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Energy radiation of moving cracks
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The energy radiated by moving cracks in a discrete background is analyzed. The energy flow through a given
surface is expressed in terms of a generalized Poynting vector. The velocity of the crack is determined by the
radiation by the crack tip. The radiation becomes more isotropic as the crack velocity approaches the instability
threshold.
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I. INTRODUCTION

The dynamics of cracks in brittle materials are being
tensively studied,1,2 and a wealth of instabilities and pattern
have been observed as a function of control parameters
as the applied strain,3–7 or thermal gradients.8 The theoretical
analysis of moving cracks was initiated long ago,9–11 with
the study of exact solutions for cracks moving at const
velocity. These studies have been extended to a variet
different situations.12,13 Alternatively, analytical approxima
tions to the leading instabilities of a moving tip have be
proposed.14

The simplest discrete model that captures the main
tures of cracks in brittle materials is a lattice with cent
forces ~springs! between nearest neighbors, whose bon
lose the restoring force above a given threshold15 ~for exten-
sions see also Ref. 16!. This model, or simplifications of it
which leave out the vectorial nature of the strain field, h
been extensively used in modeling moving cracks,2,13,17–19

although models that deal with the microscopic structure
the system are also being considered.20–23Alternatively, vari-
ous continuum models, which describe the fractured zon
terms of additional fields, have been proposed.24,25

Discrete and continuum models of cracks differ in a va
ety of features. It is known that the discrete models used
far cannot describe a fracture zone at scales other than
size of the lattice cell in the calculations,18,26 although, even
for a canonical material such as polymethylmethacryl
~PMMA!, the fracture zone has a dimension much lar
than the size of its molecular building blocks.27

Another important difference between discrete and c
tinuum models is the existence of radiation from the tip
the moving crack, due to the existence of periodic modu
tions in the velocity in the presence of an underlying latti
In this sense, a lattice model for cracks is the simplest
ample where radiation due to the scattering of elastic wa
by deviations from perfect homogeneity can be studi
These processes have been observed in experiments,6,28–30

and it has been argued that these are responsible for som
the crack instabilities.30

In the present work, we study the energy radiated b
crack moving at constant velocity in a discrete lattice. W
use a generalization of the scheme discussed in Ref. 1.
general method used is explained next. Section III pres
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the main features of the results. The physical implications
the results are discussed in Sec. IV.

The problem of sound emission by moving cracks h
been addressed, within a different scheme in Ref. 31. Ins
as the two approaches can be compared, the results are
patible. Finally, radiation of moving cracks along the edge
the crack can be important in understanding the roughnes
the crack surface.32 We will focus on the radiation along th
crack surface, and into the bulk of the sample. Experimen30

and simulations2 suggest that this type of radiation can play
role in the observed instabilities of the crack tip.

Absorption of the sound waves emitted from the cra
can lead to significant heating of the region around the cr
tip, which may help to explain some experimental results33

In the present work we are not considering the detailed
terplay between dissipation, heating effects, and cr
morphology.34 It will be interesting to have more experimen
tal information available, especially in materials with hig
dissipation, such as PMMA.

II. THE METHOD

We study discrete models of elastic lattices in tw
dimensional stripes, as discussed in~Ref. 17 and 18!. The
underlying lattice is hexagonal, with nearest-neighbor forc
Bonds break when their elongation exceeds a given thre
old, uth , and under a constant strain at the edges, wh
scaled to the width of the stripe, we denote asu0. We study
models with and without dissipation in the dynamics of t
nodes. Results depend on the ratiouth /u0 ~see Sec. III for
further details!.

A. Energy considerations

In the absence of dissipation, the total kinetic-plus-elas
energy must be conserved. In a continuum model, in
absence of radiation, energy conservation leads to a gl
and to a local constraint, for cracks moving at const
speed,v.

~i! In the absence of radiation, the region well behind t
crack tip has relaxed to equilibrium, while the region ahe
of it is under the applied strain. The relaxed region grows
the expense of the region under strain, at constant
}u0

2vW whereW is the width of the stripe.18 Energy is trans-
©2002 The American Physical Society04-1
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ferred to the crack at this rate. As the energy stored in
crack grows at rate}uth

2 v, the crack can only propagat
~without radiation! for a fixed value ofuth /u0. Note that
continuum solutions for radiationless cracks moving at c
stant speed9 do not specify a parameter equivalent touth , so
that they do not conflict with energy conservation.

