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Impact of the density of states on the dynamical hopping conductivity
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We argue that the dynamical hopping conductivity at low frequencies can be strongly affected by the form
of the density of states, if the density of states depends strongly on energy and the transport is not restricted to
a small vicinity of the Fermi energy. To this end we focus on an exponential density of states. For such a
density of states we show that the strong energy dependence of the density of states affects significantly the
characteristic frequencies, governing the impact of the frequency dependence on the conductivity, the expected
magnitude of the loss, and the characteristic exponents in the multiple hopping regime. These facts manifest
also themselves in the transient current close to equilibrium.
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I. INTRODUCTION thereafter the next smaller ones, the resistance of the whole
network decreases.

A characteristic feature of many disordered materials is Since some of the resistors have been excluded from the
their strong frequency dependence for low frequencies. Thgercolation cluster by the alternations of the electric field, the
frequency dependence manifests itself in an increase of tHeurrent in an alternating electric field is restricted to finite
conductivity with increasing frequency. This sets disorderecFlUSters. At high frequencies these clusters reduce to pairs of
materials apart from ordered materials, which are only afSites- In this limit, the PoIIak-eraIIg limit, the conductivity
fected by the frequency of the electric field at very highiS dominated by resonant pairs, which have the property that
frequencies. In contrast to disordered materials, an increadB€ transition probability per unit time for jumps between
of the frequency always results in a decrease of the condu¢bem is of the order of the frequency of the external field.
tivity in ordered materials. A particular strong dependence ofVithin that range the frequency dependence of the conduc-
the dynamical conductivity on frequency at very low fre- tivity is close to Rer(w)=w® wheres<1 and frequency
quencies is observed in strongly localized systems, in whicklépendent. Since in many experiments a frequency depen-
transport proceeds by hopping between localized states, suéignce of this type is observed, it appears on first glance as if
as impurity bands, Anderson insulators, glasses, and polyhe frequency dependence of hopping systems can almost
mers(see, e.g., Refs. 137 always been explained by the two-site model. A further in-

The physical reason for the strong frequency dependencéstigation of_ the_'gwo_—sne m_odel, however! reveals tha_t its
can easily be understood in the language of percolatiof@nge of applicability is restricted to very high frequencies,
theory. In an ordered system the current between two eleduch higher than those usually used in the experimisets,
trodes flows along straight lines. The conductivity is constan€-g-» Ref. 1. Furthermore, the two-site model predicts a de-
along these lines. In a strongly localized, disordered systenfréases of with increasing frequency. In many experiments,
however, the current between two electrodes in a constatowever, an increase of with increasing frequency is
electric field chooses the optimal path. The opportunity tgPbserved. L _
choose the path results from the fact that the local conduc- Below the range of applicability of the two-site model, the
tivity changes from point to point. Thus the current writhescurrent is restricted to finite but very large clusters, as first
somehow through the sample. In doing so, it somewher@ointed out in the Refs. 9 and 10. Within that regime the
passes a critical resistor, the is that piece of the path with theonductivity has been investigated by percolation thidfy
highest resistance. If the distribution function for the resis-2nd by effective-medium methodsee, e.g., Refs. 12nd
tors is wide enough the critical resistor exceeds all othefXef. 7, and references thergiFrom the practical point of
resistors on the path by orders of magnitude, and thus, deteylew the results of both methods agree with each other.
mines the resistivity of the whole sample. In an alternating\ccording to the results of the effective-medium theory the
electric field, however, the current lines do not have to bedynamical conductivity in the hopping regime below the
closed. A substantial part of the current can be formed by théange of applicability of the two-site model satisfies the
displacement current as well. In an ordered system the digquation
placement current only contributes to the imaginary part of
the conductivity. In a disordered system, however, the dis- is)l a(s) s !
placement current can be used to eliminate the most resistive a(0) ng(o) o @
parts of the current path merely by increasing frequency.

Since with increasing frequency the resistors are excludetieres= —iw is the frequency of the alternating electric field
according to their strength, at first the critical resistor andand wg is a frequency of the order of the dc conductivity.
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Surprisingly, Eq.(1) is found to also hold in many other medium theory by Gouchanowet. al?* To simplify the
disordered systems, which are not necessarily of hoppingffective-medium equations we use the assumption that the
type (see, e.g., the recent review by Dyre and Schrodeo  energy transferred in one hop is small. Accordingly, the
that ac universality seems to exist. The only ingredientphysical situation is, in principle, different from that usually
which is shared by all of these systems, seems to be disordeonsidered in the band tail problem, e.g., in Refs. 18, 19, or
Equation(1) leads to the following two conclusions for 22-25. In our model the charge carrier cannot jump from the
the ac conductivity. First, the characteristic frequengy, very bottom of the tail to the very top of the tail, or vice
which marks the beginning of the strong frequency depenversa, in one jump. It turns our that this fact reflects itself in
dence, is of the order of the dc conductivity. Second, the reatertain dimensionless parameters, as discussed further below.
and the imaginary part of the ac conductivity increases with
frequency, and third, fow> w,, i.e., in the multiple-hopping Il. BASIC EQUATIONS
regime, the real and imaginary part of the conductivity can
be approximated by Re(w)x»® ) and Imo(w)xw® ),
where botts’,s"<1 and frequency dependent. With increas-
ing frequencys’ ands” increase, as observed in the experi-
ments. The above-mentioned properties also reflect in th
time dependence of the transient current, the Heaviside tran
form of the conductivity. They lead to anomalous diffusion dn,,
for t<1lwg, wherej(t)x1i'*® [0<a(t)<1], and the W:E [N W m— NpWinnl - 2
exponential decay gft) —j(e) for t>1/w,. n
In all of the investigations on the frequency dependenceiere n,, is the number of particles on the site with site
of the dynamical conductivity below the Pollak-Geballe gnergye,, and position vectoR.,,
limit, however, the consideration has been restricted to that

