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Using a simple model for the frequency dependent scattering rate, we evaluate the in-plane optical integral
for cuprate superconductors in the normal and superconducting states. In the overdoped region, this integral is
conserved. In the optimal and underdoped region, though, the optical integrals differ, implying a lowering of
the in-plane kinetic energy in the superconducting state. This sum rule violation, due to the difference of the
non-Fermi-liquid normal state and the superconducting Fermi-liquid state, has a magnitude comparable to
recent experimental results.
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In superconductors, there is a dramatic change in the corsion (ARPES and infrared data, we calculate the change in
ductivity due to opening of an excitation gap in the finite the optical integral from the normal to the superconducting
frequency response, and the formation of a zero frequéncy State, and find its sign and magnitude to be comparable to
function peak representing the dissipationless response of ttieese recent findings.
condensate. The change is such as to preserve the optical The full optical integral, integrating over all energy bands,
sum ru|e, in that the finite frequency We|ght removed by theiS proportional to the bare carrier density over the bare elec-
opening of the excitation gap is recovered by the condensaféon mass, and thus must be conserved. Of greater interest
peak! here is the optical response of the band around the Fermi

In cuprate superconductors, though, there is experiment@&nergy, correlating with the experimental data which are
evidence that the sum rule is violated foc-axis typically integrated out to an energy of order the plasma
conductivity’ Over the measured frequency range, morefrequency(1 eV). This leads to a consideration of the single
weight is present in the condensate peak than can be aband sum rufé
counted for by the loss of finite frequency weight. Since the
total optical sum rule must be preserved, the extra weight in fw re2a2

the condensate peak is coming from outside this frequency Reoy(w)dw= 5
range. This is unusual, since, in classic superconductors, the 0 207V
change in the optical integral is exhausted over a frequency

range of order 4, where A is the superconducting gap. Where the restriction otr to the single band response is
Anderson stressed that such sum rule violations are conimplicit, and wherea is the in-plane lattice constar¥, the
nected to the lack of quasiparticle poles in the normal stateunit cell volume, and

and their emergence in the superconducting state. This is

Ek 1

unlike the premise of BCS theory, where quasiparticles are 2 e
.. k

assumed to exist in the normal state. Ex=—— > —5 Nk, )
Although the sum rule violation for the-axis response is a’N 'k dky

profound, its contribution to the condensation energy is small
due to the smallness of theaxis kinetic energy in the cu- with N the number ok vectors;e, is the bare dispersion as
prates. If kinetic energy effects are to play a role in the condefined by the effective single band Hamiltonfaand n, is
densation energy, then they must be coming from the inthe momentum distribution function. For a Hamiltonian with
plane response, since the in-plane kinetic energy is quiteear neighbor hopping Ex is equivalent to minus the ki-
large, of order an e¥.This largeness, though, means that thenetic energy| E,;,=(2/N)=€:n,], but in general these two
violation is difficult to see. That jsa 1 meV change in the quantities differ.
kinetic energy would represent 1% change in the optical For free electrons, the inverse mass tensor is a constant in
integral. Recently, though, two groups claimed to observenomentum, and thus this integral is conserved due to charge
such a change. Ellipsometry data on optimal and underdopegbnservation. This is not generally the case, since the sum of
Bi2212 (Ref. 5 have been quantified as corresponding to ahe inverse mass tensor over the Brillouin zone vanishes.
change in the kinetic energy of 1 meV. The same kineticWhen considering the change in this integral between differ-
energy change has been inferred from reflectancé datan  ent electronic states, the emphasis in the past has been on a
underdoped Bi2212 film, though no such change could bgossible change in the inverse mass tefisbin general,
resolved in an overdoped film. These results are intriguingthough, we expect, to be invariant, and therefore the
since a 1-meV kinetic energy savings per plane is in excesshange should instead be due to changes,inA simple
of the condensation energy inferred from specific heat tlatacase is BCS theorywhere the kinetic energy increases in
In this paper, using a simple model for the frequency dethe superconducting state due to particle-hole mixing. If a
pendent scattering rate based on angle resolved photoemisear neighbor tight binding model is applied, the BCS opti-
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cal integral would be smaller in the superconducting state 2 — 4 —