~ii ! It is commonly assumed that the dynamics of t
crack is determined by the energy flow at the crack tip,1,35

which is the only region where new crack surfaces are c
ated. In continuum models, this local constraint leads to
equation of the type

G5A~v !G, ~1!

whereG is the crack energy per unit length (G}uth
2 in our

lattice model!, G is proportional to the stress intensity fact
at the crack tip, andA(v) is a universal function that goe
from 1 at v50 to 0 at v5vR where vR is the Rayleigh
speed.

In the absence of radiation from the crack tip, both co
straints can only be satisfied at a given velocity, such that
energy flux invested in enlarging the crack,A(v)G in Eq.
~1!, balances the loss of elastic energy throughout the lat

Simple scalar models, such as those describing the pr
gation of type-I cracks in a continuum, can be obtained b
Lorentz transformation from static solutions. When this
the case, the crack cannot radiate. A type-III crack in a fin
slab can couple to a particular transverse model, even in
continuum limit ~see the Appendix!. In the this case, and in
the absence of a short-distance cutoff, the single mode
can be excited by a crack moving at a constant speed has
measure. Hence, its contribution to the radiation is ne
gible. In the presence of a short-distance cutoff,a, we expect
the energy radiated by this mode to decay as a power
de/dt}(a/ l )a, wherel is the width of the slab, anda>1 is
a constant.

In lattice models, the energy arguments discussed ea
have to be modified because of the presence of radiatio
elastic waves at wavelengths comparable to the lattice s
ing. If we assume that the difference between continuum
lattice models is small, we can use the perturbative sch
discussed in Refs. 36–40. The crack tip velocity underg
oscillations at frequencyv5v/a, wherea is the lattice con-
stant, and amplitudef (v). In order to estimate the energ
radiated from the tip, we have to extend the perturbat
expansion to second order. We will not attempt here to c
culate this expansion rigorously. However, from the know
edge of the leading term,38,40 we can infer that the radiation
due to a perturbation of frequencyv should go asBv2,
whereB is a positive constant. Hence, the power radiated
the crack when it moves goes asf (v)2(v/a)2.

The existence of radiation modifies the global- and loc
energy constraints described above. The energy in region
from the crack is not purely elastic, and it has a kine
contribution. In addition, the energy flux at the crack
acquires an additional velocity dependence. Thus, radia
in discrete models allows for the existence of a continuum
solutions,v(u0 /uth) v(u0 /uth).12,13,17–19
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Note that the existence of solutions that do not viola
energy conservation does not imply that these solutions
stable. Full dynamical simulations of lattice models17–19sug-
gest that inertial cracks~without dissipation! accelerate until
they reach speeds comparable to those predicted by the Y
criterion,9 and then bifurcate.

The above considerations about the balance of elastic
ergy, radiation, and crack formation energy in continuum a
lattice models can be extended to more realistic situatio
such as those being analyzed experimentally. In principle
the crack formation energy is independent of velocity, wh
is probably a good approximation if the morphology of t
crack does not change much, some of the crack energy h
be radiated by the tip. Otherwise, cracks will only move
constant velocity for a particular value of the applied stra
The radiation from the tip, however, will be mostly dete
mined by the scattering of the crack tip from random defe
that modify locally the elastic properties of the material. T
radiation emitted will not show preferred frequencies, as
the lattice model considered here.

B. Energy flux: Continuum elasticity

In the following, we will reformulate the concepts dis
cussed in Ref. 1 in order to make them more amenable
extensions to lattice models, dicussed in Sec. II C.

We describe an elastic medium in terms of the energy41

H5Hkin1Helastic,

Hkin5E dDr
r

2 S ]u~r !

]t D 2

, ~2!

Helastic5E dDr
l

2 S (
i

uii D 2

1mE dDr(
i j

ui j
2 ,

whereD is the spatial dimension,r is the mass density,l
and m are Lame´ coefficients,u•(r ) denotes the displace
ments at positionr , and theui j ’s define the strain tensor

ui j ~r !5
1

2 S ]ui

]r j
1

]uj

]r i
D . ~3!

