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Optical properties of layered superconductors near the Josephson plasma resonance

Ch. Helm? and L. N. Bulaevskii
1ETH Hanggerberg, Institut fu Theoretische Physik, Zieh, Switzerland
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 7 January 2002; published 18 September)2002

We study the optical properties of strongly anisotropic crystals with spatial dispersion and show that the
usual Fresnel approach becomes invalid near frequencies where the group velocity of the wave packets inside
the crystal vanishes. Near these special frequencies the reflectivity depends on the atomic structure of the
crystal provided that disorder and dissipation are very low. This is demonstrated explicitly by a detailed study
of layered superconductors with identical or two different alternating junctions in the frequency range near the
Josephson plasma resonance. Accounting for both inductive and charge coupling of the intrinsic junctions, we
show that multiple modes are excited inside the crystal by the incident light, we determine their relative
amplitude by the microscopic calculation of the additional boundary conditions, and finally obtain the reflec-
tivity. Spatial dispersion also provides a method to stop light pulses, which has possible applications for
quantum information processing and the artificial creation of event horizons in a solid.
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[. INTRODUCTION eralize our results for the JPR to different geometries, discuss
the various transmission and reflection coefficients in a finite

The problem of optical properties of crystals with spatialsize sample, and point out perspectives to stop light with the
dispersion has remained challenging since the original papéelp of spatial dispersion. We also stress that the discrete
of Pekar on the optics of exciton banti®espite consider- atomic structure within the unit cell can have similar effects
able effort, a complete theoretical description of the opticalt® those of spatial dispersion.
properties of such systems is still missfd. In the framework of the Lawrence-Doniach maode(in-

The nontrivial optical features of crystals with a disper- terlayer Josephson couplingre can describe both layered
sive dielectric functione(w,k) are based on the fact that superconductors with identical intrinsic Josephson junctions
incident light with a given frequency excites several eigen{such as TI-2201}*°Bi,Sr,CaCyOg, *° the organic material
modes with different wave vectoks This poses the funda- «-(BEDT-TTF),-Cu(NCS),*"*® or (LaSe)(NbSg (Refs.
mental problem that the Maxwell boundary conditions, i.e.,19 and 20] and compounds, where different junctions alter-
the continuity of the electric and magnetic field componentdate like in SmLa_,Sr,CuQ,_ 5,'7?°Bi-2212/Bi-2201%" or
parallel to the surface, are insufficient to calculate the relaatomic scale YBCO/PrBCO superlattic&sThereby we take
tive amplitudes of these modes and consequently to describgto account not only the dispersion of the plasma mode
physical quantities, such as reflectivity or transmissivity.caused by the inductive interaction of currents parallel to the
Since the early work of Pekhf and Agranovich and layers, but also the-axis dispersion due to charge fluctua-
Ginzburg? this difficulty was usually addressed in a purely tions on the layers?—>*
phenomenological approach by introducing so called addi- The JPR is an ideal choice to illustrate the effect of spatial
tional boundary condition6ABC’s) for the macroscopic po- dispersion and the atomic structure on optical properties both
larization. These ABC’s are motivated physically by the mi-theoretically and experimentally. First of all, recent optical
croscopic structure of the surface, but the choice of ABC's i€xperiments ~ on  the  layered  superconductor
not universal and may be controversial; see Ref. 4, and ConBmLa _,Sr,CuQ,_ s with aT* crystal structure showed evi-
ments on this paper. Only the complete solution of the mi-dence that the spatial dispersion of the Josephson plasmon in
croscopic model can determine the dependence of the reflethe direction perpendicular to the layers is imporfant>
tivity on the microstructure unambiguously.

Such a solution was found recently for the first time for z
the reflectivity near the Josephson plasma reson@iii® in (a) \Lyx
highly anisotropic layered superconductdmshich is an in-
terlayer charge oscillation due to the tunneling of Cooper
pairs and quasiparticles in highly anisotropic layered O
superconductor®1? Josephson plasma oscillations inside a
layered superconductor may be excited by the light incident
to the surface of the crystal in the geometrigg or (b)
shown in Fig. 1. The JPR in layered superconductors is the F|G. 1. The geometry of the layered system showing the inci-
simplest example, which illuminates the effects of spatialdent and reflected light at the surface of incider@eparallel and
dispersion and the discrete atomic structure on optical propd) perpendicular to the layers. Interlayer charge oscillatimesti-
erties in strongly anisotropic materials. Here we will describecal arrows are excited by the component of the electric field per-
the method of the calculations in Ref. 9 in more detail, gen-pendicular to the layers.
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For incidence parallel to the layefsee Fig. 1b)] at #=0,
two peaks at=7 and~12 cm ! were observed in reflection, ©
which can be naturally understood as the JiRef. 21 of
alternating intrinsic junctions with SmO or LaO in the barri-
ers between the CuQayers?'=?>3The very high ratio of
the peak intensities, about 20, cannot be explained in a dis-
persionless modéP, and this points to a quite strongaxis
dispersion of the plasma modes due to charge variafioifs.
Second, from the theoretical point of view the well estab-
lished Lawrence-Doniach mod@lformulated in terms of
finite-difference equations for electromagnetic fields and
phases of the superconducting order parameter is sufficient
to provide a complete microscopic description and can be 0
solved analytically. Finally, it is fortunate that the damping
due to dissipation is low, because at low temperatures the FIG. 2. Schematic mixing of a transverse optical phonon char-
JPR frequency is well below the superconducting gap andcterized by anomalous dispersion with a propagating electromag-
the quasiparticles responsible for dissipation are frozen ounetic wave leads to an extremal poiat in the lower polariton
Otherwise it would strongly overshadow the effects of dis-band, where the group velocity vanishes. Just below the frequency
persion or the atomic structure as described below. o, two modes with similar wave vectors propagate.
Extracting the strength of the-axis dispersion in high
temperature superconductors is important on its own, as therom Eq.(1) it is clear that light can be slowed dowa) due
dynamics of Josephson oscillations in layered superconducte a strongfrequencydispersionwdin(w)/dw>1 (as dis-
ors is strongly influenced by #3233t is also intimately cussed in Refs. 39 and ¥0(b) due to a small value 1
connected with the electronic compressibility of the super-—kgIn n/sk, i.e., when thespatial dispersion is strong ofg)
conducting Cu@ layers, which is hard to measuie situ  when the wave vectok becomes large. In the absence of
otherwise, and contains unique information about the elecspatial dispersion in the dielectric function the conditi¢as
tronic many-body interactions in the layers. and(c) are fulfilled at frequencies corresponding to a pole in
From a more fundamental point of view, we show that in¢(w), where bottdn/dw and the wave vectde are large, cf.
the presence of spatial dispersion the conventional FresngFo e(w). Furthermore, it is expected that in the same fre-
formulas for reflectivity and transmission have to be modi-quency region the dielectric function is also quite sensitive to
fied substantially near certain frequencies, if both the dissithe wave vector, i.e., explicit spatial dispersion is significant,
pation and the crystal disorder are weak. Usually it is ascf. case(b).
sumed that the optical properties of crystals are completely Accounting for the wave-vector dependence of the dielec-
determined by average, bulk properties described by a freric function in general leads to multiple solutions of the
quency dependent dielectric functiafiw), but not by the dispersion relationc’k?= w?e(w,k) for the wave vectors
explicit spatial dispersion K dependendeor the specific k, , p=1,2, along the directiom perpendicular to the sur-
atomic structure of the crystalmplicit spatial dispersion  face at giverw in the geometry shown in Fig.(4). As will
This is based on the notion that the wavelength of light ispe derived below, only the lightlike modes with SMY,|
much larger than the atomic length scales, and therefore lighfontribute significantly to the transmission, and the usual one
is expected to be influenced only by averaged properties ahode Fresnel result is recoveredkf;| <|k,,|. On the other
the crystal. Here we will stress out that this approach breakgand, the conventional description breaks down, when both
down, if the group velocityvy=dw(k)/dk of the wave |k, | are comparable and contribute to the optical properties.
packet of the optical excitation with dispersian(k) be-  This happens if a pole in the dispersionless theory, which
comes small. The physical reason for this breakdown of th%orresponds to the casé® and(c) of low group velocity, is
macroscopic theory is the appearance of a small effectiveegularized by the introduction of spatial dispersion.
wave length\j=v4/w, related to the slow motion of the Depending on the type of the spatial dispersion the ex-
wave packet, which can be comparable with the interatomigited modes may be both regropagating modésor one
distance. wave vector may be real, while the other one is complex
The conditions, when the group velocity becomes small(decaying modg This leads to two types of critical frequen-
can be most easily seen for an isotropic medium describeges, where the Fresnel approach becomes invalid. That is, it
by the dielectric functiore(w,k). Then the dispersion rela- occurs at frequencies,, where bothk, are real andk,|

