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Semifluxons in long Josephson 0-p-junctions

E. Goldobin,* D. Koelle, and R. Kleiner
Physikalisches Institut-Experimentalphysik II, Universita¨t Tübingen, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany

~Received 31 July 2002; published 27 September 2002!

We investigate analytically long Josephson junctions with phasep-discontinuity points. Such junctions are
usually fabricated as a ramp between a superconductor such as YBa2Cu3O7 with d-wave symmetry of the order
parameter and ans-wave superconductor such as Nb. From the top, they look like zigzags withp jumps of the
Josephson phase at the corners. Thesep jumps, at certain conditions, lead to the formation of half integer flux
quanta, which we call semifluxons, pinned at the corners. We derive a version of sine-Gordon equation which
describes the dynamics of the Josephson phase in such structures, and obtain an explicit formula that describes
the shape of a semifluxon. Some properties of semifluxons are discussed. We propose a way to construct
artificial 0-p-junctions using onlys-wave superconductors.
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I. INTRODUCTION

Recent experiments with YBa2Cu3O7-Nb ramp long Jo-
sephson junctions~LJJ’s! fabricated in a zigzag geometry~if
viewed from the top! clearly demonstrated that due to th
specific order parameter symmetry, the LJJ consists of a
nating facets of 0,p,0,p, . . . junctions.1 As a result, half
integer flux quanta can be spontaneously generated
trapped at the corners of the zigzag, because these ar
actly the points where the order parameter of high-Tc super-
conductor changes its sign due to a 90° change in the d
tion of the Josephson contact~direction of Josephson
tunneling current!.2 Half integer flux quanta, further calle
semifluxons~SF’s!, were also experimentally observed in tr
crystal grain-boundary~GB! LJJ’s.3–5 The presence of alter
nating 0 andp facets results in a set ofp-discontinuities of
the Josephson phase at the corners where 0 andp facets join.
The possibility to fabricate such LJJ’s opens new persp
tives for Josephson electronics~digital circuits, fluxon de-
vices, quantum bits, etc.!,6 as it removes certain limitation
of conventional circuits: e.g., it allows us to build digit
single flux quantum circuits with minimum number of bia
resistors, which means much lower dissipation.7

In Sec. II we derive the version of sine-Gordon equat
which describes the dynamics of the Josephson phase in
with alternating 0 andp regions~facets!. This equation de-
scribes all possible excitations, such as fluxons semiflux
plasma waves, etc. In Sec. III we obtain an explicit expr
sion for the semifluxon shape and shortly discuss the p
erties of semifluxons. Section IV concludes this work a
presents some ideas on future investigations of such ju
tions.

II. DERIVATION OF THE BASIC EQUATION

We consider a zigzag LJJ as a planar one-dimensional
with a curvilinear coordinatex along the zigzag, as shown i
Fig. 1~a!. A magnetic field is applied perpendicular to th
plane of the structure. Such a model can be used to des
both GB and ramp zigzag LJJ’s. For ramps, the direction
magnetic field can also be different, and one has to calcu
the effective field following the guidelines presented
0163-1829/2002/66~10!/100508~4!/$20.00 66 1005
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Ref. 8. The only difference between a conventional L
model and our model is the presence of pha
p-discontinuity points along the junction.9

The Kirchhof equations for currents@Fig. 1~b!# and for the
Josephson phases in an elementary loop are

f~x1dx!2f~x!5
2p

F0
@Fe2I L~x!L~x!#1P~x!, ~1!

I L~x!1I e~x!5I L~x1dx!1I ~x!, ~2!

wheref(x) is the Josephson phase at pointx of the junction,
Fe(x) is the external magnetic flux applied to the cell,L(x)
is the inductance of the piece of the junction electrodes
tweenx andx1dx, I L(x) is the current in the electrodes, i.e
through the inductanceL(x), I e(x) is the externally applied
bias current, andI (x,t) is the current through the Josephs
junction. The particular expression forI (x,t) depends on the
JJ model adopted, and is introduced later.

