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Quasiparticle formation and optical sum rule violation in cuprate superconductors
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Using a simple model for the frequency dependent scattering rate, we evaluate the in-plane optical integral
for cuprate superconductors in the normal and superconducting states. In the overdoped region, this integral is
conserved. In the optimal and underdoped region, though, the optical integrals differ, implying a lowering of
the in-plane kinetic energy in the superconducting state. This sum rule violation, due to the difference of the
non-Fermi-liquid normal state and the superconducting Fermi-liquid state, has a magnitude comparable to
recent experimental results.
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In superconductors, there is a dramatic change in the c
ductivity due to opening of an excitation gap in the fin
frequency response, and the formation of a zero frequend
function peak representing the dissipationless response o
condensate. The change is such as to preserve the op
sum rule, in that the finite frequency weight removed by
opening of the excitation gap is recovered by the conden
peak.1

In cuprate superconductors, though, there is experime
evidence that the sum rule is violated forc-axis
conductivity.2 Over the measured frequency range, mo
weight is present in the condensate peak than can be
counted for by the loss of finite frequency weight. Since
total optical sum rule must be preserved, the extra weigh
the condensate peak is coming from outside this freque
range. This is unusual, since, in classic superconductors
change in the optical integral is exhausted over a freque
range of order 4D, where D is the superconducting gap
Anderson3 stressed that such sum rule violations are c
nected to the lack of quasiparticle poles in the normal st
and their emergence in the superconducting state. Th
unlike the premise of BCS theory, where quasiparticles
assumed to exist in the normal state.

Although the sum rule violation for thec-axis response is
profound, its contribution to the condensation energy is sm
due to the smallness of thec-axis kinetic energy in the cu
prates. If kinetic energy effects are to play a role in the c
densation energy, then they must be coming from the
plane response, since the in-plane kinetic energy is q
large, of order an eV.4 This largeness, though, means that t
violation is difficult to see. That is, a 1 meV change in the
kinetic energy would represent;1% change in the optica
integral. Recently, though, two groups claimed to obse
such a change. Ellipsometry data on optimal and underdo
Bi2212 ~Ref. 5! have been quantified as corresponding to
change in the kinetic energy of 1 meV. The same kine
energy change has been inferred from reflectance data6 on an
underdoped Bi2212 film, though no such change could
resolved in an overdoped film. These results are intrigu
since a 1-meV kinetic energy savings per plane is in exc
of the condensation energy inferred from specific heat da7

In this paper, using a simple model for the frequency
pendent scattering rate based on angle resolved photoe
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sion ~ARPES! and infrared data, we calculate the change
the optical integral from the normal to the superconduct
state, and find its sign and magnitude to be comparabl
these recent findings.

The full optical integral, integrating over all energy band
is proportional to the bare carrier density over the bare e
tron mass, and thus must be conserved. Of greater inte
here is the optical response of the band around the Fe
energy, correlating with the experimental data which a
typically integrated out to an energy of order the plas
frequency~1 eV!. This leads to a consideration of the sing
band sum rule8

E
0

`

Resxx~v!dv5
pe2a2

2\2V
EK , ~1!

where the restriction ofs to the single band response
implicit, and wherea is the in-plane lattice constant,V the
unit cell volume, and

EK5
2

a2N
(

k

]2ek

]kx
2

nk , ~2!

with N the number ofk vectors;ek is the bare dispersion a
defined by the effective single band Hamiltonian,9 andnk is
the momentum distribution function. For a Hamiltonian wi
near neighbor hopping,4 EK is equivalent to minus the ki-
netic energy@Ekin[(2/N)(keknk#, but in general these two
quantities differ.