The equations of motion satisfied byu•(r ) can be written as

r
]2ui

]t2
52(

j

]

]r j
s j i , ~4!

wheres j i 5]Helastic/]ui j is the stress tensor.
The time derivative of the total energyEV within a region

V is
4-2
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]EV

]t
5

]

]tEV
dDr @Hkin1Helastic#

5E
V

dDr Fr
]u

]t

]2u

]t2
1

]ui j

]t
s i j G

52E
V

dDr
]

]r j
S s i j

]ui

]t D , ~5!

so that the vectorP•(r ) with componentsPj5( is i j ]ui /]t
plays the same role as the Poynting vector in electrodyn
ics. The energy flux through an element of areadS is given
by PdS. Note, however, that, unlike in electromagnetism, t
equations of elasticity have no Lorentz invariance~there are
two sound velocities!, and it is not possible to define a fou
vector combiningP and the energy density. The energy tran
ferred to the outside of this region remains defined as the
of the vectorP through the surface boundingV. In the pres-
ence of dissipation, we still useP as defined in Eq.~5! in the
understanding that what viscosity does is to trigger the p
tial absorbtion of the radiated energy without changing
direction in which it is emitted. The vectorP will be our
starting point in the study of the energy flux of a movin
crack.

C. Energy flux: Lattice model

We will compute numerically the radiation of energy in
discrete model, defined as a hexagonal two-dimensional
tice with nearest-neighbor forces.15,17,18The energy is given
by the sum of a kinetic term, associated to the velocities
the nodes, and an elastic term, due to the deformation of
bonds. The variation of the elastic energy of a given bo
with time can be written as

]Ei j

]t
5k@~ui2uj !ni j #

]@~ui2uj !ni j #

]t
, ~6!

wherek is the force constant, andni j is a unit vector in the
direction of the bond. We distribute this energy among
two nodes connected by the bond, so that we can write
total elastic energy within a given region as a sum of
contributions of the nodes within that region. As in the co
tinuum limit, we can use the equations of motion to estim
the variation in the kinetic energy at nodei, which can be
written as

]Ki

]t
52k(

j

]~ui•ni j !

]t
@~ui2uj !ni j #. ~7!

The variation of the total energy within a given region
calculated by summing over all bonds within that region. T
kinetic and elastic contributions for all bonds outside t
edge of the region cancel. We are left with surface ter
only, as in the continuum model described earlier. The s
face contributions can be written as a sum of terms ass
ated to the bonds that connect a node within the region un
study and a node outside. Thus, a surface that includ
given node and has a given orientation leads to an en
flux across it, which can be calculated from a weighted s
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of the positions and velocities of the bonds that connect
node to its neighbors. As we can associate to each sur
orientation an energy flux, we can define the lattice Poynt
vector, in analogy to the analysis done for the continu
model. We will use this discrete Poynting vector in the d
cussion of the energy dissipation of a moving crack belo

III. RESULTS

The discrete equations of motion in a two-dimension
lattice of a given size are integrated numerically as discus
in detail elsewhere.18 The lattice is maintained under con
stant load at the edges. In order to obtain cracks movin
constant velocities, a notch is induced at one side, whic
gradually enlarged, along a straight line, until the stre
buildup leads to the spontaneous propagation of the cr
The crack position, as a function of time, is shown in Fig

FIG. 2. Crack velocity versus external strain, forh50 ~upper
curve! andh50.8 ~lower curve!. The arrow on the right indicates
the Rayleigh velocityvR . The vertical arrows mark the~avoided!
branching instability ~see text!. The threshold for breaking is
uth50.1.

FIG. 1. Crack velocity versus time for cracks under two diffe
ent applied strains and zero viscosity. The arrow indicates the p
tion of the notch beyond which the stresses at the crack tip exc
the threshold stress, and the crack propagates freely.
4-3
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for two different applied strains. The calculations show th
the crack propagates freely at a constant velocity in
steady state. Our method for the calculation of the proper
of cracks moving at constant speeds should lead to the s
results as given by other techniques.

Instabilities are avoided by allowing only the bonds d
rectly ahead of the crack to break. In other words, we fo
the crack to propagate straight~with no branching!. The
simulations are performed in systems of 4003120 lattice
sites, where we have checked that finite-size effects on
steady-state velocity are less than 1%.

A. Crack velocity

Figure 2 shows the steady-state velocityv as a function of
the applied strainu0, for two different values of the viscosity
(h50 andh50.8 in our units!. The crack velocity increase
monotonically withu0 and asymptotically tends to its limit
ing value cR50.571, the Rayleigh velocity in units wher
the force constantk51 and the mass per sitem51.16 Due to
lattice trapping, there is a minimum allowedu0 whose value
is roughly independent ofh,13,42 which in turn leads to a

FIG. 3. Density of elastic energy~upper panel! and hoop stress
~lower panel! for an inertial crack (h50) moving under an applied
strain u050.02, below the branching instability. The crack mov
from left to right, and the tip is located at the point of coordina
170,60.
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minimum crack speed that depends strongly onh. The arrow
marks the instability that would occur if the crack were n
constrained to move on a straight line.

