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Optical properties of layered superconductors near the Josephson plasma resonance
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We study the optical properties of strongly anisotropic crystals with spatial dispersion and show that the
usual Fresnel approach becomes invalid near frequencies where the group velocity of the wave packets inside
the crystal vanishes. Near these special frequencies the reflectivity depends on the atomic structure of the
crystal provided that disorder and dissipation are very low. This is demonstrated explicitly by a detailed study
of layered superconductors with identical or two different alternating junctions in the frequency range near the
Josephson plasma resonance. Accounting for both inductive and charge coupling of the intrinsic junctions, we
show that multiple modes are excited inside the crystal by the incident light, we determine their relative
amplitude by the microscopic calculation of the additional boundary conditions, and finally obtain the reflec-
tivity. Spatial dispersion also provides a method to stop light pulses, which has possible applications for
quantum information processing and the artificial creation of event horizons in a solid.
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I. INTRODUCTION

The problem of optical properties of crystals with spat
dispersion has remained challenging since the original pa
of Pekar on the optics of exciton bands.1 Despite consider-
able effort, a complete theoretical description of the opti
properties of such systems is still missing.2–8

The nontrivial optical features of crystals with a dispe
sive dielectric functione(v,k) are based on the fact tha
incident light with a given frequency excites several eige
modes with different wave vectorsk. This poses the funda
mental problem that the Maxwell boundary conditions, i.
the continuity of the electric and magnetic field compone
parallel to the surface, are insufficient to calculate the re
tive amplitudes of these modes and consequently to desc
physical quantities, such as reflectivity or transmissiv
Since the early work of Pekar1,2 and Agranovich and
Ginzburg,3 this difficulty was usually addressed in a pure
phenomenological approach by introducing so called ad
tional boundary conditions~ABC’s! for the macroscopic po
larization. These ABC’s are motivated physically by the m
croscopic structure of the surface, but the choice of ABC’s
not universal and may be controversial; see Ref. 4, and C
ments on this paper. Only the complete solution of the
croscopic model can determine the dependence of the re
tivity on the microstructure unambiguously.

Such a solution was found recently for the first time f
the reflectivity near the Josephson plasma resonance~JPR! in
highly anisotropic layered superconductors,9 which is an in-
terlayer charge oscillation due to the tunneling of Coo
pairs and quasiparticles in highly anisotropic layer
superconductors.10–12 Josephson plasma oscillations inside
layered superconductor may be excited by the light incid
to the surface of the crystal in the geometries~a! or ~b!
shown in Fig. 1. The JPR in layered superconductors is
simplest example, which illuminates the effects of spa
dispersion and the discrete atomic structure on optical p
erties in strongly anisotropic materials. Here we will descr
the method of the calculations in Ref. 9 in more detail, g
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eralize our results for the JPR to different geometries, disc
the various transmission and reflection coefficients in a fin
size sample, and point out perspectives to stop light with
help of spatial dispersion. We also stress that the disc
atomic structure within the unit cell can have similar effec
to those of spatial dispersion.

In the framework of the Lawrence-Doniach model13 ~in-
terlayer Josephson coupling! we can describe both layere
superconductors with identical intrinsic Josephson juncti
@such as Tl-2201,14,15Bi2Sr2CaCu2O8,16 the organic material
k-(BEDT-TTF)2-Cu(NCS)2,17,18 or (LaSe)(NbSe2) ~Refs.
19 and 20!# and compounds, where different junctions alte
nate like in SmLa12xSrxCuO42d ,21–26Bi-2212/Bi-2201,27 or
atomic scale YBCO/PrBCO superlattices.28 Thereby we take
into account not only the dispersion of the plasma mo
caused by the inductive interaction of currents parallel to
layers, but also thec-axis dispersion due to charge fluctu
tions on the layers.29–34

The JPR is an ideal choice to illustrate the effect of spa
dispersion and the atomic structure on optical properties b
theoretically and experimentally. First of all, recent optic
experiments on the layered superconduc
SmLa12xSrxCuO42d with a T* crystal structure showed evi
dence that the spatial dispersion of the Josephson plasm
the direction perpendicular to the layers is important.21–25

FIG. 1. The geometry of the layered system showing the in
dent and reflected light at the surface of incidence~a! parallel and
~b! perpendicular to the layers. Interlayer charge oscillations~verti-
cal arrows! are excited by the component of the electric field p
pendicular to the layers.
©2002 The American Physical Society14-1
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For incidence parallel to the layers@see Fig. 1~b!# at u50,
two peaks at'7 and'12 cm21 were observed in reflection
which can be naturally understood as the JPR~Ref. 21! of
alternating intrinsic junctions with SmO or LaO in the bar
ers between the CuO2 layers.21–25,35The very high ratio of
the peak intensities, about 20, cannot be explained in a
persionless model,36 and this points to a quite strongc-axis
dispersion of the plasma modes due to charge variations37,38

Second, from the theoretical point of view the well esta
lished Lawrence-Doniach model13 formulated in terms of
finite-difference equations for electromagnetic fields a
phases of the superconducting order parameter is suffic
to provide a complete microscopic description and can
solved analytically. Finally, it is fortunate that the dampi
due to dissipation is low, because at low temperatures
JPR frequency is well below the superconducting gap
the quasiparticles responsible for dissipation are frozen
Otherwise it would strongly overshadow the effects of d
persion or the atomic structure as described below.

Extracting the strength of thec-axis dispersion in high
temperature superconductors is important on its own, as
dynamics of Josephson oscillations in layered supercond
ors is strongly influenced by it.30,32,33 It is also intimately
connected with the electronic compressibility of the sup
conducting CuO2 layers, which is hard to measurein situ
otherwise, and contains unique information about the e
tronic many-body interactions in the layers.

From a more fundamental point of view, we show that
the presence of spatial dispersion the conventional Fre
formulas for reflectivity and transmission have to be mo
fied substantially near certain frequencies, if both the di
pation and the crystal disorder are weak. Usually it is
sumed that the optical properties of crystals are comple
determined by average, bulk properties described by a
quency dependent dielectric functione(v), but not by the
explicit spatial dispersion (k dependence! or the specific
atomic structure of the crystal~implicit spatial dispersion!.
This is based on the notion that the wavelength of ligh
much larger than the atomic length scales, and therefore
is expected to be influenced only by averaged propertie
the crystal. Here we will stress out that this approach bre
down, if the group velocityvg5]v(k)/]k of the wave
packet of the optical excitation with dispersionv(k) be-
comes small. The physical reason for this breakdown of
macroscopic theory is the appearance of a small effec
wave length,lg5vg /v, related to the slow motion of the
wave packet, which can be comparable with the interato
distance.

The conditions, when the group velocity becomes sm
can be most easily seen for an isotropic medium descr
by the dielectric functione(v,k). Then the dispersion rela
tion of an optically excited eigenmode isc2k25v2e(v,k)
5v2n2(v,k). For a transversal wave the implicit derivativ
of this equation with respect tok leads to

vg5
dv

dk
5

c2
v

2Ae

]e

]k

Ae1
v

2Ae

]e

]v

5
v

k

12k
] ln n

]k

11v
] ln n

]v

. ~1!
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From Eq.~1! it is clear that light can be slowed down~a! due
to a strongfrequencydispersionv]n(v)/]v@1 ~as dis-
cussed in Refs. 39 and 40!; ~b! due to a small value 1
2k] ln n/]k, i.e., when thespatialdispersion is strong or;~c!
when the wave vectork becomes large. In the absence
spatial dispersion in the dielectric function the conditions~a!
and~c! are fulfilled at frequencies corresponding to a pole
e(v), where bothdn/dv and the wave vectork are large, cf.
k2}e(v). Furthermore, it is expected that in the same f
quency region the dielectric function is also quite sensitive
the wave vector, i.e., explicit spatial dispersion is significa
cf. case~b!.

Accounting for the wave-vector dependence of the diel
tric function in general leads to multiple solutions of th
dispersion relationc2k25v2e(v,k) for the wave vectors
kzp , p51,2, along the directionz perpendicular to the sur
face at givenv in the geometry shown in Fig. 1~a!. As will
be derived below, only the lightlike modes with smallukzpu
contribute significantly to the transmission, and the usual
mode Fresnel result is recovered ifukz1u!ukz2u. On the other
hand, the conventional description breaks down, when b
ukzpu are comparable and contribute to the optical propert
This happens if a pole in the dispersionless theory, wh
corresponds to the cases~a! and~c! of low group velocity, is
regularized by the introduction of spatial dispersion.

Depending on the type of the spatial dispersion the
cited modes may be both real~propagating modes! or one
wave vector may be real, while the other one is comp
~decaying mode!. This leads to two types of critical frequen
cies, where the Fresnel approach becomes invalid. That
occurs at frequenciesve , where bothkz are real andukz1u
'ukz2u, and at frequenciesv i , wherekz1' ikz2.

When both modes are propagating,vg vanishes at fre-
quenciesve due to strong spatial dispersion, the case~b!
mentioned after Eq.~1!; see Fig. 2. In general, this cas
occurs if the eigenmodes of the crystal, when decoup
from electromagnetic waves, have a dispersion opposit
that of the electromagnetic wave. Generic examples are p
non modes with anomalous~decreasing! dispersion mixing
with propagating light of normal dispersion, which form

FIG. 2. Schematic mixing of a transverse optical phonon ch
acterized by anomalous dispersion with a propagating electrom
netic wave leads to an extremal pointve in the lower polariton
band, where the group velocity vanishes. Just below the freque
ve two modes with similar wave vectors propagate.
4-2
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polariton~cf. Fig. 2!, or the Josephson plasmon with norm
dispersion interacting with screened electromagnetic wa
in a superconductor, which show an anomalous dispers
see Secs. III B and IV below. As the main consequence, n
frequenciesve the transmission coefficient into the crystal
not determined solely by the dielectric function, but crucia
depends on the microstructure of the crystal near the surf
if both dissipation and disorder are very low and the syst
is strongly anisotropic. We will also show that interferin
multiple propagating waves create a behavior similar to ‘‘
trinsic’’ birefringence, and affect strongly the transmissi
through the crystal and multiple reflection.

In the second situation~one mode is propagating, whil
another is decaying! the Fresnel approach breaks down ne
frequenciesv i , where the moduli of the wave vectors of tw
excited modes become equal. Near these frequencies
ukzpu become large, which leads to a small, but finite gro
velocity vg as described in case~c! after Eq.~1!. This occurs,
for example, for Josephson plasmons with anomalous dis
sion in a crystal with different alternating junctions, whe
one plasmon has normal dispersion while the other one
anomalous dispersion; see Sec. IV below. As near the
quenciesv i only a single mode propagates into the cryst
the transmission coefficient is significantly suppressed
comparison with resonances at extremal pointsve , where
incident light excites two propagating modes.

In Fig. 3 it is demonstrated schematically how the critic
frequenciesve and v i , where the amplitudes of the exite
multiple modes are equal,ukz1u5ukz2u, develop from a sin-
gularity in the one mode theory, which neglects thekz de-
pendence of the eigenmodes. In the simplest case of an
tropic medium, which was considered after Eq.~1!, the
dispersionless dielectric function and squared wave ve
amplitudes are proportional,e(v)}k2, and their poles coin-
cide. The breakdown of the one mode Fresnel theory at th
points is already anticipated from the low group velocityvg ,

FIG. 3. A pole inkz
2(v) in the case without spatial dispersio

~dashed line! indicates the importance of small length scales due
the low group velocity@cf. Eq. ~1!# and the breakdown of the mac
roscopic theory based on akz-independent dielectric tensor. For a
isotropic system this corresponds to a singularity in the dielec
function,kz

2}e(v). This pole is regularized when spatial dispersi
is taken into account, and depending on the sign ofdkz

2/dv an
extremal pointve , where the group velocity vanishes, appears
shown in~a!, or the singularity transforms into a special frequen
v i , wherekz1

2 52kz2
2 , see~b!.
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due to the large frequency dispersionudkz /dvu@1 and the
large ukzpu near the pole; cf. cases~a! and ~c! in the discus-
sion after Eq.~1!.

If for the crystal dispersion~without coupling to electro-
magnetic waves! dkz

2/dv,0, an extremal pointve appears
below the singularity and at this frequencyve the group
velocity vgz5dv/dkz vanishes and two propagating mod
with kz152kz2 are excited; see Fig. 3~a!. In a similar way,
at the extremum ofv(kz

2) above the singularity the imagi
nary excited modes merge,kz1

2 5kz2
2 ,0, while in the inter-

mediate frequency region the solutionskzp
2 are complex. On

the other hand, ifdkz
2/dv.0, the singularity in the disper

sionless one mode theory is transformed to a special p
v i , where the amplitudes of the excitations are equal,
one is propagating and the other decaying,kz1

2 52kz2
2 .

