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Energy radiation of moving cracks
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The energy radiated by moving cracks in a discrete background is analyzed. The energy flow through a given
surface is expressed in terms of a generalized Poynting vector. The velocity of the crack is determined by the
radiation by the crack tip. The radiation becomes more isotropic as the crack velocity approaches the instability
threshold.
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[. INTRODUCTION the main features of the results. The physical implications of
the results are discussed in Sec. V.

The dynamics of cracks in brittle materials are being ex- The problem of sound emission by moving cracks has
tensively studied;? and a wealth of instabilities and patterns been addressed, within a different scheme in Ref. 31. Insofar
have been observed as a function of control parameters su@s the two approaches can be compared, the results are com-
as the applied straitt;” or thermal gradientd The theoretical ~ Patible. Finally, radiation of moving cracks along the edge of
analysis of moving cracks was initiated long &g&t with the crack can be important in understanding the roughness of
the study of exact solutions for cracks moving at constanthe crack surfac& We will focus on the radiation along the
velocity. These studies have been extended to a variety @fack surface, and into the bulk of the sample. Experiniénts
different situationd?2 Alternatively, analytical approxima- and simulation&suggest that this type of radiation can play a
tions to the leading instabilities of a moving tip have beenfole in the observed instabilities of the crack tip.
proposed Absorption of the sound waves emitted from the crack

The simplest discrete model that captures the main feaan lead to significant heating of the region around the crack
tures of cracks in brittle materials is a lattice with centraltip, which may help to explain some experimental resits.
forces (spring$ between nearest neighbors, whose bonddn the present work we are not considering the detailed in-
lose the restoring force above a given threshottbr exten-  terplay between dissipation, heating effects, and crack
sions see also Ref. 16This model, or simplifications of it morphology** It will be interesting to have more experimen-
which leave out the vectorial nature of the strain field, hadal information available, especially in materials with high
been extensively used in modeling moving cratks!’~1° dissipation, such as PMMA.
although models that deal with the microscopic structure of

. . —23 . .

the system are also being considefedAlternatively, vari- L. THE METHOD

ous continuum models, which describe the fractured zone in

terms of additional fields, have been propo&&®. We study discrete models of elastic lattices in two-

Discrete and continuum models of cracks differ in a vari-dimensional stripes, as discussed(ikef. 17 and 18 The
ety of features. It is known that the discrete models used sanderlying lattice is hexagonal, with nearest-neighbor forces.
far cannot describe a fracture zone at scales other than ti#onds break when their elongation exceeds a given thresh-
size of the lattice cell in the calculatioh$?® although, even old, u,,, and under a constant strain at the edges, which,
for a canonical material such as polymethylmethacrylatescaled to the width of the stripe, we denoteugs We study
(PMMA), the fracture zone has a dimension much largemodels with and without dissipation in the dynamics of the
than the size of its molecular building blocKs. nodes. Results depend on the ratiq/u, (see Sec. Il for
Another important difference between discrete and confurther details.
tinuum models is the existence of radiation from the tip of
the moving crack, due to the existence of periodic modula-
tions in the velocity in the presence of an underlying lattice.
In this sense, a lattice model for cracks is the simplest ex- In the absence of dissipation, the total kinetic-plus-elastic
ample where radiation due to the scattering of elastic wavesnergy must be conserved. In a continuum model, in the
by deviations from perfect homogeneity can be studiedabsence of radiation, energy conservation leads to a global
These processes have been observed in experif&hts, and to a local constraint, for cracks moving at constant
and it has been argued that these are responsible for somesifeedy.
the crack instabilities° (i) In the absence of radiation, the region well behind the
In the present work, we study the energy radiated by &rack tip has relaxed to equilibrium, while the region ahead
crack moving at constant velocity in a discrete lattice. Weof it is under the applied strain. The relaxed region grows at
use a generalization of the scheme discussed in Ref. 1. Thibe expense of the region under strain, at constant rate
general method used is explained next. Section Il presents uSuW whereW is the width of the stripé® Energy is trans-

A. Energy considerations
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ferred to the crack at this rate. As the energy stored in the Note that the existence of solutions that do not violate
crack grows at ratexufhv, the crack can only propagate energy conservation does not imply that these solutions are
(without radiation for a fixed value ofu,,/u,. Note that stable. Full dynamical simulations of lattice modéfs®sug-
continuum solutions for radiationless cracks moving at congest that inertial crackevithout dissipation accelerate until
stant speetido not specify a parameter equivalentig, so  they reach speeds comparable to those predicted by the Yoffe
that they do not conflict with energy conservation. criterion; and then bifurcate.

