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Pomeranchuk and other instabilities in the t-t8 Hubbard model at the Van Hove filling
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We present a stability analysis of the two-dimensionalt-t8 Hubbard model for various values of the next-
nearest-neighbor hoppingt8, and electron concentrations close to the Van Hove filling by means of the flow
equation method. Fort8>2t/3 a dx22y2-wave Pomeranchuk instability dominates~apart from antiferromag-
netism at smallt8). At t8,2t/3, the leading instabilities are ag-wave Pomeranchuk instability andp-wave
particle-hole instability in the triplet channel at temperaturesT,0.15t, and ans* -magnetic phase forT
.0.15t; upon increasing the electron concentration, the triplet analog of the flux phase occurs at low tempera-
tures. Other weaker instabilities are also found.
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In recent years, the two-dimensional~2D! Hubbard model
has been used1,2 as the simplest model that maps the elect
correlations in the copper oxide planes of high-tempera
superconductors since experimental data suggest that s
conductivity in cuprates basically originates from the Cu2
layers.3 Although electron-electron interactions are strong
the high-temperature cuprate superconductors some im
tant features of these systems~in particular, antiferromag-
netic andd-wave superconducting instabilities! are captured
already by the 2D Hubbard model at weak to moderate C
lomb coupling.

Apart from the antiferromagnetism anddx22y2-wave su-
perconductivity mentioned above@for review, see Refs
1,2,4, and references therein#, a few other instabilities related
to symmetry-broken states5–11 in the 2Dt-t8 Hubbard model
with next-nearest-neighbor hoppingt8 have been reported
recently. Specially, much interest of researchers has bee
tracted by the case when the Fermi surface passes thr
the saddle points of the single-particle dispersion~Van Hove
filling !. One of the instabilities found in such a case is
d-wave Pomeranchuk instability breaking the tetrago
symmetry of the Fermi surface, i.e., a spontaneous defor
tion of the Fermi surface reducing its symmetry to orth
rhombic. It has been recently observed for small values ot8
from renormalization-group calculations by Halboth a
Metzner.5 They argued that the Pomeranchuk instability o
curs more easily if the Fermi surface is close to the sad
points with a sizablet8 ~reducing nesting that leads to an
ferromagnetism!. However, within their technique it is diffi-
cult to compare the strength of the Fermi-surface deform
tion with other instabilities and to conclude which on
dominates. The authors of Ref. 10 have investigated the
terplay ofd-density wave12,13and Fermi-surface deformatio
tendencies with those towardsd-wave pairing and antiferro
magnetism by means of a similar temperature-fl
renormalization-group approach. They have found that
d-wave Pomeranchuk instability never dominates in the
t-t8 Hubbard model~even under the conditions mentione
above!.

On the other hand, Vollhardtet al.14 showed that the
t8-hopping term destroys the antiferromagnetic nesting in
bility at weak interactions in two and three dimensions, a
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supports the stabilization of metallic ferromagnetism in in
nite dimensions away from half filling. Therefore, one cou
expect also the stabilization of ferromagnetism by a siza
t8 in two dimensions. Indeed, in thet-t8 Hubbard model on
a 2D square lattice at weak to moderate Coulomb couplin
projection quantum Monte Carlo calculation with 20320
sites and theT-matrix technique,6 a generalized random
phase approximation including particle-particle scatterin7

point towards a ferromagnetic ground state for large nega
values oft8/t in a density range around the Van Hove fillin
Similar tendencies have been found by the authors of Re
within the renormalization group and parquet approach
Honerkamp and Salmhofer recently studied9 the stability of
this ferromagnetic region at finite temperatures by mean
the temperature-flow renormalization-group technique. Th
have found that ferromagnetic instability is the leading one
t8,20.33t and Van Hove filling with critical temperature
depending on the value oft8. When the electron concentra
tion is increased slightly above the Van Hove filling, th
ferromagnetic tendencies get cut off at low temperatures,
a tripletp-wave superconducting phase dominates. Howe
they did not consider the Pomeranchuk instability~which
could have the most favorable conditions to occur! and other
ones apart from antiferromagnetism,d- and p-wave super-
conductivity, and ferromagnetism.