Remarkably, a special pointv i can appear, when the
group velocity is small, even without a wave vector depe
dence~i.e., without anexplicit spatial dispersion! in the di-
electric function due to the atomic structure in the unit c
alone~implicit spatial dispersion!. Generally for each crysta
band a real or imaginary mode is excited, but usually ins
one band the additional waves associated with the
resonant excitation of the other bands can be neglected. H
it will be shown that this assumption breaks down when
group velocity becomes small, e.g., for large amplitudes
the wave vectors; cf. case~c!. Thereby the system with al
ternating plasma resonances like SmLa12xSrxCuO42d with
light incident parallel to the layers@Fig. 1~b! at u50] pre-
sents a generic example, as in this case the wave vectokz
perpendicular to the layers~explicit spatial dispersion! van-
ishes due to the homogeneity of the incident beam. In
macroscopic theory the electrodynamic response to the e
tric field, which is averaged within the unit cell, is decribe
by the effective~average! dielectric functionẽc(v):

1

ẽc~v!
5

1

2 F 1

ec1~v!
1

1

ec2~v!G . ~2!

Thereby a pole inẽc(v) appears between the zeros
ecl(v)5ec0(12vc0,l

2 /v2) ( l 51,2, ec0 background dielec-
tric constant!, which correspond to the plasma frequenc
vc0,l in the different junctions.36,37 This indicates the break
down of the one-mode Fresnel approach and the necess
account properly for the second solution. Obviously, simi
consequenses of such a ‘‘discrete’’ implicit spatial dispers
are expected generally for any crystals with multiple op
cally active crystal bands of the same symmetry.

Both the behaviors nearve andv i are in contrast to the
conventional Fresnel theory and to the common belief t
the spatial dispersion of crystal modes or the atomic struc
do not create measurable effects of order unity in opti
properties, but only enter into negligible corrections prop
tional to the ratio of atomic scales and the wavelength
light. In fact, the Fresnel results have to be modified sign
cantly in a narrow interval near the frequenciesve andv i ,
but only in perfect anisotropic crystals with very weak d
sipation.
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Finally, we point out that the vanishing of the group v
locity at extremal frequenciesve , due to thespatial disper-
sion of the crystal modes, provides a way to stop light pul
dynamically. Recently it attracted considerable interest
diminishing the light velocity strongly with the help offre-
quencydispersive gaseous media, as described by case~a!
after Eq.~1!. From a practical point of view, our suggestio
based on thek dependence of the dielectric tensor, allows
to use slow light in a solid state device for the processing
information. In particular, the sensitivity of the group velo
ity in solids to the external fields could be used to sto
quantum information in the form of photonic qubits, as r
quired for optical quantum computers.41 Our solid state pro-
posal to stop light might be of advantage compared w
realizations using gaseous media, as it is easier to sca
larger system sizes and more complex devices. By adjus
an inhomogeneous external parameter, like the magn
field for the JPR, a spatially inhomogeneous profile for
group velocity can be imprinted. Such conditions can sim
late in the laboratory the behavior of light in a curved spa
time, as realized in astrophysical situations, e.g., near
event horizon of a black hole.42

Previously the spatial dispersion of the Josephson pla
mode and its effect on the propagating electromagn
waves in layered superconductors with identical Joseph
junctions was discussed by Tachiki, Koyama, a
Takahashi.31 They realized that the mixing of plasma mod
with electromagnetic waves can lead to two propagat
waves with different wave vectors for the same frequen
However, the implications of this fact on optical propertie
like reflectivity, were not discussed. van der Marel a
Tsvetkov37 presented an effective dielectric function for
system with alternating Josephson junctions and charge
pling within the unit cell for the special case of inciden
parallel to the layers, but they did not account correctly
the dissipation due to the conductivities and for the nontriv
effects of the ‘‘discrete’’ spatial dispersion mentioned abo

The paper is organized as follows: In the first part,
derive in general the optical properties of an uniaxial crys
with explicit spatial dispersion along the symmetry axis
the dielectric function using additional boundary conditio
with one phenomenological parameter~Sec. II!. In the sec-
ond part, we confirm these results for oblique incidence
the microscopic~layered! model for the JPR. Thereby th
ABC’s are derived and analytical solutions for systems w
identical ~Sec. III! and two different alternating~Sec. IV!
Josephson junctions are obtained. In Sec. V the atomic s
ture is taken into account to derive the reflectivity in t
incidence parallel to the layers. Technical details are give
the Appendixes.

II. MACROSCOPIC APPROACH FOR CRYSTALS
WITH SPATIAL DISPERSION

In this section we derive the dispersion relation from
macroscopic dielectric tensor~Sec. II A!, calculate the trans
mission coefficients into~Sec. II B! and through~Sec. II C!
the crystal using a phenomenological ABC, and close w
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some further remarks, concerning, e.g., future applicatio
like the stopping of light~Sec. II D!.

A. Dispersion relation

We consider the geometry of the incident and reflec
light as shown in Fig. 1. The wave vector of the incide
light with frequencyv for the geometry shown in Fig. 1~a! is
k05(v sinu/c,0,v cosu/c), while for Fig. 1~b! it is k0
5(v cosu/c,0,v sinu/c), where thez axis is perpendicular to
the layers~it coincides with thec axis of the crystal!. The
incident ~quasimonochromatic! electromagnetic wave is as
sumed to beP polarized, i.e., the electric fieldE(r ,t)
5E(v,k)exp(ikr 2 ivt) is in the plane defined byk0 and the
normal of the surface (xz plane!, while the magnetic fieldB
has only a component in they direction.Spolarization is not
considered here, as an electric field parallel to the layers d
not excite the JPR studied below.

In the macroscopic approach used here we describe
crystal by a dielectric tensor, which is averaged on atom
scales within the unit cell, but can depend on the wave ve
~explicit spatial dispersion!, and study the effects of the in
trinsic microstructure~implicit spatial dispersion! in Sec. V.

In the following we will consider highly anisotropic
uniaxial ~layered! crystals with the dielectric function com
ponentsec(v,kz) along thec axis (z axis! andea(v) in the
ab (xy) plane along the layers in a parameter regime app
priate for the JPR. Inec(v,kz) we account for a collective
mode ~JPR in our case!, which is strictly longitudinal with
the dispersion vc(kz) for kx50, i.e. ec@v5vc(kx
50,kz),kz#50, and whose polarization is mainly in th
c-direction for any kx due to the strong anisotropy,ueau
@uecu, near the JPR. We neglect the eigenmode, which
polarized parallel to the layers forkx50, as it is of much
higher frequency than the JPR.

From the bulk Maxwell equations for the Fourier comp
nents,

ckxBy52vec~v,kz!Ez , ~3!

kxEz2kzEx52~v/c!By , ~4!

ckzBy5vea~v!Ex ~5!

directly follows the dispersion relation

kx
2

ec~v,kz!
1

kz
2

ea~v!
5

v2

c2
~6!

of the eigenmodes in the crystal.
For the geometry shown in Fig. 1~b!, and neglecting the

discrete layered structure in thez direction, we obtain, from
the translational invariance parallel to the surface,kz5k0z
5v sinu/c of the excited crystal mode, while the dispersio
relation @Eq. ~6!# gives a single solution forkx

2 . Hence the
usual Fresnel description is generally valid, except wh
ukxu becomes large, e.g., at the poles ofec(v); see Eq.~6!.
At these points the implicit spatial dispersion due to t
atomic structure in the unit cell in multiband systems has
be taken into account. Then multiple solutionskx

2 of the dis-
4-4
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persion relation contribute, which will be discussed for t
JPR with alternating junctions in Sec. V below.

In the geometry shown in Fig. 1~a! we obtain, analo-
gously, the wave-vector componentkx5k0x5v sinu/c, and
the dispersion relation determines the solution~s! for the z
componentkz(v,u) of the modes excited by the inciden
wave. In a crystal described by the dielectric functio
ea,c(v), which are independent of the wave vectork, the
dispersion relation@Eq. ~6!# has a unique solutionkz

2(v).
The Maxwell boundary conditions, requiring the continu
of the parallel componentsEx(z) and Hy(z) at the surface
z50, immediately give the Fresnel formula for the reflecti
coefficientR5ur u2 and the transmissivityT512R into the
crystal. Here

r 5
12k

11k
, k5

Ex~z50!

By~z50!cosu
. ~7!

When in a highly anisotropic crystal the eigenmode w
electric field approximately parallel to the layers is n
glected, the effective dielectric functioneeff is given by

k5Aeeff5
n0

ea~v!cosu
, ~8!

where the refraction index is

n05ckz~v!/v5Aea~v!@12sin2u/ec~v!#. ~9!

This suggests that for an anisotropic crystal in this geom
the critical frequencies, where the refraction indexn0 be-
comes large and the Fresnel theory breaks down, appe
zeros ofec(v) rather than at poles of the dielectric functio
as for an isotropic system discussed in Sec. I@cf. Eq.~1!# and
Fig. 1~b!.

If the dielectric functionec(v,kz) is dispersive in thec
direction, Eq.~6! has multiple solutions forkz

2(v).3,31 In the
following we restrict ourselves to the simplest case of fo
~in general complex! solutions6n1 and6n2 for the refrac-
tion indices.

Generally, in a crystal of finite thickness, where the~mul-
tiple! back reflection from the second surface is taken i
account, all four solutions6n1,2 have to be considered. Fo
simplicity, we will consider in the following mainly a semi
infinite crystal in the half-spacez.0, where only two of the
solutions are physical. When dissipation is low, for quasim
nochromatic wave packets the direction of the energy tra
fer is determined by the Poynting vectorS, which is oriented
along the group velocityvg5]v/]k ~Ref. 3!:

S5Wvg ,

W5
1

16p F]~vea!

]v
ExEx* 1

]~vec!

]v
EzEz* 1ByBy* G .

~10!

HereW is the high frequency average of the energy dens
In agreement with the causality principle the group veloc
of propagating modes in thec direction,vgz5]v(kz)/]kz ,
should therefore be positive. Note that in the case of nor
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~anomalous! dispersion this requires the real part of the wa
vector kzp ~modesp51,2) and of the refraction indexnp
5ckzp /v to be positive ~negative!. When dissipation is
taken into account, this rule is equivalent to the conditi
that the eigenmodes should decay inside the crystal,
Im(kzp).0.

This has in particular consequences at extremal frequ
cies ve of the dispersion relation Re@v(kz)#, where the
group velocityvgz50 vanishes and two branches, one w
normal dispersion and another one with anomalous dis
sion, merge, see Fig. 2. At these points the two solutions
kz , which are real in the absence of dissipation, have
same amplitudeukzu, but different signs:

Re@n1~ve!1n2~ve!#50. ~11!

B. Transmissivity T on the surface

In the macroscopic approach the electric fieldEz and the
polarizationPz in a semi-infinite crystal with a single atom
in the unit cell and with the background dielectric consta
ec0 can be expressed as

Ez~z!5 (
p51,2

Ez~kzp!exp~ ikzpz!, ~12!

Pz~z!5 (
p51,2

Ez~kzp!xc~kzp!exp~ ikzpz!, ~13!

4pxc~kz!5ec~v,kz!2ec0 . ~14!

In order to determine the amplitudesEz(kzp) of the different
eigenmodes we use the most general ABC proposed by A
novich and Ginzburg,3

Pz~z!1 l ~]Pz /]z!50, z→0, ~15!

where the length scalel is a phenomenological parameter
be determined from the microscopic model. In systems w
inversion symmetry we can usexc(v,kz)2xc(v,0);kz

2 for
kz→0 and obtain

(
p

Ez~kzp!~11 i jnp!50, j5v l /c, ~16!

in leading order inea /np
2!1 and 1/un1n2u!1. This Eq.~16!

and the following results are confirmed microscopically f
the JPR in Secs. III and IV, while in general correctio
involving field components parallel to the surface have to
considered in Eq.~15!. Using Eqs.~3!–~6!, and ~16!, we
derive ~near the resonance!

k5
1

eacosu

n1n2

n11n22 i jn1n2
. ~17!

We see that in the case of multiple eigenmodes in the cry
the optical properties like the reflectivity generally cannot
expressed by the refraction indicesnp alone, which are de-
termined by the bulk dielectric functionsea,c via Eq.~6!, but
also depend explicitly on the parameterj introduced by the
boundary conditions.
4-5
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As the wavelengthl of light is larger than all length
scales related to the atomic structure of the crystal or to
change of the polarization at the surface, we can assumj
; l /l!1. Therefore, the termjn1n2 can be neglected every
where except at the extremal frequenciesve , where Re(n1
1n2)50.

If in addition the amplitude of one excited mode is larg
i.e., un2u@un1u and un1n2u@ueau, the conventional one mod
Fresnel result@Eq. ~8!# is obtained for the mode with smal
estn. In Fig. 2 it can be seen that for the phonon polarit
away from the extremal frequencyve this condition is ful-
filled and only the usual light-like mode remains.