Photon

TO Phonon

tion of an optically excited eigenmode &k*=w’e(w.k)  ~|k,,|, and at frequencies; , wherek,; ~iK,,.
=w?n?(w,k). For a transversal wave the implicit derivative  When both modes are propagating, vanishes at fre-
of this equation with respect toleads to quenciesw, due to strong spatial dispersion, the cabg
mentioned after Eq(1); see Fig. 2. In general, this case
C_LE 1—k(9|nn occurs if the eigenmodes of the crystal, when decoupled
dow 2Je K o ok from electromagnetic waves, have a dispersion opposite to
V9T qKk o e K ainn’ (1) that of the electromagnetic wave. Generic examples are pho-
Jet — — 1+ w non modes with anomalouslecreasingdispersion mixing
2e dw ow with propagating light of normal dispersion, which form a
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sion after Eq.(1).
If for the crystal dispersioriwithout coupling to electro-
magnetic wavesd kﬁ/dw<0, an extremal poinb, appears
® below the singularity and at this frequenay, the group
velocity v4,=dw/dk, vanishes and two propagating modes
with k,; = —k,, are excited; see Fig.(&8. In a similar way,
at the extremum oio(kf) above the singularity the imagi-
nary excited modes mergk?, =k2,<0, while in the inter-
mediate frequency region the solutiokﬁ% are complex. On
FIG. 3. A pole in kf(w) in the case without spatial dispersion he other hand, iﬂkf/dw>0, the singularity in the disper-
(dashed lingindicates the importance of small length scales due %ionless one mode theory is transformed to a special point
the low group velocitycf. Eq.(1)] and the breakdown of the mac- "\ here the amplitudes of the excitations are equal, but
roscopic theory based onkg-independent dielectric tensor. Foran '’ . - oo '
Qone is propagating and the other decaylk@,— —kZ,.

isotropic system this corresponds to a singularity in the dielectri R Kabl ial . h h
function,kfoce(w). This pole is regularized when spatial dispersion emar a, Y, a specia pomrpi can appear, when the
group velocity is small, even without a wave vector depen-

is taken into account, and depending on the sigrdkﬁ/dw an

extremal pointw,, where the group velocity vanishes, appears asdence(i.e., without anexplicit spatial dispersionin the di-
shown in(a), or the singularity transforms into a special frequency €l€ctric function due to the atomic structure in the unit cell

w;, wherek?, = — k%, see(b). alone(implicit spatial dispersion Generally for each crystal
band a real or imaginary mode is excited, but usually inside
) , , one band the additional waves associated with the off-
polariton (cf. Fig. 2), or the Josephson plasmon with normal eqqnant excitation of the other bands can be neglected. Here
dispersion interacting with screened electromagnetic waveg || e shown that this assumption breaks down when the
in a superconductor, which show an anomalous dispersionyroup velocity becomes small, e.g., for large amplitudes of
see Secs. IlIB and IV below. As the main consequence, neghe wave vectors; cf. cade). Thereby the system with al-
frequencieso, the transmission coefficient into the crystal is ternating plasma resonances like SmL&r,Cu0,_ 5 with
not determined solely by the dielectric function, but crucially light incident parallel to the layeriFig. 1(b) at 6=0] pre-
depends on the microstructure of the crystal near the surfacgents a generic example, as in this case the wave vikgtor
if both dissipation and disorder are very low and the systenperpendicular to the layer@xplicit spatial dispersionvan-
is strongly anisotropic. We will also show that interfering ishes due to the homogeneity of the incident beam. In a
multiple propagating waves create a behavior similar to “in-macroscopic theory the electrodynamic response to the elec-
trinsic” birefringence, and affect strongly the transmissiontric field, which is averaged within the unit cell, is decribed
through the crystal and multiple reflection. by the effective(average dielectric functione (w):

In the second situatiofone mode is propagating, while
another is decayinghe Fresnel approach breaks down near
frequenciesy; , where the moduli of the wave vectors of two - S
excited modes become equal. Near these frequencies both e(w) 2
|k,o| become large, which leads to a small, but finite group
velocityvg as described in cae{e) after Eq.(l). This occurs, Thereby a pole inzc(w) appears between the zeros of
for example, for Josephson plasmons with anomalous dispeg—cl(w) =e€o(1l— wgo’l/wZ) (1=1,2, es background dielec-
sion in a crystal with different alternating junctions, wheretric constanx, which correspond to the plasma frequencies
one plasmon has normal dispersion while the other one has, in the different junction$®*" This indicates the break-
anomalous dispersion; see Sec. IV below. As near the fredown of the one-mode Fresnel approach and the necessity to
guenciesw; only a single mode propagates into the crystal,account properly for the second solution. Obviously, similar
the transmission coefficient is significantly suppressed irtonsequenses of such a “discrete” implicit spatial dispersion
comparison with resonances at extremal poiats where are expected generally for any crystals with multiple opti-
incident light excites two propagating modes. cally active crystal bands of the same symmetry.

In Fig. 3 it is demonstrated schematically how the critical Both the behaviors neas, and w; are in contrast to the
frequenciesw, and w;, where the amplitudes of the exited conventional Fresnel theory and to the common belief that
multiple modes are equalk,,| =|k,,|, develop from a sin- the spatial dispersion of crystal modes or the atomic structure
gularity in the one mode theory, which neglects #jede- do not create measurable effects of order unity in optical
pendence of the eigenmodes. In the simplest case of an isproperties, but only enter into negligible corrections propor-
tropic medium, which was considered after Ed), the tional to the ratio of atomic scales and the wavelength of
dispersionless dielectric function and squared wave vectdight. In fact, the Fresnel results have to be modified signifi-
amplitudes are proportiona¢(»)=k?, and their poles coin- cantly in a narrow interval near the frequencies and w; ,
cide. The breakdown of the one mode Fresnel theory at thedmut only in perfect anisotropic crystals with very weak dis-
points is already anticipated from the low group velocity, sipation.