(i) It is commonly assumed that the dynamics of the The above considerations about the balance of elastic en-
crack is determined by the energy flow at the crack'fip, ergy, radiation, and crack formation energy in continuum and
which is the only region where new crack surfaces are crelattice models can be extended to more realistic situations,
ated. In continuum models, this local constraint leads to asuch as those being analyzed experimentally. In principle, if
equation of the type the crack formation energy is independent of velocity, which

is probably a good approximation if the morphology of the

crack does not change much, some of the crack energy has to
=A(v)G, D pe radiated by the tip. Otherwise, cracks will only move at

constant velocity for a particular value of the applied strain.

whereT is the crack energy per unit |eng'[|]j‘<(cut2h in our The radiation from t_he tip, however,_will be mostly deter-
lattice mode), G is proportional to the stress intensity factor mined by the scattering of the crack tip from random defects

at the crack tip, and\(v) is a universal function that goes that modify locally the elastic properties of the material. The
from 1 atv=0 to 0 atv=vg Wherevg is the Rayleigh radiation emitted will not show preferred frequencies, as in

speed. the lattice model considered here.

In the absence of radiation from the crack tip, both con-
straints can only be satisfied at a given velocity, such that the
energy flux invested in enlarging the cradk(v)G in Eq.

(1), balances the loss of elastic energy throughout the lattice. In the following, we will reformulate the concepts dis-

Simple scalar models, such as those describing the propaussed in Ref. 1 in order to make them more amenable for
gation of type-I cracks in a continuum, can be obtained by a&xtensions to lattice models, dicussed in Sec. Il C.

Lorentz transformation from static solutions. When this is We describe an elastic medium in terms of the enétgy,
the case, the crack cannot radiate. A type-Ill crack in a finite

slab can couple to a particular transverse model, even in the

continuum limit(see the Appendix In the this case, and in H="Hyint Helastic,
the absence of a short-distance cutoff, the single mode that

can be excited by a crack moving at a constant speed has null 5
measure. Hence, its contribution to the radiation is negli- "y _J dP p [ au(r)
gible. In the presence of a short-distance cu@ffye expect kin™ 2 at |’
the energy radiated by this mode to decay as a power law,

de/dte(a/l)“, wherel is the width of the slab, and=1 is

a constant. A

In lattice models, the energy arguments discussed earlier Helastic:j deg( 2 Uii
have to be modified because of the presence of radiation of '
elastic waves at wavelengths comparable to the lattice spac-
ing. If we assume that the difference between continuum and/hereD is the spatial dimensiorg is the mass density,
lattice models is small, we can use the perturbative schemand n are Lamecoefficients,u-(r) denotes the displace-
discussed in Refs. 36-40. The crack tip velocity undergoements at positiom, and theu;;'s define the strain tensor
oscillations at frequency=wv/a, wherea is the lattice con-
stant, and amplitudé(v). In order to estimate the energy
radiated from the tip, we have to extend the perturbative 1/du; ay
expansion to second order. We will not attempt here to cal- Ui (1) = E(W’L ,9_“)
culate this expansion rigorously. However, from the knowl- :
edge of the leading teri¥;*®we can infer that the radiation
due to a perturbation of frequenay should go asBw?, ~ The equations of motion satisfied by(r) can be written as
whereB is a positive constant. Hence, the power radiated by
the crack when it moves goes 8&)?(v/a)?.