We consider localized charge carriers far from the Fermi
energy close to equilibrium. If we assume that the number of
charge carriers is small we can neglect Fermi correlation. In

is case, the motion of the charge carriers can be described
gy the simple rate equation

situation where the density of states varies only weakly with B
energy, and the main contribution to the conductivity results Wnm=0(x—[Van|) v exg —2a|Rym + 5 (Vam=Vam|)
from the vicinity of the Fermi energy. In an important class 3

of hopping systems, however, e.g., in band tails of amor- N - ]
phous semiconductorsee, e.g., Refs. 13 and)ldr in cer- IS the transition probabl_llty_for a hop fr(_)m the siteto the
tain polymers(see, e.g., Refs. 15—, 7this situation is usu- Sité m a * is the localization lengthy is the attempt-to-
ally not met. These systems have the property that thei@Scape frequency is the inverse temperature, ards the
density of states varies strongly with energy. The conductiofm@ximal amount of energy transferable in one hop. Further-
band tail of amorphous hydrogenated silicon, e.g., is widelynore,Vm=em—e[E(t)Rn], whereE(t) is the electric field
believed to increase exponentially with increasingat timet, andeis the charge. Both the position vectors and
energy*>'* Furthermore, the Fermi energy is often not situ- the site energies are random quantities. We assume that the
ated within the band. In this case the most important contrisites are uniformly and homogeneously distributed in space,
butions to the dc conductivity do not result from the vicinity @nd that the site energide,} are distributed randomly ac-
of the Fermi energy, but from the V|C|n|ty of a certain energycording to a distribution function proportional to the denSity
level, the transport enerd$:!° This energy results from the Of statesN(e).
competition between two contributions. On the one hand, the To calculate the current, we restrict the consideration to
Boltzmann distribution functions favors those contributionsweak electric fields, and linearize the rate equat@nwith
to the conductivity, which result from small energies. On therespect to the electric field. To this end we decompoge
other hand, the mobility favors high energies, since the deninto two parts, into the Boltzmann distribution function
sity of states increases strongly with energy.

It is the purpose of the article to show that the frequency fm=Cexpl—Bem) )
dependence can be strongly affected by the density of stateégnd a small deviation’?) due to the electric field, according
if the density of states depends strongly on energy. To thig, the relationship
end we focus on an exponential density of states and assume
that the Fermi energy is not contained in the band. Although Np="fm+ nﬁj). (5)
this density of states is of much interest for the description of ] .
transport properties of many amorphous materials, e.g., fdP0ing so, we find that the quantity
amorphous hydrogenated silicon, so far only investigations

: o Un,=n® - pf eER (6)

on the frequency dependence in the Pollak-Geballe limit m—'m m m
have been pul_alishe?ﬂ.We show that for such a system the gajisfies the equation
first and the third property of Eq1), as discussed above, are
violated. In such a system the characteristic frequency, which
governs the impact of the frequency on the conductivity is ~ S{Um* B melE(S)Rml} = [UgWom—UnWinal, (7)
not given by the dc conductivity, argl ands” are one in the h
multiple hopping regime. after a Laplace transformation with respect to time. Heige

In order to perform the calculation we use the effective-the frequency which corresponds to the Laplace transforma-
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tion with respect to time. If we solve E@6) formally with
the Green’s functiorP, which satisfies the equation

SPhm=Omrmt ; [Pm’anm_ Pm’men]v 8
we find that
n(8)= =SB foPnn(S)e(ERym). 9

Therefore, we obtain for the Ohm current the equation

PHYSICAL REVIEW B 66, 104203 (2002

- W(R|€',€)
W(R|€' €)= ,
1+f(e)W(R|e,e')+ (e )W(R| €', €)
(15
and
f*l(e)=s+f de; AR WR|€,e1)N(€;). (16)

Here W(R|€e',€)=Whplr —Rre =c,e =c- Obviously, the
function F has to be identified with the diffusion propagator,
W is the renormalized transition probability, ahgk) is the