K K b due to the large frequency dispersifitk,/dw|>1 and the
(a) / ( ) Iarge|kzp| near the pole; cf. casdg) and(c) in the discus-

1 1 1 1
[ . (2

(@) | el)
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Finally, we point out that the vanishing of the group ve- some further remarks, concerning, e.g., future applications,

locity at extremal frequencies,, due to thespatial disper-  like the stopping of ligh{Sec. Il D.
sion of the crystal modes, provides a way to stop light pulses
dynamically. Recently it attracted considerable interest for A. Dispersion relation

diminishing the light velocity strongly with the help dre- We consider the geometry of the incident and reflected
quencydispersive gaseous media, as described by @se |ight as shown in Fig. 1. The wave vector of the incident
after Eq.(1). From a practical point of view, our suggestion, light with frequencyw for the geometry shown in Fig(d) is
based on th& dependence of the dielectric tensor, allows USK )= (w sin 6/c,0, cosic), while for Fig. 1b) it is ko
to use slow light in a solid state device for the processing ot (4 coséic,0,w sin 6/c), where thez axis is perpendicular to
information. In particular, the sensitivity of the group veloc- the layers(it coincides with thec axis of the crystal The
ity in solids to the external fields could be used to storeincident (quasimonochromatjcelectromagnetic wave is as-
quantum information in the form of photonic qubits, as re-sumed to beP polarized, i.e., the electric fieldE(r,t)
quired for optical quantum computefsOur solid state pro- = E(w,k)exp(kr —iwt) is in the plane defined by, and the
posal to stop light might be of advantage compared withmormal of the surfacexz plang, while the magnetic field
realizations using gaseous media, as it is easier to scale tas only a component in thedirection.S polarization is not
larger system sizes and more complex devices. By adjustingonsidered here, as an electric field parallel to the layers does
an inhomogeneous external parameter, like the magnetigot excite the JPR studied below.
field for the JPR, a spatially inhomogeneous profile for the |n the macroscopic approach used here we describe the
group velocity can be imprinted. Such conditions can simucrystal by a dielectric tensor, which is averaged on atomic
late in the laboratory the behavior of light in a curved spacescales within the unit cell, but can depend on the wave vector
time, as realized in astrophysical situations, e.g., near th@xplicit spatial dispersion and study the effects of the in-
event horizon of a black hof. trinsic microstructurdimplicit spatial dispersionin Sec. V.
Previously the spatial dispersion of the Josephson plasma In the following we will consider highly anisotropic
mode and its effect on the propagating electromagnetiginiaxial (layered crystals with the dielectric function com-
waves in layered superconductors with identical Josephsoponentse.(w,k,) along thec axis (z axis) and e,(w) in the
junctions was discussed by Tachiki, Koyama, andab (xy) plane along the layers in a parameter regime appro-
Takahash?! They realized that the mixing of plasma modes priate for the JPR. Ire.(w,k,) we account for a collective
with electromagnetic waves can lead to two propagatingnode (JPR in our case which is strictly longitudinal with
waves with different wave vectors for the same frequencythe dispersion w¢(k,) for k,=0, ie. e]w=w.(k,
However, the implications of this fact on optical properties,=0k,),k,]=0, and whose polarization is mainly in the
like reflectivity, were not discussed. van der Marel andc-direction for anyk, due to the strong anisotropye,|
Tsvetkov'’ presented an effective dielectric function for a >|e.|, near the JPR. We neglect the eigenmode, which is

system with alternating Josephson junctions and charge COWplarized parallel to the layers fdt,=0, as it is of much
pling within the unit cell for the special case of incidence higher frequency than the JPR.

parallel to the layers, but they did not account correctly for From the bulk Maxwell equations for the Fourier compo-
the dissipation due to the conductivities and for the nontriviaents,
effects of the “discrete” spatial dispersion mentioned above.

The paper is organized as follows: In the first part, we ckBy=—we(w,k)E,, ©)
derive in general the optical properties of an uniaxial crystal
with explicit spatial dispersion along the symmetry axis in K«E,—k,Ex=—(w/C)By, (4)
the dielectric function using additional boundary conditions
with one phenomenological paramet&ec. I). In the sec- CkBy=we,(w)Ex (5)

ond part, we confirm these results for oblique incidence i

n, . . .
the microscopic(layered model for the JPR. Thereby the directly follows the dispersion refation

ABC'’s are derived and analytical solutions for systems with K2 K2 2
identical (Sec. Il) and two different alternatingSec. V) X 4z _Y (6)
Josephson junctions are obtained. In Sec. V the atomic struc- e(wky)  €(w) 2

ture is taken into account to derive the reflectivity in the
incidence parallel to the layers. Technical details are given ir?
the Appendixes.

f the eigenmodes in the crystal.

For the geometry shown in Fig(l), and neglecting the
discrete layered structure in tlzadirection, we obtain, from
the translational invariance parallel to the surfaegs ko,
= w sin#/c of the excited crystal mode, while the dispersion
relation[Eq. (6)] gives a single solution fok)z(. Hence the
usual Fresnel description is generally valid, except where

In this section we derive the dispersion relation from alk,| becomes large, e.g., at the polesegfw); see Eq.6).
macroscopic dielectric tens@Bec. Il A), calculate the trans- At these points the implicit spatial dispersion due to the
mission coefficients int@Sec. |1 B) and through(Sec. I1Q atomic structure in the unit cell in multiband systems has to
the crystal using a phenomenological ABC, and close withbe taken into account. Then multiple solutidgsof the dis-

IIl. MACROSCOPIC APPROACH FOR CRYSTALS
WITH SPATIAL DISPERSION
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persion relation contribute, which will be discussed for the(anomalousdispersion this requires the real part of the wave
JPR with alternating junctions in Sec. V below. vector k,, (modesp=1,2) and of the refraction inder,

In the geometry shown in Fig.(d we obtain, analo- =ck,,/» to be positive (negativg. When dissipation is
gously, the wave-vector componekt=Kkq,=w siné/c, and  taken into account, this rule is equivalent to the condition
the dispersion relation determines the solut@rior the z  that the eigenmodes should decay inside the crystal, i.e.,
componentk,(w,#) of the modes excited by the incident Im(k,;)>0.
wave. In a crystal described by the dielectric functions This has in particular consequences at extremal frequen-
€ac(w), which are independent of the wave vectgrthe  cies w, of the dispersion relation Re(k,)], where the
dispersion relatiofEq. (6)] has a unique solutioh?(w). group velocityv,,=0 vanishes and two branches, one with
The Maxwell boundary conditions, requiring the continuity normal dispersion and another one with anomalous disper-
of the parallel component&,(z) andH(z) at the surface sion, merge, see Fig. 2. At these points the two solutions for
z=0, immediately give the Fresnel formula for the reflectionk,, which are real in the absence of dissipation, have the
coefficientR=|r|? and the transmissivitf =1—R into the ~ same amplitud¢k,|, but different signs:

crystal. Here
RNy (we) +Nny(we)]=0. (11
1-« E,(z=0)

r:1+K’ = By(z=0)cosb"

()

B. Transmissivity T on the surface

In the macroscopic approach the electric fieldand the
polarizationP, in a semi-infinite crystal with a single atom
in the unit cell and with the background dielectric constant
€c.o Can be expressed as

When in a highly anisotropic crystal the eigenmode with
electric field approximately parallel to the layers is ne-
glected, the effective dielectric functiany is given by

No
K= N €el= () cos0” ® E(2)= 3 Edlkopexplikyg), (12
where the refraction index is
no=cky(0)/w= e @[ 1—sileg(@)].  (9) P2)= 2, Elkepxe(epexplikeg2), (19
This suggests that for an anisotropic crystal in this geometry Arryo(ky)= eg(w.k,)— € (14)
c\hz)— €Ec 1Rz cO-

the critical frequencies, where the refraction index be-
comes large and the Fresnel theory breaks down, appear latorder to determine the amplitud&s(k,,,) of the different
zeros ofe.(w) rather than at poles of the dielectric function, eigenmodes we use the most general ABC proposed by Agra-
as for an isotropic system discussed in Sécf.IEq.(1)]and  novich and Ginzburd,

Fig. 1(b).

