation we obtain

Re@s~v!2s~0!#5s~0,0!kT
p

2

r t

r0

v

v0~0!
, ~49!

Im s~v!52s~0,0!kT
v

v0~0!
. ~50!

This result differs from the conventional result for the
hopping conductivity in the multiple hopping regime~for a
text book treatment see, e.g., Ref. 1! in two ways. First, if we
write the real and the imaginary part of the conductivity
the form

Re@s~v!2s~0!#}vs8(v) ~51!

and

Im s~v!}vs9(v), ~52!
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respectively, we find that in the exponential tails8(v)
5s9(v)51, and independent ofv, for frequencies in the
range of applicability of Eqs.~51! and ~52!. Second, while
for a weakly energy dependent density of states the real
of the conductivity differs from the imaginary part only by
factor p/$2 ln@pv/(2ṽ0)#%,

1 where ṽ0 is a frequency of the
order of the dc conductivity, the real part of the ac condu
tivity in the exponential density of states is smaller than
imaginary part by a factor ofpr t /(2r0). Accordingly, the
loss is extremely small.

Since r0 is very large the frequency dependence of t
conductivity is already determined by the Pollak-Geba
limit at relatively low frequencies. Ifv@v1(0) jumps be-
tween pairs of sites prevail. In this case we find

Res~v!5
e2n~T!

kT

n

~2a!2r0
3

p

2

v

2n
ln4~2n/v! ~53!

and

Im s~v!52
e2n~T!

kT

n

5~2a!2r0
3

v

2n
ln5~2n/v!. ~54!

Accordingly, in this limit, the frequency dependence is t
same as the frequency dependence of the ordinary hop
conductivity in the same limit~see, e.g., Ref. 1!, but the
temperature dependence is different. This difference
caused by the absence of the Fermi energy in our mode
results from the normalization factor~38!.

D. Transient current

The differences between the ac conductivity for hopp
transport in weakly energy dependent densities of state
the vicinity of the Fermi energy and the ac-conductivity in
exponential density of states for charge carriers far from
Fermi energy, also affect the relaxation current. If we use
~44! in the calculation of the integral~34! we find that for
large times,

s~t!2s~`!5kTs~0,0!
e3/2

A2p

r t

r0

e2t/e

t5/2
. ~55!

Here t5v0(0)t. Equation~55! is applicable ift@1. This
has to be in contrast to the time dependence of the relaxa
current in the conventional theory, which leads to1,26 s(t)
2s(`)}exp(2t/e)/t3/2, where againt5ṽ0t. Thus, on the
one hand, as a function oft the decay of the deviation of th
transient current from its stationary value appears to
faster. On the other hand, sincev0(0)!v0(e t), the expo-
nential decay is only observed at a much larger time sc
than in the conventional theory for hopping transport in
weakly energy-dependent density of states in the vicinity
the Fermi energy.

Since the exponential decay is observed at a much la
time scale than in the ordinary situation, where the carri
jump in a weakly energy dependent density of states in
vicinity of the Fermi energy, the transport regime of anom
lous diffusion becomes even more important than in the c
3-6
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ventional situation. Anomalous diffusion is realized fort
!1. If t!1 but tr0@1 we can again use Eq.~44! for the
calculation of the integral~34!. Doing so, we obtain

s~t!2s~`!5kTs~0,0!
r t

r0

1

t
. ~56!

Again this expression has to be contrasted with the kno
results for hopping transport in a weakly energy-depend
density of states in the vicinity of the Fermi energy, which
this case leads to a time dependence of the forms(t)
2s(`)}t211a, wherea.0, is in general, a function oft
~see, e.g., Ref. 1, and references therein!. Thus the presen
theory leads toa50 for t@1/r0. Note that, when talking
about the exponenta, we are talking about properties of th
transient current close to equilibrium. This exponent is d
ferent from that which is obtained in the nonequilibrium sit
ation in relaxation current experiments far from equilibriu
as investigated, e.g., in Ref. 13, and references therein.
the investigation of the transient current fornt@1 andtr0
!1, we can use Eq.~46! in the calculation of the integra
~34!. Since, however, the frequency dependence of the d
sion coefficient is not affected by the density of states in
Pollak-Geballe limit, the results for the time dependence
the transient current agree in this limit with those from t
conventional theory. Within that range we havea5a(t)
.0. Note that, sincer0 is very large, this regime is appli
cable also for relatively large times.