. e’s’p effective medium. Due to detailed balance and probability
18)= =55~ n% faPnm(S)Rmn(ERmp). (10 conservation, the diffusion propagator satisfies the relation-
ships
Here () is the volume of the system.
f dedR s HR|e'e)=1 (17
I1l. THE DIFFUSION PROPAGATOR
Equation (10) yields a convenient starting point for the and
calculation of the configuration averaged current. If we in-
troduce continuous coordinates, according to the definition J de’ dR s Ne)fa(e)F(Rle’, €)= N(e)fa(e).
(18)

P(R',e'|R €)=, 8(e' —e€,)8(R' —R,)

nm

X P d(R—R) (e~ €rn), IV. QUASIELASTIC APPROXIMATION

(11)
The equation of motion for the calculation of the diffusion
propagator is an integral equation with respect to energy,
which cannot simply be solved, if the density of states de-
pends on energy. Only for a density of states that is indepen-
dent of energy, that is, for a constant density of states, can
this equation be reduced to an algebraic equation after Fou-

rier transformation. Therefore, in order to simplify this sys-

Here the bracket indicates the configuration average, an%?m further, we use additional approximations. To render the

fB(E):fm|em:e is the Boltzmann distribution function. Thus calculations feasible we use the quasielastic approximation.

! X . ) This approximation relies on the notion that the energy ex-
the calculation of the configuration averaged current is reéchanged in one hop is small, so that

duced to the calculation of the configuration averaged
Green’s function.

we find that the equation for the calculation of the configu-
ration averaged current takes the form

. e’s"B
j(s)= fdede' dRfgz(€)R(ER){P(R,€’|0,€)).

2
(12

To calculate the configuration averaged Green’s function L df(e) < (19
we use the effective medium approximation by Gouchanour, f(e) de
Anderson, and Fayét. Originally, this technique has been Furthermore. we assume that
developed for the investigation of hopping systems with to- '
pological disorder. However, it is a simple matter to check, Br<1. (20)

that the extension of this method to systems with both topo-
logical and energetic disorder only amounts to a change o this case the renormalized transition probabilities take the
notation, so that we can directly use the results of Ref. 21form

Doing so, we find that the configuration averaged Green'’s

function satisfies the system of integral equations \7V(R|e’ €)=6(e' —€)0(k—e + e)\7V(R|e’)

(P(R.€'[0,6))=N(e')F(R€ e), (13) B(em ) B(k— e+ YR )P,
SF(R|€e',e)=8(R'—R)8(€' —¢) (21)
where
+ [ dnulF(R-Rile' e MR er. o
_ W(R)
—F(R|le’,W(Ry|e",enDN(e)], (19 WRIE) = T2 fowWiR) 22
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HereW(R) = v exp(—2aR). If we use this approximation and To calculate the dc current we only have to setO in Eq.
the inequalitieg19) and(20), then the self-consistency equa- (29). In order to calculate the ac conductivity we Bt

tion (16) simplifies considerably. Fos=0 the solution of
this equation is given by

2a d 1/d
Pc“"”zm(@) ’ 29

and for smalls, that is, fors satisfying|p.(€,0)— p.(€,S)|
<p.(€,0), we obtain the equation

[po(€0)~pl e Jexipe( €0 ~pl€5)]= o 5.
(24)
Here
pc(€,8)=In[2f(€,5)v] (25
is the characteristic hopping length,
2dv
wol €)= 57X —pe(€0)], (26

and S; is the solid angle ind dimensions §,=2m, S3
=4). For larges, that is, fors>w(€), where

a)l(e)%ZVeXF[—pc(e,O)], (27)

the self-consistency equatidid6) simply yields the exact
high-frequency result, which is

pc(€,8)=In— (28

Now, where the effective transition probability is known,

we can insert the Eq$13), (14), and(21) into Eq.(12) and
calculate the current. Doing so, we find that

j(S)IEf deo(e,s), (29

where the spectral conductivity satisfies the equation

o(e,s)=eN(e)fg(e)u(e,s), (30

and the mobilityu(e,s) is related to the diffusion coefficient

by the Einstein relationship

u(e,s)= D(e S). (31
The diffusion coefficient
_ 1 2\A
D(E)_EJ dRde; R°W(R|€,€1)N(€7) (32
is given by
d+2
D(e,5)= VP 16 - pes)]. (33

d+2 (2a)? pl(e,0
Equations(29)—(33) yield the starting point for our investi-

—iw in EQ. (29), wherew is the frequency of the applied
external electric field. Furthermore, we investigate the tran-
sient current. To this end we assume that the system is in
equilibrium for t<0 and that a constant electric field is
switched on suddenly at timte=0. Then

1 (ds
=5 | Setico

where c is the appropriate chosen contour in the complex
plane.