than in the normal state, opposite to the recent experimenta 71 I =60

results. _ 8- 34 — s T
The BCS model, though, assumes the existence of quasiz 27 2 N i

particle poles in the normal state. It is straightforward to Eg“j %27 vl T

demonstrate that the kinetic energy can indeed be lowered i3 3 3 ) —

the superconducting state if the normal state is a non-Fermi- 21 14 T =15 L

liquid, and the superconducting state a Fermi liquithis 14

occurs if the effect of quasiparticle formation on sharpening  °y———a a3 75 °6  d0 &0 9

ny is larger than the smearing due to particle-hole mixing. (a) T (meV) (b) (1+S:>FN (EralfeV)120 1°0
This effect is anisotropic in momentum, due to anisotropies ) ) ) )
in the scattering rate and tiiewave order parameter. Given ~ FIG. 1. —AE versus(a) isotropic scattering rate arith) anti-
these anisotropies and the anisotropy of the mass tensor, it fi¢dal scattering rate(for various nodal scattering rajeswo
not obvious what the effect of the kinetic energy lowering = 7+ M€Y andAna,=32 mev.
will be on the optical integral, since a near neighbor tight
binding model is inadequate to descrileg. In addition, In Fig. 1(a), AEx=E}—EZ (where N denotes normal
ARPES measurements indicate a substantial doping depeatate andS superconducting statés plotted as a function of
dence of the scattering rate, which implies that the sum rulé’. The strong dependence dhis expected, since ds in-
violation will also be doping dependent. creases, the change im (An,= nE—nf) becomes increas-
We start by considering a simple model for the frequencyingly pronounced, leading to a larger sum rule violation. This
dependent scattering rate, based on fits to ARPES data at tiraplies that the sum rule violation becomes larger as the
(7r,0) point!? This was used in work on the condensationdoping decreases, sinde from ARPES measurements in-
energy and thec-axis sum rulé?® The model assumes a large creases with underdoping.
frequency independent scattering rate in the normal state, One issue with Fig. (B) is the rather large value of the
consistent with the broad Lorentzian line shapes. In the susum rule violation for realistic values df (the antinodal
perconducting state, the broad peak is replaced by a shaggattering rate from ARPES is 100 meV for optimal dop-
peak at the superconducting gap energy, followed at higheing). It is known, though, that the scattering rate from
binding energy by a spectral dip, then a broad maxinftile ~ ARPES is a strong function of momentuthWe consider a
“hump” ). This change is modeled by cutting off Bnat the  simple model for the anisotropy withT',=T"y\[1
energy of the spectral dip. The resultidgis +cr(cosk@) —cosk,))?/4], wherel'y is the nodal scatter-
ing rate andl"\(1+cg) the antinodal one. In Fig.(th), we
3) plot AEy versuscg for variousT'y, and find that it rapidly
saturates witltg, and thus with the antinodal scattering rate.

. . . ) We have also considered the influence of the anisotropic
wherewy is the spectral dip energy. This self-energy is thenpseudogap on the normal stafeand found this had little
used in the spectral functich effect onAE, .