If the dielectric functione.(w,k,) is dispersive in the P.2)+1(dP,/192)=0, z—0, (15
direction, Eq,(6) has multiple solutions fok;(w).**In the  \here the length scaleis a phenomenological parameter to
following we restrict ourselves to the simplest case of fourpe determined from the microscopic model. In systems with
(in general complexsolutions*n, and *n, for the refrac-  jnyersion symmetry we can use(w,k,) — xe(w,0)~k? for

tion indices. k,—0 and obtain
Generally, in a crystal of finite thickness, where thaul- z

tiple) back reflection from the second surface is taken into
account, all four solutionstn, , have to be considered. For > Efkp)(1+ién,)=0, ¢=ollc, (16)
simplicity, we will consider in the following mainly a semi- P
infinite crystal in the half-space>0, where only two of the in leading order insa/nf)<1 and 1fn,n,|<1. This Eq.(16)
solutions are physical. When dissipation is low, for quasimo-and the following results are confirmed microscopically for
nochromatic wave packets the direction of the energy transhe JPR in Secs. lll and IV, while in general corrections
fer is determined by the Poynting vect®rwhich is oriented involving field components parallel to the surface have to be
along the group velocityy=dw/dk (Ref. 3. considered in Eq(15). Using Egs.(3)—(6), and (16), we
derive (near the resonance
S=Wyg,
1 n{n,
1 |d(wes) _ _,  doe) K €.c0s0 N+ n,—iéngny’

167 do XX dw EE+ ByB; } . . . .
(10 We see that in the case of multiple eigenmodes in the crystal
the optical properties like the reflectivity generally cannot be
HereW is the high frequency average of the energy densityexpressed by the refraction indicag alone, which are de-
In agreement with the causality principle the group velocitytermined by the bulk dielectric functior, . via Eq.(6), but
of propagating modes in the direction,v4,= dw(k,)/dk,, also depend explicitly on the parametemtroduced by the
should therefore be positive. Note that in the case of normaboundary conditions.

(17)
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In,l~In,| In,I>>In,|
R I
R
Tl
T _
T 0 . O )

FIG. 5. ReflectivityR=1—T and ratio|r,| of the outgoing

FIG. 4. Transmission amplitudes of the wave with refraction magnetic fields at the second surface of the crystal near an extremal
index nj, into (t,) and out of ¢,) the crystal and multiple reflec- point w, with (solid line) and without(dashed spatial dispersion,
tions at the first R,) and second surfaceg (). but without dissipatiorischematically. Compared with the conven-

tional Fresnel formulas the plasma edgeRns at the higher fre-

As the wavelength\ of light is larger than all length quencyw, and the amplitude of the resonanceugt,.is damped
scales related to the atomic structure of the crystal or to thdue to¢ in Eq. (17). The amplitude~| 7p(we may| Of the outgoing
change of the polarization at the surface, we can assfime waves[cf. Eq.(23)] is strongly suppressed in the frequency region
~1/N<1. Therefore, the terréin,n, can be neglected every- whereRis minimal, e.g. where the transmissidrinto the crystal is
where except at the extremal frequencies, where Refi; ~ Maximal[Eq. (26)].
+n,)=0.

hg)in addition the amplitude of one excited mode is large,thoughé<1, as it is realized for the JPRee Eq/(64)]. We
i.e.,|n,y/>|n,| and|nyn,|>|e,|, the conventional one mode S€e thatin the absence of dissipafif},a«depends o and
Fresnel resulfEq. (8)] is obtained for the mode with small- S generally smaller than the Fresnel reSult,=1; see Fig.
estn. In Fig. 2 it can be seen that for the phonon polariton- Physically this result reflects the fact that the low group
away from the extremal frequenay, this condition is ful- ~ Velocity néarw, introduces a small length scalg=v 4/,
f|||ed and 0n|y the usua' ||ght_||ke mode remains_ Wh|Ch makeS the variation Of the p0|arlzatI(ﬂ} near the

Deviations from the usual Fresne| theory are thereforéurface relevant and indicates the breakdOWn Of the transla'
expected, when the amplitudesmf andn, are comparable tipnal invariance on the.at(_)mic scdldNote that the oppos_ite
and both modes play a role. The resonances in the transmigigns of the refraction indices; , nearw, due to causality
sivity are located in these two mode frequency regions andre essential for the dependenceTgfya, 0n £. The vanish-
we distinguish the cases théit) both excited modes are iNg of n;+n; atw, [see Eq(11)] in Eq. (17) and its conse-
propagating g, , rea) or (ii) one mode is propagating, while guences in 7%qs.(18) and (19) have not been noted
the second is decaying\{ real, n, imaginary. The appear- Previously~*"°to our knowledge. We also note that the re-
ance of such types of special frequencies, where n, sults in Eqs(198) and(19).cannot be obtained from thg ABC
——n,, andw;, and wheren,=in,, near a pole in the re- Proposed by Pekdr which neglects the derivative in Eq.
fraction index of the dispersionless one mode theory, is sche(15)_-_ ) ) o ]
matically shown in Fig. 3the index ofw; reminds of the (i) In the case, whem, is real, whilen, is imaginary
factor +i between the solutions, ). without dissipation, we anticipate that is strongly sup-

(i) For two real modes; ,we have Ref;+n,)=0 atthe Pressed, because both modes are excited by the incident
extremal pointw = w,, when causality is taken into account; 1ght, but only a single mode propagates into the crystal. This
see Eq(11). Then, if the dissipation is weak in addition, e.g., Situation occurs, e.g., in superconductors when the dispersion
Im(ny+ny)<|€nyn,|, only the termi£nyn, in Eq. (17) re-  Of the collective mode is anomalousf. Fig. 11 in Sec. IV.
mains; k(w,) is imaginary andr (we)=0. The transmissiv- T(w) is in this case peaked at critical frequencigesnear

ity T reaches its maximum at the frequeney mq,slightly ~ @c. Wheren;=—in; with n,<0. Here for the maximal
abovew,. At this frequency ’ transmission coefficient we obtain

