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Semifluxons in long Josephson Gs-junctions
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We investigate analytically long Josephson junctions with phaskscontinuity points. Such junctions are
usually fabricated as a ramp between a superconductor such a€¥f&s with d-wave symmetry of the order
parameter and aswave superconductor such as Nb. From the top, they look like zigzagsmwitmps of the
Josephson phase at the corners. Thegemps, at certain conditions, lead to the formation of half integer flux
guanta, which we call semifluxons, pinned at the corners. We derive a version of sine-Gordon equation which
describes the dynamics of the Josephson phase in such structures, and obtain an explicit formula that describes
the shape of a semifluxon. Some properties of semifluxons are discussed. We propose a way to construct
artificial O-m-junctions using onlys-wave superconductors.
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[. INTRODUCTION Ref. 8. The only difference between a conventional LJJ
model and our model is the presence of phase
Recent experiments with YB&u;O,-Nb ramp long Jo-  #-discontinuity points along the junctioh.
sephson junctiond.JJ’s) fabricated in a zigzag geomet(if The Kirchhof equations for currenfgig. 1(b)] and for the
viewed from the top clearly demonstrated that due to the Josephson phases in an elementary loop are
specific order parameter symmetry, the LJJ consists of alter-
nating facets of O7,0,7, ... junctions: As a result, half 2
integer flux quanta can be spontaneously generated and ~ $(X+dX) = ¢(X)=g-[Pe= 1L OOLX)]+T(x), (1)
trapped at the corners of the zigzag, because these are ex- 0
actly the points where the order parameter of highsuper-
conductor changes its sign due to a 90° change in the direc- L) + 1) =1L (x+dx) +1(x), @
tion of the Josephson contaddirection of Josephson ) ) ) )
tunneling current? Half integer flux quanta, further called WNereé(x) is the Josephson phase at poirf the junction,
semifluxonsSF's), were also experimentally observed in tri- Pe(X) IS the external magnetic flux applied to the cel(x)
crystal grain-boundaryGB) LJJ's3~° The presence of alter- is the inductance of the'p|ece of the Junctlon electrodgs be-
nating O andr facets results in a set of-discontinuities of ~Weenxandx+dx, I, (x) is the current in the electrodes, i.e.,
the Josephson phase at the corners where Grafadets join. ~ through the inductance(x), 1¢(x) is the externally applied
The possibility to fabricate such LJJ's opens new perspec_b'as _current, andi(_x,t) is the cur_rent through the Josephson
tives for Josephson electroni¢digital circuits, fluxon de- Junction. The particular expression fbfx,t) depends on the
vices, quantum bits, etc® as it removes certain limitations JJ model adopted, and is introduced later.
of conventional circuits: e.g., it allows us to build digital  The functionll(x) can be equal to O ot-7, and shows
single flux quantum circuits with minimum number of bias Whether there is a cornédiscontinuity point on the interval
resistors, which means much lower dissipafion. from_ X to x+dx. Thg valuest 7 describe the direction of
In Sec. Il we derive the version of sine-Gordon equationth® jump. The functiodI(x) acts as there would be a gen-
which describes the dynamics of the Josephson phase in L§jator of phaset 7 inserted in the corresponding elementary
with alternating O andr regions(facets. This equation de-
scribes all possible excitations, such as fluxons semifluxons, g
plasma waves, etc. In Sec. lll we obtain an explicit expres-
sion for the semifluxon shape and shortly discuss the prop-

erties of semifluxons. Section IV concludes this work and (a)
presents some ideas on future investigations of such junc- * *xﬁ
tions.
I (%) I (x+dx)
I(x-d I I (x+d
Il. DERIVATION OF THE BASIC EQUATION () l ) l (xtdx)