Therefore, the investigation of interplay and rivalry b
tween the Pomeranchuk instability and ferromagnetism,
other phases in the 2Dt2t8 Hubbard model at the Van Hov
filling, is a considerable task. We will consider the leadi
instabilities depending on the ratioU/t ~in all papers cited
above it was fixed!. The main goal of this paper is such
study. We also report on a few instabilities in a range
electron concentration around the Van Hove filling.

We start from the Hamiltonian of thet-t8 Hubbard model,

H5(
ks

«kcks
† cks1

U

N (
k1k18

k2k28

ck1↑
† ck

18↑ck2↓
† ck

28↓dk11k2 ,k
181k

28
,

~1!

where«k is the Bloch electron energy with the momentumk,
cks

† (cks) is the creation~annihilation! operator for the elec-
©2002 The American Physical Society16-1
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trons with spin projectionsP$↑,↓%, U is the local Coulomb
repulsion of two electrons of opposite spins,N is the number
of lattice points, and the lattice spacing equals unity.

By means of the flow equation method,15 the Hamiltonian
is transformed into one of molecular-field type. This Ham
tonian is calculated in second order in the couplingU.11

Adopting the notations of Ref. 11, the expression for the f
energy has the form

bF5
1

N (
kq

bUS 11
U

t
Vk,qDDk* Dq1(

k
f kDk* Dk , ~2!

where the first term is the energy contribution and the sec
term is the entropy contribution,b51/(kBT), T is the tem-
perature,t is the hopping integral of electrons between ne
est neighbors of the lattice,Vk,q is effective second-orde
interaction,f k is an entropy coefficient, andDk are the order
parameters. For example, Dks,2ks85^cksc2ks8&
5(sy)ss8Dk

s1(a(sysa)ss8Dk
ta , wheresa is a Pauli spin

matrix (a5x,y,z) andDk
s(Dk

ta) is the singlet~triplet! ampli-
tude. An expression similar to Eq.~2! is obtained for
particle-hole channels with the order parametersn instead of
D. In this case, for example, we havenks,ks8
5^cks

† ck1Qs8&5nk
sds,s81(ank

ta(sa)ss8 , with Q5(p,p).
All quantities of Eq.~2! are defined in Ref. 11. For a squa
lattice, the single-particle dispersion has the form

«k522t~coskx1cosky!24t8coskxcosky . ~3!

The spectrum~3! contains Van Hove singularities in the de
sity of states at the energy«VH54t8 related to the saddle
points of the Fermi surface atk5(0,6p) and (6p,0). For
t850 and half filling, the Fermi surface is nested,«k1Q
52«k , which leads to an antiferromagnetic instability f
U.0. The nesting is removed fort8/tÞ0.

We start from the symmetric state and investigate whe
this state is stable against fluctuations of the order parame
D and n. As soon as a nonzeroD or n yields a lower free
energy in comparison with the symmetric state with all va
ishing D and n, the symmetric state becomes unstable a
the system will approach a symmetry broken state. This
dicates a phase transition. We perform numerical calcula
on a square lattice with 24324 points in the Brillouin zone
for the various representations under the point groupC4n .
The representations of the even-parity states are one dim
sional. We denote them bys15s1 ,s25sxy(x22y2) ,d1

5dx22y2,d25dxy . The odd-parity representation is two d
mensional, and is denoted byp. Initially, such numerical cal-
culations have been performed in Refs. 11 and 16, but t
were sensitive to the lattice size at low temperatures. H
we use an improved scheme~for details, see Ref. 17!. Within
this scheme we take the average value of entropy coeffici
instead of the value calculated at a point in the Brillou
zone. A similar procedure is applied to the chemical-poten
calculation. One should also perform the averaging in de
mination of effective interactions, but it would take muc
more time. We have checked the size effects, perform
some calculations also for 16316 and 32332 lattices, and
found that the differences are very small and unessen
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Although size effects increase at low-temperatures in
low-density region, they do not touch and change the lead
instabilities essentially.