VI. DISCUSSION OF THE QUASIELASTIC
APPROXIMATION

An important ingredient in our calculation is the qua
elastic approximation. This approximation relies on the n
tion that only hops with small energy transfer are charac
istic for a particle ensemble. Hard hops, that is, hops w
large energy transfer, are considered as rare, and thus
ignored. In our calculation we have used this assumption
the calculation of the effective transition probability~21!.
This raises the question, whether there are physical rea
to believe that this assumption is justified, and whether th
are also physical systems that can be compared experim
tally with the results of our calculation.

From the physical point of view there are several reas
to believe that the energy scalev exists, and is small. All of
them have their origin in peculiarities of the electron-phon
coupling in strongly localized systems, which lead to a
striction of the amount of energy transferable in one jump
is important to realize that not all phonons can interact w
localized electrons equally well. The high energetic phon
are localized in such systems, and thus do not contrib
much to transport. Practically, such phonons can only c
tribute to transport if the electron is sitting purely by chan
on such a site, that carries a localized mode, which is
likely. Thus, already on the first glance we have to conclu
that only phonons with wave vectorsq!qDebye, where
qDebye is the Debye wave vector, are important. If the ma
rial is, e.g., a material with weak electron-phonon couplin
we can restrict the consideration to one-phonon processe
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we then use the argument given above, we immediately c
clude that the energy scalev exists, and that this energ
scale is much smaller as the Debye energy. However, if
further investigate the electron-phonon interaction in su
materials, we find that even phonons with moderate w
vectors are not very important. The reason for this is sim
that the electron-phonon coupling constant is, strictly spe
ing, not a constant, but a function of the phonon wave vec
q, that is finally of the energy transferable in one jump. It
proportional to both to the overlap integral between the el
tron wave functions and a phonon wave and to the Fou
transformed electromagnetic potential, which describes
electromagnetic coupling between the electron and the p
non. The overlap integral tends rapidly to zero for phono
with wave vectorsq.2a and thus also renders those mod
with q.qDebyeaa ineffective, wherea is the lattice constan
of the host material. The Fourier transformed electrom
netic potential is considered as a constant in most calc
tions of the transition probabilities~see, e.g., Ref. 1!. How-
ever, this assumption is not reasonable, since from
physical point of view it means that the electric field of th
phonon wave is immediately screened out. Such an appr
mation is reasonable for a metal. In the relevant class
materials, however, there are no electrons which co
strongly screen out this field. As a consequence, the Fou
transformed potential is the Fourier transform of a poten
with long range, and therefore already tends to zero rap
for tiny q. Consequently, we have to conclude thatv is
small.

It might be argued that due to the imperfections, the r
evant class of materials, such as the band tails of amorph
semiconductors or organics, always tend to be materials w
strong electron-phonon coupling. But we would like to stre
again that such an assertion is an empty statement, sinc
electron-phonon coupling constant is not a constant bu
function of q, and the question is not how strong th
electron-phonon interaction is in general, but how strong
electron-phonon coupling constant is for those modes
most likely contribute to transport. In general, we belie
that the assumption that the electron-phonon interaction
the relevant modes is not strong is used in all of the pap
referred to in our references, since transition probabilit
have not been considered, in any of the papers which
adequate for strong electron-phonon coupling.

If, however, the assumption that the transitions can
considered as quasielastic is physical then the prediction
the quasielastic approximations should not be in conflict w
the experiments, and thus also not in conflict with tho
properties of the inelastic theories, which have been veri
experimentally. For the exponential density of states th
are at present three observable quantities, which have b
investigated both by our quasielastic theory and by theor
which have not used this assumption. These quantities
the energy relaxation rate at lowest temperatures,27 the relax-
ation current at lowest temperatures,28 and the dc conductiv-
ity @Eq. ~42!#. If we look on our expression~42! for the dc
conductivity we note that the energy scalev has dropped
out. The same expression for the dc conductivity is also
tained in the inelastic theory~see, e.g., Ref. 19!, that is, with-
3-7
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out the assumption of quasielasticity. Accordingly, the ene
scalev cannot be detected in any measurement of the
conductivity. In a recent paper28 we have also shown that th
time dependence of the relaxation current in quasielastic
proximation agrees with the time dependence of the re
ation current in the inelastic theory13 up to a number, which
scales the attempt-to-escape frequencyn by the ratiov/D at
appropriate places. Unfortunately, it turns out to be hard
extract this number from a relaxation current experime
However, fortunatly the same number can be obtained fr
an energy relaxation experiment. For the energy relaxa
experiment both methods predict a time dependence of
type13,27

e~ t !'2D ln ln~n0t ! ~57!