To gain further insight, we plot in Fig.(d) the integrand
A= ilm Zote (4) of AEx as a function of momentum. Note that the overall
T 72 w?— A% — €2 integral is negative, with negative regions corresponding to
unoccupied states near thdtwave node[(0,0)— (7, )
whereZ=1-3/w. For this form ofX, the Spectral function Fermi Crossinﬂ; and occupied states near thﬁ/E,O) pointsy
has twoé functions located at- E, whereE satisfies the pole  and positive regions to occupied states near the node and
condition[denominator of Eq(4) vanisheg Such poles al-  ynoccupied states near the antindder,0)— (,7) Fermi
ways exist forE<w, because of the log divergence ofRRe crossing. To understand this, we plot two curves in Figa)2
at “wo. The weight of the poles are determined'®as one the Fermi surface, the other the zero of the inverse mass
|dA™*(*+E)/dw|. In addition, there are incoherent pieces for tensor. In our moden, is equal to 1/2 on the Fermi surface,
|o]> wg. and thusAn, changes sign there. Therefore, the optical inte-
For now, we assumé' is k independentw, is also as-  grand, which is the product of the inverse mass tensor times
sumed to bek independent, as implied by ARPES An,, changes sign each time one of these two curves is
experiments? e, is taken from a six parameter tight binding crossed. From this, one can easily understand the various
fit to normal state ARPES datdFor the order parameter, the sign regions in the plot.
d-wave form cos{a)—cosksa) is assumed. Th& sum is Perhaps more instructive is to convert the optical integral
done using a 108100 grid in the irreducible quadrant of the to the equivalent one involving- Vn,- Ve, (using Greens’
zone. The quasiparticle pole weight contributionrip is  theorem for periodic function. The resulting integrand is
analytic.lg The incoherent contribution is evaluated by trap-plotted in Fig. 2b), and as expected, is localized about the
ezoidal integration. We consider the=0 limit, and thus ~ Fermi surface. The important point is that the integrand
n=J° .A(w)dw. In practice, the lower cutoff is taken to be peaks at the node. This can be easily understood. In the su-
—10 eV. In the normal state with no lower cutoff,z=1/2  perconducting state there are quasiparticle poles, but at the
—tan Y(e/T)/ = node,A,=0, so there is a true step discontinuityripthere.

s Fl w—wg
=—In
T w+w)

—ir'0(lo|-w),
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As one moves away from the nodg, increases from zero,
and so|Vn,| decreases in magnitude. From FigbR it is
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FIG. 2. (Color) (a) AE, versus
k (red is positive, green near zero,
blue negative The curves are the
Fermi surface and zero of the in-
verse mass tensor(b) A(Vny
-Ve) versusk (red is positive,
blue near zerp I'=150 meV,
wo=71 meV, and
=32 meV.

Amax

For illustrative purposes, we consider first the case with
no anisotropy irl". In Fig. 3, we plot the sum rule violation

easy to appreciate the result of Fig. 1 that the optical integratersusI’ for a typical value ofa. The variation withI" is

is sensitive to the nodal scattering rate and not so sensitive ®imilar to Fig. 1a) despite the presence of a substantial

the antinodal one. As our model was motivated by fittingterm. Thus for a “pure” marginal Fermi liquidI{=0), the
ARPES data in the antinodal region of the zone, this indi-sum rule violation is essentially zero. The reason is that with
cates that a model based directly on the nodal region should=0, the normal state posseses quite sharp spectral peaks,

be considered.

Normal state ARPES ddfhare consistent with a scatter-
ing rate of the form—ImX =T+ «a|w|, wherel', has the
anisotropy described above andvr is momentum
independent? For simplicity, we will assume that both of
these terms have an infrared cutoffcaf as we did for thd”
model. When determining Rg it is important to provide an
ultraviolet cut-off to InX. A hard cut-off atw. leads to a log
singularity in R& at w.. Rather, we take I} to saturate at
w¢. This gives

whereX =3, ,+ 3. The normal stat& is obtained by set-
ting wg=0. wg is the energy of the dispersion kink along the
zone diagonal, which is the same energy as the spectral dip
(,0),'® and thusw, is k independent. Forw,, fits to
ARPES are consistent with a value of 500 nf8V.

oo e g
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FIG. 3. (8 —AEk and (b) Ex versusI'. a=0.75,
=71 meV, A =32 meV, andw,=500 meV.
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and thus the change im, when going into the superconduct-
ing state is reduced.

To make quantitative comparisons to experiment, realistic
values ofl'y and « as a function of doping are needed. We
can obtain them from the optics data. In Figa4 we plot
1/7(w) for four Bi2212 samples in the superconducting state
extracted from reflectivity dat& The linear high frequency
behavior is of the forma+bw. Let us relate these param-
eters tol', anda. The « term is easy to obtain, since it ks
independent. At ¥0, 1/ is an average of-2ImX over a
frequency range of 0 t@.?3 Since thex term is linear inw,
thena=bh.