The functionP(x) can be equal to 0 or6p, and shows
whether there is a corner~discontinuity point! on the interval
from x to x1dx. The values6p describe the direction o
the jump. The functionP(x) acts as there would be a gen
erator of phase6p inserted in the corresponding elementa

FIG. 1. Sketch of a fragment of a zigzag LJJ~a! and its equiva-
lent circuit ~b!.
©2002 The American Physical Society08-1
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loops. Imagine that we have a functionu(x) which is con-
stant everywhere and jumps by6p at each corner. This
function can be written as

u~x!5p(
k51

Nc

skH~x2xk!, ~3!

wheresk561 defines the direction of thekth jump and the
sum is over allNc corners located atx5xk ; H(x) is the
Heaviside step function.

Assuming thatdx is smaller than the distance between t
corners, the functionP can be written as follows:

P~x!5u~x1dx!2u~x!. ~4!

Assuming that the intervaldx is infinitesimal, we can
rewrite Eqs.~1! and ~2! in a differential form using the fol-
lowing expressions:

I 5 j ~x!w dx, ~5!

I e5 j e~x!w dx, ~6!

L5
m0d8

w
dx, ~7!

Fe5m0~H•n!Ldx5m0H~x!L dx, ~8!

wherem0d8 is the inductance of one square of the superc
ducting electrodes,10 d8'2lL is the effective magnetic
thickness of the junction,10 n is the unit vector normal to the
plane of the junction cell as shown in Fig. 1~b!, L'2lL is
the effective penetration depth of the magnetic field into
junction,10 lL is the London penetration depth of the sup
conducting electrode, andw is the width of the junction, e.g.
for a GB LJJ it is equal to the film thickness. We assume t
the films are spatially uniform so thatw, d8, and L are
independent ofx.

Substituting Eqs.~4!–~8! into Eqs.~1! and~2!, we rewrite
them in a differential form~dividing by dx→0):

fx5
2p

F0
FHL2

I L

m0d8
G1ux~x!, ~9!

dIL

dx
5~ j e2 j !w. ~10!

Here and below, the subscriptst and x denote the partia
derivatives with respect to timet and coordinatex, respec-
tively.

ExcludingI L(x) from Eqs.~9! and~10!, we get the equa-
tion that describes the dynamics of the Josephson phas
the system

~ j e2 j !5
1

m0d8
H m0LHx~x!2

F0

2p
@fxx2uxx~x!#J ,

~11!

For the resistively shunted junction model, one should s
stitute
10050
-

e
-

t

in

-

j ~x!5 j csin~f!1
F0

2pr
f t1C8

F0

2p
f tt ~12!

into Eq. ~11!. Here j c , r, and C8 are the critical current
density, specific resistance, and specific capacitance of
junction, respectively. After this, Eq.~11! can be rewritten in
a form which resembles the usual sine-Gordon equation10

lJ
2fxx2vp

22f tt2sin~f!5vc
21f t2g~x!1QHx~x!

1lJ
2uxx~x!, ~13!

where lJ5AF0 /(2pm0 j cd8) is the Josephson penetratio
depth, vp5A2p j c /(F0C8) is the Josephson plasma fre
quency, vc52p j cr/F0 is the characteristic frequency
g(x)5 j e(x)/ j c is the normalized bias current density, an
Q52pm0LlJ

2/F0.
For theoretical investigation of the system, we introdu

standard normalized units, i.e., we normalize the coordin
to the Josephson penetration depthlJ , and the time to the
inverse plasma frequencyvp

21 . After such simplifications,
Eq. ~13! can be rewritten as

fxx2f tt2sin~f!5af t2g~x!1hx~x!1uxx~x!, ~14!

with the damping coefficienta5vp /vc[1/Abc, and the
field h normalized in the usual way ash(x)52H(x)/Hc1,
whereHc15F0 /(pm0LlJ) is the first critical field~penetra-
tion field! for a LJJ which is, in fact, equal to the field in th
center of the fluxon. From now on, all quantities are given
normalized units.