(ny+n,) =€, 'nyny(cos 20+ %€5) 1, (18) 2Ny

Ti,max: T(wj)= €.cos0’ (20
a

— 2 2 1/2
Tema= 2 (1+ & ezcog0) >+ 1]. (19 so that T(w;)<Te max for the JPR. This difference in the
It is pointed out that both the positio@e max Of the reso-  resonance amplitude, depending whether two propagating
nance inR or T and its amplitude are determined not solely modes or one are excited, cannot be described in the one
by the imaginary part ok, . as in the dispersionless case, mode Fresnel approach without spatial dispersion, where in
but also by the surface parameter This correction is im- both cases a single propagating mode is excited and the
portant for highly anisotropic systems, whefe,>1, al- transmission amplitudes are comparable. This observation
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and the strong deviation from the conventional Fresnel result The two eigenmodes of the same polarization interfere
is confirmed below for the JPR in Sec. IV. In contrast to theinside the crystal and for the total transmissibg=|to?
situation(i) near the extremal points., the paramete¢ is  through the sample we obtain near an extremal frequency
irrelevant neamw; . We,

C. Transmission through thin film t= 2 t, rexp(in wL/c)~ 27)
We now study the transmission and back reflection of the !
multiple excited modes in a thin film of finite thickneks

see Fig. 4. For the ratio of the magnetic figigB' of a ~[1+(1-2v)cog2nwl/c)]/2,

partial wave, with the refraction index, (p=1,2) excited in (28)

the crystal to that of the incident wag', we obtain where v~(n¢/2)?. Therefore, the transmission coefficient
2(1—ién,) has an oscillatory behavior as a function of the frequemncy

P (21) and the sample thickneds due to the interference effect,
&(np—ny)(1+«) even if the back reflection into the sample is irrelevant. Near

We will see thaft,|>1 for the JPR, e.g., the fields of the the frequencywe maxmultiple reflection leads to

two partial waves are enhanced, but have opposite direction.
Note that the transmissivity follows from the ratios of the ) 1+(1—2v)cog2nwl/c)

tp=i(—1)P

z-components of the Poynting vectdi&q. (10)], and that Tior=tol *~ 1+ p2—2p cog2nwl/c) (29)
T+t +1,)%

At the second surface of a crystal the arriving wave withwith p=p;,p,;.
index n, (p=1,2) and the magnetic field amplitud’}yp The difference from conventional birefringence lies in the
creates a wave, which is emitted out of the crystal. Its wavdact that all waves have the samgolarization. This type of
vector isko, and we denote its magnetic field b¥§y,p- so-called intrinsic birefringence has also been observed in

Each waven,, also excites two waves with refraction indices Zimicgndl%lctors for chertai'n drirIeCt'ion; of propagatich Ref.
ny,, and magnetic fieldg p,B y,p» Which are reflected back and references thergjnwhile in the present case it ap-

pears for an arbitrary angle ¢bblique incidence. Alterna-
w;c\)/g;egfvrgztal The ABQEq (15)] atz=L for these three tively, the effect of spatial dispersion can be observed by the

splitting of a spatially focused incoming beam into two out-
going ones, corresponding to the two different group veloci-

ref _ ref _
(1+i gnp)Ez pt (1= Iénl)E pr (1 |§n2)EZ p2=0, ties in the crystalangle between rays 0.001° for the JPR

(22

whereE, , and Erefp, are electric field components at the D. General remarks

second surface @=L of the arriving and back-reflected Some additional remarks to the macroscopic approach are
waves, respectively. We find, in leading orderén(p—S in place.

—P), (1) It is pointed out that even if the last term¢ in the
denominator in Eq(17) can be neglected for frequencies far

7= 2Nnp(N1+ 1) , (23)  from the band edge near, . or due to dominant dissipa-
(N1+N2) €,C0S0+ €2+ NNy tion, the interplay of the two modes with indices , can
(N1+1,) €,0086(Ny—Ny)+ €,—Nyn lead to unconventional effects, like intrinsjc .birefringence
poo=(—1) 1772 %a z UV ta 12 [Eq. (28)] or the suppression of the transmission neain
PP (N2—Ny) €,C080(Ny+Ny)+ €5+ N3N, comparison with the Fresnel resiiEq. (20)]. Only in the
(24 Jimits |n,|>|n,| and|nyn,|>|e,| does the smallest refrac-

(—1)P2n (n —e) tion index determine_rc,_ o and p,,, and the usual one-
o p a (25) mode Fresnel descrlptlon is recovereo_l. _ _

PP (n,—nq)(e,c080(Ny+ny) +e,+NNy) (2) Thereby the existence of a pole in the effective dielec-
tric function in the one-mode Fresnel approach is an indica-
tion of the existence of a special poiat, or w;; see Fig. 3
and the microcopic confirmation in Secs. IV and V. However,
2n, we point out that without further investigation of the spatial
(26)  dispersion or the atomic structure these two cases cannot be

distinguished.The guiding picture in Fig. 3 and the micro-
is strongly suppressed in comparison with the conventionascopic results for the JPR in oblique incidence in Secs. Il
Fresnel resulfcf. Fig. 5. At the same pointv, maxthe back and IV and for phonon polaritofts suggest that special
scattering takes place almost completely into the same eigepoints of typew, (w;) appear, if light is mixed with a crystal
mode,  pi~—pp~—1+0(Nn/ey) and  pip=py1  mode of oppositésame dispersion. This is seen in Fig. 11,
~1/[ e4écos6]<1, while atw= w, We obtain|p,,|>p1p,;  Where the mixing of the plasma band in the lowappe)
in the presence of spatial dispersion. band with normal(anomalous dispersion with decaying

At the frequencywe max, Where the transmissivity into the
crystal is maximal, the transmission

To(w =
p(©emax €,C0S6
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light creates a special point of typ&, (w;). In Sec. V it is In the phenomenon of electromagnetically induced trans-
shown that special frequencies, wheren§=—n§, can ap- parency(EIT), which has recently been used to create ul-
pear near the pole of the effective dielectric function eventraslow light#° atomic levels are pumped optically in such a
without k dependence due to the discrete atomic structurguay that the medium exhibits a sharp absorption line in
within the unit cell. _ _ Im[ e(w)] near a resonance frequenay, for propagating

(3) It is stressed that the Kramers-Kronig relations ex-jight, According to the Kramers-Kronig relation the fre-
pressing causalityand sum rules following from theyrare g ency dispersionin/dw of the real part ofe is therefore
ot e e ot o e e e age, wich suppresses he gfoup veloiy n
function e..— k2 extracted fromR. but do not aoplv to the The spatial dispersiom(k) is discussed here as a different

1 Eeff = K Y . pply 46 tool to stop light, although a finite drift velocity of @as-
refraction indices, of the partial waves independentl§® . : Y
P eous medium has been interpreted in this vAy.