(39

V. TRANSPORT IN AN EXPONENTIAL DENSITY OF
STATES NEAR EQUILIBRIUM

In this section we consider the exponential density of
states

N(e)=Ngyexp3e/A)b(e) (35

at low temperatures, that is in the linkfT/A<1, in three
dimensions, so that=3. Hered(x) is the step function. In
the literature, this type of density of states is traditionally
used for the description of conduction processes in the con-
duction band tail of amorphous hydrogenated sili¢egae,
e.g., Refs. 13, 18, and 19

Since

pc(€,0)=poe” 9%,

wherep8=3(2a)3/(KN04w), we can use the characteristic
hopping length as=0 to parametrize the density of states.
We chose the parametrization in such a way, ihats the
largest characteristic hopping length in the tail. Accordingly,
e=0 for a particle at the bottom of the tail. For definiteness
we assume that the smallest hopping length in the tail is 1, so
that the largest attainable energyeis A In pg, although this
not essential, since the results are independent of the upper
bound at lowT.

To characterize our system completely we still have to
adjust the normalization consta@tin Eq. (4). To adjustC
we assume that the density of charge carriers at temperature
T is given byn(T). Here the temperature dependence of the
charge-carrier density reflects the origin of the charge carri-
ers in the tail. In general there can be two situations; either
the number of charge carriers in the tail is constant or the
position of the chemical potential is independent of tempera-
ture. The latter situation arises, e.g., if the chemical potential
is situated below the band, so that the charge carriers in the
tail result from the tails of the Fermi distribution function,
that is, from thermal activation from a lower band, such as in
amorphous hydrogenated silicbhln this case the tempera-
ture dependence of(T) also manifests itself in the conduc-
tivity. On the other hand, if the number of charge carriers in
the tail is constant, the Fermi energy is situated within the
band. Since we have already neglected Fermi correlation, the
consideration of this situation is only justified if the main
contributions to the conductivity result from a region that is

(36)

gation of conduction processes in model densities of stategar from the Fermi energy, which in this case has to be
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checked if the formulas derived here are applied to a reafail. Similar results for the dc conductivity have also been
system. Our formulas apply, &<0 and|er/kT|>1. If we  obtained earlier by Gnewald and Thoma& and Shapiro
take into account these remarks we can calcu@afom the  and Adler*®
equation

B. Calculation of o (s)

Alnpg
n(T)=f deN(e)fg(e), (37 In the preceding section we have seen that the main con-
0 tribution to the dc conductivity results from a vicinity of the
so that we find transport energy. Below we are going to show that for every
finite s the situation is different. For every finitethe main
_n(m 3g  contribution to the quantity(s) —o(0) results from the bot-
kTN, (38) tom of the tail. The reason for this is that the above-
mentioned competition is affected. Due to E@1) and(28),
the hopping length at high frequencies is lower than the hop-
o ping length at low frequencies. Furthermore, since both
A. dc conductivity wo(€) and w,(e€) at low energies are much smaller than at
If we now apply Eqs(29), (31), and(33) to the calcula- high energies, a frequency which acts like a small fre-
tion of the dc conductivity, and uge(e,0) instead ok as an  quency in the vicinity of, e.g., the transport energy, is a very

integration variable, we find that the dc conductivity is givenlarge frequency at the bottom of the tail. Thus the hopping
by the integral length at the bottom of the tail is much reduced.

To investigate the change of the conductivity we first fo-

e? NoCA v o A cus on smalk, with s<w4(0). In this case we can use Eq.
o(0)= ﬁmmﬁ dpexpln(p){{5=2]=p|- (24 in the whole range of integration. Then the change of
Po (39 the conductivity takes the form

The exponent of the integrand has a maximum at 1e’n(T) vA

(5)—a(0)= = ! J""d exitp: Inp—p)
A a o =5 (kT)2 (2a)2pgt71 L p explpiInp—p

pt:ﬁ_za (40)
exp[W

P Here W(x), with W(x)exdW(x)]=x, is the Lambert func-
&=AIn—. (41)  tion. The integrand of Eq43) is a monotonously increasing
Po function of p. Consequently, the main contribution results
The latter energy has already been introduced byn@®mald  from the vicinity of p=p,. If we calculate the integralsee
and Thoma¥ and Shapiro and AdIétand is called transport the Appendiy, using the inequalityp,Wy/py<1, where
energy. Wo=W[spoexp(pg)/(6v)], we find that
If we check the saddle-point criterion we find that the

C

in the limit A/kT>1.