B. Elastic energy and hoop stress

Figure 3 shows snapshots of the density of elastic ene
and the hoop stress at a given timet0, for a steady inertial
crack (h50) moving at a velocity below the branchin
threshold~the applied strain isu050.02, cf. Fig. 2!.

The density of elastic energy~Fig. 3, upper panel! has a
sharp peak at the crack tip. In the near region~a few lattice
spacings away from the tip!, we see that the distribution o
elastic energy is very anisotropic: it is sizable in the direct
perpendicular to the crack motion, where it decays smoo
with the distance, and all along the crack, where it has
oscillating behavior. This behavior is reminiscent of the Ra
leigh waves that propagate on the crack surface~see Sec.
III C below!. At larger distances~of the order of the linear
dimensions of the system!, the elastic energy is smoother an
has a broad maximum ahead of the tip, around a given a
of the order ofu'p/3 from the crack direction. We canno
be conclusive about this maximum being intrinsic in natu

FIG. 4. Density of elastic energy~upper panel! and hoop stress
~lower panel! for an inertial crack (h50) moving under an applied
strainu050.08, well above the branching instability.
4-4
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ENERGY RADIATION OF MOVING CRACKS PHYSICAL REVIEW B66, 104104 ~2002!
or rather being related to the symmetry of the underly
triangular lattice~see Ref. 19 for a more detailed discussi
of this point!.

The hoop stress~Fig. 3, lower panel! shows a very similar
behavior, with strong oscillations all along the crack, a
maxima perpendicular to the crack motion, the maxim
shifting from u'p/2 to u'p/3 with increasing distance
from the tip.

Figure 4 is the same as Fig. 3, but for a crack moving a
velocity well above the branching threshold~the applied
strain isu050.08). We notice that the distribution of elast
energy and hoop stress has changed qualitatively: the
features in the direction perpendicular to the crack mot
now dominate over the oscillating part along the crack. T
latter decay more rapidly and eventually disappear far beh
the tip.

The elastic energy and hoop stress corresponding
dissipativecrack (h50.8, u050.08) are shown in Fig. 5
Although the overall characteristics are similar to the iner
case, with maxima at the tip and in the direction transvers
the crack, the distribution of stresses is much smoot
Moreover, the oscillations associated with Rayleigh wa
along the crack are washed out by viscosity, being repla
by a single broad maximum behind the tip.

FIG. 5. Density of elastic energy~upper panel! and hoop stress
~lower panel! for a dissipative crack (h50.8) moving under an
applied strainu050.08.
10410
g

a

lk
n
e
d

a

l
to
r.
s
d

C. Radiation

The above results can be better understood by analy
the Poynting vector field that represents the flux of ene
being radiated at a given point in the system. As was sta
in the Introduction, emission of sound waves is expec
since the crack tip moves in adiscretemedium, therefore
acting as a source of radiation at a frequencyn5v/a, the

FIG. 6. Poynting vector field representing the radiation pro
gating in the vicinity of the crack tip. Upper panel, slow inerti
crack~same parameters as in Fig. 3!; center panel, fast inertial crac
~same as Fig. 4!; lower panel, dissipative crack~same as Fig. 5!.
4-5



on

s
to

od
fo
c

c
e
on
cu

on
e

n
lts

n
n
o
at
y

e-
a

n in
tice
w-

ths
age
ine.
der-

of
ce
ra-

h
pa-
e
ic

tic
en-
of

ion
e-
ight
’s
tip
ar
the
te
a

c-
ed

the
m
tal
e

he
not
will

pec-
an
nd

875

on-
um

tia

o-
ur-

FRATINI, PLA, GONZÁLEZ, GUINEA, AND LOUIS PHYSICAL REVIEW B 66, 104104 ~2002!
ratio of the crack speed to the lattice spacing. Moreover,
expects a net flux of energy in the directionoppositeto the
crack motion, corresponding to the elastic energy relea
from the region ahead of the tip, which allows the crack
move.

As can be seen in the first panel of Fig. 6, at such m
erate crack speeds most of the energy is radiated in the
of Rayleigh waves propagating backwards along the cra
with a wavelength comparable with~but not equal to! the
lattice spacinga. Despite the fact thath50, such waves are
seen to decay at long distances behind the tip~they decay
into bulk waves, the oscillating bonds on the crack surfa
acting themselves as sources of radiation. In addition, th
is also a weaker emission of bulk waves from the tip, resp
sible for the observed maximum in the direction perpendi
lar to the crack motion.