Deviations from the usual Fresnel theory are theref
expected, when the amplitudes ofn1 andn2 are comparable
and both modes play a role. The resonances in the trans
sivity are located in these two mode frequency regions
we distinguish the cases that~i! both excited modes ar
propagating (n1,2 real! or ~ii ! one mode is propagating, whil
the second is decaying (n1 real, n2 imaginary!. The appear-
ance of such types of special frequenciesve , where n1
52n2, andv i , and wheren15 in2, near a pole in the re
fraction index of the dispersionless one mode theory, is sc
matically shown in Fig. 3~the index ofv i reminds of the
factor 6 i between the solutionsn1,2).

~i! For two real modesn1,2 we have Re(n11n2)50 at the
extremal pointv5ve , when causality is taken into accoun
see Eq.~11!. Then, if the dissipation is weak in addition, e.g
Im(n11n2)!ujn1n2u, only the termi jn1n2 in Eq. ~17! re-
mains;k(ve) is imaginary andT(ve)50. The transmissiv-
ity T reaches its maximum at the frequencyve,max slightly
aboveve . At this frequency

~n11n2!5ea
21n1n2~cos22u1j2ea

2!1/2, ~18!

Te,max52/@~11j2ea
2cos2u!1/211#. ~19!

It is pointed out that both the positionve,max of the reso-
nance inR or T and its amplitude are determined not sole
by the imaginary part ofea,c as in the dispersionless cas
but also by the surface parameterj. This correction is im-
portant for highly anisotropic systems, wherejea@1, al-

FIG. 4. Transmission amplitudes of the wave with refracti
index np into (tp) and out of (tp) the crystal and multiple reflec
tions at the first (Rn) and second surfaces (rpp8).
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thoughj!1, as it is realized for the JPR@see Eq.~64!#. We
see that in the absence of dissipationTe,max depends onj and
is generally smaller than the Fresnel resultTmax51; see Fig.
5. Physically this result reflects the fact that the low gro
velocity nearve introduces a small length scalelg5vg /v,
which makes the variation of the polarizationPz near the
surface relevant and indicates the breakdown of the tran
tional invariance on the atomic scalel. Note that the opposite
signs of the refraction indicesn1,2 nearve due to causality
are essential for the dependence ofTe,max on j. The vanish-
ing of n11n2 at ve @see Eq.~11!# in Eq. ~17! and its conse-
quences in Eqs.~18! and ~19! have not been noted
previously1–4,7,8 to our knowledge. We also note that the r
sults in Eqs.~18! and~19! cannot be obtained from the ABC
proposed by Pekar,1,2 which neglects the derivative in Eq
~15!.

~ii ! In the case, whenn1 is real, whilen2 is imaginary
without dissipation, we anticipate thatT is strongly sup-
pressed, because both modes are excited by the inci
light, but only a single mode propagates into the crystal. T
situation occurs, e.g., in superconductors when the disper
of the collective mode is anomalous~cf. Fig. 11 in Sec. IV!.
T(v) is in this case peaked at critical frequenciesv i near
vc , where n252 in1 with n1,0. Here for the maximal
transmission coefficient we obtain

Ti,max5T~v i !5
2n1

eacosu
, ~20!

so thatT(v i)!Te,max for the JPR. This difference in the
resonance amplitude, depending whether two propaga
modes or one are excited, cannot be described in the
mode Fresnel approach without spatial dispersion, wher
both cases a single propagating mode is excited and
transmission amplitudes are comparable. This observa

FIG. 5. Reflectivity R512T and ratio utpu of the outgoing
magnetic fields at the second surface of the crystal near an extr
point ve with ~solid line! and without~dashed! spatial dispersion,
but without dissipation~schematically!. Compared with the conven
tional Fresnel formulas the plasma edge inR is at the higher fre-
quencyve and the amplitude of the resonance atve,max is damped
due toj in Eq. ~17!. The amplitude;utp(ve,max)u of the outgoing
waves@cf. Eq. ~23!# is strongly suppressed in the frequency regi
whereR is minimal, e.g. where the transmissionT into the crystal is
maximal @Eq. ~26!#.
4-6



su
he

th

e
tio

ith

av

s

e
d

n

ge

ere

ncy

nt

t,
ear

he

in

-

the
t-
ci-

are

ar
-

ce

-
-

c-
ca-

er,
ial
t be
o-
III

l
l
,
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and the strong deviation from the conventional Fresnel re
is confirmed below for the JPR in Sec. IV. In contrast to t
situation~i! near the extremal pointsve , the parameterj is
irrelevant nearv i .

C. Transmission through thin film

We now study the transmission and back reflection of
multiple excited modes in a thin film of finite thicknessL;
see Fig. 4. For the ratio of the magnetic fieldtpBy

in of a
partial wave, with the refraction indexnp (p51,2) excited in
the crystal to that of the incident waveBy

in , we obtain

tp5 i ~21!p
2~12 i jnp!

j~n22n1!~11k!
. ~21!

We will see thatutpu.1 for the JPR, e.g., the fields of th
two partial waves are enhanced, but have opposite direc
Note that the transmissivityT follows from the ratios of the
z-components of the Poynting vectors@Eq. ~10!#, and that
TÞut11t2u2.

At the second surface of a crystal the arriving wave w
index np (p51,2) and the magnetic field amplitudeB̃y,p
creates a wave, which is emitted out of the crystal. Its w
vector is k0, and we denote its magnetic field bytpB̃y,p .
Each wavenp also excites two waves with refraction indice
np8 and magnetic fieldsrpp8B̃y,p , which are reflected back
into the crystal. The ABC@Eq. ~15!# at z5L for these three
waves gives

~11 i jnp!Ẽz,p1~12 i jn1!Ẽz,p1
ref 1~12 i jn2!Ẽz,p2

ref 50,
~22!

where Ẽz,p and Ẽz,pp8
ref are electric field components at th

second surface atz5L of the arriving and back-reflecte
waves, respectively. We find, in leading order inj ( p̄53
2p),

tp5
2np~n11n2!

~n11n2!eacosu1ea1n1n2
, ~23!

rpp5~21!p
~n11n2!

~n22n1!

eacosu~n22n1!1ea2n1n2

eacosu~n21n1!1ea1n1n2
,

~24!

rpp̄5
~21!p2np~np

22ea!

~n22n1!~eacosu~n11n2!1ea1n1n2!
. ~25!

At the frequencyve,max, where the transmissivityT into the
crystal is maximal, the transmission

tp~ve,max!5
2np

eacosu
~26!

is strongly suppressed in comparison with the conventio
Fresnel result~cf. Fig. 5!. At the same pointve,max the back
scattering takes place almost completely into the same ei
mode, r11'2r22'211O(n/ea) and r125r21
'1/@eajcosu#!1, while atv5ve we obtainurppu@r12r21
in the presence of spatial dispersion.
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The two eigenmodes of the same polarization interf
inside the crystal and for the total transmissionTtot5ut totu2
through the sample we obtain near an extremal freque
ve ,

t tot5(
l

t lt lexp~ inlvL/c!; ~27!

;@11~122v !cos~2nvL/c!#/2,
~28!

where v'(nj/2)2. Therefore, the transmission coefficie
has an oscillatory behavior as a function of the frequencyv
and the sample thicknessL due to the interference effec
even if the back reflection into the sample is irrelevant. N
the frequencyve,maxmultiple reflection leads to

Ttot5ut totu2;
11~122v !cos~2nvL/c!

11r222r cos~2nvL/c!
, ~29!

with r5r12r21.
The difference from conventional birefringence lies in t

fact that all waves have the sameP polarization. This type of
so-called intrinsic birefringence has also been observed
semiconductors for certain directions of propagation~cf. Ref.
44 and references therein!, while in the present case it ap
pears for an arbitrary angle of~oblique! incidence. Alterna-
tively, the effect of spatial dispersion can be observed by
splitting of a spatially focused incoming beam into two ou
going ones, corresponding to the two different group velo
ties in the crystal~angle between rays; 0.001° for the JPR!.

D. General remarks

Some additional remarks to the macroscopic approach
in place.

~1! It is pointed out that even if the last term;j in the
denominator in Eq.~17! can be neglected for frequencies f
from the band edge nearve,max or due to dominant dissipa
tion, the interplay of the two modes with indicesn1,2 can
lead to unconventional effects, like intrinsic birefringen
@Eq. ~28!# or the suppression of the transmission nearv i in
comparison with the Fresnel result@Eq. ~20!#. Only in the
limits un2u@un1u and un1n2u@ueau does the smallest refrac
tion index determinek, tp , and rpp8 , and the usual one
mode Fresnel description is recovered.

~2! Thereby the existence of a pole in the effective diele
tric function in the one-mode Fresnel approach is an indi
tion of the existence of a special pointve or v i ; see Fig. 3
and the microcopic confirmation in Secs. IV and V. Howev
we point out that without further investigation of the spat
dispersion or the atomic structure these two cases canno
distinguished.The guiding picture in Fig. 3 and the micr
scopic results for the JPR in oblique incidence in Secs.
and IV and for phonon polaritons43 suggest that specia
points of typeve (v i) appear, if light is mixed with a crysta
mode of opposite~same! dispersion. This is seen in Fig. 11
where the mixing of the plasma band in the lower~upper!
band with normal~anomalous! dispersion with decaying
4-7
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light creates a special point of typeve (v i). In Sec. V it is
shown that special frequenciesv i , wheren1

252n2
2, can ap-

pear near the pole of the effective dielectric function ev
without k dependence due to the discrete atomic struc
within the unit cell.

~3! It is stressed that the Kramers-Kronig relations e
pressing causality~and sum rules following from them! are
still valid in the two-mode regime for physical respon
functions like the reflectivityR or for the effective dielectric
function eeff5k2 extracted fromR, but do not apply to the
refraction indicesnp of the partial waves independently.3,45,46

~4! We note that beyond the universal electrodynamic
fects studied above there might also be the necessity tha
ABC’s reflect the change of the internal structure of the cr
tal excitations near the surface. This problem has been s
ied in detail for the Frenkel exciton, which is quite extend
on the atomic scale and whose wave function is conseque
modified near the surface; see Refs. 2,3, and 5–8, and r
ences therein. Due to the focus on the microscopic deriva
of the exciton modes and despite a considerable effort, s
of the crucial general features discussed here have b
missed for that system, namely the correct causal choic
the eigenmodes in a semi-infinite crystal near the extre
points, e.g.n11n2'0 for v've ; see Refs. 3, and 5–7.

In the case of the JPR the effect of the surface on
internal structure of excitations turns out to be very we
because the excitations are confined between layers on
atomic scale and in highly anisotropic layered supercond
ors the layers near the surface are practically the sam
those inside the crystal. Therefore, and because we dis
this system only as a generic example for general electro
namic features which are relevant for a large class of s
tems, we will not address this question in the following a
assume a dielectric response functionec(z,z8)
5Q(z)Q(z8)e(z2z8).

~5! The dispersion and the group velocity of phonon p
laritons has been measured directly by exciting locally
wave packet and detecting the time of propagation to a s
rated probe position in the crystal.47 Future experiments o
this type with high resolution for long wavelengths cou
also show the existence of extremal frequenciesve , where
the group velocityvgz vanishes at a finite wave vector, a
shown in Fig. 2.

~6! We now comment on the perspectives to stop lig
usingspatial dispersion at extremal frequenciesve ~cf. Fig.
2! and compare this method with the alternative one, wh
uses thefrequencydispersion of the dielectric function.40

The effect of the frequency and/or spatial dispersion
the group velocity has already been discussed as a gui
principle for an isotropic medium; see Eq.~1!. In the scatter-
ing problem depicted in Fig. 1~a! the componentkx of the
wave vector and the group velocity parallel to the layers
fixed by the boundary condition. The signal velocityvgz in
the z direction in the anisotropic case (na5AeaÞnc5Aec)
follows from Eq.~6!:

vgz5
dv

dkz
5

v

kz

nc
2kz

2S 12
] ln na

] ln kz
D2

] ln nc

] ln kz
na

2kx
2

nc
2kz

2S 11
] ln na

] ln v D1
] ln nc

] lnv
na

2kx
2

. ~30!
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In the phenomenon of electromagnetically induced tra
parency~EIT!, which has recently been used to create
traslow light,40 atomic levels are pumped optically in such
way that the medium exhibits a sharp absorption line
Im@e(v)# near a resonance frequencyv0 for propagating
light. According to the Kramers-Kronig relation the fre
quency dispersiondn/dv of the real part ofe is therefore
quite large, which suppresses the group velocity in Eq.~1!.
The spatial dispersionv(k) is discussed here as a differe
tool to stop light, although a finite drift velocity of a~gas-
eous! medium has been interpreted in this way.48

This effect might be used to realize certain phenome
connected with ultraslow light in a solid, such as the opti
Aharonov-Bohm effect in rotating media49 or the enhanced
two-photon interaction via a phonon mode,50 which has pos-
sible applications in quantum information processing. Ap
from this, the variation of the band structure and thusea,c(r )
on scales, which are large compared with the wavelengtl
of light, allows one to manipulate the geometrical optics
light in a solid in a rather simple way, e.g., via a spa
dependent external magnetic field for the JPR or pressure
phonon modes. Similar features have been proposed rec
for creating artificially local space-time geometries, whi
are reminiscent of cosmological phenomena, such as b
holes: e.g., in superfluid3He,51 inhomogeneously pumpe
media with EIT,42 flowing dielectrics,52 or solids.53 In par-
ticular, it is possible to create a space dependent group
locity profile for a given frequency, wherevgz vanishes on
some manifold in space. At this point the behavior of light
expected to be similar to the one near an event horizon
black hole; see Ref. 42.