In comparison with the usual perturbed sine-Gord
equation, Eq.~14! contains an additional term

uxx~x!5p(
k

skdx~x2xk!, ~15!

which describes the corners with6p phase jumps.
To simplify the analysis, it is convenient to present t

phasef as a sum of two components: the magnetic onem(x)
and the order-parameter related oneu(x) ~3!, i.e.,

f~x,t !5m~x,t !1u~x!. ~16!

In this case we can get rid of thed functions in the Eq.~14!
and rewrite it only for the ‘‘magnetic’’ componentm:

~17!

It is rather interesting that this is just the usual perturb
sine-Gordon equation, but the sign of sin(m) changes from
facet to facet. This means that every second facet can
considered as having a negative critical current of21 ~in
normalized units! instead of11. Note that this is only valid
for a current-phase relation with odd harmonics. In the g
eral case, odd harmonics change the sign, and even har
ics do not. This applies to both sine and cosine harmonic
the Fourier representation of the current-phase relation.

It may be easier, especially for numerical investigatio
to use Eq.~17! instead of Eq.~14!. Equation~17! can be
solved separately on each interval between corners, an
8-2
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solutions should be joined atx5xk . On the other hand, solv
ing Eq. ~17! implies dealing withd functions, which may be
rather cumbersome.

III. SEMIFLUXON

As was found experimentally,2 the presence ofp discon-
tinuities of the phase may result in the formation of sem
fluxons pinned at the corners of the zigzag. Let us cons
an infinitely long LJJ with a single corner atx50 and derive
an analytical expression that describes the shape of su
semifluxon. We start from the static version of Eq.~17! with-
out perturbation terms,

mxx
7 56sinm, ~18!

where we have assumed thatu(x)52pH(x), i.e., phase
jumps from 0 to2p when we pass the corner atx50.
m2(x) refers to the left half of LJJ (x,0), while m1(x)
refers to the right half (x,0). The semifluxon is generate
to compensate a phase jump atx50, and, far from the cor-
ner, the LJJ should not ‘‘know’’ about the jump. Therefor
we search for a solution of Eq.~18!, which has the following
boundary conditions at infinity:

f~6`!50, fx~6`!50. ~19!

The same conditions form(x) are

m~2`!50, m~1`!5p, ~20!

mx~6`!50. ~21!

We multiply both sides of Eq.~18! by 2mx
7 and rewrite it

in the form

@~mx
7!2#x572~cosm7!x . ~22!

After integration, we get

~mx
7!2572 cosm71C. ~23!

The integration constantC can be determined from the con
ditions ~20!. Taking the limit of Eq.~23! at x→6`, we see
that Eq.~23! holds only, providedC52. Thus

~mx
2!252~12cosm2!54 sin2

m2

2
, ~24a!

~mx
1!252~11cosm1!54 cos2

m1

2
. ~24b!

Let us introduce a new variablec65m6/2 and take the
square root of both parts of Eq.~24!. We suppose thatmx

6

>0 for all x, i.e., m grows from 0 top always with non-
negative derivative. This can be checked later when we
get a solution. Therefore we keep only the plus sign in fr
of the square root~the minus sign corresponds to a negat
semifluxon!, so we get

cx
25sinc2, ~25a!
10050
-
er

a

,

ill
t

cx
15cosc1. ~25b!

Integrating this equation yields

x1x
*
25E dc2

sinc2
5 ln tan

c2

2
, ~26a!

x1x
*
15E dc1

cosc1
5 ln

11sinc1

cosc1
. ~26b!

Using the conditionc(0)5m(0)/25p/4, we can determine
the value of the integration constantx* :

x
*
25 ln tan

p

8
5 ln~A221!5 ln G. ~27a!

x
*
15 ln

11sinp/4

cos~p/4!
5 ln~A211!5 ln

1

G , ~27b!

whereG5tan(p/8)5A221'0.414.
Solving the Eq.~26! for c5m/2 and using Eq.~27! we

get

m2~x!54 arctan~Gex!, ~28a!

m1~x!54 arctan
12Ge2x

11Ge2x

5p24 arctan~Ge2x!. ~28b!

