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Frequency-dependent elastic response at the ferroelectric phase transition of AgNa„NO2…2
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The elastic dynamics of AgNa(NO2)2 crystals around the proper ferroelectric phase transition atTC

538°C was investigated by ultrasonic (f 510 MHz) and dynamic mechanical analysis~f50.6-50 Hz! tech-
niques . The system represents a unique example of a ferroelectric crystal with extremely slow dielectric
relaxation. Due to this reason it reveals a substantially different elastic behavior in megahertz and hertz
frequency regions. We describe our data using a phenomenological model that includes both the effect of order
parameter~polarization! relaxation with a characteristic timetp and thermal~entropy! relaxation with a char-
acteristic timet th .
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I. INTRODUCTION

Structural phase transitions in solids are characterized
the appearance of an order parameterh associated to a cer
tain static distortion of the parent crystal structure. T
anomalous behavior of elastic constants in the region of
phase transition is a consequence of the interaction betw
the order parameter and elastic deformationsUi .1–3 A cou-
pling linear in deformation (Uhn type! gives rise to arelax-
ational contribution to the elastic constants. This is known
the Landau-Khalatnikow (LK) mechanism. The LK relax-
ation contributes to both the real and imaginary parts of
complex elastic constants. The corresponding processe
therefore accompanied by the losses of the elastic energy
are dependent on the actual measuring frequencyv52p f .1

Roughly speaking, LK mechanism is the relaxation of t
order parameter in the field of dynamic elastic strain. He
the measurements of the dynamic elastic susceptibility y
important information on the soft mode dynamics. Anoth
mechanisms of the relaxational type may correspond
domain,4,5soliton,6,7 or cluster8 dynamics. At low frequencies
~hertz region! an entropy (thermal) relaxation
mechanism9,10,12appears to be significant in the elasticity
materials. This unusual type of dynamics is the conseque
of a heat flow between inhomogenously deformed region
a sample. The characteristic time of this process is the t
mal diffusion time.

Elastic properties can be measured using Brillouin sc
tering ~gigahertz region!, ultrasonics ~megahertz region!,
resonance techniques~kilohertz region! and nonresonanc
methods~hertz region! thus covering a quite broad frequenc
range. In general, these methods may display different ty
of the elastic dynamics. In particular, the LK relaxation a
pears essentially damped if the conditionvth@1 (th is the
relaxation time of the order parameter and of the soft mo!
is fulfilled. A pronounced elastic softening near the pha
transition can, however, occur at low frequencies ifvth
!1 and if the coupling between the order parameter
deformation is substantial. In fact this was the reason for
different elastic behavior observed in the Brillouin scatter
0163-1829/2002/66~10!/104102~5!/$20.00 66 1041
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and ultrasonics experiments for several compounds~see, e.g.,
Refs. 11 and 12!. In most dielectrics the relaxation of th
order parameterth is of the order of 1028–10212 s even in
the close vicinity of transition temperatureTC . Thus the LK
relaxation is usually well observed in the frequency reg
up to several hundred megahertz.

The uniaxial ferroelectric AgNa(NO2)2 constitutes an ex-
ception. Its critical Debye-like polarization dynamics appe
in the kilohertz region.13,14 The phase transition atTC
'38 °C ~Refs. 15 and 16! from a paraelectric phase~space
group D2h

24) to the proper ferroelectric phase~space group
C2v

19) is due to an ordering of the NO2
2 dipoles.18 Compre-

hensive dielectric13–16 and specific-heat measurements17

have revealed that the phase transition is of first order,
very close to second order one. The anomalies of dielec
and thermal properties can be well explained by a Lan
theory taking into account the near tricritical character of
phase transition. As a consequence the leading t
in the free energy expansion is of the sixth order in t
polarizationP.

In the present paper we report results of an elastic inv
tigation of AgNa(NO2)2 near the ferroelectric phase trans
tion by using ultrasonic (f 5107 Hz) and dynamical me-
chanical analysis (f 50.5–50 Hz) techniques. Due t
extremely slow dielectric relaxations one expects subs
tially different elastic behavior in these two frequency r
gions. In particular, the characteristiccrossoverof LK relax-
ation is expected to occur in the kilohertz region quite
contrast to other dielectric materials where this usually
pears in the gigahertz region. We describe our data usin
phenomenological model that includes both the LK and
entropy fluctuation mechanism. Note that the previous ela
studies of AgNa(NO2)2 performed by Yamaguchi19 indeed
provide reliable data on the ‘‘clamped’’~decoupled from all
relaxational processes! elastic compliancesSii

D , only.