(4) We note that beyond the universal electrodynamic ef This effect miaht b dt i tain oh
fects studied above there might also be the necessity that the IS efiect mig € used lo realize cerlain phenomena

ABC's reflect the change of the internal structure of the crysconnected with ultraslow light in a solid, such as the optical
tal excitations near the surface. This problem has been studf:haronov-Bohm effect in rotating medaor the enhanced
ied in detail for the Frenkel exciton, which is quite extendedtWo-photon interaction via a phonon motewhich has pos-
on the atomic scale and whose wave function is consequentfible applications in quantum information processing. Apart
modified near the surface; see Refs. 2,3, and 5-8, and refdfom this, the variation of the band structure and thys(r)
ences therein. Due to the focus on the microscopic derivatiofn scales, which are large compared with the wavelength
of the exciton modes and despite a considerable effort, sonef light, allows one to manipulate the geometrical optics of
of the crucial general features discussed here have bedight in a solid in a rather simple way, e.g., via a space
missed for that system, namely the correct causal choice afependent external magnetic field for the JPR or pressure for
the eigenmodes in a semi-infinite crystal near the extremgbhonon modes. Similar features have been proposed recently
points, e.gn;+n,~0 for v~ w,; see Refs. 3, and 5-7.  for creating artificially local space-time geometries, which
In the case of the JPR the effect of the surface on there reminiscent of cosmological phenomena, such as black
internal structure of.excitations turns out to be very weakholes: e.g., in superfluidHe,>* inhomogeneously pumped
becayse the excitations are ponfmgd between layers on thgedia with EIT* flowing dielectrics’? or solids® In par-
atomic scale and in highly anisotropic layered superconductjcylar, it is possible to create a space dependent group ve-
ors the layers near the surface are practically the same g,

- c ; city profile for a given frequency, whergy, vanishes on
those inside the crystal. Therefore, and because we diSCUs§me manifold in space. At this point the behavior of light is

this system only asa generic example for general eIecmdyéxpected to be similar to the one near an event horizon of a
namic features which are relevant for a large class of SYShiack hole: see Ref. 42

tems, we will not address this question in the following and From an application point of view, the modification of the

eiSlerr;% (z’a; (Z(:E(ezlgctrlc response  functiorec(z,z") band structure with the help of an external parameter opens
B (5) The dise ersion. and the aroun velocity of ohonon o_the perspective to store light pulses dynamically. Thereby in
P group y ol p PO an ideal crystal the phase information of the light pulse or the

laritons has been meafsured d?rectly by exciting locally ingle photon is stored coherently, which makes the device
wave packet and detecting the time of propagation to a Sep?)_otentially useful in quantum infor;nation processfidghe

rated probe position in the crystd|Future experiments of limiting factor is clearly the decoherence due to disorder or

grlsso tgﬁswwtm Zggterﬁi(e)lL(j)t;Oer;tizznlglngegjgﬁggt\?viecr?auId dissipation induced by a finite conductivity. For the JPR in
the group velocitys,., vanishes at a finite wave vector, as Bi,Sr,CaCyOg the intrinsic decay time due to Ohmic losses
shown in Fig, 2 9z ' % is estimated as~ 10 8 s~ 10° 7., While the oscillation fre-
. . . 712 . . .
(6) We now comment on the perspectives to stop Iightqu.ency.TOSC .10 _sisin the THz reglme..AIt'hough an
using spatial dispersion at extremal frequencies (cf. Fig adiabatic swﬁchm_g of the external magnetlt_: fleld_ appears
' ' . _nhecessary, a certain number of quantum manipulations seems

5)332%(&??%?&%; n;?;?c?: gg':ﬂ;k:j?e?;grr?calznlscggﬁg, Whichy be possible. While in metals or semiconductors the deco-
q P i herence will be prohibitively high, defect free insulators

The effect of the frequency and/or spatial dispersion c?r}night be much better than this estimate. On the other hand, a

th? group veloqity ha; alrea(jy been discussed as a guidlnsgblid state realization of a memory unit for a quantum com-
principle for an isotropic medium; see Hg). In the scatter- puter has obvious advantages in terms of scalability to de-

ing problem depicted in Fig. (&) the componenk, of the . vices of higher complexity in comparison with EIT based
wave vector and the group velocity parallel to the layers IS stems
fixed by the boundary condition. The signal velocity, in y )

he 7 di ion in th . . = e iy (7) While on the one hand the above results are applicable
the z direction in the anisotropic casei{= Ve, 7 Nc= V) to a wide variety of systems, strictly speaking the use of the
follows from Eq.(6):

ABC [Eq. (15)] can only be justified in a microscopic model,

dlnng\  dlnng where also the parametérhas to be determined. This will
nﬁkﬁ( 1- )— n2k2 be accomplished in the following for the JPR, because there
do o dlnk,) dlnk, ; e
Vgr=m = . (30)  the problem can be formulated as a set of linear finite differ
dk, Kk, , 5 dlnng) dlnne ence equations and therefore a complete solution for all wave
n2k? 1+ 2|+ S —Cn2k2 !
dlnw dlnw vectors can be obtained.
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Thereby it turns out that the optical properties of crystalsthe 2D charge densitigs,,, which in turn are related to the
with several atoms in the unit cell cannot be described by thelectric fieldsE,(z=ms*=0) near the layers by the Poisson

function e;(w,k;) alone. Then the above macroscopic ap-equation, 4rp,/€.0=E,(ms+0)—E,(ms—0). Further,»?

proach based on the slowly varying polarizatiéh(k),
which is reflected in the ABGEq. (15)], breaks down for

both oblique incidence and incidence parallel to the layer

see below in Secs. IV and V.

Ill. MICROSCOPIC APPROACH FOR JPR IN CRYSTALS
WITH IDENTICAL JUNCTIONS

A. General equations

= w?(1-i4molwie) * contains the dissipation due to
quasiparticle tunneling currentd{9?), =0V me /€S,

Swhich are determined by the conductivity. and driven by

the differencev,, 4 1 of theelectrochemicapotentials. Note
that the assumption in Ref. 30 that the quasiparticle current is
driven by the averaged electric fielft), ,, m41 iS an inconsis-
tent treatment of the dissipatidf.

For 2D free electrons we obtaitu/dp=wh?/(em,) and
we can estimate the order @f=(e.q/4mes)(duldp) as

Considering a stack of identical Josephson junctions, we_q 3g assuming=6.3 A and e,o=20. This agrees well

label the layers by the indenx, the interlayer spacing sand

the intrinsic Josephson junctions are characterized by thﬁound SmLa_Sr,CuO,
XX -

with a~0.4, which was extracted in the one-layer com-
from the magnetic field depen-

critical current densityly. Thus the plasma frequency at zero yance of the plasma peaks in the loss function in parallel

wave vector is given as

8mcs),  c?

€c0Po )\geco

2 _
Weo™

: (31

where @, is the flux quantum and. is the penetration

length along thes axis1°*?

incidence both in thépancake vortex liquic®® and the solid
phase* The apparent free electron value of the electronic
compressibility of the Cu@layers is not in a contradiction
to the slightly enhanced effective mas® seen in angle-
resolved photo emission spectroscopy measuremerss,
both quantities are renormalized differently by interactions.
For systems with Cu©multilayers smaller values for the

In order to determine the transmissivity in the micro- compressibility are anticipated due the enhanced density of
scopic approach, we solve the Maxwell equations inside thgtates, effective mass*, lattice constans and the smaller

crystal by accounting for supercurrents inside the tWOhackground dielectric constaagy, namely,a~0.05-0.1 for
dimensional(2D) layers atz=ms and interlayer Josephson gj.2212 or TI-2212(assuminge,~10 andd~12 A), but
and quasiparticle currents, which are driven by the differencey;g quantity can only be extracted reliably from experiment.
Vim,m+1 Of the electrochemical potentials in neighboring lay- The modification of the dispersion due to nonequilibrium

ers:

JB wly &
c—L =ien0| By —= > E,s8(z—m9) |, (32
0z wz m=0
JE, . LW (m+1)s  dz
E_”(sz:'EBya Ezmm+1= Jms Ez?v
(33
N
Ckay: _wfco{ E,— mE:O mem(z)} (34
w’es
w2 Pn=Vmm+1=€SEmm+1t MAm+1~ Mm- (39
c0

Therebyw, o=C/\ 5V €5 IS the in-plane plasma frequency,

effects is not considered in the following, e.g. it is assumed
that all frequencies are smaller than the charge imbalance
and energy relaxation raté%32-°¢

B. Dispersion relation

We now obtain the dispersion relation for eigenmodes in-
side the bulk crystal. To start with, we assume an infinite
number of junctions, we average E¢32)—(35) between the
layersmandm+ 1 and neglect the discrete layered structure,
when treating the derivatives with respectzan the Egs.
(32 and (33), i.e., we replaceE,(z=ms) by Eymm+1
=4z, and By (z=m9 by  Bym-1m
=f§m)_51)sdsz. Using the Fourier representation with re-
spect to the discrete variabie this gives Eq.(6) with

€40 is the high frequency in-plane dielectric constant, and the

function f is defined asf,,(z2)=1 at ms<z<(m+1)s and
zero outside this interval. It is seen from E®4) that the
discrete quantity?,= (1/s) f " 1P ,(z)dz plays the role of
the z-axis polarizationP,(z) averaged between the layars

€c(©,q) = €col 1— w3(q)/ 2], (36)
03(q) = wZ[1+2a(1—cosq)],
€a( ®) = €a0(1— wlol 0?) (37)

and m+1, as it describes the response of the Josephsowhere 0<q<2w and w?(q) describes the dispersion of the

plasma oscillations to the electric field in junctiom For

plasma mode propagating along theaxis. Using Eq.(6)

small amplitude oscillations the supercurrent density is giverwith k§=2(1— cosq)/s?, which reflects the existence of an

by the phase differencegmm+i=2i€Vymi1/ho as
S,
Eqg.

(34). The difference pum— um+1=(47sal€ec0)(pm

upper edge of the plasma band, we obtain the dispersion of

1= 30SIN @mm+ 1~Jo@mm+1, Which was used to derive eigenmodes propagating inside the crystal in an arbitrary di-

rection. Due taw?e,(w)~ —c?/\2, at o~ wg<w,q We ob-

—pm+1), Of the chemical potentialg,,, can be expressed by tain, in the absence of dissipationr{=0)
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2 21,2 : \%% —
&;'q)zlnt 5 )\Czkx +2a(1—cosq). o0
®go 1+ (2\3y/s%)(1—cosq) s
(39 Photoh
The first term on the right hand side of E88) is due to the P
inductive coupling of the in-plane currents excited by the
component, of the electric field. The second term reflects b frreeeeesrr e Plasma
the c-axis dispersion due to the charge coupling of the intrin- i
sic junctions, which is mediated by variations of the electro- i
chemical potential on the layers. Fer=0 this dispersion of B2 0 1 sin’(q/2)
the plasma mode has already been calculated in Ref. 11.
For the geometry shown in Fig(d we can expres&, i w o>0
= w sind/c via the frequencyw and the angle of the inci- \
dent wave and obtain the dispersion relation for the eigen- ; 1+40
modes, which are excited by external electromagnetic waves: Photon ) Plasma
w? (a—1)p R band
w= oL =1+2a(l-cosq)+ B+1-cosq’ (39 ; 1
Here3=s?/(2\2,a)~ 10 * describes the inductive coupling
anda~'=1-c?k?/(w?ey) = 1—sirfley. To include dissi- 812 0 U i)
pation, one has to replace andw= w?/ w2, by ® andw in b
Egs.(38) and (39). FIG. 6. Schematic picture of the dispersion relatiom,
In Fig. 6 we plot schematically the dispersion  =w%w?, depending onv?=sir’(q/2) (solid line) [Eq. (39)] for

= w’wfy versusv?=sir’(g/2). Thereby,v is a normalized ~@=0 (abové anda#0 (below. 0<»?<1 corresponds to propa-
form of the refraction index = (2¢/ws) v and can be used to 9ating solutions with read, while outside this intervad is complex

present both propagatingj (real 12 e [0,1]) and decaying and the modes decay. It is seen that the mixing of a decaying elec-
(Im(q) £ 0 e [0,1]) modes. ' ' tromagnetic wavédashed line at?= — B8/2) with the plasma band

In the absence of charge coupling=0, the eigenmode, with normgl dispersiorr # 0 (dashedlleads to an ex_tremgl poimt,

which is excited in oblique incidenca(6) # 1), has anoma- 2nd @ regionwe<w=a(f), where two propagating eigenmodes

. . ) . . with normal and anomalous dispersions exist.
lous dispersiongw(v)/dv<0; cf. Fig. 6 above. It is seen
that ata=0 the widtha—1 of the transmission window
e[1a], where modes can propagate into the crystal, aréhe eigenmode are not polarized parallel or perpendicular to
determined by the extremal values at gi@j=0 and the wave vector, i.e., the eigenmodes are neither purely trans-
sin@2)=1. verse nor longitudinal.

For normal incidenced=0 (<a=1) the longitudinal From Fig. 6 it is clear that the mixing of these two de-
plasma mode withe#0 is decoupled from the transverse grees of freedom aa#1 and nonzerox can lead to the
electromagnetic wave as shown by the dashed lines in Fig. @xistence of an extremal point., where the character of the
because the electromagnetic wave does not ha&,@om-  dispersion changes and the group velocity vanishes. This
ponent which excites plasma oscillations between the layersiappens atv,=1+u, provided thata>(a—1)A/8 and the
In this_ case the wave _vec_tor of the pure .eIeCtromagneti‘aissipation is weak, i.e., Inm;) <Re(n,) or equivalentlyo
wave inside the crystal is given by the relation &osq+ 3 ) ~ P 57 ~
=0, i.e., the electromagnetic wave decays on the scale ~ 47c/@co€co<U. We estimater—u in Bi-2212," o>u
due to the screening in the conducting layers. On the othdP SMLa -« SKCUQ, 5, or other cuprates witll-wave
hand, the wave vector of the propagating longitudinal plasm&rder parameter. Layereswave superconductors with the
mode,q, is given by the relatiom=1+2a(1—cosq), and it ~ JPR frequency in the optical interval would be perfect can-
is real in the frequency intervabgy=<w<=wq(1+4a)"2 didates to study the effects of spatial dispersion, because
The pure plasma mode has a normal dispersiafr)/dy  their quasiparticle conductivity is very low at low tempera-
=0. tures (such systems are possibly realized in organic