X

6_sz EXD(p)”—l>- (43

at energy

saddle-point approximation is applicable providpg>1, _ Pt 2
which is the case of interest here. The saddle-point approxi- o(8)=0(0)=0o(0S)kT) Wo— g[(HWO_WO)
mation yields

V27 en(T) v o —exp( _Wo)]] : (44)

a(0)= PoPt

S KT (2a)? Here o (0,s) is the spectral conductivity at the bottom of the
tail. Accordingly, the frequency dependence of the conduc-

X - . o o

exp{—p 1HIn(po/py) I} (42) tivity at low frequencies is governed by,(0), the lower

Thus, sincep;=A/kT, the conductivity appears to be ther- limiting frequency at the bottom of the tail.

mally activated, although thermal activation into the conduc- If s>w4(0), theelectrons at the bottom of the tail move

tion band (the top of the tajl is absent. The temperature in the high-frequency limit. In this case

dependence reflects entirely on the temperature dependence

of the transport energy, which results from the competition ) e’n(T) v eis)  In3(2vls)

between the mobility and the Boltzmann function. On the o(S)= 2 2J €73

one hand, the mobility of particles at higher energy is much (kT)* 5(2a)%Jo pe(€,0)

larger than the mobility of particles with lower energy. On 3¢ €

the other hand, there are much more particles at lower energy Xexp 1~ g ~IN(2vis) |+ ay(s). (49

than at higher energy, so that the product of the distribution
function and the mobility has a maximum somewhere. How-Here €,(s) is upper bound for the high-frequency limit, that
ever, we stress that despite the existence of the transpadd, electrons withe<e(s) are in the high-frequency limit,
energy most of the particles are sitting at the bottom of theand electrons withe>€;(s) are either in the multiple hop-
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ping regime or at lowest frequencies. The latter electronsespectively, we find that in the exponential tail(w)
contribute to the ac conductivity withr,(s). Since the inte- =s"(w)=1, and independent ab, for frequencies in the
grand decreases monotonously with increasing energy thange of applicability of Eqs(51) and (52). Second, while
main contribution to the integral results again from the vi-for a weakly energy dependent density of states the real part

cinity of e=0, so thato(s) is negligible, ande(s) irrel-  of the conductivity differs from the imaginary part only by a
evant. If we Fake into agcount this fact, we obtain ®r factor {2 |n[7m/(zz,o)]}11 where w, is a frequency of the
>w;(0) the simple equation order of the dc conductivity, the real part of the ac conduc-

tivity in the exponential density of states is smaller than the
imaginary part by a factor ofrp,/(2pg). Accordingly, the
loss is extremely small.
C. Frequency dependence Since pg is very large the frequency dependence of the

For low frequencies of the applied external electric field,conductivity is already determined by the Pollak-Geballe
that is, foro<w,(0), thefrequency dependence of the con- lIMit at relatively low frequencies. liw>w,(0) jumps be-
ductivity is governed by the lower limiting frequenay,(0), ~ tWeen pairs of sites prevail. In this case we find
the lower limiting frequency at the bottom of the tail. This 5
sets the situation in the exponential tail apart from that in the Reo(w)= end v 7o “2vlw) (53
conventional theory on ac hopping conductivity, where the KT (2a)?p3 2 2v
frequency dependence at low frequencies is governed by a
characteristic frequency of the order of the dc conductivity.and
Sincewy(0)<wq(€;) the conductivity depends on frequency )
at much lower frequencies than in the conventional theory. Im o (w)=— en(T) v i|n5(2vlw) (54)
For o< wg(0) this dependence is weak. In this case @4) kT 5(2a)2p8 2v '
can be expanded with respect to powerswdtoy. The ex-

o(s)=a(0s)kT. (46)

pansion has the form Accordingly, in this limit, the frequency dependence is the
same as the frequency dependence of the ordinary hopping
—io 1p [ —iw)\? conductivity in the same limi(see, e.g., Ref.)] but the
o(s)=o(0)=0(0,0kT — ©0) 2 po| wo(0) temperature dependence is different. This difference is
0 0o caused by the absence of the Fermi energy in our model. It
1p [ —iw)\3 results from the normalization fact¢88).
-~ - .. (47)
3 po\ wo(0)
D. Transient current
For > wy(0) Eq.(44) takes the form ) o )
The differences between the ac conductivity for hopping
—iw Pt transport in weakly energy dependent densities of states in
o(w)=0a(0)~a(0,0kT 0g(0) 1- %Wo s=—io|- the vicinity of the Fermi energy and the ac-conductivity in an

(48) exponential density of states for charge carriers far from the

Fermi energy, also affect the relaxation current. If we use Eq.

To obtain explicit express_iqns for the (eal and imz_iginary Part44) in the calculation of the integraB4) we find that for
of the dynamical conductivity we restrict the consideration tojgge times,

the leading term in the asymptotic expansionéfx) for x

>1. In this approximationV(x)~In(x). If we use this ap- e32 p, e e
roximation we obtain —0(%)=kTo(0,0 — . 55
p o(7) = 0(*) =kTo(0.0 =~ (55)
R o(w)—o(0)]= a(0,0)sz Ll L, (49) Here 7= wy(0)t. Equation(55) is applicable ifr>1. This
2 po wo(0) has to be in contrast to the time dependence of the relaxation
current in the conventional theory, which lead$%o(7)
IMm o() = — (0,0 kT — . (50) —o(®)xexp(-me)7? where againr=wt. Thus, on the
@o(0) one hand, as a function afthe decay of the deviation of the