From an application point of view, the modification of th
band structure with the help of an external parameter op
the perspective to store light pulses dynamically. Thereby
an ideal crystal the phase information of the light pulse or
single photon is stored coherently, which makes the dev
potentially useful in quantum information processing.41 The
limiting factor is clearly the decoherence due to disorder
dissipation induced by a finite conductivity. For the JPR
Bi2Sr2CaCu2O8 the intrinsic decay time due to Ohmic loss
is estimated ast;1028 s;105tosc, while the oscillation fre-
quency tosc;10212 s is in the THz regime. Although an
adiabatic switching of the external magnetic field appe
necessary, a certain number of quantum manipulations se
to be possible. While in metals or semiconductors the de
herence will be prohibitively high, defect free insulato
might be much better than this estimate. On the other han
solid state realization of a memory unit for a quantum co
puter has obvious advantages in terms of scalability to
vices of higher complexity in comparison with EIT base
systems.

~7! While on the one hand the above results are applica
to a wide variety of systems, strictly speaking the use of
ABC @Eq. ~15!# can only be justified in a microscopic mode
where also the parameterj has to be determined. This wil
be accomplished in the following for the JPR, because th
the problem can be formulated as a set of linear finite diff
ence equations and therefore a complete solution for all w
vectors can be obtained.
4-8
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Thereby it turns out that the optical properties of cryst
with several atoms in the unit cell cannot be described by
function ec(v,kz) alone. Then the above macroscopic a
proach based on the slowly varying polarizationPz(k),
which is reflected in the ABC@Eq. ~15!#, breaks down for
both oblique incidence and incidence parallel to the laye
see below in Secs. IV and V.

III. MICROSCOPIC APPROACH FOR JPR IN CRYSTALS
WITH IDENTICAL JUNCTIONS

A. General equations

Considering a stack of identical Josephson junctions,
label the layers by the indexm, the interlayer spacing iss and
the intrinsic Josephson junctions are characterized by
critical current densityJ0. Thus the plasma frequency at ze
wave vector is given as

vc0
2 5

8p2csJ0

ec0F0
5

c2

lc
2ec0

, ~31!

where F0 is the flux quantum andlc is the penetration
length along thec axis.10–12

In order to determine the transmissivity in the micr
scopic approach, we solve the Maxwell equations inside
crystal by accounting for supercurrents inside the tw
dimensional~2D! layers atz5ms and interlayer Josephso
and quasiparticle currents, which are driven by the differe
Vm,m11 of the electrochemical potentials in neighboring la
ers:

c
]By

]z
5 i ea0vFEx2

va0
2

v2 (
m50

N

Exsd~z2ms!G , ~32!

]Ex

]z
2 ikxEz5 i

v

c
By , Ez,m,m115E

ms

(m11)s

Ez

dz

s
,

~33!

ckxBy52vec0FEz2 (
m50

N

Pmf m~z!G , ~34!

ṽ2es

vc0
2

Pm5Vm,m115esEz,m,m111mm112mm . ~35!

Therebyva05c/labAea0 is the in-plane plasma frequenc
ea0 is the high frequency in-plane dielectric constant, and
function f is defined asf m(z)51 at ms,z,(m11)s and
zero outside this interval. It is seen from Eq.~34! that the
discrete quantityPm5(1/s)*ms

(m11)sPz(z)dz plays the role of
the z-axis polarizationPz(z) averaged between the layersm
and m11, as it describes the response of the Joseph
plasma oscillations to the electric field in junctionm. For
small amplitude oscillations the supercurrent density is gi
by the phase differencewm,m1152ieVm,m11 /\v as
Jm,m11

(s) 5J0sinwm,m11'J0wm,m11, which was used to derive
Eq. ~34!. The difference mm2mm115(4psa/ec0)(rm
2rm11), of the chemical potentialsmm can be expressed b
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the 2D charge densitiesrm , which in turn are related to the
electric fieldsEz(z5ms60) near the layers by the Poisso
equation, 4prm/ec05Ez(ms10)2Ez(ms20). Further,ṽ2

5v2(12 i4pscv/vc0
2 ec0)21 contains the dissipation due t

quasiparticle tunneling currentsJm,m11
(qp) 5scVm,m11 /es,

which are determined by the conductivitysc and driven by
the differenceVm,m11 of theelectrochemicalpotentials. Note
that the assumption in Ref. 30 that the quasiparticle curren
driven by the averaged electric fieldEz,m,m11 is an inconsis-
tent treatment of the dissipation.32

For 2D free electrons we obtain]m/]r5p\2/(eme) and
we can estimate the order ofa5(ec0 /4pes)(]m/]r) as
'0.38, assumings56.3 Å and ec0520. This agrees well
with a'0.4, which was extracted in the one-layer com
pound SmLa12xSrxCuO42d from the magnetic field depen
dence of the plasma peaks in the loss function in para
incidence both in the~pancake! vortex liquid38 and the solid
phase.54 The apparent free electron value of the electro
compressibility of the CuO2 layers is not in a contradiction
to the slightly enhanced effective massm* seen in angle-
resolved photo emission spectroscopy measurements,55 as
both quantities are renormalized differently by interactio
For systems with CuO2 multilayers smaller values for the
compressibility are anticipated due the enhanced densit
states, effective massm* , lattice constants and the smaller
background dielectric constantec0, namely,a;0.05–0.1 for
Bi-2212 or Tl-2212~assumingec0'10 andd'12 Å), but
this quantity can only be extracted reliably from experime
The modification of the dispersion due to nonequilibriu
effects is not considered in the following, e.g. it is assum
that all frequencies are smaller than the charge imbala
and energy relaxation rates.29,32,56

B. Dispersion relation

We now obtain the dispersion relation for eigenmodes
side the bulk crystal. To start with, we assume an infin
number of junctions, we average Eqs.~32!–~35! between the
layersm andm11 and neglect the discrete layered structu
when treating the derivatives with respect toz in the Eqs.
~32! and ~33!, i.e., we replaceEx(z5ms) by Ex,m,m11

5*ms
(m11)sdzEx and By(z5ms) by By,m21,m

5* (m21)s
(m)s dzBy . Using the Fourier representation with re

spect to the discrete variablem this gives Eq.~6! with

ec~v,q!5ec0@12vc
2~q!/ṽ2#, ~36!

vc
2~q!5vc0

2 @112a~12cosq!#,

ea~v!5ea0~12va0
2 /v2! ~37!

where 0<q<2p andvc
2(q) describes the dispersion of th

plasma mode propagating along thec axis. Using Eq.~6!
with kz

252(12cosq)/s2, which reflects the existence of a
upper edge of the plasma band, we obtain the dispersio
eigenmodes propagating inside the crystal in an arbitrary
rection. Due tov2ea(v)'2c2/lab

2 at v'vc0!va0 we ob-
tain, in the absence of dissipation (sc50)
4-9



he
ts
in
ro

.

e
ve

g

,

ar

e
g.

e
et

th
m

i

g
e
s

r to
ans-

e-

e
his

e
n-
use
a-
nic

-

. 3
cy

-

lec-

s

CH. HELM AND L. N. BULAEVSKII PHYSICAL REVIEW B 66, 094514 ~2002!
v2~kx ,q!

vc0
2

511
lc

2kx
2

11~2lab
2 /s2!~12cosq!

12a~12cosq!.

~38!

The first term on the right hand side of Eq.~38! is due to the
inductive coupling of the in-plane currents excited by t
componentEx of the electric field. The second term reflec
thec-axis dispersion due to the charge coupling of the intr
sic junctions, which is mediated by variations of the elect
chemical potential on the layers. Fora50 this dispersion of
the plasma mode has already been calculated in Ref. 11

For the geometry shown in Fig. 1~a! we can expresskx
5v sinu/c via the frequencyv and the angleu of the inci-
dent wave and obtain the dispersion relation for the eig
modes, which are excited by external electromagnetic wa

w5
v2

vc0
2

5112a~12cosq!1
~a21!b

b112cosq
. ~39!

Hereb5s2/(2lab
2 a);1024 describes the inductive couplin

anda21512c2kx
2/(v2ec0)512sin2u/ec0. To include dissi-

pation, one has to replacev andw5v2/vc0
2 by ṽ andw̃ in

Eqs.~38! and ~39!.
In Fig. 6 we plot schematically the dispersionw

5v2/vc0
2 versusn25sin2(q/2). Thereby,n is a normalized

form of the refraction indexn5(2c/vs)n and can be used to
present both propagating (q real, n2P@0,1#) and decaying
(Im(q)Þ0, n2¹@0,1#) modes.

In the absence of charge coupling,a50, the eigenmode
which is excited in oblique incidence (a(u)Þ1), has anoma-
lous dispersion,]v(n)/]n,0; cf. Fig. 6 above. It is seen
that ata50 the widtha21 of the transmission windoww
P@1,a#, where modes can propagate into the crystal,
determined by the extremal values at sin(q/2)50 and
sin(q/2)51.

For normal incidenceu50 (⇔a51) the longitudinal
plasma mode withaÞ0 is decoupled from the transvers
electromagnetic wave as shown by the dashed lines in Fi
because the electromagnetic wave does not have anEz com-
ponent which excites plasma oscillations between the lay
In this case the wave vector of the pure electromagn
wave inside the crystal is given by the relation 12cosq1b
50, i.e., the electromagnetic wave decays on the scalelab
due to the screening in the conducting layers. On the o
hand, the wave vector of the propagating longitudinal plas
mode,q, is given by the relationw5112a(12cosq), and it
is real in the frequency intervalvc0<v<vc0(114a)1/2.
The pure plasma mode has a normal dispersion]v(n)/]n
>0.

As a.1 (⇔uÞ0) is close to unity for any angleu and
ec0'10, the parameterb5s2/2alab

2 ;1024!1 is small and
the two modes mix only when the second and third term
Eq. ~39! are approximately equal. This happens at smalln2

5sin2(q/2)'u/8a, where the small scaleu is given asu
5@8(a21)ba#1/2 (u;1023 for cuprates!. For any angleu
Þ0 the modes inside the crystal are a mixture of the lon
tudinal plasma oscillation and the transverse electromagn
waves. As a consequence, the electric and magnetic field
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the eigenmode are not polarized parallel or perpendicula
the wave vector, i.e., the eigenmodes are neither purely tr
verse nor longitudinal.

From Fig. 6 it is clear that the mixing of these two d
grees of freedom ataÞ1 and nonzeroa can lead to the
existence of an extremal pointwe , where the character of th
dispersion changes and the group velocity vanishes. T
happens atve511u, provided thata.(a21)b/8 and the

dissipation is weak, i.e., Im(np)!Re(np) or equivalentlys̃

54psc /vc0ec0!u. We estimates̃;u in Bi-2212,57 s̃.u
in SmLa12xSrxCuO42d ,38,54 or other cuprates withd-wave
order parameter. Layereds-wave superconductors with th
JPR frequency in the optical interval would be perfect ca
didates to study the effects of spatial dispersion, beca
their quasiparticle conductivity is very low at low temper
tures ~such systems are possibly realized in orga
superconductors17 or intercalated LaSe(NbSe2),19 which has
a large anisotropyBc2,ab /Bc2,c;50–130 and is therefore ex
pected to be a Josephson coupled system20!.

In coincidence with the general picture presented in Fig
the extremal pointve appears near the plasma frequen
(w51), where the wave vector in thec direction in the
dispersionless theory becomes large; see Fig. 6~a!. This point
corresponds to a zero in the dielectric functionec(v), as
expected from the one mode Fresnel theory; cf. Eq.~9!.

FIG. 6. Schematic picture of the dispersion relation,w
5v2/vc0

2 , depending onn25sin2(q/2) ~solid line! @Eq. ~39!# for
a50 ~above! and aÞ0 ~below!. 0,n2,1 corresponds to propa
gating solutions with realq, while outside this intervalq is complex
and the modes decay. It is seen that the mixing of a decaying e
tromagnetic wave~dashed line atn252b/2) with the plasma band
with normal dispersionaÞ0 ~dashed! leads to an extremal pointwe

and a regionwe,w,a(u), where two propagating eigenmode
with normal and anomalous dispersions exist.
4-10
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In the general case of nonzero dissipation Eq.~39! has
four complex solutions forn1,2 at givenw̃5ṽ2/vc0

2 :

n1,2
2 ~v!5~w̃2122ab!/8a6@~w̃2122ab!2

18ab~w̃2a!#1/2/8a. ~40!