For free electrons, the inverse mass tensor is a consta
momentum, and thus this integral is conserved due to ch
conservation. This is not generally the case, since the sum
the inverse mass tensor over the Brillouin zone vanishe10

When considering the change in this integral between dif
ent electronic states, the emphasis in the past has been
possible change in the inverse mass tensor.4,11 In general,
though, we expectek to be invariant, and therefore th
change should instead be due to changes innk . A simple
case is BCS theory,1 where the kinetic energy increases
the superconducting state due to particle-hole mixing. I
near neighbor tight binding model is applied, the BCS op
©2002 The American Physical Society06-1
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cal integral would be smaller in the superconducting st
than in the normal state, opposite to the recent experime
results.

The BCS model, though, assumes the existence of qu
particle poles in the normal state. It is straightforward
demonstrate that the kinetic energy can indeed be lowere
the superconducting state if the normal state is a non-Fe
liquid, and the superconducting state a Fermi liquid.9 This
occurs if the effect of quasiparticle formation on sharpen
nk is larger than the smearing due to particle-hole mixin
This effect is anisotropic in momentum, due to anisotrop
in the scattering rate and thed-wave order parameter. Give
these anisotropies and the anisotropy of the mass tensor
not obvious what the effect of the kinetic energy loweri
will be on the optical integral, since a near neighbor tig
binding model is inadequate to describeek . In addition,
ARPES measurements indicate a substantial doping de
dence of the scattering rate, which implies that the sum
violation will also be doping dependent.

We start by considering a simple model for the frequen
dependent scattering rate, based on fits to ARPES data a
(p,0) point.12 This was used in work on the condensati
energy9 and thec-axis sum rule.13 The model assumes a larg
frequency independent scattering rate in the normal st
consistent with the broad Lorentzian line shapes. In the
perconducting state, the broad peak is replaced by a s
peak at the superconducting gap energy, followed at hig
binding energy by a spectral dip, then a broad maximum~the
‘‘hump’’ !. This change is modeled by cutting off ImS at the
energy of the spectral dip. The resultingS is

SG5
G

p
lnUv2v0

v1v0
U2 iGQ~ uvu2v0!, ~3!

wherev0 is the spectral dip energy. This self-energy is th
used in the spectral function14

A5
1

p
Im

Zv1e

Z2~v22D2!2e2
, ~4!

whereZ512S/v. For this form ofS, the spectral function
has twod functions located at6E, whereE satisfies the pole
condition @denominator of Eq.~4! vanishes#. Such poles al-
ways exist forE,v0 because of the log divergence of ReS
at 6v0. The weight of the poles are determined a15

udA21(6E)/dvu. In addition, there are incoherent pieces f
uvu.v0.

For now, we assumeG is k independent.v0 is also as-
sumed to be k independent, as implied by ARPE
experiments.16 ek is taken from a six parameter tight bindin
fit to normal state ARPES data.17 For the order parameter, th
d-wave form cos(kxa)2cos(kya) is assumed. Thek sum is
done using a 1003100 grid in the irreducible quadrant of th
zone. The quasiparticle pole weight contribution tonk is
analytic.18 The incoherent contribution is evaluated by tra
ezoidal integration. We consider theT50 limit, and thus
nk5*2`

0 A(v)dv. In practice, the lower cutoff is taken to b
210 eV. In the normal state with no lower cutoff,nk51/2
2tan21(e/G)/p.
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In Fig. 1~a!, DEK[EK
N2EK

S ~where N denotes normal
state andS superconducting state! is plotted as a function of
G. The strong dependence onG is expected, since asG in-
creases, the change innk (Dnk[nk

N2nk
S) becomes increas

ingly pronounced, leading to a larger sum rule violation. T
implies that the sum rule violation becomes larger as
doping decreases, sinceG from ARPES measurements in
creases with underdoping.

One issue with Fig. 1~a! is the rather large value of th
sum rule violation for realistic values ofG ~the antinodal
scattering rate from ARPES is;100 meV for optimal dop-
ing!. It is known, though, that the scattering rate fro
ARPES is a strong function of momentum.19 We consider a
simple model for the anisotropy withGk5GN@1
1cR„cos(kxa)2cos(kya)…2/4#, whereGN is the nodal scatter-
ing rate andGN(11cR) the antinodal one. In Fig. 1~b!, we
plot DEK versuscR for variousGN , and find that it rapidly
saturates withcR , and thus with the antinodal scattering ra
We have also considered the influence of the anisotro
pseudogap on the normal state,20 and found this had little
effect onDEK .