This result differs from the conventional result for the aclransient current from its stationary value appears to be
hopping conductivity in the multiple hopping regintler a  f@ster. On the other hand, sineg(0)<wo(et), the expo-
text book treatment see, e.g., Refirl two ways. First, if we nential decay is only observed at a much larger time scale

write the real and the imaginary part of the conductivity in than in the conventional theory for hopping transport in &
the form weakly energy-dependent density of states in the vicinity of

the Fermi energy.
Re[(r(w)—o(O)]och'(“’) (51) . Since the exp_onential d.ecay i; ob;erved at a much Iqrger
time scale than in the ordinary situation, where the carriers
and jump in a weakly energy dependent density of states in the
vicinity of the Fermi energy, the transport regime of anoma-
Im a(w)ocws"(“’), (52 lous diffusion becomes even more important than in the con-
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ventional situation. Anomalous diffusion is realized fer we then use the argument given above, we immediately con-
<1. If 7<1 but 7pg>1 we can again use E@4) for the  clude that the energy scale exists, and that this energy
calculation of the integral34). Doing so, we obtain scale is much smaller as the Debye energy. However, if we
further investigate the electron-phonon interaction in such
materials, we find that even phonons with moderate wave
vectors are not very important. The reason for this is simply
that the electron-phonon coupling constant is, strictly speak-
Again this expression has to be contrasted with the knowiing, not a constant, but a function of the phonon wave vector
results for hopping transport in a weakly energy-dependeng, that is finally of the energy transferable in one jump. It is
density of states in the vicinity of the Fermi energy, which in proportional to both to the overlap integral between the elec-
this case leads to a time dependence of the fer(@)  tron wave functions and a phonon wave and to the Fourier
—o(®)x7 1% wherea>0, is in general, a function of  transformed electromagnetic potential, which describes the
(see, e.g., Ref. 1, and references thgrelinus the present electromagnetic coupling between the electron and the pho-
theory leads tow=0 for 7>1/py. Note that, when talking non. The overlap integral tends rapidly to zero for phonons
about the exponent, we are talking about properties of the with wave vectors)>2« and thus also renders those modes
transient current close to equilibrium. This exponent is dif-with g>qpeny«xa ineffective, wherea is the lattice constant
ferent from that which is obtained in the nonequilibrium situ- of the host material. The Fourier transformed electromag-
ation in relaxation current experiments far from equilibrium, netic potential is considered as a constant in most calcula-
as investigated, e.g., in Ref. 13, and references therein. Feions of the transition probabilitiesee, e.g., Ref.)1 How-

the investigation of the transient current fe>1 andrp,  ever, this assumption is not reasonable, since from the
<1, we can use Eq46) in the calculation of the integral physical point of view it means that the electric field of the
(34). Since, however, the frequency dependence of the diffuphonon wave is immediately screened out. Such an approxi-
sion coefficient is not affected by the density of states in thenation is reasonable for a metal. In the relevant class of
Pollak-Geballe limit, the results for the time dependence ommaterials, however, there are no electrons which could
the transient current agree in this limit with those from thestrongly screen out this field. As a consequence, the Fourier
conventional theory. Within that range we haue= a(t) transformed potential is the Fourier transform of a potential
>0. Note that, since is very large, this regime is appli- with long range, and therefore already tends to zero rapidly

prl
o(7)—0o(©0)=kTog(0,00 — —. (56)
Po T

cable also for relatively large times. for tiny g. Consequently, we have to conclude thatis
small.
VI. DISCUSSION OF THE QUASIELASTIC It might be argueq that due to the imperfgctions, the rel-
APPROXIMATION evant class of materials, such as the band tails of amorphous

semiconductors or organics, always tend to be materials with
An important ingredient in our calculation is the quasi- strong electron-phonon coupling. But we would like to stress
elastic approximation. This approximation relies on the no-again that such an assertion is an empty statement, since the
tion that only hops with small energy transfer are characterelectron-phonon coupling constant is not a constant but a
istic for a particle ensemble. Hard hops, that is, hops withfunction of g, and the question is not how strong the
large energy transfer, are considered as rare, and thus aséectron-phonon interaction is in general, but how strong the
ignored. In our calculation we have used this assumption irlectron-phonon coupling constant is for those modes that
the calculation of the effective transition probabili(@l).  most likely contribute to transport. In general, we believe
This raises the question, whether there are physical reasofisat the assumption that the electron-phonon interaction for
to believe that this assumption is justified, and whether theréhe relevant modes is not strong is used in all of the papers
are also physical systems that can be compared experimereferred to in our references, since transition probabilities

tally with the results of our calculation. have not been considered, in any of the papers which are
From the physical point of view there are several reasonadequate for strong electron-phonon coupling.
to believe that the energy scaleexists, and is small. All of If, however, the assumption that the transitions can be