The existence of radiation modifies the global- and local- J°u; 2 4

B. Energy flux: Continuum elasticity

2

2
+,uf d°r > uf,
1)

()

energy constraints described above. The energy in regions far o2 j a_r,
from the crack is not purely elastic, and it has a kinetic

contribution. In addition, the energy flux at the crack tip

acquires an additional velocity dependence. Thus, radiatiowhere oj; = dHejastic/ JU;; IS the stress tensor.

in discrete models allows for the existence of a continuum of The time derivative of the total enerdgs, within a region
solutions,v (Ug/uy) v(Ug/uyy).2317=19 Qis

aji (4)
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so that the vectoP- (r) with components;=X;o;;du; /dt

plays the same role as the Poynting vector in electrodynam

ics. The energy flux through an element of ad&is given

by PdS. Note, however, that, unlike in electromagnetism, the 0 : :

equations of elasticity have no Lorentz invariaritteere are 0 200 400

two sound velocities and it is not possible to define a four- time

vector Comblnlng? and th? energy denSI_ty. The_ energy trans- - ¢ 1. crack velocity versus time for cracks under two differ-

ferred to the outside of this region remains defined as the fluy, applied strains and zero viscosity. The arrow indicates the posi-

of the vectorP through the surface boundin@. In the pres- tjon of the notch beyond which the stresses at the crack tip exceed

ence of dissipation, we still useas defined in Eq(5) inthe  the threshold stress, and the crack propagates freely.

understanding that what viscosity does is to trigger the par-

tial absorbtion of the radiated energy without changing thesf the positions and velocities of the bonds that connect that

direction in which it is emitted. The vectd? will be our  node to its neighbors. As we can associate to each surface

starting point in the study of the energy flux of a moving grientation an energy flux, we can define the lattice Poynting

crack. vector, in analogy to the analysis done for the continuum

model. We will use this discrete Poynting vector in the dis-

C. Energy flux: Lattice model cussion of the energy dissipation of a moving crack below.

du é%u +(9uij 200
a2 ot

p Tij

100

tip displacement

We will compute numerically the radiation of energy in a
discrete model, defined as a hexagonal two-dimensional lat- Ill. RESULTS
tice with nearest-neighbor forcés!’8The energy is given
by the sum of a kinetic term, associated to the velocities o

the nodes, and an elastic term, due to the deformation of th

bonds. The variation of the elastic energy of a given bond” detail elsewheré® The lattice is maintained under con-
with tir.ne can be written as stant load at the edges. In order to obtain cracks moving at

constant velocities, a notch is induced at one side, which is
L (u—uj)n;;] gra}dually enlarged, along a straight line, 'until the stress
—a (6)  buildup leads to the spontaneous propagation of the crack.

The crack position, as a function of time, is shown in Fig. 1

The discrete equations of motion in a two-dimensional
Igttice of a given size are integrated numerically as discussed

.~ KL(ui—upn;j]
wherek is the force constant, angj; is a unit vector in the

direction of the bond. We distribute this energy among the 0.6 . . . . . . :
two nodes connected by the bond, so that we can write the —
total elastic energy within a given region as a sum of the 0.55 T 1
contributions of the nodes within that region. As in the con- 05 |
tinuum limit, we can use the equations of motion to estimate

the variation in the kinetic energy at nodlewhich can be 0.45 r
written as > 04}
0Ki &(ui-nij) 0.35
7=—k§ —r Lui—up)ng]. (7) l

The variation of the total energy within a given region is 0.25
calculated by summing over all bonds within that region. The o
kinetic and elastic contributions for all bonds outside the 2
edge of the region cancel. We are left with surface terms 001 002 003 004 005 006 007 008 0.09
only, as in the continuum model described earlier. The sur- v

face contributions can be written as a sum of terms associ- F|G, 2. Crack velocity versus external strain, fp=0 (upper
ated to the bonds that connect a node within the region undefrve and »=0.8 (lower curve. The arrow on the right indicates
study and a node outside. Thus, a surface that includes tBe Rayleigh velocitwg. The vertical arrows mark théavoided
given node and has a given orientation leads to an energytanching instability (see text The threshold for breaking is
flux across it, which can be calculated from a weighted sumu,,=0.1.
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FIG. 4. Density of elastic energypper pangland hoop stress
(lower panel for an inertial crack =0) moving under an applied
strainuy=0.08, well above the branching instability.