for the mean energy of the particle packet in energy spa
However, while in the inelastic situation13 n05n, quasielas-
ticity yields n05vn/D. Measurements on amorphous hydr
genated silicon yieldn051012 Hz. Thus, if the inelastic
theory holds,n51012 Hz. On the other hand, the theoretic
calculations yield values of the ordern'1018 Hz and larger
~see, e.g., Refs. 29 and 30! for the band tail of amorphou
hydrogenated silicon. These estimates have been verified
perimentally by frequency resolved photoluminescense m
surements~see, e.g., Ref. 31! and linewidth electron spin
resonance measurements.32 Accordingly, the predictions of
the inelastic theory are not in line with the experiments,
differ from the experimental values by six orders of mag
tude. Therefore, it cannot be claimed that the inelastic the
can account for the experimental situation. By contrast,
problem arises for our quasielastic theory. For the quasie
tic theory this fact merely confirms thatv can indeed be
considered as super small. We conclude, that the exis
experiments on transport in band tails of amorphous hyd
genated silicon are much better described by our quasiel
theory than by their inelastic counterparts.

VII. CONCLUSIONS

If we investigate our calculation we conclude that the f
quency dependence of the hopping conductivity at low f
quencies can significantly be affected by the form of
density of states, if there is no restriction of the transport t
vicinity of the Fermi energy. In the strongly localized regim
such a situation occurs, e.g., if the density of states incre
strongly with energy, as is the case in the exponential den
of states investigated in our paper, where the dc conducti
results from the vicinity of the transport energy.18,19 The
transport energy reflects the competition between the Bo
mann factor, which favors contributions from low energie
and the mobility, which favors contributions with hig
energies.19 The latter tendency results from the exponen
dependence of the mobility on the characteristic hopp
length, which, for a strongly energy dependent density
states increasing with energy, decreases strongly with ene
An alternating electric field leads to a reduction of the ch
acteristic hopping length, and thus affects the abo
mentioned competition. For lowest frequencies and in
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multiple hopping regime this reduction is described by E
~24! and ~26!. According to these equations, electrons at
top of the tail are much less affected by the alternations
the electric field than electrons at the bottom of the ta
Thus, although the main contribution to the dc conductiv
results from the vicinity of the transport energy, the fr
quency dependence of the conductivity is determined by
electrons on the bottom of the tail.

Since the frequency dependence is governed by the e
trons at the bottom of the tail the characteristic frequen
which governs the impact of the frequency of the alternat
electric field, is not of the order of the dc conductivity, but
the order of the spectral conductivity at the bottom of t
tail. Since the spectral conductivity in the vicinity of th
bottom of the tail is much smaller than the spectral cond
tivity in the vicinity of the transport energy the dynamic
conductivity already depends on frequency for very low f
quencies. Furthermore, owing to the same reasons, the
tiple hopping regime is very narrow. The Pollak-Geba
limit is practically already reached at relatively low freque
cies.

If we compare the frequency dependence of the dyna
cal conductivity in the multiple hopping regime in the exp
nential tail further with that in the ordinary situation we als
find that the character of the frequency dependence is di
ent. In contrast to the ordinary situation, in which an increa
of the frequency in the multiple hopping regime results in
strong increase of the real part of the conductivity, we fi
that the loss in the tail, although it is increasing with fr
quency, is practically extremely small. Furthermore, boths8
ands9 are equal to one, within the multiple hopping regim

The peculiarities in the frequency dependence also m
fest themselves in the relaxation current. Since the chara
istic frequency is tiny small anomalous diffusion is also o
served at relatively large times. Within the range
applicability of the Pollak-Geballe limit the excess curre
decays like d j (t)}t2[12a(t)] , with 1.a.0, but in the
range of applicability of the multiple hopping regime ju
like d j (t)}t21. Owing to the same reasons discussed abo
the Pollak-Geballe limit is also observed in the excess c
rent for relatively large times.

Unfortunately, it turns out to be very difficult to compar
our results directly with experiments, e.g., with results
measurements of the frequency dependence of the con
tivity in amorphous hydrogenated silicon. The reason for t
is that usually the idealized situation is not metin the expe
ment. In the experiments, both the contributions from ho
in the valence band tail, from the electrons in the conduct
band tail and from electrons in the conduction band, m
Despite this fact, our results are qualitatively in line with t
experimental results. According to the experiments33–35 the
Pollak-Geballe limit is also observed at low temperatu
and at relatively low frequencies. The lowest frequency u
in these experiments was 210 Hz. This fact is in line with o
result that the characteristic frequencies are determined
the electrons at the bottom of the tail, since otherwise
Pollak-Geballe could clearly not be observed at such l
frequencies. At higher temperatures the authors of the R
33–35 find that the frequency dependence of the conduc
3-8
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ity is well described by Eq.~1!. They argue that this result i
not due to hopping of electrons in the conduction band t
but due to macroscopic inhomogenities. Our calculat
gives further support to these hypotheses.