We start fromt850 and half filling (n51) ~see Fig. 1!.
As expected in this case, the leading instability is the a
ferromagnetic one that disappears at the temperaturT
'0.1t or dopingd[n2150.06. As the second-order con
tribution suppresses antiferromagnetism, it decays rapidl
larger values ofU/t. Remarkably, since we work with a
weak-coupling calculation, we obtain at intermediate co
plings the same tendency as it is expected at strong inte
tions, although we do not reproduce the Nee´l temperature
behaviorTc;t2/U. We take the decrease of the Nee´l tem-
perature as an indication that the calculation in second o
in U yields reasonable results even for intermediate val
U;4t. For stronger couplings, higher-order contributio
will become important. However, it is of interest to se
which instabilities emerge within our approximation fo
larger values ofU/t, since this gives a hint of the types o
ordering to be investigated for stronger couplings. Therefo
we discuss the phase diagram obtained from the sec
order calculation also for larger valuesU/t.

The next instability is a Pomeranchuk instability wi
dx22y2-wave symmetry in the singlet channel. The corr
sponding eigenvectors signal a deformation of the Fermi s
face, which breaks the point-group symmetry of the squ
lattice. For negativet8>2t/3, the Pomeranchuk instability
dominates at the Van Hove filling~see Fig. 2!. The
dx22y2-wave Pomeranchuk instability competes with oth
instabilities att8,2t/3, and it is not the leading one~Fig.
3!. In agreement with the ideas of Ref. 5 the instability
mainly driven by a strong attractive interaction between p
ticles on opposite corners of the Fermi surface near
saddle points and a repulsive interaction between particle
neighboring corners. To favor such a behavior we nee
sizable t8 reducing antiferromagnetic correlations. At ha
filling and t850, the next instability is a particle-hole insta
bility of singlet type with staggeredp-wave symmetry. It

FIG. 1. Temperature phase diagram of the 2Dt-t8 Hubbard
model forn51 andt850. Chemical potentialm50. SC stands for
superconductivity, FP for flux phase, BS for band splitting, PI
Pomeranchuk instability, and AF for antiferromagnetism.
6-2
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yields11 a splitting into two bands and may lead to an ene
gap in the charge excitation spectrum. Another mechan
for a charge gap formation has been proposed18,19recently in
the 2D Hubbard model witht850 at weak coupling. The
band splitting phase is developed in the region of elect
concentration around half filling, and is one of the strong
in that region. Then the superconductingdx22y2 instability
follows, which coincides with thedx22y2-wave staggered
flux phase~the flux phase has been proposed by the auth
of Refs. 20 and 21 and discussed recently in Refs. 12,13,
22!. Away from half filling, the degeneration disappears, a
d-wave superconductivity dominates at low temperatures
certain regions of electron concentration around half fillin
which depends on the value oft8Þ0. Even large values o
ut8u do not destroy the dominant low-temperature behavio
dx22y2-wave superconductivity at doping.17 One phase may

FIG. 2. Temperature phase diagram of the 2Dt-t8 Hubbard
model for t852t/3 andn50.68 ~the Van Hove filling!. Chemical
potential varies in the range ofm/t52(1.317–1.339). TFP stand
for triplet flux phase,M for magnetic particle-hole instability in
triplet channel, and other notations are the same as in Fig. 1.

FIG. 3. Temperature phase diagram of the 2Dt-t8 Hubbard
model for t8525t/12 andn50.55 ~the Van Hove filling!. Chemi-
cal potential variesm/t52(1.666–1.632). Notations are the sam
as in Fig. 2.
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suppress another phase. To which extent the two order
rameters can coexist with each other is a question, which
to be investigated in the future.