Near the lower band edge (v've) this simplifies to

n1,2
2 ~v!5@w̃216A~w̃21!22u2#/8a. ~41!

Therefore, we obtain

n25un1n2u5lc
2ec0u/2as2;lc

2/~slab!@1 ~42!

in the case of the JPR.
As discussed in Sec. II A, in a semi-infinite crystal on

those modes are physical, which decay inside the crystal,
Im(n).0; see Fig. 8. For propagating modes this impl
that the group velocity obeys causality,vgz.0, and Re(n1)
.0 (Re(n2),0) for branches with normal~anomalous! dis-
persion; see Fig. 7.

We first discuss the limiting case with vanishing dissip
tion (sc→0), where the solutions inside the crystal are
ther exponentially decaying (q imaginary! or propagating
modes (q real!. For a50 we obtain a propagating mod
with real q in the frequency range 1<w<a ~cf. the disper-
sion in Fig. 6!, and exactly in this interval the reflectio
coefficientR,1. For finiteaÞ0 two physical solutions with
real q exist in the intervalwe511u<w<a provided that
a.(a21)b/8. In the rangea,w<114a one wave vector
q1 is real, while the other,i uq2u, is imaginary. The importan
point is that this evanescent solution has smalluq2u<2b

FIG. 7. Real part ofn1 ~above! andn2 ~below! as a function of
the normalized squared frequencyw/we near the plasma resonanc

for different a @s̃54ps/e0vc0,150.26, b51024, and a(u)
51.1]. For we,w,a causality requires that Re(n1).0 (Re(n2)
,0) for the solutions with normal~anomalous! dispersion. In the
interval 12u,w,we we have, in particular, Re(n1)'2Re(n2),
e.g., standing waves due to interference ofn1 andn2; see Eqs.~43!
and ~44!.
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!1 and because of this it affects strongly the optical prop
ties, which are sensitive to large length scales. Outside of
interval @we,114a# both qp(v) are imaginary.

While in the absence of dissipation within the plasm
bandwe,w,114a at least one of the eigenmodes prop
gates into the crystal, forw!1 we obtainn1,2

2 ,0 and the
modesq1 and q2 decay rapidly on the scalesAas and lab
respectively.

In the intermediate regime, 12u,w,we , we have

Re~q1!52Re~q2!5@~u1w21!/4a#1/2, ~43!

Im~q1!5Im~q2!5@~u2w11!/4a#1/2, ~44!

and the real and imaginary parts of the wave vectorq are of
the same orderAu ~cf. Figs. 7 and 8!. Therefore, they pen-
etrate deep into the crystal and form standing waves, wh
decay and oscillate on the scale@2labsAec0a/sinu#1/2. In
fact, they are intermediate between modes atw!12u,
which decay much faster, and propagating modes at 114a
.w.we .

C. Eigenmodes of a semi-infinite crystal

The averaged Maxwell equations~3!–~5! are sufficient to
determine the bulk dispersion relation@Eq. ~6!# of the excited

FIG. 8. Imaginary part ofn1,2 for different values ofa (s̃
50.26, b51024, anda51.1). In the region 12u,w,we below
the plasma band, we have Im(n1)'Im(n2).
4-11
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CH. HELM AND L. N. BULAEVSKII PHYSICAL REVIEW B 66, 094514 ~2002!
eigenmodes and to identify possible critical frequenciesve
or v i , where the amplitudes of the excited modes equal
these points the group velocity is expected to be low and
microscopic layered structure has to be considered more
curately in order to describe optical properties.

For this purpose we solve the electrodynamic equati
between the layersm and m11 by using Eqs.~32!–~35!,
namely, the equation

g22
]2By

]z2
1By5a sinuPm , g5

v

c S ea0

a D 1/2

. ~45!

Physically Eq.~45! describes the excitation of a propagati
intrajunction mode with the polarization of the electric fie
in thex direction. Thus atms<z<(m11)s the solutions for
the fields are

By~z!5Cmexp~ igz!1Dmexp~2 igz!1a sinuPm ,

Ex~z!5~ea0a!21/2@Cmexp~ igz!2Dmexp~2 igz!#,

Ez~z!5~sinu/ec0!@Cmexp~ igz!1Dmexp~2 igz!#1aPm .
~46!

The continuity relations

Ex~z5ms10!5Ex~z5ms20!, ~47!

By~z5ms10!5By~z5ms20!14psJx,m , ~48!

for the fieldsBy andEx at layerm follow directly from the
Maxwell equations with a parallel current 4pJx,m

5 iva
2Ex(z5ms)/v. Together with Eqs.~46! this leads to

the following set of equations forcm5Cmexp@igd(m
11/2)#sinu/ec0 and dm5Dmexp@2igd(m11/2)#sinu/ec0 in-
side the crystal (N22>m>1, N is the number of junc-
tions!:

cmh212dmh2cm21h1dm21h2150, ~49!

2~cmh212cm21h!1~a21!~Pm2Pm21!

1 i ~b/b!~cmh212dmh!50, ~50!

Pm~w̃2a!1a~Pm111Pm2122Pm!

5~sin~b!/b!~122ab!~cm1dm!, ~51!

where h5exp(ib) and the small parameterb5gs/2;s/lc
;1025!1 characterizes the discreteness of the crystal st
ture. We will assume in the following thatb,b!Ab and q
;b1/2;2/lab , as it is fulfilled for highly anisotropic (lc
@lab) layered superconductors, e.g., Bi- or Tl-based
prates. In our calculations we will keep only the terms
lowest order in the small parametersb and b. Equations
~49!–~51! give the dispersion relation@Eq. ~39!# with high
accuraciesb2 and ab. This difference between the exa
result following from Eqs.~49! to ~51! and the averaged
dispersion@cf. Eqs.~36!# can be understood explicitly from
Eqs. ~46!: the replacement ofEx(ms) by the averaged
Ex,m,m11 is correct in orderb, i.e. when neglecting the dis
crete layered structure within the unit cell.
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The solution inside the crystal has the form

cm5 (
p51,2

gpexp~ iqpm!, ~52!

dm5 (
p51,2

gpd~qp!exp~ iqpm!, ~53!

Pm5 (
p51,2

gpP~qp!exp~ iqpm!, ~54!

d~q!5
12h2exp~2 iq !

h22exp~2 iq !
, ~55!

P~q!5
11d~q!

w2a22a~12cosq!
, ~56!

whereqp(v) are the wave vectors of the eigenmodes fo
given frequency as determined by Eq.~40!, and gp denote
the relative amplitude of the excited modes, which is to
determined next.

Neglecting the layered structure, e.g.,b;s/lc→0 and
h→1, we obtaincm5dm51. In this case we can relate th
variablescm , dm , and Pm with the electric and magnetic
fields averaged between the layers, i.e.,Ex,m,m11}cm1dm ,
andEz,m,m11 is mainly determined by the polarizationPm .

D. Microscopic boundary condition

Now we find the ratio of the amplitudesg1 andg2 micro-
scopically by solving the electrodynamics of the surfa
junctions explicitly rather than using any phenomenologi
ABC. The equations for the first superconducting layerm
50), which are complementary to Eqs.~49!–~51!, read

c01d01~a21!P05
sinu

ec0
~By

in1By
ref!, ~57!

c0h212d0h

Aea0a
5

sin 2u

2ec0
~By

in2By
ref!, ~58!

P0~w̃2a!1a~P12P02aP0!2~11a!~c01d0!

5a sinu~By
in1By

ref!. ~59!

Here By
in and By

ref are the magnetic fields for incident an
reflected light, respectively. We omitted in these equatio
terms proportional tob/sin(q/2) andb/sin(q/2), which are of
order b3/4;ea /np

2;(s/lab)
3/2!1 and b/b1/4;1/n2

;slab /lc
2!1 in comparison with remaining terms of orde

unity. After eliminating the fieldsBy
in and By

ref from Eqs.
~57!–~59! we obtain in lowest order inb and b the micro-
scopic boundary condition

P0~w̃2a!1a~P122P0!2a~ec011!@c01d01~a21!P0#

2~c01d0!50. ~60!
4-12
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We can present this condition in a more transparent form
calculating the difference between Eq.~51! for m50, where
P21 ~outside the crystal! is formally given by Eq.~54! for
m521, and the real equation forP0 @Eq. ~60!#. We also
take into account that in the lowest order inb and b we
obtain the relationc01d01aP0'P0 nearwe with an accu-
racy b1/2;(ea /np

2)2/3!1 using Eqs.~55! and ~56!. This
gives the boundary condition

Pm5215 (
p51,2

gpP~qp!exp~2 iqp!50, ~61!

which has the simple interpretation that the surface junc
(m50) has only one neighboring junction, i.e., the juncti
m521 is absent. This result is a microscopic derivation
the ABC @Eq. ~15!# by noting thatPm is the average macro
scopic polarizationPz(z) between neighboring layers, i.e.,

P215
1

sE21

0

Pz~z!'Pz~z50!2s]zPz~z50!. ~62!

Taking into account that the deviation ofR from unity is
significant only whenuqpu!1, we expand Eq.~61! in qp by
usingP(q)2P(0);q2 ~in leading order inb) from Eq.~56!
and obtain Eq.~16! with l 52s:

(
p51,2

gp~12 iqp!5 (
p51,2

gp~11 i jnp!50. ~63!

Note that this result and consequently also the expression
k @Eq. ~17!#, is only valid in leading order inea /np

2;b3/4

!1.
With this identification of the parameterj we can estimate

jun1n2u;lc /lab@jea;slc /lab
2 .1 ~64!

at v5ve in Bi- and Tl-based layered superconductors. T
shows that when the anisotropylc /lab is large enough, the
atomic structure modifies strongly the transmission; cf. E
~18! and~19!. Here we also justify the relations discussed
Sec. II,

jun1n2u;
lc

lab
!n11n2;

lc

~slab!
1/2

, ~65!

which allows us to neglect the atomic structure away from
small frequency interval of width;u1/2 aroundve . Due to
un1u@un2u ~cf. Fig. 7! and un1n2uea

21;lab /s@1 away from
ve or v i the usual one-mode Fresnel theory is valid eve
where, except near the resonances atve,i .

E. Transmission coefficient

As a consequence, we reproduce in our microsco
theory the Eq.~17! for k and therefore the transmission an
reflection coefficientsT, tp , andrpp8 @Eqs.~19! and ~23!–
~25!#. The real and imaginary parts ofk5eeff

2 are shown in
Fig. 9 and have a characteristic shape with a sharp edg
the extremal pointwe , provided that the dissipations̃ is
small. The real part is dominant only in the intervalwe,w
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,a, where both modesn1 and n2 are real and propagatin
and the transmissionT into the crystal is significant. The
window of transmissionwe,max'we<w<a is therefore only
determined bya(u), and not by the bandwidth;a. The
width of the peak ink and T nearwe,max assuming a 10%
criterion is of the order 100u.

In the intervala,w,114a, wheren1; ib1/2 becomes
imaginary and small whilen2 is real,k is a complex number
~even for sc50) with a real part proportional toun1

2u. In
contrast to the standard Fresnel expressions, this m
transmission possible, but it is weak, of the orderb, because
only a small part of the incident light transforms into
propagating mode. Therefore, deviations ofR from unity are
significant only in the frequency rangewe'1<w<a, as in
the system without dispersion.

If the dissipation is very weak,

Im~n11n2!!jn1n2⇔s̃!u2, ~66!

the nonuniversal term characterized by the parameterj in
Eq. ~17! is important. Then according to Eq.~18! the maxi-
mum of T is reached atwe,max5we1u3/2/A8a. The ampli-
tude

Te,max5
2

@11~slccosu/~Aec0lab
2 !!2#1/211

~67!

is smaller than unity and it depends on the microscopic str
ture via the factorslcAec0/lab

2 which may be of order unity
in cuprates like Tl-2212 withlc /lab;100 and the JPR fre
quency;20 cm21. This effect can be seen in Fig. 10~left!:
Without dispersion, i.e.,s̃@u(a)2 for a51024, the peak
amplitude is limited by the small dissipation,s̃, only, while
for a50.1 (s̃!u2) the peak atve,max is dampedaddition-
ally due to the termi jn1n2 in Eq. ~17!, as discussed above
Physically this can be understood from the fact that the v

FIG. 9. The dependence of the real and imaginary parts ofk0

5k(cosueaj/2) on w5v2/vc0
2 for s̃5531024 and a50.001.