To gain further insight, we plot in Fig. 2~a! the integrand
of DEK as a function of momentum. Note that the over
integral is negative, with negative regions corresponding
unoccupied states near thed-wave node @(0,0)2(p,p)
Fermi crossing# and occupied states near the (p/2,0) points,
and positive regions to occupied states near the node
unoccupied states near the antinode@(p,0)2(p,p) Fermi
crossing#. To understand this, we plot two curves in Fig. 2~a!,
one the Fermi surface, the other the zero of the inverse m
tensor. In our modelnk is equal to 1/2 on the Fermi surface
and thusDnk changes sign there. Therefore, the optical in
grand, which is the product of the inverse mass tensor tim
Dnk , changes sign each time one of these two curve
crossed. From this, one can easily understand the var
sign regions in the plot.

Perhaps more instructive is to convert the optical integ
to the equivalent one involving2¹nk•¹ek ~using Greens’
theorem for periodic functions10!. The resulting integrand is
plotted in Fig. 2~b!, and as expected, is localized about t
Fermi surface. The important point is that the integra
peaks at the node. This can be easily understood. In the
perconducting state there are quasiparticle poles, but at
node,Dk50, so there is a true step discontinuity innk there.

FIG. 1. 2DEK versus~a! isotropic scattering rate and~b! anti-
nodal scattering rate~for various nodal scattering rates!. v0

571 meV andDmax532 meV.
6-2
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FIG. 2. ~Color! ~a! DEK versus
k ~red is positive, green near zero
blue negative!. The curves are the
Fermi surface and zero of the in
verse mass tensor.~b! D(¹nk

•¹ek) versus k ~red is positive,
blue near zero!. G5150 meV,
v0571 meV, and Dmax

532 meV.
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As one moves away from the node,Dk increases from zero
and sou¹nku decreases in magnitude. From Fig. 2~b!, it is
easy to appreciate the result of Fig. 1 that the optical inte
is sensitive to the nodal scattering rate and not so sensitiv
the antinodal one. As our model was motivated by fitti
ARPES data in the antinodal region of the zone, this in
cates that a model based directly on the nodal region sh
be considered.

Normal state ARPES data19 are consistent with a scatte
ing rate of the form2ImS5Gk1auvu, whereGk has the
anisotropy described above anda is momentum
independent.21 For simplicity, we will assume that both o
these terms have an infrared cutoff atv0 as we did for theG
model. When determining ReS, it is important to provide an
ultraviolet cut-off to ImS. A hard cut-off atvc leads to a log
singularity in ReS at vc . Rather, we take ImS to saturate at
vc . This gives

ReSa5
a

p S v lnUv22v0
2

v22vc
2U1vclnUv2vc

v1vc
U D , ~5!

whereS5Sa1SG . The normal stateS is obtained by set-
ting v050. v0 is the energy of the dispersion kink along th
zone diagonal, which is the same energy as the spectral d
(p,0),16 and thusv0 is k independent. Forvc , fits to
ARPES are consistent with a value of 500 meV.22

FIG. 3. ~a! 2DEK and ~b! EK versus G. a50.75, v0

571 meV, Dmax532 meV, andvc5500 meV.
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For illustrative purposes, we consider first the case w
no anisotropy inG. In Fig. 3, we plot the sum rule violation
versusG for a typical value ofa. The variation withG is
similar to Fig. 1~a! despite the presence of a substantiala
term. Thus for a ‘‘pure’’ marginal Fermi liquid (G50), the
sum rule violation is essentially zero. The reason is that w
G50, the normal state posseses quite sharp spectral pe
and thus the change innk when going into the superconduc
ing state is reduced.