FIG. 3. Density of elastic energypper pangland hoop stress
(lower panel for an inertial crack =0) moving under an applied
strainuy=0.02, below the branching instability. The crack moves
from left to right, and the tip is located at the point of coordinates
170,60. minimum crack speed that depends strongly;oihe arrow

marks the instability that would occur if the crack were not
for two different applied strains. The calculations show thatconstrained to move on a straight line.
the crack propagates freely at a constant velocity in the
steady state. Our method for the calculation of the properties
of cracks moving at constant speeds should lead to the same B. Elastic energy and hoop stress

results as given by other techniques. Figure 3 shows snapshots of the density of elastic energy

Instabilities are avoided by allowing only the bonds di- . . S
rectly ahead of the crack to break. In other words, we forceand the hoop stress at a given tily for a steady inertial

the crack to propagate straigltvith no branching The crack (7=0) mov_ing at a yelocity below _the branching
simulations are performed in systems of 4QmR0 lattice threshold(the applied strain isio=0.02, cf. Fig. 2.
sites, where we have checked that finite-size effects on the 1he density of elastic energ¥ig. 3, upper panglhas a
steady-state velocity are less than 1%. sharp peak at the crack tip. In the near regiarfew lattice
spacings away from the tipwe see that the distribution of
elastic energy is very anisotropic: it is sizable in the direction
perpendicular to the crack motion, where it decays smoothly
Figure 2 shows the steady-state veloeitgs a function of ~ with the distance, and all along the crack, where it has an
the applied straimi, for two different values of the viscosity oscillating behavior. This behavior is reminiscent of the Ray-
(»=0 and%=0.8 in our unitg. The crack velocity increases leigh waves that propagate on the crack surfésee Sec.
monotonically withuy and asymptotically tends to its limit- [l C below). At larger distancesof the order of the linear
ing valuecg=0.571, the Rayleigh velocity in units where dimensions of the systenthe elastic energy is smoother and
the force constark=1 and the mass per sie=1.Dueto  has a broad maximum ahead of the tip, around a given angle
lattice trapping, there is a minimum allowegd whose value of the order of6~ 7/3 from the crack direction. We cannot
is roughly independent of;,**%2 which in turn leads to a be conclusive about this maximum being intrinsic in nature,

A. Crack velocity
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FIG. 5. Density of elastic energypper pangland hoop stress
(lower panel for a dissipative crack £#=0.8) moving under an Pt s e =SONN L
applied strairug=0.08. I e N
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or rather being related to the symmetry of the underlying |- - - - - I
triangular lattice(see Ref. 19 for a more detailed discussion &7~~~ """~~~ ~ /”:\:i\\\§ Yoo
of this poind. _ o S . AN = e e e e
The hoop stres@-ig. 3, lower panglshows a very similar e
behavior, with strong oscillations all along the crack, ande] -~ - ==~~~ -" """ - -==—""===-=- -
maxima perpendicular to the crack motion, the maximumsg_ oot :::::::;;7 oo
shifting from 6~ /2 to 6~ /3 with increasing distance ] .......« N 2 IV TN
from the tip. =5 SRR N e S B
Figure 4 is the same as Fig. 3, but for a crack movingata | ' " ° o :::\:—’Z;;; : ‘ o
velo_city well above the pranching thr_esho(dje applied. ..., NN N s e
strain isug=0.08). We notice that the distribution of elastic s, +——————— ————e
energy and hoop stress has changed qualitatively: the bulk '™ 154 158 162 166 170 1 1 182

features in the direction perpendicular to the crack motion g 6. Poynting vector field representing the radiation propa-
now dominate over the oscillating part along the crack. Theyating in the vicinity of the crack tip. Upper panel, slow inertial
latter decay more rapidly and eventually disappear far behingrack(same parameters as in Fig; 8enter panel, fast inertial crack
the tip. (same as Fig. ¥t lower panel, dissipative cradisame as Fig.)5