The line shape ofk0 is asymmetric with a sharp edge at the e
tremal frequencywe511u'1 and the upper edge atw5a(u)
51.05, which is determined by the angleu of incidence.
4-13



e
t

an

si
el

ne

e

re

q
p-
as

ag-
ent

er

e
up

gat-

ices

CH. HELM AND L. N. BULAEVSKII PHYSICAL REVIEW B 66, 094514 ~2002!
ishing group velocity leads to a slow motion of the wav
packet and hence makes the transmission sensitive to
inhomogeneous layered structure of the system, i.e. the tr
lational invariance of the system is broken.

On the other hand, high dissipations̃@u overshadows
the effect of spatial dispersion completely~Fig. 10, right!. In
this case the result near the lower edge of the transmis
window is almost the same as in the dispersionless mod

Tmax'4k~w51!5
4vlab

2 kz

c cosu
5

vlab

cosuAa
S a2w̃

w̃21
D 1/2

,

~68!

and is mainly determined bysc .

IV. CRYSTAL WITH ALTERNATING JOSEPHSON
JUNCTIONS

For the geometry in Fig. 1~a! we consider the crystal with
two alternating Josephson junctionsl 51,2 characterized by
different critical current densitiesJ0,l and two bare plasma
frequenciesvc0,1 and vc0,2 related toJ0,1 and J0,2 as de-
scribed by Eq. ~31!. We denote w5v2/vc0,1

2 and d
5vc0,1

2 /vc0,2
2 ,1. In the view of recent experiments,38 we

also allow for differentc-axis conductivitiess l ( l 51,2),
which are expected to vary according to the different tun
matrix elements in the junctions,s1 /s25vc0,1

2 /vc0,2
2 , as

found for La22xSrxCuO4,58 and which are assumed to b
frequency independent in the following (s̃ l
54ps l /ec0vc0,1). All other parameters of the junctions a
assumed to be identical.

The equations inside the crystal are analogous to E
~49!–~51! and the details of their solution are given in A
pendix A. Here we summarize the main features on the b
of the schematic dispersionw@n25sin2(q/2)# in Fig. 11 and
the squared refraction indicesn1,2

2 (w) in Fig. 12.

FIG. 10. TransmissionT depending onw/we near the JPR fre-

quency for conductivitiess̃51027 ~left! or s̃50.01 ~right! for
variousa (b51024, a51.1, andjeacosu52). For low dissipation

s̃!u2 ~left! the resonance is additionally damped due toa in the
region nearwe , where the Fresnel approach is invalid.
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For perpendicular incidencea51 (u50) the longitudinal
plasma mode is decoupled from the transverse electrom
netic wave, as the incident electric field has no compon
perpendicular to the layers. In this case the lower~upper!
plasma bands have a normal~anomalous! c-axis dispersion
~dashed lines in Fig. 11! due to the charge couplinga.

FIG. 11. Schematic picture of the dispersionw(n2)
5v2(n)/vc0,1

2 for two alternating junctions (sc50). The disper-
sion of the plasma mode atu50 ~dashed line!, i.e., when it is
decoupled from the electromagnetic wave, is normal in the low
band. Its mixing with a decaying electromagnetic wave~as shown
by the dashed, vertical line at negativen25sin2(q/2)'22b) re-
sults in two propagating modes~solid! near the lower band edg
we . This frequency forms an extremal point with vanishing gro
velocity as in the one band case~cf. Fig. 6 below!. The anomalous
dispersion in the uncoupled upper band gives rise to one propa
ing and one decaying mode and a special pointwi , where
q152 iq2. The band edgeswlow,up

6 are defined in Appendix A.

FIG. 12. Schematic dependence of the squared refraction ind
n1

2 ~solid! and n2
2 ~dashed! on the squared frequencyw5v2/vc0,1

2

for two alternating junctions (s l→0) with the peak positionswe,i

and the band edgeswlow,up
(6) , as defined in Appendix A.
4-14
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In contrast to this, fora.1 the frequencyv(q) increases
as q→0 due to the inductive coupling in both bands~solid
lines in Fig. 11!. For the lower band this can lead for suffi
ciently largea to an extremal pointwe at the lower band
edge as in the case of identical layers, where~for s l50) two
modes with realq exist, while near the upper band edgewlow

(1)

one mode propagates and the other decays. In the upper
there is one real solution and one imaginary solution eve
where in the band due to the anomalous dispersion, and
cording to Eq.~20! in Sec. II the maximal transmission is a
wi , whereq1

252q2
2.

All special frequencies mentioned in Figs. 11 and 12
explicitly expressed by microscopic parameters in Appen
A. For the frequencieswe,i of the resonance maxima w
obtain approximately

we,i'~11d!~112a!/2d7@~11d!2~112a!2

24d~114a!#1/2/2d. ~69!

As for identical layers the optical properties are domina
by the mode with smallerunpu5cunpu/sv and significant de-
viations from the one mode Fresnel regime occur atun1u
'un2u.

Keeping only the solutions with smallestunpu nearwi and
we , e.g.,n2 (n1) for w,wi (w.wi) in the upper band, we
obtain in the limita→0 a pole inn2;q2;eeff , as can be
seen from Fig. 13. This is an explicit microscopic confirm
tion of the general expectation that critical frequenci
where un1u5un2u, appear, if there is a pole inkz

2;eeff . For
oblique incidence the singularities ineeff(v) coincide with
the zeros of the averagedẽ(v) introduced in Eq.~2! with
ecl5ec0(12vc0,l

2 /v2) . This can be expected from a macr

FIG. 13. The real part of the effective dielectric functioneeff

5k2 without explicit dispersion (a50, d5vc0,1
2 /vc0,2

2 50.3, a

51.1, b51024, ands̃ l50). In this limit the dielectric function is
directly related to the refraction index and the wave vector of
single excited mode,eeff}n0

2}kz
2 ; see Eqs.~8! and~9!. The poles at

the lower band edges, where the averagedẽc(v)50 @cf. Eq. ~2!#
vanishes, indicate the appearance of the special pointswe andwi in
the two mode theory; cf. Fig. 12 for the corresponding casea
Þ0, and Fig. 3 for the general picture.
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scopic treatment, where the spatially averagedẽc is intro-
duced in Eq.~9!. The regularization of the poles ineeff is
seen by comparing the behavior of Re(np

2);Re(kzp
2 ) for a

Þ0 ~Fig. 12! and of Re(eeff);kz
2 for a50 ~Fig. 13! nearwe

andwi with the schematic picture in Fig. 3.
In Sec. V it will be shown that a situation, where a seco

mode contributes in a similar way as near the pointwi in the
upper band, can also develop from a pole in the dispers
less dielectric function without explicit spatial dispersio
e.g., fora50, due to the intrinsic atomic structure within th
unit cell; see Fig. 16. Also like in the single junction case, t
transmission into the crystal in the lower band is only s
nificant, if both excited modes are propagating into the cr
tal. Consequently, the width of the resonanceD low'w0

2we (Dup'wup
(1)2wi) in transmissionT(w) in the lower

~upper! band are considerably smaller than the band width
the allowed eigenmodes in the crystal,wlow

(1)2we or wup
(1)

2wup
(2) respectively; see Fig. 12.

As derived in Appendix A the additional boundary cond
tion near the special pointswe and wi is analogous to the
case of identical junctions@Eq. ~61!#, and reflects the fac
that on the surface one neighboring junction is missing.
leading order ofb3/4;ea /np

2 andb/b1/4;1/n2 we obtain

Pm521,25 (
p51,2

gpP2~qp!exp~2 iqp!50. ~70!

Thereby Pm521,25*2s
0 Pz2dz is the average of thel 52

componentPz2 of the macroscopic polarization vector in th
missing junction in the cellm521, @P1(q),P2(q)# denotes
the eigenvector of the excited mode andgp describes the
relative amplitude of the excited modesp51,2; see Eq.
~A13!. This microscopic result gives ana posteriori justifi-
cation of the phenomenological ABC in Eq.~15! for the mul-
timode case, where the length scalel 522s is identified
with the lattice constant in thec direction. This shows in
particular that the macroscopic approach is possible, if
only if different components of the local polarization,P1z and
P2z, inside the unit cell are introduced. ExpandingP̃2(q)
ªP2(q)exp(2iq)'P2(0)(12iq/2) with the help of Eq.
~A13!, P2(q)'P2(0)(11 iq), and taking into account the
doubled unit cell inq52skz , we obtain Eq.~16! with the
effective parameterj52vs/c. It is pointed out that the
same result for the amplitude ratio of the excited modes a
the single layer case is reached here in a nontrivial way by
interplay of the lattice constantl 52s and the internal struc-
ture of the eigenmodes contained inPl(q).

Now we are in the position to calculate the reflection a
transmission coefficientsR and T near the resonances i
leading order inb3/4;ea /np

2 and b/b1/4;1/n2, wherek is
given by

k5
1

eacosu

n1n2@ P̃2~q1!n22 P̃2~q2!n1#

P̃2~q1!n2
22 P̃2~q2!n1

2
, ~71!

and shown in Fig. 14. Due to the lattice constant 2s the
refraction indices of the bulk eigenmodes are herenp

e
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5ckz,p /v5cnp /sv. This result reduces to Eq.~17! when ex-
pandingP̃2(q), and the results of Sec. II can be used.

The lower band is similar to the case of identical junctio
in the sense that in the transmission windowwe<w<w0 two
propagating modes are excited and we obtain the same m
mal transmission coefficientTmax,low5Te,max @cf. Eq. ~19!#.

In the upper band we obtain from the general equat
~20! for small dissipations̃ l!uup at w5wi ,

Tmax,up5T~v i !5
2lab

3/2ea0

lc~sec0!1/2cosu
F ~a21!Lup

8a2a
G 1/4

,

~72!

which is smaller by the factor (s/lab)
1/2 than Tmax,low(Lup

5wi(11d)2228a). This can be seen in the upper part
Fig. 15, where for lows̃ l!ulow,up!1 ~see definitions in Ap-
pendix A! the upper plasma resonance is considerably s
pressed by increasinga, while the lower band is weakly
affected. This suppression can be understood physically
the fact that at the surface the energy of the incident wav
distributed between a propagating wave and a decaying~and
finally reflected! one and is therefore less efficiently tran
mitted in the crystal than in the lower band, where the t
excited modes are propagating. Physically, the eigenvec
nearq'0 in the lower~upper! band involve in phase~out of
phase! plasma oscillations and consequently external lo
wave length radiation couples more efficiently to the exc
tions in the lower band than to those in the upper band.

The difference between the values ofTmax,low andTmax,up
decreases as dissipation increases; see Fig. 15. It vanish
the Fresnel limit, for which (4ps1 /vc0,1ec0)(lab /as) be-
comes much larger than unity.

In oblique incidence the suppression of the peak in
upper band is quite limited to systems with very low dis
pation and perfect crystal structure and might be difficult
observe in SmLa12xSrxCuO42d . Instead of this, a quite high

FIG. 14. Real and imaginary parts ofk05k(cosueavs/c) for
alternating junctions (a50.2, a51.1, d5vc0,1

2 /vc0,2
2 50.3, andb

51024) nearwe'1.244 ~left! and wi'4.823 ~right! for different

quasiparticle dissipationss̃15ds̃251026 ~above! or 0.005 ~be-
low!.
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ratio of the peak amplitudes has been observed in this m
rial for incidence parallel to the layers;21–25see below and in
Refs. 37 and 38.

V. INCIDENCE OF LIGHT PARALLEL TO THE LAYERS

In this section we discuss the reflectivity for inciden
parallel to the layers@cf. Fig. 1~b!, for u50] in the crystal
with two alternating junctions, when the explicit spatial di
persion, i.e., the dependence on the wave vectorq, is negli-
gible. We will microscopically confirm the breakdown of th
macroscopic Fresnel approach using the effective dielec
function ẽc @Eq. ~2!#, when the wave vectorukxpu of the
excited modes becomes large and the group velocity is sm
cf. Eq. ~1!. This happens near the polevpole of ẽc , which
coincides with the upper edge of the lower plasma resona
in the reflectivity~cf. Fig. 17!. This frequency is sometime
associated with the excitation of a so-called ‘‘transve
mode,’’36,37 although all the modes excited in the plasm
bands are transverse in this geometry. For simplicity here
will present the formulas fora50; the general results ar
given in Appendix B.

Physically, the conventional theory is insufficient, becau
it averages Eqs.~32!–~35! within the unit cell and neglects
the electric field components parallel to the layers, in orde
arrive at the response functionẽc for the averaged field
Ez,m,av5*ms

(m12)sEzdz. This corresponds to neglecting th
average *ms

(m12)sdz]zBy5By@(m12)s#2By(ms) and the
average of]zEx , respectively, i.e. to settingkz50 in Eqs.
~3!–~5!. This assumption is justified away fromvpole, where
the wave vectorukxu is small, as the gradient of the electr
field vanishes, if the charge density on the layers is slow
varying; ]zEx;ukxu. On the other hand, atvpole the charge
density varies on atomic scales, the intra junction mode w
polarization of the electric field in thex direction is excited

FIG. 15. TransmissivityT near the lower~left! and upper~right!
plasma bands with the frequency axis normalized towlow (wup)
respectively. Parametersd50.3, b51024, andeaj cosu51; differ-

ent conductivities in the plots above (s̃15ds̃251028, a51.05)

and below (s̃15ds̃250.01, a51.1), and varyinga ~see the plot!.
4-16
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strongly and the basic assumption of the averaged theo
invalid.