We consider a zigzag LJJ as a planar one-dimensional LJJ

- i - - : L{x+dx)
with a curvilinear coordinatg along the zigzag, as shown in
Fig. 1(a). A magnetic field is applied perpendicular to the 1x)  oetdx) X|Iox+dx)
plane of the structure. Such a model can be used to describe
both GB and ramp zigzag LJJ's. For ramps, the direction of
magnetic field can also be different, and one has to calculate FIG. 1. Sketch of a fragment of a zigzag L@ and its equiva-
the effective field following the guidelines presented inlent circuit (b).
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loops. Imagine that we have a functi@iix) which is con- _ o d, d,
stant everywhere and jumps by at each corner. This J0=]esin(¢)+ 5— i+ C'o—dy (12)
function can be written as P
into Eqg. (11). Herej., p, andC’ are the critical current
¢ density, specific resistance, and specific capacitance of the
o(x)= 77"(21 o H(X—Xy), (3 junction, respectively. After this, Eq11) can be rewritten in
- a form which resembles the usual sine-Gordon equafion:

N

whereo= +1 defines the direction of theth jump and the 5 o . .
sum is over allN, corners located ax=x,; H(x) is the NJux— g "y —SIN(h) = 0 ~py— y(X) + QHy(X)
Heaviside step function.

2
Assuming thatlx is smaller than the distance between the FA30(X), (13
corners, the functiol can be written as follows: where \ ;= @, /(2muejd’) is the Josephson penetration
= I 4 i -
TI(x) = B(x+dx) — 6(x). @) depth, w,=y2mj./(P,C") is the Josephson plasma fre

quency, w.=2m7j.p/®y is the characteristic frequency,
Assuming that the intervatix is infinitesimal, we can V(X):je(x)/jzc is the normalized bias current density, and
rewrite Egs.(1) and (2) in a differential form using the fol- Q=27 moAN3/Po.

lowing expressions: For theoretical investigation of the system, we introduce
standard normalized units, i.e., we normalize the coordinate
I=j(x)w dx, (5)  to the Josephson penetration depth and the time to the
inverse plasma frequenczyrjl. After such simplifications,
le=Je(X)W dX, (6)  Eq.(13) can be rewritten as
pod’ bxx— Pt SIN(P) = arpy— y(X) + Ny (X) + Oyi(x), (14)
L= dx, (7)

with the damping coefficientv=w,/w .= 1/JB., and the
field h normalized in the usual way d%x)=2H(X)/H¢,
Pe=po(H-n)Adx=uoH(X)A dx, ®)  WhereH ,=®,/(mmoAN,) is the first critical field(penetra-
Whereﬂod’ is the inductance of one square of the Superconiion fleld) for a LJJ which iS, in faCt, equal to the field in the
ducting electrode¥) d’~2\, is the effective magnetic center of the fluxon. From now on, all quantities are given in
thickness of the junctioff) n is the unit vector normal to the normalized units. _
plane of the junction cell as shown in Figlbl, A~2\, is In comparison with the usual perturbed sine-Gordon
the effective penetration depth of the magnetic field into thedquation, Eq(14) contains an additional term
junction® A is the London penetration depth of the super-
conducting el_e(_:trode, andis th_e Widph of the junction, e.g., Ou(X) =T, TS (X—Xy), (15)
for a GB LJJ it is equal to the film thickness. We assume that k
the films are spatially uniform so that, d’, and A are
independent ok.
Substituting Egs(4)—(8) into Eqgs.(1) and(2), we rewrite
them in a differential forn{dividing by dx—0):

which describes the corners with7 phase jumps.

To simplify the analysis, it is convenient to present the
phasep as a sum of two components: the magnetic a(r)
and the order-parameter related ai{&) (3), i.e.,

27T I =

¢X:¢T HA_ L - + GX(X), (9) ¢(X!t) /-’L(Xrt)+ 0()() (16)

0 Mo In this case we can get rid of thfunctions in the Eq(14)

di and rewrite it only for the “magnetic” component:

L . .
dx ~UemDw. (30— = sin ) cos(8)=apt, — y(x) +h(x). 17
—_—
*1

Here and below, the subscriptsand x denote the partial

derivatives with respect to timeand coordinatex, respec- It is rather interesting that this is just the usual perturbed

tively. sine-Gordon equation, but the sign of gi(changes from
Excludingl (x) from Egs.(9) and(10), we get the equa- facet to facet. This means that every second facet can be

tion that describes the dynamics of the Josephson phase @@nsidered as having a negative critical current-cf (in
the system normalized unitsinstead of+ 1. Note that this is only valid

for a current-phase relation with odd harmonics. In the gen-
d, eral case, odd harmonics change the sign, and even harmon-
moAH(X) = 5 u= Oxx(X¥) ] 1 ics do not. This applies to both sine and cosine harmonics in
(11) the Fourier representation of the current-phase relation.
It may be easier, especially for numerical investigations,
For the resistively shunted junction model, one should subto use Eq.(17) instead of Eq.(14). Equation(17) can be
stitute solved separately on each interval between corners, and all

(je=i)=—
) wod

100508-2



RAPID COMMUNICATIONS

SEMIFLUXONS IN LONG JOSEPHSON @~JUNCTIONS PHYSICAL REVIEW B 66, 100508R) (2002
solutions should be joined a&t=x, . On the other hand, solv- Yy =cosy™. (25b)
ing Eq.(17) implies dealing withs functions, which may be ] ) ) )
rather cumbersome. Integrating this equation yields
1. SEMIFLUXON X+ X, = f c_wi =Intanl£, (263
siny™ 2

As was found experimentalfythe presence ofr discon-
tinuities of the phase may result in the formation of semi- dyt 1+sing”
fluxons pinned at the corners of the zigzag. Let us consider X+ X::f =In ) (26b)
an infinitely long LJJ with a single corner a0 and derive cosy™ cosy™t
an analytical expression that describes the shape of such
semifluxon. We start from the static version of E&j7) with-
out perturbation terms,

L?sing the conditiony(0)= «(0)/2= 7/4, we can determine
the value of the integration constant :

¥ . _ aw
Myx=ESiNp, (18 X, =Intang = In(\2—1)=InG. (273
where we have assumed théfx)=— wH(x), i.e., phase
jumps from 0 to—= when we pass the corner at=0. N 1+sinw/4 1
w”(x) refers to the left half of LJIX<0), while u*(x) Xy :ln—cos(w/4) =In(\2+ 1)=In§, (27b

refers to the right halfX<0). The semifluxon is generated

to compensate a phase jumpxat0, and, far from the cor- WhereG=tan(m/8)=2—1~0.414.

ner, the LJJ should not “know” about the jump. Therefore, Solving the Eq.(26) for = u/2 and using Eq(27) we
we search for a solution of E¢L8), which has the following get

boundary conditions at infinity:

u~ (X)=4 arctaige®), (289
H(£2)=0, Py(+*)=0. 19 )
The same conditions for(x) are nt(x)=4 arctaﬁi
e—)(
—)=0, o) =1, 20
p(==) plte=)=m 20 =7 —4 arctaniGe ). (28b
y(F00)=0. (21

The final expression for the semifluxon shape in terms of
We multiply both sides of Eq:18) by 2., and rewrite it the total phaseb(x) can be written in a more compact form

in the form as
[(15)2]y= T 2(cosu™ ), . 22 $(x)=—4 sgrix)arctariGe” ). (29
After integration, we get If we want to calculate the magnetic field, we should not
forget that¢(x) consists of two componentél) 6(x) phase
(/‘L;(T— 2=32cosu~+C. (23 jumps at the corners, an@) the magnetic component(x)