APPENDIX: SOME INTEGRALS

Here we discuss the main steps in the calculation of
integral ~43!. To this end we write Eq.~43! in the form

s~s!2s~0!5
1

5

e2n~T!

~kT!2

nD

~2a!2

1

r0
r t21 I ~ s̃!, ~A1!

where

I ~ s̃!5E
1

r0
dr exp~r t ln r2r!~exp$W@ s̃r exp~r!#%21!,

~A2!

and s̃5s/(6n). To calculate the integral we focus on its d
rivatives with respect tos̃. We haveI (0)50. Furthermore,
since for larger,

d

ds̃
u s̃50exp$W@ s̃r exp~r!#%'r exp~r!, ~A3!

we obtain

I 8~0!5E
1

r0
dr exp~r t ln r2r!

d

ds̃
U

s̃50

exp$W@ s̃r exp~r!#%

'
r0

r t12

r t12
. ~A4!

When calculating the second derivative ofI ( s̃) with respect
to s̃ we again take into account that the main contribution
the integral results from larger. In this case

d2

ds̃2
exp$W@ s̃r exp~r!#%52

r2exp~$2r2W@ s̃r exp~r!#%

$11W@ s̃r exp~r!#%3
.

~A5!

If we use Eq.~A5! and change the variables of integratio
from r to W we obtain the equation

d2I ~ s̃!

ds̃2
52

1

s̃
E

W( s̃e)

W0
dW

exp„~r t11!ln@r~W!#…

~11W!2
. ~A6!
.J
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HereW05W@ s̃r0 exp(r0)#. Since for larger,

r~W!' ln@exp~W!W/ s̃#, ~A7!

Eq. ~A6! can also be written in the form

d2I ~ s̃!

ds̃2
52

1

s̃
E

W( s̃e)

W0 dW

~11W!2
$ ln@exp~W!W/ s̃#%r t11.

~A8!

To simplify the integral further, we introduce the new int
gration variableu to W5@(11W0)u1W0#. Doing so, we
obtain

d2I ~ s̃!

ds̃2
52

1

s̃~11W0!
E

(W( s̃e)2W0)/~11W0!

0 du

~11u!2

3$ ln@exp~r0!r0#1~11W0!u

1 ln@11~11W0!u/W0#%r t11. ~A9!

The main contribution to the integral results from the fi
term in the logarithm. Therefore, we simply obtain

d2I ~ s̃!

ds̃2
52

1

s̃~11W0!
E

(W( s̃e)2W)0/11W0

0

3
du

~11u!2
$ ln@exp~r0!r0#%r t11. ~A10!

It can be checked that the corrections from the second
the third term in the logarithm are negligible if the inequali
r tW0 /r0!1 is satisfied. In realistic systems this inequal
is satisfied in the whole multiple hopping regime. If we u
this simplification we obtain

d2I ~ s̃!

ds̃2
52r0exp~r0!$ ln@exp~r0!r0#%r t11

exp~2W0!

11W0
.

~A11!

To obtainI ( s̃) we integrate Eq.~A11! twice with respect tos̃
and take into account Eq.~A3!. Then we obtain

I ~ s̃!5 s̃
r0

r t12

r t
2r0

r t exp~2r01W0!@~12W01W0
2!

2exp~2W0!#, ~A12!

which yields Eq.~44!.
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29D. Würtz and P. Thomas, Phys. Status Solidi B88, K73 ~1978!.
30W. Brenig, G.H. Do¨hler, and P. Wo¨lfle, Z. Phys.258, 381~1973!.
31R. Stachowitz, Ph.D. thesis, Phillipps-Universita¨t Marburg, Mar-

burg, 1997.
32B. Movaghar and L. Schweitzer, Phys. Status Solidi B80, 491

~1977!.
33K. Shimkawa, A.R. Long, and O. Imagawa, Philos. Mag. Lett.56,

79 ~1987!.
34A. Long, Philos. Mag. B59, 377 ~1989!.
35K. Shimkawa, A. Kondo, M. Goto, and A.R. Long, J. Non-Crys

Solids198-200, 157 ~1996!.
3-10