The elastic energy and hoop stress corresponding to a

dissipativecrack (7=0.8, u,=0.08) are shown in Fig. 5. C. Radiation

Although the overall characteristics are similar to the inertial The above results can be better understood by analyzing
case, with maxima at the tip and in the direction transverse tthe Poynting vector field that represents the flux of energy
the crack, the distribution of stresses is much smootheheing radiated at a given point in the system. As was stated
Moreover, the oscillations associated with Rayleigh wavesn the Introduction, emission of sound waves is expected
along the crack are washed out by viscosity, being replacedince the crack tip moves in discrete medium, therefore

by a single broad maximum behind the tip. acting as a source of radiation at a frequencyv/a, the
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2.5 T T T T T T T IV. CONCLUSIONS
We have analyzed the nature and influence of radiation in
2 the propagation of cracks in discrete systems. For the lattice
and force models that we have studied, we make the follow-
1.5 ing remarks.
(i) Cracks in lattice models radiate energy at wavelengths
N 1 comparable to the lattice spacing, even when the average
velocity is constant and the cracks move along a straight line.
0.5 This can be understood by assuming that the crack tip under-
’ goes oscillations at frequencies/a, wherev is the velocity
of the crack and is the lattice constant.
0 ] (il) Radiation allows for the existence of a continuum of
l solutions of moving cracks at constant velocity. The balance
-0.5 : : : : : : : of static elastic and crack energy is compensated by the ra-

' 100 110 120 130 140 150 160 170 180 diation from the crack t|p

(iii ) At low velocities, most of the radiation is in Rayleigh
waves along the surface of the crack. At velocities compa-
rable to the Rayleigh velocity, a significant fraction of the
radiated energy is in bulk waves with a more isotropic
distribution.

(iv) Viscosity allows for a faster exchange of the elastic
energy stored ahead of the crack tip into other forms of en-
ergy. This can help to explain the increased stability of
straight cracks in the presence of viscosity.
ratio of the crack speed to the lattice spacing. Moreover, one  Among the questions that remain unsolved is the relation
expects a net flux of energy in the directioppositeto the  of the radiation to the instabilities of the crack tip. Our re-
crack motion, corresponding to the elastic energy releasegults suggest that inertial cracks accelerate along a straight
from the region ahead of the tip, which allows the crack toline, until they attain speeds compatible with Yoffe's
move. criterion” On the other hand, the radiation of the crack tip

As can be seen in the first panel of Fig. 6, at such modpecomes more isotropic at high velocities. It is unclear

erate crack speeds most of the eneray is radiated in the forWhether the continuum approach suffices to understand the
P gy riﬂstability observed in dynamical simulations of discrete

Of, Rayleigh waves propagating bgckwards along the CraCI?’nodels, or if the radiation from the tip of the crack plays a
with a wavelength comparable wittbut not equal tothe (e in the instability. Note that the calculated instability oc-
lattice spacing. Despite the fact thay=0, such waves are curs at higher velocities than the instabilities observed
seen to decay at long distances behind the(ttiey decay experimentally.
into bulk waves, the oscillating bonds on the crack surface Finally, the radiation considered here arises from the
acting themselves as sources of radiation. In addition, thergodulation of the velocity of the crack tip that arises from
is also a weaker emission of bulk waves from the tip, responthe existence of a discrete lattice. In typical experimental
lar to the crack motion. most likely dug to random scatterers that modnfy [ocally the
At high crack speeds, on the other haiofl center panel elastic properties of the system. Hence, the radiation will not
in Fig. 6), it is the bulk radiation that dominates the emissionhave preferred frequencies, as in the present case, and wil

pattern, Moreover, shadow images of the near-field appeaﬁ:mbably show up as random acoustic noise. The power spec-

. . . um of this noise, as a function of the crack velocity can
\?v?w?éﬂdc?ne;:ips(éhe strongest one being at aroure 161),  pe an interesting topic to study, both theoretically and