. . . which describes the smooth variation of the phase. It is the
The integration constar@ can be determined from the con- derivative of u(x) that is equal to the magnetic field at a

ditions (20). Taking the limit of Eq.(23) atx— *, we see  given point of the junction. From E28), the field u,(x) is

that Eq.(23) holds only, providedC=2. Thus given by the expression
(g )?=2(1—cosu™)=4 siﬁﬂ, (24a w(X)=— (30)
2 X cosh|x|—InG)
ut The field in the center of the semifluxon is
(uy)?=2(1+cosu*)=4 co§7. (24b) y
0)= = =42, 31
Let us introduce a new variablg™= /2 and take the #x(0) coshIng g+1 V2 31

square root of both parts of E¢R4). We suppose thai,
=0 for all x, i.e., w grows from 0 tow always with non- ) i )
negative derivative. This can be checked later when we wilpnd should be compared with the field in the center of a
get a solution. Therefore we keep only the plus sign in fronfluXon, which is equal to 2.
of the square rootthe minus sign corresponds to a negative 1 1€ Supercurrent density can be calculated as
semifluxon, so we get )

sinh(|x|=InG)

cosi(|x|—InG) (32

l//_:Sinl)[l7, (25@ Sir((b):MXX:_Z Sgr(X)
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z e e e e e e B = fluxon, one just has to alter the sign in front of Eg9) or to
i _\9?' pe, =~ @) changex— —x in Eqg. (28). In the same time, one should
. ° s keep in mind that the sign @f [of o in Eq. (3)] is in no way
g 2 o related to the polarity of the SF. One can as well construct
8 - LT the PSF that sits at the point whefejumps up from O to
e PR . + . In this case the total phase twist will be equal t@,2
but physically the situation will not change. In short, it is
. o(x) only the sign ofu, and noté [ oy in Eq. (3)], which defines
_r the polarity of the SF.
2 B LR L L L B SF’s are very similar to fluxons when they interact with

each other: semifluxons anidemifluxons of the same po-
larities repel each other, while the ones of opposite polarity
attract themselves. This can be easily shown writing the po-
tential energy as a function of the distance between them.

magnetic field

IV. CONCLUSIONS

We have derived the perturbed sine-Gordon equation that
describes the dynamics of the Josephson phase in a LJJ con-
© taining phaser-discontinuities, which correspond to the cor-
ners of the Nb-YBCQlyttrium barium copper oxidezigzag
LJJ. Using the derived basic E@L4), we have obtained the
shape of a semifluxon—the new type of object that appears
due to the phase jumps. Our results allow us to investigate
the interaction between semifluxons as well as between flux-
ons and semifluxons. This is also a starting point for the
numerical simulation of various aspects of fluxon and semi-
fluxons dynamics.

An interesting consequence of Ed4) is that the terms
v(x) and 6,,(x) play a similar role in the equation. This

FIG. 2. Comparison of fluxon and semifluxon shap@es.The  means that one can substitute one by the other. For example,
behavior of total phase)(x) and of magnetic component(x)  one may wish to create an artificiat-discontinuity point
only. (b) Magnetic-field profile u(x). (c) Supercurrent profile ysing only superconductors wite-wave order-parameter
SiN(¢) = pxx(X).- symmetry with an injector and receptor of current of the size

Ax separated by a minimum distance. Passing the current

The functionse(x), w(X), u(X) (magnetic fielg, and  equal to 47/ Ax? from the injector to the receptor, one emu-
sin(¢) (supercurrentare shown in Fig. 2. The very differ- lates the effect of),,. Of course Ax must be much smaller
ence between a fluxon and a semifluxon is taathe fluxon ~ than any characteristic length, e.d.x<<\;. Although this
carries one quantum of magnetic flux, while the semifluxoremulation may not look ideal, one should keep in mind that
carries only half of the flux quanturitherefore the name  in @ real zigzag junction, the size of the corner is also finite
and (b) the semifluxon has a sharp maximum that looks likeand is defined by the lithographic accuraeyl um.

a cusp. It would be very interesting to compare the shape of
a SF obtained by scanning superconducting quantum inter-
ference device microscopwith the shape given by E¢30).

Equation(29) describes a positive semifluxgRShH, i.e., We would like to thank H. Hilgenkamp, H.-J. Smilde, and
the one containing+ ®,/2. To describe a negative semi- C. C. Tsuei for stimulating discussions.
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