A more careful averaging of Eqs.~32!–~35! within the
junctions rather than the whole unit cell leads to a relat
between the average electric fields inside the junctionsa
50, s l50; for the general case see Appendix A!:

F S ckx

v D 2 1

21b0
S 11b0 1

1 11b0
D 2eG S Ez1

Ez2
D 50.

~73!

Here the dielectric tensore is given as e l l 5ecl5ec0(1
2vc0,l

2 /v2) and e125e2150, and b05ab5s2/(2lab
2 )!1

accounts for the coupling of the averaged electric fieldsEz,1,2
in the junctions of typel 51,2 via the electric field compo
nentEx . The latter is weak,;b0, due to the strong anisot
ropy of the material. Forb050 one eigenmode of Eq.~73!
corresponds to the solution in the averaged theory de
mined by ẽc , c2kx1

2 5v2ẽc , and its eigenvector obeysDz

5ec1Ez15ec2Ez2 as it is assumed in macroscopic electrod
namics. Consequently, near the lower band edgesvc0,l only
the plasmon in the junction of typel is excited. The other
mode has an eigenvalue 1/kx2

2 50 and corresponds to an ou
of phase mode with the eigenvectorEz152Ez2, which is
not excited by a homogeneous incident beam. Accounting
the excitation of the electric field components parallel to
layers, atb0.0, both modes mix and the singularity atvpole

FIG. 16. Schematic refraction indexnx
2(w) without dispersion

(a50), but with ~solid line, b05s2/2lab
2 .0) or without ~dashed

line, b050) accounting for the intrinsic inhomogeneity in the un
cell. The latter implicit spatial dispersion corresponds to the exc
tion of the mode with electric field polarization parallel to the la
ers. The frequenciesw5wlow, up form the plasma edges in the re
flectivity Ri . We can also interpret the plot forb050 as the

averaged dielectric functionẽc;kx
2;nx

2 @cf. Eq. ~74!# as a function

of w. Then the pole inẽc(w) at wpole in the one mode approac
indicates the appearance of a special frequency forb0Þ0, where
nx1

2 52nx2
2 , which is similar to the general picture in Fig. 3 and t

upper band in oblique incidence; cf. Fig. 12.
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is removed. This is shown schematically in Fig. 16 and i
consequence of the presence of two junctions in the unit
~implicit spatial dispersion!, even in the absence ofc-axis
coupling (a50 or q50).

Including the dissipation due tos l , in the caseq!b
(⇔sinu!1) of parallel incidence the dispersion is given b
Eq. ~A5!, and the general solutionsnxp5ckxp /v are pre-
sented in Eqs.~B1! in the Appendix. Away from the pole
wpole these solutions can be expanded in leading order inb0
and we obtain the usual wave with the refraction indexnx1

5ckx1 /v corresponding to the averageẽc(v) ~for a50):

12
1

a1
5

c2kx1
2

v2ec0

5
ẽc~w!

ec0
5

d~w2wlow!~w2wup!1 iS

wd~w2wpole!1 iS1
,

S15~1/2!w3/2d~s̃11s̃2!,

S5w1/2@s̃1~dw21!1ds̃2~w21!#. ~74!

The zeros ofkx1 are at the plasma edges

wlow,up5~11d!~112a!/2d7@~11d!2~112a!224d~1

14a~12bz0!!#1/2/2d. ~75!

For b050 this corresponds to the single excited modekx
2

;ẽc and we see from Fig. 16~dashed line! that unx1u be-
comes large at the polewpole5(1/212a)(11d21). The dis-
crete layered structure (b0Þ0) results in the regularization
of the pole and its transformation into a special frequen
v i , wherenx1

2 52nx2
2 without dissipation; see Fig. 16~solid

line!. This is similar to the behavior in the upper plasma ba
in oblique incidence~see Fig. 11!, where a pole in the one
mode Fresnel dielectric functioneeff is transformed into the
special pointwi . There it was a consequence of explic
spatial dispersion (aÞ0), while now the second solutionnx2
appears due to the atomic structure within the unit cell e
at a50.

-

FIG. 17. Reflectivity Ri5u12k iu2/u11k iu2 in parallel inci-
dence fora50, d5vc0,1

2 /vc0,2
2 50.3, ec0519, andb05s2/2lab

2

51024 as in the cuprates and different conductivitiess̃15ds̃2 ~see
the plot!.
4-17
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Away from the polewpole we obtain~for a50)

12
1

a2
5

c2kx2
2

v2ec0

5
wd~w2wpole!1 iS1

~b0/2!w2d
, ~76!

andukx2u;O(1/b0) is large in comparison withukx1u. As the
solution with the smallest refraction index determines
optical properties, the wave with wave vectorkx2 can there-
fore be neglected everywhere except atwpole, wherekx2 can
be small and the general equations~B1! have to be used.

Let us now find the solutions for the magnetic and elec
fields inside the crystal which determine the reflection co
ficient Ri5u(12k i)/(11k i)u2. The solution forBy at x
,0 consists of the incident and reflected wavesBy

in andBy
ref ,

which are homogeneous in thez direction, and the waveBy
with kzÞ0, which is excited due to the inhomogeneity of t
crystal in thez direction and which is localized near th
surface,

By~x!5By
inexp~ ikxx!1By

refexp~2 ikxx!

1 (
kzÞ0

By~kz!exp~ ikzz2 i k̃xx!, ~77!

wherec2( k̃x
21kz

2)5v2. The solution atx.0 is given by Eq.
~46!, when introducingkxp explicitly by substituting sinu
→2ckx /v and taking into account the superposition of t
two solutionsp51,2.

In addition to this, we need an additional boundary co
dition, in order to determine the ratio, in which the mod
p51,2 are excited. Atu50 the in-plane currentsJx,m

5 iva
2Ex(z5ms)/(4pv) and consequently theEx compo-

nents inside the layersm vanish atx→0. This is equivalent
to Pekar’s boundary conditionPx50, which turns out to be
sufficient in this case due to the absence of extremal po
wheren11n2'0 ~cf. Fig. 16!.

As worked out in Appendix B this leads to the reflectio
coefficientRi @Eq. ~7!# where (a50)

k i5Ae i
eff5

a11a2Z

a1nx11a2nx2Z
, ~78!

Z52
~12 f 1!~11 f 2!~a121!kx2a2

~12 f 2!~11 f 1!~a221!kx1a1
, ~79!

f p5
~w̃121!~2ap1b0!2~ap21!~ap1b0!

~ap21!~ap1b0!
. ~80!

In Fig. 17 the reflectivityRi(w) is shown for different
conductivitiess̃15ds̃2 and a valueb051024 appropriate
for high temperature superconductors. The resonances in
lower and upper plasma bands are asymmetric and ha
sharp lower edge atwlow,up. The upper edge of the lowe
band is given by the polewpole, where in the conventiona
one mode theoryẽc becomes negative and the single excit
mode with an imaginary wave vector decays~cf. Fig. 16!.

In Fig. 18 the effect of the discrete layered structure (b0
Þ0) on the reflectivityRi in parallel incidence is shown. A
the special point wpole, where the second solutio
09451
e
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ts,

the
a

nx2
2 52nx1

2 becomes relevant, the reflectivityRi drops for
largeb0 and the lineshape is modified. This behavior is sim
lar to the resonance atwi in the upper plasma band for ob
lique incidence due to spatial dispersion; see Sec. IV. T
modification of the JPR line shape is beyond the conv
tional one mode Fresnel approach, which is valid away fr
wpole, in particular near the plasma resonances.

Therefore for the interpretation of the main peak amp
tudes the simplified effective dielectric functionẽc is suffi-
cient and has been used in Ref. 38 to extract the param
a'0.4 from the experimental loss function i
SmLa12xSrxCuO42d . In contrast to Ref. 37 the dissipatio
was introduced here microscopically in the quasiparticle c
rents and it is taken into account that the quasiparticle c
ductivities alternate,s1 /s25vc0,1

2 /vc0,2
2 , in the same way as

the critical current densities and plasma frequenciesvc0,l .
Correctly accounting for dissipation is crucial for a quanti
tive interpretation of the experimental loss function. As t
parametera can be extracted independently from the ma
netic field dependence of the plasma resonances~see Ref.
38!, this is also a way to determine thec-axis conductivities
s l . Both ways to extracta'0.4 from far-infrared data are
well compatible with the angle-resolved photo emissi
spectroscopy~ARPES! measurements.55

VI. CONCLUSIONS

In conclusion, the effect of spatial dispersion and t
atomic structure on the optical properties of strongly ani
tropic uniaxial crystals has been studied in general, taking
a generic example the Josephson plasma resonance in s
of identical or alternating junctions.

Thereby, multiple eigenmodes, propagating or decayi
are excited by incident light, which interfere with each oth
This intrinsic birefringence can be detected in transmiss

FIG. 18. Reflectivity Ri5u12k iu2/u11k iu2 in parallel inci-

dence for a50, d50.3, s̃51026, ec0519, and differentb0

5s2/2lab
2 ~see the plot!. It is seen that, when the second solution

taken into account, atb0@0.0001, the reflectivity drops near th

pole wpole of the averaged dielectric functionẽc , where
nx1

2 52nx2
2 .
4-18
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by oscillations with respect to the sample thickness or
splitting of the incoming~laser! beam~cf. Sec. II C!.

In contrast to the usual assumption that the effect of d
persion or of the atomic structure on optical characteristic
strongly suppressed;s/l!1, as the wavelengthl of light
is much larger than the lattice constants, we showed that
near resonance frequencies the reflectivity may differ sign
cantly from the conventional Fresnel formulas, if dissipati
and disorder are weak.

Near extremal frequenciesve , where the group velocity
vg5lg /v vanishes, the stopping of the wave packet ma
the propagating light sensitive to short length scaleslg . As a
consequence, for oblique incidence the transmissivity i
the crystal cannot be expressed by the bulk dielectric fu
tion alone and the amplitude of the resonance nearve cru-
cially depends on the atomic structure of the crystal. T
additional damping due to thec-axis couplinga for low
dissipation is shown in Fig. 10. In contrast to this, the wid
of the resonance in transmission is not affected by thec-axis
charge coupling, but is rather determined by the angle
incidence.

These extremal pointsve may appear, whenever an opt
cally active crystal mode with normal~anomalous! disper-
sion is mixed with a propagating~decaying! electromagnetic
wave. For these results it was crucial to realize that the
sulting two eigenmodes with normal and anomalous disp
sion have wave vectors and refraction indices with oppo
sign nearve in order to preserve causality.

In addition to this, for a crystal with several optical ban
we predict different amplitudes of the resonance transm
sion into bands, which are characterized by different type
dispersion and which are equivalent in a dispersionl
theory. When inside the crystal one mode is propagating
the other one is decaying, the maximum ofT is at frequen-
cies v i , where the relationn152 in2 for the refraction in-
dices holds. At these frequencies the peak amplitude ofT is
strongly suppressed in comparison with bands, where
two excited modes are propagating~Fig. 15!, provided that
the dissipation is low. This provides the unique opportun
to extract microscopic information about the eigenvectors
the excited modes from the line shape in optical experime

For incidence parallel to alternating layers a second m
is excited even without explicit spatial dispersion (k depen-
dence ofec) due to the intrinsic inhomogeneity within th
unit cell. Near the pole of the effective dielectric function
the upper edge of the lower plasma band a special p
appears, wherenx1

2 52nx2
2 . For an appropriate choice of pa

rameters this can modify the lineshape of the resonance
This behavior nearve and v i cannot be obtained in th

one mode approach without dispersion. The only intrin
indication for the breakdown of the conventional Fres
theory is the appearance of poles in the effective dielec
function eeff ; see the schematic Fig. 3. There the exci
wave vectorsk2;eeff are large, the group velocity is sma
cf. Eq. ~1!, and concomitantly small atomic length scal
become important~cf. Figs. 13 and 16 for oblique and pa
allel incidence!.

These features were demonstrated explicitly for the J
with identical and different alternating junctions, but they a
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general for any modes, e.g., for optical phonons with anom
lous dispersion in insulators, which form a polariton bran
with an extremal point; see Fig. 2. However, the condition
weak dissipation and a perfect crystal structure are crucia
observe deviations from the Fresnel regime.

For the JPR this theory was used to extract the param
a'0.4 from the optical data obtained fo
SmLa12xSrxCuO42d with two different alternating intrinsic
Josephson junctions between the CuO2 single layers.38 This
value corresponds to an electronic compressibility, which
unrenormalized by the interaction, while for multilayer c
prates a smaller value ofa is expected. This result is com
patible with the ARPES measurements55 and gives an impor-
tant input parameter for the coupled Josephson dynamic
the stack. Thereby the correct treatment of thec-axis conduc-
tivities in different junctions is essential for a quantitativ
interpretation.