The final expression for the semifluxon shape in terms
the total phasef(x) can be written in a more compact form
as

f~x!524 sgn~x!arctan~Ge2uxu!. ~29!

If we want to calculate the magnetic field, we should n
forget thatf(x) consists of two components:~1! u(x) phase
jumps at the corners, and~2! the magnetic componentm(x)
which describes the smooth variation of the phase. It is
derivative of m(x) that is equal to the magnetic field at
given point of the junction. From Eq.~28!, the fieldmx(x) is
given by the expression

mx~x!5
2

cosh~ uxu2 ln G!
. ~30!

The field in the center of the semifluxon is

mx~0!5
2

cosh lnG 5
4

G1
1

G
5A2, ~31!

and should be compared with the field in the center o
fluxon, which is equal to 2.

The supercurrent density can be calculated as

sin~f!5mxx522 sgn~x!
sinh~ uxu2 ln G!

cosh2~ uxu2 ln G!
. ~32!
8-3
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The functionsf(x), m(x), mx(x) ~magnetic field!, and
sin(f) ~supercurrent! are shown in Fig. 2. The very differ
ence between a fluxon and a semifluxon is that~a! the fluxon
carries one quantum of magnetic flux, while the semiflux
carries only half of the flux quantum~therefore the name!,
and~b! the semifluxon has a sharp maximum that looks l
a cusp. It would be very interesting to compare the shap
a SF obtained by scanning superconducting quantum in
ference device microscopy2 with the shape given by Eq.~30!.

Equation~29! describes a positive semifluxon~PSF!, i.e.,
the one containing1F0/2. To describe a negative sem

FIG. 2. Comparison of fluxon and semifluxon shapes.~a! The
behavior of total phasef(x) and of magnetic componentm(x)
only. ~b! Magnetic-field profilemx(x). ~c! Supercurrent profile
sin(f)5mxx(x).
:/
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fluxon, one just has to alter the sign in front of Eq.~29! or to
changex→2x in Eq. ~28!. In the same time, one shoul
keep in mind that the sign ofu @of sk in Eq. ~3!# is in no way
related to the polarity of the SF. One can as well constr
the PSF that sits at the point whereu jumps up from 0 to
1p. In this case the total phase twist will be equal to 2p,
but physically the situation will not change. In short, it
only the sign ofm, and notu @sk in Eq. ~3!#, which defines
the polarity of the SF.

SF’s are very similar to fluxons when they interact wi
each other: semifluxons and~semi!fluxons of the same po-
larities repel each other, while the ones of opposite pola
attract themselves. This can be easily shown writing the
tential energy as a function of the distance between them

IV. CONCLUSIONS

We have derived the perturbed sine-Gordon equation
describes the dynamics of the Josephson phase in a LJJ
taining phasep-discontinuities, which correspond to the co
ners of the Nb-YBCO~yttrium barium copper oxide! zigzag
LJJ. Using the derived basic Eq.~14!, we have obtained the
shape of a semifluxon—the new type of object that appe
due to the phase jumps. Our results allow us to investig
the interaction between semifluxons as well as between fl
ons and semifluxons. This is also a starting point for t
numerical simulation of various aspects of fluxon and se
fluxons dynamics.

An interesting consequence of Eq.~14! is that the terms
g(x) and uxx(x) play a similar role in the equation. Thi
means that one can substitute one by the other. For exam
one may wish to create an artificialp-discontinuity point
using only superconductors withs-wave order-paramete
symmetry with an injector and receptor of current of the s
Dx separated by a minimum distance. Passing the cur
equal to 4p/Dx2 from the injector to the receptor, one emu
lates the effect ofuxx . Of course,Dx must be much smaller
than any characteristic length, e.g.,Dx!lJ . Although this
emulation may not look ideal, one should keep in mind th
in a real zigzag junction, the size of the corner is also fin
and is defined by the lithographic accuracy;1 mm.
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