II. EXPERIMENTAL PROCEDURE

Single crystals of AgNa(NO2)2 were grown from aqueous
solution containing 9.8 wt % AgNO2 and 37.2 wt % NaNO2
©2002 The American Physical Society02-1
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by the slow evaporation method at constant tempera
~about 25° C). We used the standard crystallographic or
tation for the paraelectric phase:a58.05 Å,b510.77 Å,c
510.76 Å. For the ultrasonic measurements the para
plane samples had a typical thickness of about 3 mm.
longitudinal waves were excited in the sample by LiNb3
transducers. The wave velocities were measured by
continuous-wave-resonance method20 in the frequency re-
gion 8–12 MHz. The relative accuracy in the ultrasonic m
surements was about 1023.

The low-frequency elastic measurements were perform
by the three-point bending method using a dynamic m
chanical analyzer~DMA-7, PERKIN ELMER!. The sample
geometry is presented in Fig. 1. The relation between
effective spring constantk measured by DMA-7 and Young’
modulusYq is determined by the following equation:21

k5Yq4bS h

L D 3F11
3

2 S h

L D 2 Yq

Gpq
G21

, ~1!

whereGpq is the shear modulus and the geometrical para
etersb,h andL are shown in Fig. 1. Since the values ofYq
andGpq are of the same order and the ratio (h/L)2'0.01 in
our measurements we can neglect the second contributio
Eq. ~1!. In this case the measured effective spring constak
is proportional to Young’s modulusYq . Since the absolute
accuracy in these measurements is usually not better
20–30% the results are presented in relative units for the
@ReSq

r (T)5ReSq(T)/Sq
o(T560°C)# and imaginary

@ ImSq
r (T)5ImSq(T)/Sq

o(T560°C)# part of the effective
complex elastic complianceSq* 5Yq*

21 , where Sq
o

5@(ReSq)
21(ImSq)

2#1/2. The relative units are accurate
within 0.5%. The bending experiment has been performe
the frequency range 0.6–50 Hz at slow cooling with a rate
about 0.1 K/min.

In the three-point bending experiments we used t
sample geometries:$Pi@101#,qi@010#% and $Pi@101̄#,
qi@101#% that are associated with measuring effective ela
compliancesS[010] andS[101] , respectively. The compliance
are related to the elastic constantsCi j by the following equa-
tions:

S[010]5S22, ~2!

S[101]5~S111S331S5512S13!/4, ~3!

where Si j are the inverse components of the tensor of
elastic constants (Si j 5@C# i j

21). In the ultrasonic experiment

FIG. 1. Three-point bending geometry.
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the quasilongitudinal acoustic waves were exited along
crystallographic@101# direction. The effective elastic con
stant (C[101]5rV2, where r is crystal density,V is ultra-
sound velocity! of this geometry can be expressed throu
the tensor of elastic constants by solving the Christo
equation, which gives

C[101]5
1

4
@C111C3312C55

1$~C112C33!
214~C131C55!

2%1/2#. ~4!

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 shows the relative temperature changes of
real part of the complex effective elastic complian
ReS[010]

r (T),ReS[101]
r (T) measured at 1 Hz with the bendin

technique and the relative temperature changes of the inv
effective elastic constant @C[101]

r (T)#215C[101]
o (T

560°C)/C[101](T)] obtained in the ultrasonic experiment
10 MHz. In the vicinity of transition temperatureTC a peak
anomaly of ReS[010]

r (T) and ReS[101]
r (T) is observed. Conse

quently the temperature dependence of the elastic com
ances nearTC measured in the hertz region differs drastica
from the ultrasonic data that do not reveal any anomal
peak in the transition region. More precisely,@C[101]

r (T)#21

belowTC is proportional toPo squared@Fig. 2~b!#, wherePo
is the spontaneous polarization. The observed elastic be
ior in the megahertz region qualitatively quite well repr
duces the results of previous elastic measurements19 for the
case of the clamped compliancesSii