At high crack speeds, on the other hand~cf. center panel
in Fig. 6!, it is the bulk radiation that dominates the emissi
pattern. Moreover, shadow images of the near-field app
behind the tip~the strongest one being at aroundx5161),
which can arise.

In the case of viscous cracks~lower panel in Fig. 6!, the
emission pattern is entirely dominated by bulk waves, a
Rayleigh oscillations disappear as suggested by the resu
Fig. 5.

In order to analyze the behavior of Rayleigh waves alo
inertial cracks, we plot in Fig. 7 the component of the Poy
ting vectorPx parallel to the crack direction, at the surface
the crack, for different values of the applied strain. The d
are normalized to the difference in the mechanical energ
a line far ahead from the crack, and a line far behind~this
energy, which scales asu0

2vW, is transferred to the crack in
the fracture process!. The figure clearly shows that the wav
length of surface waves as well as their decay rate incre
with the crack velocity.

FIG. 7. The component of the Poynting vector along an iner
crack, as a function of the coordinatex, normalized to the total
energy flowing through the sample,}u0

2vW ~see text!. From top to
bottom:u050.02, 0.04, 0.08. The vertical arrow marks the tip p
sition. The curves are shifted by a vertical offset for clarity p
poses.
10410
e

ed

-
rm
k,

e
re
-
-

ar

d
of

g
-
f
a
of

se

IV. CONCLUSIONS

We have analyzed the nature and influence of radiatio
the propagation of cracks in discrete systems. For the lat
and force models that we have studied, we make the follo
ing remarks.

~i! Cracks in lattice models radiate energy at waveleng
comparable to the lattice spacing, even when the aver
velocity is constant and the cracks move along a straight l
This can be understood by assuming that the crack tip un
goes oscillations at frequenciesnv/a, wherev is the velocity
of the crack anda is the lattice constant.

~ii ! Radiation allows for the existence of a continuum
solutions of moving cracks at constant velocity. The balan
of static elastic and crack energy is compensated by the
diation from the crack tip.

~iii ! At low velocities, most of the radiation is in Rayleig
waves along the surface of the crack. At velocities com
rable to the Rayleigh velocity, a significant fraction of th
radiated energy is in bulk waves with a more isotrop
distribution.

~iv! Viscosity allows for a faster exchange of the elas
energy stored ahead of the crack tip into other forms of
ergy. This can help to explain the increased stability
straight cracks in the presence of viscosity.

Among the questions that remain unsolved is the relat
of the radiation to the instabilities of the crack tip. Our r
sults suggest that inertial cracks accelerate along a stra
line, until they attain speeds compatible with Yoffe
criterion.9 On the other hand, the radiation of the crack
becomes more isotropic at high velocities. It is uncle
whether the continuum approach suffices to understand
instability observed in dynamical simulations of discre
models, or if the radiation from the tip of the crack plays
role in the instability. Note that the calculated instability o
curs at higher velocities than the instabilities observ
experimentally.

Finally, the radiation considered here arises from
modulation of the velocity of the crack tip that arises fro
the existence of a discrete lattice. In typical experimen
situations, the variations in the velocity of the crack will b
most likely due to random scatterers that modify locally t
elastic properties of the system. Hence, the radiation will
have preferred frequencies, as in the present case, and
probably show up as random acoustic noise. The power s
trum of this noise, as a function of the crack velocity c
be an interesting topic to study, both theoretically a
experimentally.

ACKNOWLEDGMENTS

We are thankful to R. Ball, P. Espan˜ol, M. Marder, T.
Martı́n, A. Parisi, M. A. Rubio, and I. Zu´ñiga for helpful
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APPENDIX

We analyze here the radiation of a crack moving at c
stant speed in a finite two-dimensional slab in the continu
limit. Let us take the width of the slab asl. The slab is
infinite along thex direction, and the boundaries along they

l

4-6
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ENERGY RADIATION OF MOVING CRACKS PHYSICAL REVIEW B66, 104104 ~2002!
direction are aty56 l /2. We look for a solution of the type

ux5 f x~x2vt,y!,

uy5 f y~x2vt,y!, ~A1!

wherev is the velocity of the crack. The normal modes
the slab can be written as

ax5gx~y!ei (vkt2kx),

ay5gy~y!ei (vkt2kx). ~A2!