. — experimentally.
In the case of viscous cracklewer panel in Fig. § the

FIG. 7. The component of the Poynting vector along an inertial
crack, as a function of the coordinate normalized to the total
energy flowing through the sampl@ung (see text From top to
bottom: uy=0.02, 0.04, 0.08. The vertical arrow marks the tip po-
sition. The curves are shifted by a vertical offset for clarity pur-
poses.

emission pattern is entirely dominated by bulk waves, and ACKNOWLEDGMENTS
Rayleigh oscillations disappear as suggested by the results of ~
Fig. 5. We are thankful to R. Ball, P. Espalp M. Marder, T.
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inertial cracks, we plot in Fig. 7 the component of the poyn_dlscussmns. Financial support from Grants Nos. PB96-0875
ting vectorP, parallel to the crack direction, at the surface of 2hd PB96-0083MEC, Spain, and FMRXCT980183Euro-
the crack, for different values of the applied strain. The datd?€@n Unio, is also acknowledged.
are normalized to the difference in the mechanical energy of
a line far ahead from the crack, and a line far behtis
energy, which scales agvW, is transferred to the crack in We analyze here the radiation of a crack moving at con-
the fracture procegsThe figure clearly shows that the wave- stant speed in a finite two-dimensional slab in the continuum
length of surface waves as well as their decay rate increadamit. Let us take the width of the slab ds The slab is
with the crack velocity. infinite along thex direction, and the boundaries along the

APPENDIX
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direction are ay= *1/2. We look for a solution of the type
u,=f (x—ot,y),

u,=fy(x—ot,y), (A1)

wherewv is the velocity of the crack. The normal modes of
the slab can be written as

ay= gx(y)ei(wktikx),

a,=g,(y)e't=k, (A2)

It is clear that the solution in EqAL1) can only include

propagating modesy EQAZ), when = vk. In all calcula- FIG. 8. Sketch of the low energy modes of a slab of widffhe
tions reported here;<vg, wherevy, is the Rayleigh veloc- straight line marked is the linew=vk. Its intersection W‘ith the

ity. There are no modes at this energy in an infinite slab, normal modes marks the frequency of the only mode which can be
. In a finite slab, however, we have long-wavelength€Mitted by the moving crack.

modes k<I~1, which can be emitted by a crack moving at

constant velocity. The modes at the lowest energies are such 2k?l v
that g, ,(y)> sinh(xy),coshgy). Boundary conditions imply wk:UTf 1- 2 (Ada)
thato,(*1/2)=0y,(*=1/2)=0. That leads to the following L

equations: >
1%
wf=2v7k \/1-—, (A4b)
| | vp

4k2KTK,_tam‘( KTE) =(k>+ K$)2tam‘( KL 5) ,
in agreement with general argumefitsthe only mode that
can be associated to the moving crackeisin Egs. (A4a)
| | . ingop=vKk, i I hi
4k2KTKLtam‘( KLE) =(k2+/<$)2tanr( KTE)a (A3) and (A4b) above. Settingo;=vk, its wavelength is
2

47 2w vt vT
wherev; andv, are the transverse and longitudinal sound N=7 = Bo NP2 (A5)
velocities andk% | =k?— wi/v% | . The solutions correspond oL
to modes either symmetric—E@\4a)—or antisymmetric—  Thus, forv<vg<uvy,v., this wavelength is longer than the

Eq. (Adb)—with respect to the slab axis. Finally, other width of the slab). The mode is delocalized in the transverse

modes at finite energies can be obtained from &) as-  direction.

suming thag, ,(y) =sin’y),cosk'’y). A sketch of the modes In a continuum model, and in the absence of a short-

of a slab of finite width at low energies is given in Fig. 8. distance cutoff, the mode identified here has null measure.
The Eqgs.(A3) lead to the Rayleigh waves at short wave- Hence, its influence on the dynamics of the crack is negli-

lengths. At very long wavelengthk<I~1, one obtains gible.
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