D .
The different results obtained at the high and low frequ

cies can be explained by taking into account that the
relaxations are suspended in the megahertz region due t
extremely slow dipole relaxation. The anomalies appear

FIG. 2. ~a! Temperature variations of ReS[010]
r and ReS[101]

r mea-
sured by DMA-7~1 Hz! and the relative temperature changes of t
inverse effective elastic constant@C[101]

r (T)#21 measured by
continuous-wave-resonance method~10 MHz!. ~b! @C[101]

r (T)#21

dependence and its fit byPo
2 ~solid line!, wherePo is the spontane-

ous polarization.Po(T) is taken from Ref. 15.
2-2
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FREQUENCY-DEPENDENT ELASTIC RESPONSE AT THE . . . PHYSICAL REVIEW B 66, 104102 ~2002!
at low frequencies would be then accounted to the or
parameter relaxation which in the hertz region obviously f
fills the conditionvtp!1. However, there is an additiona
relaxation at very low frequencies as will become clear fr
the results presented in the Fig. 3 and 4.

Figure 3 shows the temperature dependences of the
ReS[010]

r (T) and imaginary ImS[010]
r (T) parts of the effective

complex elastic complianceS@010#* measured at different fre
quencies~0.6–50 Hz!. The anomaly of the real part atTC is
accompanied by a strong maximum of the imaginary p
Assuming that the NO2 dipoles relax with a single timetp

FIG. 3. Temperature dependences of the~a! real ReS[010]
r (T) and

~b! imaginary ImS[010]
r (T) parts of the effective complex elasti

complianceS@010#* measured at different frequencies.

FIG. 4. Anomalous peak height (T'TC) for the real
Dm(ReS[010]

r ) and imaginaryDm(ImS[010]
r ) parts of the effective

complex elastic complianceS@010#* ~a! and their temperature positio
Tm

Re andTm
Im ~b! as a function of driving frequency derived from th

data in Fig. 3.
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over the full frequency range, the substantial losses that
cur in the phase transition region at low frequencies
rather unusual and cannot be attributed to the LK relaxat
Although the LK contribution to the real part of the elast
compliance remainssubstantialanddominant, the losses due
to the order parameter relaxation at 1 Hz are expected to
about three orders of the magnitudesmaller compared to
what is actually observed in the experiment. Moreover, b
the real and the imaginary part manifest strong freque
dispersion ~see Fig. 3!. As the frequency increases, th
anomalous peak in the imaginary part decreases substan
and practically vanishes with the frequency approaching
Hz @Fig. 4~a!#, whereas the real part decreases only by ab
30% reaching a nearly constant value above 3 H
At the same time, the temperatures of the maximum real
imaginary parts@Fig. 4~b!# reveal only weak shifts as func
tions of frequency mainly in the region from 0.6 to 3 Hz.
similar behavior was recently observed near the ord
disorder phase transition of KSCN~Ref. 9!, C60 ~Ref. 22!,
and (NH3C2H5)2MnCl4 ~Ref. 12! and was explained in
terms of the LK and heat-diffusion central peak models.
believe that both these mechanisms also apply to the pre
case. Domain dynamics cannot be responsible for the ela
anomalies observed nearTC . Assuming even domain-wal
motion induced by a gradient of deformation~for more de-
tailed description of this mechanism see Ref. 4! the changes
of the domain pattern would not contribute to the mac
scopic deformationsUi . This is because the expansion
domains with positive polarization and simultaneous co
traction of domains with negative one~or vice versa! do not
change the macroscopic deformation (Ui}Po

2) and therefore
do not produce any contribution to the elastic constants.