them have their origin in peculiarities of the electron-phononconsidered as quasielastic is physical then the predictions of
coupling in strongly localized systems, which lead to a re-the quasielastic approximations should not be in conflict with
striction of the amount of energy transferable in one jump. Itthe experiments, and thus also not in conflict with those
is important to realize that not all phonons can interact withproperties of the inelastic theories, which have been verified
localized electrons equally well. The high energetic phonongxperimentally. For the exponential density of states there
are localized in such systems, and thus do not contributare at present three observable quantities, which have been
much to transport. Practically, such phonons can only coninvestigated both by our quasielastic theory and by theories,
tribute to transport if the electron is sitting purely by chance which have not used this assumption. These quantities are
on such a site, that carries a localized mode, which is unthe energy relaxation rate at lowest temperatéfése relax-
likely. Thus, already on the first glance we have to concludeation current at lowest temperatufésand the dc conductiv-
that only phonons with wave vectorg<Qpepe, Where ity [Eq. (42)]. If we look on our expressiofd2) for the dc
Opebye IS the Debye wave vector, are important. If the mate-conductivity we note that the energy scalehas dropped

rial is, e.g., a material with weak electron-phonon coupling,out. The same expression for the dc conductivity is also ob-
we can restrict the consideration to one-phonon processes.tdined in the inelastic theorgee, e.g., Ref. 19that is, with-
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out the assumption of quasielasticity. Accordingly, the energymultiple hopping regime this reduction is described by Eqgs.
scalew cannot be detected in any measurement of the d¢24) and(26). According to these equations, electrons at the
conductivity. In a recent pap@we have also shown that the top of the tail are much less affected by the alternations of
time dependence of the relaxation current in quasielastic aphe electric field than electrons at the bottom of the tail.
proximation agrees with the time dependence of the relaxThus, although the main contribution to the dc conductivity
ation current in the inelastic thedfyup to a number, which  results from the vicinity of the transport energy, the fre-
scales the attempt-to-escape frequendyy the ratiow/A at  guency dependence of the conductivity is determined by the
appropriate places. Unfortunately, it turns out to be hard tjectrons on the bottom of the tail.
extract this number from a relaxation current experiment. gjnce the frequency dependence is governed by the elec-
However, fortunatly the same number can be obtained fronons at the bottom of the tail the characteristic frequency,
an energy relaxation experiment. For the energy relaxatiogyhich governs the impact of the frequency of the alternating
experiment both methods predict a time dependence of th@ectric field, is not of the order of the dc conductivity, but of
type™® the order of the spectral conductivity at the bottom of the
tail. Since the spectral conductivity in the vicinity of the
e(t)=—AlInIn(vqt) (57) bottom of the tail is much smaller than the spectral conduc-
tivity in the vicinity of the transport energy the dynamical
for the mean energy of the particle packet in energy spaceonductivity already depends on frequency for very low fre-
However, while in the inelastic situatibhvy= v, quasielas- quencies. Furthermore, owing to the same reasons, the mul-
ticity yields vo=wv/A. Measurements on amorphous hydro-tiple hopping regime is very narrow. The Pollak-Geballe
genated silicon yieldv,=10'? Hz. Thus, if the inelastic limit is practically already reached at relatively low frequen-
theory holds,y=10"2 Hz. On the other hand, the theoretical cies.
calculations yield values of the order=10*® Hz and larger If we compare the frequency dependence of the dynami-
(see, e.g., Refs. 29 and )3fdr the band tail of amorphous cal conductivity in the multiple hopping regime in the expo-
hydrogenated silicon. These estimates have been verified erential tail further with that in the ordinary situation we also
perimentally by frequency resolved photoluminescense medind that the character of the frequency dependence is differ-
surements(see, e.g., Ref. 31and linewidth electron spin ent. In contrast to the ordinary situation, in which an increase
resonance measuremeftsiccordingly, the predictions of of the frequency in the multiple hopping regime results in a
the inelastic theory are not in line with the experiments, butstrong increase of the real part of the conductivity, we find
differ from the experimental values by six orders of magni-that the loss in the tail, although it is increasing with fre-
tude. Therefore, it cannot be claimed that the inelastic theorguency, is practically extremely small. Furthermore, bsith
can account for the experimental situation. By contrast, n@nds” are equal to one, within the multiple hopping regime.
problem arises for our quasielastic theory. For the quasielas- The peculiarities in the frequency dependence also mani-
tic theory this fact merely confirms that can indeed be fest themselves in the relaxation current. Since the character-
considered as super small. We conclude, that the existingtic frequency is tiny small anomalous diffusion is also ob-
experiments on transport in band tails of amorphous hydroserved at relatively large times. Within the range of
genated silicon are much better described by our quasielastipplicability of the Pollak-Geballe limit the excess current

theory than by their inelastic counterparts. decays like 8j(t)=t™ 117201 with 1>«>0, but in the
range of applicability of the multiple hopping regime just
VIl. CONCLUSIONS like 8j(t)=t~1. Owing to the same reasons discussed above,

the Pollak-Geballe limit is also observed in the excess cur-
If we investigate our calculation we conclude that the fre-rent for relatively large times.