To make quantitative comparisons to experiment, reali
values ofGk anda as a function of doping are needed. W
can obtain them from the optics data. In Fig. 4~a!, we plot
1/t(v) for four Bi2212 samples in the superconducting st
extracted from reflectivity data.23 The linear high frequency
behavior is of the forma1bv. Let us relate these param
eters toGk anda. Thea term is easy to obtain, since it isk
independent. At T50, 1/t is an average of22ImS over a
frequency range of 0 tov.23 Since thea term is linear inv,
thena5b.

The Gk term is a different story. If it were isotropic, the
G5a/2. For the anisotropic case, these two quantities

FIG. 4. ~a! 1/t(v) versusv for various Bi2212 samples from
Ref. 23~OD overdoped, OPT optimal doped, UD underdoped!. ~b!
Calculated sum rule violation (2DEK) versus doping,x. The curve
is Tc . The parameters~meV! extracted from~a! areGN ~1, 22, 27,
37!, a ~.65, .75, .88, .98!, v0 ~54, 71, 76, 83!, andDmax ~24, 32, 41,
54! for OD70, OPT90, UD82, and UD67, respectively. Also show
in ~b! are the experimental results~open squares from Ref. 6, ope
diamonds from Ref. 5!. The theoretical doping trend in~b! is due to
the increasing offset in 1/t seen in~a!.
6-3
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related by a Fermi surface integral. We can do this anal
cally by replacing the anisotropy term by cos2(2f), wheref
is the Fermi surface angle~the node is atf5p/4). We find
that the Fermi velocity along the Fermi surface can also b
to the same anisotropic form. The resulting transport integ
is15 2t(0)5@*dfv(f)/G(f)#/*dfv(f), where v(f)
5vN@11vRcos2(2f)# (v is the modulus of the velocity! and
G(f)5GN@11cRcos2(2f)#. From ARPES19 cR53, and
from the tight binding fit,vR520.72. Solving, we find that
GN

2153.4t(0).
For the other parameters, we note that the deviation

1/t(v) from linearity sets in at an energyDmax1v0, where
v0 is the single particle scattering rate gap. This is ea
shown from the Kubo bubble by dressing one of the t
lines. From ARPES and tunneling,v05Dmax1v res , where
v res is the energy separation of the peak and the dip.12,24,25

This is found to vary with doping as 5Tc ,25 and we use this
to extractDmax from the optics scattering rate gap. The r
sultingDmax values are consistent with ARPES~Ref. 24! and
tunneling25 measurements.

These values are used to determine the sum rule viola
versus doping, shown in Fig. 4~b!. We find no sum rule vio-
lation for the overdoped sample. This is the expected B
like behavior, and is consistent with the experimental res
on an overdoped film.6 For the other samples, we find a su
rule violation which increases from 1.5 to 2.2 meV as t
doping decreases. The doping trend is consistent with
reported experimental results@also shown in Fig. 4~b!, al-
though the values are perhaps too large by a factor of 2. T
may be due to the approximation of using a hard infra
cutoff on the scattering rate in the superconducting st
n
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Still, given the simplicity of our model, and the substant
experimental error bars, the agreement with experimen
surprisingly good. The doping trend in our model is due
the increase inGN with underdoping. We also note that th
kinetic energy change is about twice2DEK .

As for where the extra condensate weight is coming fro
we note that the the experimental optical integrals balanc
an energy cutoff of about 2 eV.5,6 This value is comparable to
the Mott gap of the insulator, so we speculate that the e
weight comes from the upper and lower Hubbard bands. T
would be in accord with the more delocalized nature of
electrons in the superconducting state.

In conclusion, using a simple model for the frequen
dependent scattering rate, we can understand recently
ported results for the sum rule violation for the in-plane co
ductivity. The effect is due to the formation of quasiparticl
in the superconducting state, and confirms earlier spec
tions by Anderson.3 As the doping increases into the ove
doped region, we find the sum rule violation goes away, c
sistent with the more Fermi-liquid-like nature of the norm
state.
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