Let us consider the elastic properties of AgNa(NO2)2 in
the framework of the Landau theory. Taking into account
relations~2!–~4! we will restrict our analysis to the anoma
lous behavior of elastic constants only. The free-energy
pansion considers coupling terms that correspond to an
monic interactions between the macroscopic deformati
Ui ( i 51 –6) and order parameterh. In accordance with
group-theoretical analysis the transformationD2h

24→C2v
19 is

associated with the instability of the dipole active soft mo
of the symmetryB2u ~Ref. 23! in the center of the Brillouin
zone (k50). Its condensation atTC leads to the appearanc
of the macroscopic spontaneous polarizationPo parallel to
the crystallographicb axis. Assuming a proper ferroelectri
character of this transition, the polarization can be chose
the order parameter (h[P). The free energy has the form

F5FP1FP,U1FU ,

FP5
1

2
Vo

2P21
1

4
bP41

1

6
gP61 . . . ,

FP,U5(
i 51

3

ai P
2Ui1

1

2 (
i , j 51

3

bi j P
2UiU j1

1

2 (
j 54

6

bj j P
2U j

2 ,

FU5
1

2 (
i , j 51

3

Ci j
o UiU j1

1

2 (
j 54

6

Cj j
o U j

2 , ~5!
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whereVo
25A(T2To). Here theP2U- and P2U2-type cou-

pling terms give rise to the relaxational and nonrelaxatio
elastic contributions, respectively. It is important to note t
the bare elastic constantCi j

o in Eq. ~5! is usually identified
with the adiabatic elastic constants corresponding to the l
v→`. This is however only valid if the entropy relaxatio
mentioned in the Introduction is absent. If not,Ci j

o must be
identified with the low-frequency limit (v→0),
which is with the isothermal elastic constants. According
two types of the relaxational processes: order param
@dP(q,t)5dP(q,0)e2t/tp(q)# and entropy @dT(q,t)
5dT(q,0)e2t/t th(q)# relaxations, with the characteristi
timestp andt th , respectively, have to be considered in t
general case. An isothermal-adiabatic crossover can be re
duced by adding to the free-energy expansion~5! a coupling
term P(0)dP(q)dT(q) ~Refs. 9 and 12!. Actually, this term
is related to a spectrum of temperature fluctuationsdT(q)
that propagate with characteristic diffusion timest th(q)
5(qDthq)21, whereDth is the thermal diffusivity tensor. The
characteristic wave vectorq for such fluctuations is define
by the stress profile which in the three-point bending geo
etry can be approximated bys(x)}cos(qx), whereq5p/h
'50 cm21 for the actual sample thicknessh50.6 mm. In
principle the value oft th could be calculated from the the
mal conductivity, but unfortunately such data do not exist
the present sample. Referring to tabulated data on other i
crystals, one expects values between 10 ms and 1 s in theT
range of interest.24 Hence the entropy relaxation is not o
erational in the megahertz region and ultrasonic elastic c
stants are always adiabatic. The isothermal-adiabatic cr
over can be then obtained by solving simultaneously
equation of motion for the order parameter and the heat c
duction equation~Refs. 9 and 10!. This gives

Ci j
o 5Ci j

ad2
Cik

adCl j
adaka lT

Ce~12 ivt th!
, ~6!

whereCi j
ad are the adiabatic elastic constants,ak are the ther-

mal expansion coefficients andCe is the isochoric specific
heat. Taking into account Eq.~6! and inserting Eq.~5! into
the Slonchewski-Thomas equation1 one obtains

Ci j* 5Ci j
ad2

4aiaj Po
2

V6
2 ~12 ivtp!

2
Cik

adCl j
adaka lT

Ce~12 ivt th!
1bi j Po

2 ,

~7!

where V1
2 5Vo

2 , Po50 at T.TC ; V2
2 5Vo

21(2b
1b8)Po

215gPo
4 , Po

25(2b81Ab8224gVo
2)/2g at T

,TC ; b85b22ai@Cad# i j
21aj , TC5To13b82/16Ag. Ex-

pression~7! is the general equation that describes the ela
behavior in the presence of the order parameter and ent
fluctuation. Let us compare this result with the experimen
different frequency regions.