It is also pointed out that spatial dispersion provides
way to stop light in a crystal, which is different from prev
ous proposals based on the frequency dispersion of the
dium; see Sec. II D. From the application point of view, th
suggests future magneto-optical devices~using e.g., the JPR!
for storing light coherently, as it is required in an optic
quantum computer. By imprinting a group velocity profi
with the help of an inhomogeneous external magnetic fie
event horizons with respect to the propagation of light can
created in a solid.

To summarize, possible experiments to demonstrate
effect of spatial dispersion on the optical properties of sol
include the demonstration of~a! intrinsic birefringence and
beam splitting,~b! stopping~delaying! light pulses,~c! the
relative amplitude of bands with a different number of prop
gating excited modes, and~d! the intrinsic damping of peak
amplitudes in materials with negligible dissipation and d
order.

From a general point of view, these results shed light
the long standing question of the treatment of spatial disp
sion for optical properties of solids, and provide the fi
microscopic derivation of the ABC as suggested in Ref. 3
is expected that the phenomenological results presented
can have wide implications for the interpretation of res
nance amplitudes and line shapes in optical experiments
pecially near frequenciesve or v i , which appear near pole
of the conventional dielectric function. Moreover, th
method to obtain the parameterl microscopically by consid-
ering the difference between the hypothetical bulk and
real equation of motion for surface degrees of freedom,
be generalized to other systems. In particular for opti
phonons ~polaritons! in insulators43 and photonic
crystals,59,60 some of the above deviations from the conve
tional Fresnel theory can be expected.
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APPENDIX A: EIGENMODES FOR ALTERNATING
JUNCTIONS

We introduce the unit cell, which contains two differe
junctions and describes the system by the parameterscml ,
dml , andPml @cf. Eqs.~46!#, wherem denotes the unit cel
andl 51,2 labels the junctions in the unit cell. The equatio
inside the crystal are analogous to Eqs.~49!–~51!, where the
quasiparticle dissipation is taken into account byw̃l

5ṽ l
2/vc0,l

2 and ṽ l
2/v25124p is lv/ec0vc0,l

2 :

cm1h212dm1h2cm21,2h1dm21,2h
2150,

cm2h212dm2h2cm,1h1dm1h2150, ~A1!

2~cm1h212cm21,2h!1~a21!~Pm12Pm21,2!

1 i ~b/b!~cm1h212dm1h!50,

2~cm2h212cm1h!1~a21!~Pm22Pm1!

1 i ~b/b!~cm2h212dm2h!50, ~A2!

Pm1~w̃12a!1a~Pm21Pm21,222Pm1!

5~cm11dm1!~122ab!~sinb/b!,

Pm2~w̃22a!1a~Pm11,11Pm122Pm2!

5~cm21dm2!~122ab!~sinb/b!. ~A3!

Using the Fourier transformation with respect to the d
crete indexm we obtain the dispersion relation in the lim
b!q,b1/2, which is appropriate for oblique incidence in Se
IV,

~n212b2b2!D14a~a21!~12n2!b1~a21!2n2

1~n21b!~a21!~w̃11w̃222a24a!50,

D5~w̃12a22a!~w̃22a22a!24a2~12n2!. ~A4!

In the opposite limitq!b used for parallel incidence in
Sec. V, we obtain the dispersion

DetFŴê2
a21

21b
L̂G50,

ê l l 5@12v0,l
2 ~112a!/ṽ l

2#, ê125 ê2152a, ~A5!

whereŴ, ê, and L̂ are matrices,Wll 5w̃l , W125W2150,
andL l l 511b, L125L2151.

Using Eqs.~A4! for b!q,b1/2 and taking into account the
lattice constant 2s in qp52skz,p , the refraction indicesnp
5ckz,p /v5cnp /sv of the bulk eigenmodes fors l50 are
determined by (z05a2122a)
09451
n
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n1,2
2 ~v!5~2P6AP2216a2bQ!/8a2,

P~w!5w2d2w~11d!~112a!1114a~12bz0!,

Q~w!52w2d2w~11d!~11a14a!12a~114a!.
~A6!

Thereby and in the following the effect of dissipation can
included by replacingw→w̃1 andwd→w̃2 and we will re-
strict the discussion to the casea2.(a21)b(12d)/4 and
psc /vc0,1ec0,a@(a21)b#1/2/@(12d)(112a)#1/2, when
an extremal pointwe exists in the lower band, provided tha
12d is of order unity.

At a51 we obtainQ(w)52P(w)1O(a2b) and n1,2
2 is

small near the zeroswlow,up of P(w), which are given by Eq.
~75!. The reflection coefficient is determined predominan
by smalln1,2

2 (w), as in the case of identical junctions. Ther
fore, in the following we will analyze the behavior o
n1,2

2 (w) by expanding aroundwlow (wup) for the lower~up-
per! band. With ulow,up5w2wlow,up we obtain P(w)
57lulow,up and Q(w)52@62l1(a21)(11d)#ulow,up
6(a21)L low,up, where we denotel5@(12d)2(114a)
14a2(11d)2#1/2 and L low,up56@218a2wlow,up(11d)#
.0 ~upper/lower sign for lower/upper band!. From this the
band edgeswlow,up

(6) and special frequencieswe,i of the bands
can be obtained in the limits l50, cf. Figs. 11 and 12.

In the lower band positive real solutions forn1
2 exist for

s l50 at we5wlow1ulow,w,wlow
(1)5112a, where ulow

5@16a2b(a21)L low#1/2/l. At the extremal pointwe we ob-
tain n1

25n2
25@b(a21)L low#1/2/2a, while the upper edge

wlow
(1) is determined by the conditionn1

251 by noting that
P(112a)524a2. The value n2

2 is positive at w<w0

5wlow1(a21)L low /@2l1(a21)(11d)# and approaches
22b for w.w0 till the second band is reached. In the fo
lowing we consider the casewlow

(1).w0 and hence the uppe
edge of the lower band iswlow

(1) . In the range@we ,w0# two
propagating modes with normal and anomalous dispers
exist, while for wP@w0 ,wlow

(1)#, n1 is propagating andn2

decaying, which is very similar to a system with identic
layers. Also note that the widthw02we of the resonance in
T(w) is not proportional to thec-axis couplinga, but is
mainly given by the angle of incidence.

In contrast to this, the behavior ofn1
2 andn2

2 in the upper
band is quite different because the dispersion here is ano
lous at any frequency. In this rangen2

2 is negative andun2
2u

.2b, and the band edges are determined by the condit
n1

250 or n1
251, respectively. The valuen1

2 is positive inside
the band wup

(2),w,wup
(1) , where wup

(2)5(112a)/d and
wup

(1)5wup1uup where uup52(a21)Lup/@22l1(a21)
3(11d)#.0. At the point w5wi5wup we obtain 2n2

2

5n1
25@b(a21)Lup#

1/2/2a, which corresponds to the fre
quency of maximal transmission according to Eq.~20!.

Similarly to Eqs.~52!–~54! we make an ansatz for th
bulk eigenvectors

cml5 (
p51,2

gpcl~qp!exp~ iqpm!, ~A7!
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dml5 (
p51,2

gpdl~qp!exp~ iqpm!, ~A8!

Pml5 (
p51,2

gpPl~qp!exp~ iqpm!. ~A9!

Using Eqs. ~A1!–~A3! we obtain the coefficients„P
5@P1(q),P2(q)#…:

c151, c2~q!5
a~a21!~11eiq!

D1~a21!~w̃22a22a!
, ~A10!

d15
12@11~h22h22!c2~q!#e2 iq

h22h22e2 iq
, ~A11!

d25
h222h21~12e2 iq!c2~q!

h22h22e2 iq
, ~A12!

P5M ~c1d!, ~A13!

M5
1

D S w̃22a22a 2a~11e2 iq!

2a~11eiq! w̃12a22a
D . ~A14!

Herec2(q) is given in leading order inb andb1/2. In order
O(b0) we obtaind15c151 andd25c2(q).

To determineg1 /g2 we use the microscopic bounda
condition for the surface junction@analogous to Eq.~60!#.
Nearwe,i , in leading order inb1/2;ea /np

2 we obtain

P01~w̃12a!1a$P022@11a1~a21!ec0#P01%

5~c011d01!@11a~ec011!#. ~A15!

Again we simplify this equation by subtracting the~hypo-
thetical! bulk equation forP01, which follows from Eq.~A3!
with Pm521,2 given by Eq.~A9!, and the real surface Eq
~A15! for P01:

Pm521,25(
p

gpP2~qp!exp~2 iqp!50. ~A16!

Note that this ABC has only been derived in leading orde
ea /np

2 and near the resonance frequencieswe,i .

APPENDIX B: REFLECTIVITY IN PARALLEL INCIDENCE

For arbitraryb0 anda the solutions of the dispersion Eq
~A5! in the caseq!b are given by

c2kxp
2

v2ec0

5
~wd~w2wpole!1 iS1!~11b0!

b0@w2d22aw~11d!1 iS2#
F16S 1

2
K

@wd~w2wpole!1 iS1#2~11b0!2D 1/2G ~B1!
09451
n

K52b0~w2d22aw~11d!1 iS2!

3~d~w2wlow!~w2wup!1 iS!~11b0/2!

S5w1/2@~2a11!dw~ s̃11s̃2!2~114a!~s̃11s̃2d!#,

S15w3/2d~2a11/2!~ s̃11s̃2!,

S252aw3/2d~s̃11s̃2!. ~B2!

Away from the polewpole in ẽc we obtain, in leading order in
b0 for arbitrarya,

12
1

a1
5

c2kx1
2

v2ec0

5
d~w2wlow!~w2wup!1 iS

wd~w2wpole!1 iS12b0c0
, ~B3!

12
1

a2
5

c2kx2
2

v2ec0

5
~wd~w2wpole!1 iS1!~11b0!

~b0/2!~w2d22aw~11d!1 iS2!
.

~B4!

In the ansatz Eq.~77! for the fieldBy outside the crystal,
the continuity equation atx50 gives forBy(kz) the expres-
sion

By~kz!5
ec0v

ckx
E dzG~z!exp~2 ikzz!, ~B5!

where for 2ms<z,(2m11)s we obtain (gp

5vea0
1/2/@cap

1/2#)

G~z!5 (
p51,2

c1
(p)exp~ igpz!1d1

(p)exp~2 igpz!, ~B6!

and for (2m11)s<z,(2m12)s analogously with c1
(p)

→c2
(p) andd1

(p)→d2
(p) .

We derivekz56gp1(p/s) j , where j is an integer. For
nonzeroj we obtainkz>p/s and hencekxp is imaginary with
large ukxpu. For j 50 we obtain^B(gp)&5^B(2gp)&50 by
averaging over the two junctions in the unit cell, asc1

(p)

1c2
(p)5d1

(p)1d2
(p)50 with accuracyb/b0;lab /lc!1 from

Eqs.~A1!–~A3!. As a result, in Eq.~77! the terms with am-
plitudesBy(kz) may be dropped. Then the amplitude of th
reflected waveBy

ref is determined by Eq.~7!, where the av-
eraged magnetic and electric fields at the boundaryx50 are

^By&52
c

2v (
p51,2

apkxp@P1
(p)1P2

(p)#, ~B7!

^Ez&5
1

2 (
p51,2

ap@P1
(p)1P2

(p)#. ~B8!

These equations lead to the reflection coefficient@Eq. ~7!#,
where

k i5Ae i
eff5

a11a2Z

a1nx11a2nx2Z
, Z5

P1
(1)1P2

(1)

P1
(2)1P2

(2)
, ~B9!
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with nxp5ckxp /v. As a2!a1 for wÞwpole the conventional
Fresnel expression is valid everywhere except at the up
edgewpole of the lower band.

To determineZ, we use the additional boundary conditio
Px50 of the Pekar type in the form

Ex~x50!5 (
p51,2

1

kxpap
1/2~c1

(p)hp
212d1

(p)hp!50.

~B10!

From this and the relationcm
(p)5dm

(p) the condition
(pc1

(p)/@kxpap#50 follows. To express it in terms ofP1
(p)

1P2
(p) we derive, from Eqs.~A1!–~A3!,
9

o-

B

.

,

-
7

L.

S

09451
er
c1

(p)52~1/4!~ap21!P1
(p)~12 f p!,

f p5
P2

(p)

P1
(p)

5
~w̃12122a!~2ap1b0!2~ap21!~ap1b0!

~ap21!~ap1b0!22a~2ap1b0!
.

Finally we obtain

Z52
~12 f 1!~11 f 2!~a121!kx2a2

~12 f 2!~11 f 1!~a221!kx1a1
. ~B11!
,
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