It is clear that the solution in Eq.~A1! can only include
propagating modes, Eq.~A2!, whenvk5vk. In all calcula-
tions reported here,v<vR , wherevR is the Rayleigh veloc-
ity. There are no modes at this energy in an infinite slabl
→`. In a finite slab, however, we have long-waveleng
modes,k! l 21, which can be emitted by a crack moving
constant velocity. The modes at the lowest energies are
that gx,y(y)} sinh(ky),cosh(ky). Boundary conditions imply
thatsxy(6 l /2)5syy(6 l /2)50. That leads to the following
equations:

4k2kTkLtanhS kT

l

2D5~k21kT
2!2tanhS kL

l

2D ,

4k2kTkLtanhS kL

l

2D5~k21kT
2!2tanhS kT

l

2D , ~A3!

wherevT and vL are the transverse and longitudinal sou
velocities andkT,L

2 5k22vk
2/vT,L

2 . The solutions correspon
to modes either symmetric—Eq.~A4a!—or antisymmetric—
Eq. ~A4b!—with respect to the slab axis. Finally, oth
modes at finite energies can be obtained from Eq.~A2! as-
suming thatgx,y(y)}sin(k8y),cos(k8y). A sketch of the modes
of a slab of finite width at low energies is given in Fig. 8

The Eqs.~A3! lead to the Rayleigh waves at short wav
lengths. At very long wavelengths,k! l 21, one obtains
e

10410
ch
vk

s5vT

2k2l

A3
A12

vT
2

vL
2
, ~A4a!

vk
a52vTkA12

vT
2

vL
2
, ~A4b!

in agreement with general arguments.41 The only mode that
can be associated to the moving crack isvk

s in Eqs. ~A4a!
and ~A4b! above. Settingvk

s5vk, its wavelength is

lv5
4p

k
5 l

2p

A3

vT

v A12
vT

2

vL
2
. ~A5!

Thus, forv<vR,vT ,vL , this wavelength is longer than th
width of the slab,l. The mode is delocalized in the transver
direction.

In a continuum model, and in the absence of a sho
distance cutoff, the mode identified here has null meas
Hence, its influence on the dynamics of the crack is ne
gible.

FIG. 8. Sketch of the low energy modes of a slab of widthl. The
straight line markedv is the linev5vk. Its intersection with the
normal modes marks the frequency of the only mode which can
emitted by the moving crack.
ol-

,

ys.
1L.B. Freund,Dynamic Fracture Mechanics~Cambridge Univer-
sity Press, New York, 1990!.

2J. Fineberg and M. Marder, Phys. Rep.313, 1 ~1999!.
3J. Fineberg, S.P. Gross, M. Marder, and H.L. Swinney, Phys. R

B 45, 5146~1992!.
4J.F. Boudet, S. Ciliberto, and V. Steinberg, Europhys. Lett.30,

337 ~1995!.
5J.F. Boudet, S. Ciliberto, and V. Steinberg, J. Phys. II6, 1493

~1996!.
6E. Sharon, J. Fineberg, and S.P. Gross, Phys. Rev. Lett.74, 5096

~1995!.
7E. Sharon, S.P. Gross, and J. Fineberg, Phys. Rev. Lett.76, 2117

~1996!.
8A. Yuse and M. Sano, Nature~London! 362, 329 ~1993!.
v.

9E.H. Yoffe, Philos. Mag.42, 739 ~1951!.
10L.I. Slepyan, Dokl. Akad. Nauk.258, 561 ~1981! @Sov. Phys.

Dokl. 26, 538 ~1981!#; 37, 259 ~1982!.
11Sh.A. Kulamekhtova, V.A. Saraikin, and L.I. Slepyan, Mech. S

ids 19, 101 ~1984!.
12M. Marder and S.P. Gross, J. Mech. Phys. Solids43, 1 ~1995!.
13D.A. Kessler and H. Levine, Phys. Rev. E59, 5154~1999!; D.A.

Kessler,ibid. 61, 2348~2000!; D.A. Kessler and H. Levine,ibid.
63, 016118~2001!.

14M. Adda-Bedia and M. Ben-Amar, Phys. Rev. Lett.76, 1497
~1996!; M. Adda-Bedia, R. Arias, M. Ben-Amar, and F. Lund
ibid. 82, 2314~1999!.

15E. Louis and F. Guinea, Europhys. Lett.3, 871 ~1987!.
16P. Meakin, G. Li, L.M. Sander, E. Louis, and F. Guinea, J. Ph
4-7



.

hy

hy

ys

h

ys

tt.

e

, and

on,
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