~i! Megahertz region. According to Refs. 13,14 the relax
ation time tp in AgNa(NO2)2 is in the range (5
31024) –(531026)s for the actual temperature interval b
tween 20 and 60°C. For ultrasonic frequencies~10 MHz!
vtp@1 and vt th@1. Therefore both the LK and the en
10410
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tropy relaxations are suppressed. The only possible, no
laxational anomalous contribution that can appear un
these conditions is due to the last term of Eq.~7!. In fact the
temperature variationC[101]

21 (T) below TC scales well with
Po

2 , as one can see from Fig. 2~b!.
~ii ! Region of 50 Hz. In this frequency region the condi

tions vtp!1 and vt th@1 are fulfilled. The response i
dominated by the LK mechanism. Remembering that we d
with a nearly tricritical phase transition13–16 one can putb8
'0. Equation~7! is then reduced to the simple form

Ci j* 5Ci j
ad , T.TC

Ci j* 5Ci j
ad2

1

12 ivtp

2aiaj

2AA~TC2T!g1b
, T<TC ,

~8!

which describes the asymmetric peak that occurs in the
and imaginary parts of the complex elastic compliance n
TC ~Fig. 3!. The anomaly in the imaginary part is expect
to be of the order Dm(ImS[010]

r )5vtpDm(ReS[010]
r )

'0.15Dm(ReS[010]
r ) which is in good agreement with exper

ment@see Figs. 3 and 4~a!#. Moreover, sincevtp(T) reaches
its maximum value of about 0.15 atTC , the tp(T) depen-
dence gives only a weak correction~about 2%! to the tem-
perature behavior of the real part of the elastic complian
Due to this reason also the maxima of the real and imagin
parts do not reveal any substantial temperature shift in
frequency range from 10 to 50 Hz@Fig. 4~b!#.

~iii ! Region between 0.6 and 5 Hz. Both the LK and en-
tropy relaxations are effective in this frequency region, b
cause of the conditionsvtp!1 andvt th.1. The anomaly
of the imaginary part must be attributed to the entropy rel
ation only, whereas the real part contains substantial con
butions from both relaxational processes. The experim
suggests that the characteristic frequencyf r51/2pt th of the
entropy relaxation is in subhertz region.~In principle, it
could be shifted to the accessible range of measuring
quencies by reducing of the sample thickness, but our pe
nent efforts failed because the crystal easily cleaves al
$101%.) Unfortunately, any information concerning the he
conductivity in this crystal is missing in the literature, ther
fore we cannot estimate quantitatively the relaxation ti
t th . A weak temperature shift of the maxima in both the re
and imaginary parts of the complex compliance observed
the frequency region 0.6–3 Hz@Fig. 4~b!# must be likely
attributed to temperature variations oft th(T)}Dth

21

}Cp(T). IndeedCp(T) shows strong variations only in
very narrow temperature region~about 0.5°C) aroundTC .17

This explains why the corresponding temperature shifts
Tm

Re andTm
Im with a frequency are not substantial in our cas

IV. SUMMARY

We have studied the elastic behavior of AgNa(NO2)2
crystals by ultrasonic (f 510 MHz) and dynamic mechanica
analysis (f 50.6–50 Hz) techniques around the proper fer
electric phase transition atTC538°C. The system represen
2-4



ely

an
r

ly
-
se
hic

sed
istic

of
-
f
that

re-
cy

FREQUENCY-DEPENDENT ELASTIC RESPONSE AT THE . . . PHYSICAL REVIEW B 66, 104102 ~2002!
a unique example of a ferroelectric crystal with extrem
slow dielectric relaxation. Due to this reason it reveals
substantially different elastic behavior in the megahertz
hertz frequency regions. It turns out that in the megahe
region the LK relaxation is fully suppressed. At sufficient
low frequencies (f ,10 Hz) the elastic behavior clearly in
dicates the presence of two different relaxational proces
We describe our data using a phenomenological model w
considers two relaxational channels, the order parameter~po-
larization! relaxation with the characteristic timetp and the
e,

s

r-

a

ct

d

,
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entropy relaxation due to heat transport from the compres
part to the expanded part of the sample with a character
time t th . In this case we assume that no other processes~e.g.,
interaction of the order parameter with defects, relaxation
mesoscopic cluster, etc.! are involved in the dielectric relax
ation in the hertz region.t th turns out to be of the order o
0.1 s, which appears to be a reasonable value. We hope
these results will find direct support from future measu
ments of the thermal conductivity and of the low-frequen
dielectric response.
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