Thel', term is a different story. If it were isotropic, then
I'=a/2. For the anisotropic case, these two quantities are
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FIG. 4. (a) 1/7(w) versusw for various Bi2212 samples from
Ref. 23(0OD overdoped, OPT optimal doped, UD underdop&hl)
Calculated sum rule violation{ AEy) versus dopingx. The curve
is T.. The parameter@meV) extracted froma) arel'y (1, 22, 27,
37), a (.65, .75, .88, .98 wq (54, 71, 76, 88 andA . (24, 32, 41,
54) for OD70, OPT90, UD82, and UDG67, respectively. Also shown
in (b) are the experimental resulfspen squares from Ref. 6, open
diamonds from Ref. b The theoretical doping trend iib) is due to
the increasing offset in /seen in(a).
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related by a Fermi surface integral. We can do this analytiStill, given the simplicity of our model, and the substantial
cally by replacing the anisotropy term by é(&p), where¢p ~ experimental error bars, the agreement with experiment is
is the Fermi surface anglg¢he node is atp=m/4). We find  surprisingly good. The doping trend in our model is due to
that the Fermi velocity along the Fermi surface can also be fithe increase i’y with underdoping. We also note that the
to the same anisotropic form. The resulting transport integrakinetic energy change is about twieeAE, . _

is!® 27(0)=[[ddv(¢)/T($)]/[ddv(d), where v(p) As for where the extra condensate weight is coming from,
—vp[1+0RrC0Z(24)] (v is the modulus of the velociand ~ We note that the the expenmenta[ optical !ntegrals balance at
I'($)=T\[1+crco(24)]. From ARPES® cr=3, and &0 e€nergy cutoff of about 2 eV This value is comparable to

; e ; - the Mott gap of the insulator, so we speculate that the extra
;E?Tjgi;'g‘; binding fitvg=—0.72. Solving, we find that weight comes from the upper and lower Hubbard bands. This
N - . .

. ould be in accord with the more delocalized nature of the
For the other parameters, we note that the deviation oﬁll

. : ) ectrons in the superconducting state.
Ur(w) from linearity sets in at an energymaxt “o. where . In conclusion, using a simple model for the frequency
wq is the single particle scattering rate gap. This is easﬂyde

<hown from the Kubo bubble by dressing one of the two pendent scattering rate, we can understand recently re-
ines. From ARPES and tunnelin)glu A %r where ported results for the sum rule violation for the in-plane con-
. 0~ Bmax™ Wres»

: . 120420 ductivity. The effect is due to the formation of quasiparticles
Wres IS the energy separation of the peak and the 2 iy the superconducting state, and confirms earlier specula-
This is found to vary with doping asTy,” and we use this  i,ns hy Andersor.As the doping increases into the over-
to extractApay from the optics scattering rate gap. The re-qoneq region, we find the sum rule violation goes away, con-
sulting A, values are consistent with ARPEBef. 24 and  jsient with the more Fermi-liquid-like nature of the normal

tunneling® measurements. state.
These values are used to determine the sum rule violation
versus doping, shown in Fig(4). We find no sum rule vio- We acknowledge discussions with N. Bontemps, A.

lation for the overdoped sample. This is the expected BCSantander-Syro, D. van der Marel, D. Basov, T. Timusk, and
like behavior, and is consistent with the experimental resulA. Georges. This work was supported by the U.S. Dept. of
on an overdoped filfi.For the other samples, we find a sum Energy, Office of Science, under Contract No. W-31-109-
rule violation which increases from 1.5 to 2.2 meV as theENG-38, the Aspen Center for Physics, and the CNRS
doping decreases. The doping trend is consistent with thé&rance. We would like to thank Professor Bontemps and
reported experimental resulialso shown in Fig. @), al- the ESPCI for their hospitality while this work was in
though the values are perhaps too large by a factor of 2. Thigrogress, Professor Timusk for providing his data, and Pro-
may be due to the approximation of using a hard infraredessor. Bontemps and van der Marel for use of their unpub-
cutoff on the scattering rate in the superconducting statdished work.
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