qguency dependence of the hopping conductivity at low fre- Unfortunately, it turns out to be very difficult to compare
qguencies can significantly be affected by the form of theour results directly with experiments, e.g., with results of
density of states, if there is no restriction of the transport to aneasurements of the frequency dependence of the conduc-
vicinity of the Fermi energy. In the strongly localized regime tivity in amorphous hydrogenated silicon. The reason for this
such a situation occurs, e.g., if the density of states increasés that usually the idealized situation is not metin the experi-
strongly with energy, as is the case in the exponential densitynent. In the experiments, both the contributions from holes
of states investigated in our paper, where the dc conductivityn the valence band tail, from the electrons in the conduction
results from the vicinity of the transport enefdy® The  band tail and from electrons in the conduction band, mix.
transport energy reflects the competition between the BoltzPespite this fact, our results are qualitatively in line with the
mann factor, which favors contributions from low energies,experimental results. According to the experim&ht® the
and the mobility, which favors contributions with high Pollak-Geballe limit is also observed at low temperatures
energies?® The latter tendency results from the exponentialand at relatively low frequencies. The lowest frequency used
dependence of the mobility on the characteristic hoppingn these experiments was 210 Hz. This fact is in line with our
length, which, for a strongly energy dependent density ofesult that the characteristic frequencies are determined by
states increasing with energy, decreases strongly with energie electrons at the bottom of the tail, since otherwise the
An alternating electric field leads to a reduction of the char-Pollak-Geballe could clearly not be observed at such low
acteristic hopping length, and thus affects the abovefrequencies. At higher temperatures the authors of the Refs.
mentioned competition. For lowest frequencies and in the33—-35 find that the frequency dependence of the conductiv-
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|ty is well described by qu) They argue that this result is HereWOZW[EpO exp(oo)]. Since for |arg@’
not due to hopping of electrons in the conduction band tail,

but due to macroscopic inhomogenities. Our calculation

gives further support to these hypotheses.

APPENDIX: SOME INTEGRALS

Here we discuss the main steps in the calculation of the

integral (43). To this end we write Eq(43) in the form

1en(T) vA 1

7SO 07 e

:1(s), (A1)

where

I(s)= J:Odp exp(pIn p—p) (exp{W['sp explp)]} — 1),
(A2)

ands=s/(6v). To calculate the integral we focus on its de-

rivatives with respect t®. We havel (0)=0. Furthermore,
since for largep,

d -
d—~5|”s=oeXP{W[SP exp(p)1}~p explp), (A3)
we obtain
Po d -
l’(0)=f dpexplpiinp—p)=| exp{Wspexpp)]}
! ds s=0
po”tt?
~ i 2 (A4)

When calculating the second derivativel¢§) with respect

to’'s we again take into account that the main contribution to g2 (s)

the integral results from large. In this case

pZexp{2p—W['sp expp)]}
{1+W[sp exp(p)]}?

d2

@GXP{W[NSP explp)]}=—

(A5)
If we use Eqg.(A5) and change the variables of integration
from p to W we obtain the equation
d’l(s)
ds?

_}fWo dWexp((pﬁl)ln[p(W)])_ (A6)

'sJw(se) (1+W)?

p(W)~In[exp(W)W/s],

Eqg. (A6) can also be written in the form

(A7)

Wo

dw

W(se)(1+W)2

{In[exp(W)W/s]}Pett,
(A8)

To simplify the integral further, we introduce the new inte-
gration variableu to W=[(1+W,)u+W,;]. Doing so, we
obtain

dl(s) 1
N ”Ef

0 du

d?(s) f
(W(se)—Wp)/(1+Wg) (1+U)

1
d2  (1+Wp)

2

X{In[exp(po) pol + (1+Wp)u
+In[1+ (1+Wo)u/Wp ]}ttt (A9)

The main contribution to the integral results from the first
term in the logarithm. Therefore, we simply obtain

dis) 1 fo
d2 S+ Wp) ) (wiEe-wygnsw,
><(1+u)z{ln[exp(po)po]}ﬁ’t“. (A10)

It can be checked that the corrections from the second and
the third term in the logarithm are negligible if the inequality
piWy/po<<1 is satisfied. In realistic systems this inequality
is satisfied in the whole multiple hopping regime. If we use
this simplification we obtain

exp( —Wp)
1+W,
(A11)

= poexppo){In[exp(po) pol}*™*

To obtainl (s) we integrate Eq(A11) twice with respect t@
and take into account EA3). Then we obtain

~ _ pit2
|(3)=5"2— —pf expl— pot Wo) (1~ Wo+ W)
—exp(—Wy)], (A12)

which yields Eq.(44).
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