For t850, the singlet and tripletTc of the particle-hole
instabilities with staggered symmetry ofd1 wave character
~that is the flux phase! are degenerate. Ift8Þ0, they are
different, and the triplet one is higher. Moreover, the trip
analog of flux phase dominates at low temperatures, ant8
525t/12 when the electron concentration is slightly abo
the Van Hove filling, in contrast to the results of Ref. 9 whi
point out the occurrence of triplet superconductivity wi
p-wave symmetry in this region. The triplet flux phase is a
one of the leading instabilities fort8>2t/3 and certain re-
gion of electron concentrations~see Fig. 2!. It has been con-
sidered by Nayak12 as a density wave order parameter pote
tially relevant to the cuprates, but to our knowledge a trip
version of the flux phase has not yet been observed in
merical solutions of the 2Dt-t8 Hubbard model. We shal
discuss this state in more details elsewhere.17

At t8525t/12, a few other instabilities appear to com
pete at the Van Hove filling and low temperatures~Fig. 3!, in
disagreement with the conclusions of Ref. 9 on the occ
rence of ferromagnetism. The leading one is a Pomeranc
instability in the s1 channel withg15gx41y426x2y2 wave
character~four node lines ink space!. This phase occurs
more easily if the electron concentration is close to
slightly smaller than the Van Hove filling~Figs. 3 and 4!. It
also requires sufficiently large absolute values oft8. When
the electron concentration is decreased below the Van H
density, a particle-hole instability ofp-wave symmetry in
triplet channel dominates at low temperatures~see Fig. 4!,
which gives rise to a phase of magnetic currents. In thed2

channel, ani-wave~six node lines ink space! Pomeranchuk
instability appears when electron concentrationn is smaller
than the Van Hove filling~Fig. 4!. It is a leading one at smal
values of the electron concentration.17 We observe~Fig. 4! in
the s1 channel ag1 wave superconductivity below the Va
Hove filling, but it requires strong coupling.

FIG. 4. Temperature phase diagram of the 2Dt-t8 Hubbard
model for t8525t/12 andn50.50 ~slightly below the Van Hove
filling !. Chemical potential varies in the range ofm/t
52(1.709–1.713). Notations are the same as in Fig. 2.
6-3
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At t8525t/12 andT.0.15t close to the Van Hove fill-
ing, one observes for the couplingsU>7t a particle-hole
instability with s* -wave character~its order paramete
changes sign close to the Fermi edge! in the triplet channel
~Figs. 3 and 4!. It is likely that the order parameter contribu
tions do not compensate exactly, so that a weak ferrom
netism appears. Thiss* -magnetic phase shows a reentra
behavior. Since at lower temperatures only a smaller reg
in k space around the Fermi edge contributes, the s
change of the order parameter reduces the effective inte
tion, which leads to the disappearance of this phase.

In conclusion, we have presented a stability analysis
the 2D t –t8 Hubbard model on a square lattice by means
the flow equations approach in second order inU for various
values of the next-nearest-neighbor hoppingt8 and electron
concentrations close to the Van Hove filling. A surprisi
C
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large number of phases has been observed. Some of
have an order parameter with many nodes in thek space. For
t8>2t/3, the dx22y2-wave Pomeranchuk instability dom
nates. Att8,2t/3, the leading instabilities are ag1 wave
Pomeranchuk instability andp-wave particle-hole instability
in triplet channel at temperaturesT,0.15t, ands* -magnetic
phase forT.0.15t; upon increasing the electron concentr
tion, the triplet flux phase occurs at low temperatures.
have found other weaker instabilities also. Most instabilit
develop atU.4t, which are not small values. Therefor
flow equation calculations beyond second order would
desirable. Nevertheless, as we have found most comm
discussed types of order, and since some effects obtaine
the intermediate to strong couplings are reproduced rea
ably well by means of the flow equations, we suggest t
our calculations give an estimate of the most important
stabilities.
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