As a>1 (< 6+0) is close to unity for any anglé and  superconductot$ or intercalated LaSe(Nbge™® which has
€.0~10, the parameteB=s?/2ar2,~10 %<1 is smalland ~ a large anisotropB; ap/Bcoc~50-130 and is therefore ex-
the two modes mix only when the second and third term irpected to be a Josephson coupled sy$tem
Eq. (39) are approximately equal. This happens at small In coincidence with the general picture presented in Fig. 3
=sirf(¢/2)~u/8«, where the small scala is given asu the extremal pointw, appears near the plasma frequency
=[8(a—1)Ba]*? (u~10"2 for cuprates For any angle9 ~ (w=1), where the wave vector in the direction in the
#0 the modes inside the crystal are a mixture of the longi-dispersionless theory becomes large; see Ra). Bhis point
tudinal plasma oscillation and the transverse electromagnetimorresponds to a zero in the dielectric functief(w), as
waves. As a consequence, the electric and magnetic fields ekpected from the one mode Fresnel theory; cf. @j.
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FIG. 7. Real part of; (above and v, (below) as a function of 0.06 r
the normalized squared frequenasyw, near the plasma resonance _
for different @ [o=4maleqwe,=0.26, B=10"% and a(0) <
=1.1]. Forw,<w<a causality requires that Re{)>0 (Re(v,) = 004
<0) for the solutions with nhormalanomaloug dispersion. In the
interval 1-u<w<w, we have, in particular, Ref)~ —Re(v,),
e.g., standing waves due to interferencerpfindv,; see Eqs(43) 0.02
and (44).
In the general case of nonzero dissipation E3f) has 0 ‘ S
four complex solutions fow, , at givenw= w? w2 0.985 0.995 w 1.005 1.015
Vi fw)=(W—1-2ap)/Bax[(W—1-2ap)? FIG. 8. Imaginary part ofv,, for different values ofa (o
_ " =0.26, 8=10"4, anda=1.1). In the region + u<w<w, below
+8ap(w—a)]"78a. (40)  the plasma band, we have Im{~Im(v,).

Near the lower band edgevt-we) this simplifies to <1 and because of this it affects strongly the optical proper-

5 ~ \/.,722 ties, which are sensitive to large length scales. Outside of the
vidw)=[w-1£V(w-1)"~u]/8a. (41 interval[w,,1+ 4a] both dp(w) are imaginary.
Therefore, we obtain While in the absence of dissipation within the plasma

bandw,<w<1+4« at least one of the eigenmodes propa-
; i2
N?=|nyN,| =\ 2eou/2as?~ N2/(S\ 4p)>1 (420  gates into the crystal, fov<1 we obtainvi,<0 and the

modesq; andq, decay rapidly on the scalegas and X\,
in the case of the JPR. respectively.

As discussed in Sec. Il A, in a semi-infinite crystal only  |n the intermediate regime,-lu<w<w,, we have
those modes are physical, which decay inside the crystal, i.e.,

Im(»)>0; see Fig. 8. For propagating modes this implies Re(qy) = — Re(q) =[(u+w—1)/4a]"?, (43
that the group velocity obeys causality,,>0, and Re{;) "
>0 (Re(r,)<0) for branches with normaanomalousdis- Im(qy) =Im(gz) =[(u—w+1)/4a]™, (44)

persion; see Fig. 7. and the real and imaginary parts of the wave vegtare of
We first discuss the limiting case with vanishing dissipa- ginary p o

. 4 o “"the same ordex/u (cf. Figs. 7 and 8 Therefore, they pen-
:Ir?;r (g;_(;r?glr]t\ig“er?mtzg isr?lm('?:; 'ri]:;c:; t:re crrg/s;ala?irne " etrate deep into the crystal and form standing waves, which
modesF()q real F)gr :g V\?g obta?n = Dro apafi)ng mo%e decay and oscillate on the scdl@\ ,,s\ec0a/sind]*2 In

i « propagating fact, they are intermediate between modeswatl—u,

with real g in the frequency rangetw=a (cf. the disper- . )
sion in Fig. 6, and exactly in this interval the reflection V;’C:/T\Isecay much faster, and propagating modes-ad &
o

coefficientR< 1. For finitea# 0 two physical solutions with
real g exist in the intervalw,=1+u<w=a provided that ) o
a>(a—1)p/8. In the rang@<w=1+4a one wave vector C. Eigenmodes of a semi-infinite crystal

q, is real, while the otheii|q,|, is imaginary. The important The averaged Maxwell equatiof3)—(5) are sufficient to
point is that this evanescent solution has smal|<28  determine the bulk dispersion relatifiaq. (6)] of the excited
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eigenmodes and to identify possible critical frequencigs

or w;, where the amplitudes of the excited modes equal. At
these points the group velocity is expected to be low and the

The solution inside the crystal has the form

microscopic layered structure has to be considered more ac- Cm:p;z YpeXpligpm), (52
curately in order to describe optical properties.
For this purpose we solve the electrodynamic equations _
between the layersn and m+1 by using Eqs(32)—(35), dn= Z Ypd(gp)expig,m), (53
namely, the equation p=12
B 9’B . €20 112 _ .
g 2&7;'+By=asm0Pm, 9=1 % (45) Pm p:Z:L,Z vpP(dp)expliq,m), (54)
Physically Eq.(45) describes the excitation of a propagating 1— p2exp(—iq)
intrajunction mode with the polarization of the electric field d)=—F——"—"—, (55)
in the x direction. Thus ams<z=(m+ 1)s the solutions for 7= exp(—iq)
the fields are
B 1+d(q)
B,(2)=Crexpigz) + Dyexp —igz) +asin 6Py, PO = 2= 2a(l—cosy)’ (56)

Ex(z):(ana)illz[cmexixigz)_Dmqu_igZ)]:

E,(z)=(sin6/e.0)[Crexpigz) + D exp —igz)]+aP,.

(46)

The continuity relations
E,(z=ms+0)=E,(z=ms—0), (47)
By(z=ms+0)=By(z=ms—0)+4nsJ, , (48)

for the fieldsB, andE, at layerm follow directly from the
Maxwell equations with a parallel current 7d,

=iw§Ex(z=ms)/w. Together with Eqs(46) this leads to
the following set of equations forc,,=Cexdigd(m

+1/2)]sin /ey and d,=D exd —igd(m+1/2)]sin ey in-

side the crystal l—2=m=1, N is the number of junc-
tions):

Cmnil_dmn_cm—ln+dm—17771:01 (49
Z(Cmnil_cmflﬂ)"'(a_ (Pyn—Pm-1)
+i(B/b)(cmy~t=dmn)=0, (50
Pm(vv_a)+a(Pm+1+ Pn-1—2Pn)
=(sin(b)/b)(1-2apB)(Cn+dy), (51

where n=exp(b) and the small parametdr=gs/2~s/\,

~10 °<1 characterizes the discreteness of the crystal struc-

ture. We will assume in the following tha,b< /3 andq
~BY2~2/\,,, as it is fulfilled for highly anisotropic X,

whereq,(w) are the wave vectors of the eigenmodes for a
given frequency as determined by Eg0), and y, denote
the relative amplitude of the excited modes, which is to be
determined next.

Neglecting the layered structure, e.p5-s/\.—0 and
n—1, we obtainc,,=d,,=1. In this case we can relate the
variablesc,,, d,,, and P, with the electric and magnetic
fields averaged between the layers, iB,m m+1%Cntdm,
andE; , m+1 is mainly determined by the polarizatidy, .

D. Microscopic boundary condition

Now we find the ratio of the amplitudes andy, micro-
scopically by solving the electrodynamics of the surface
junctions explicitly rather than using any phenomenological
ABC. The equations for the first superconducting layer (
=0), which are complementary to Eqg.9)—(51), read

sin¢ in ref

Cotdo+(a—1)Po=—-(By+By), (57)

€co

Com t—dgn sin26 .
— Bln_Bref' 58
a 2Eco( y —By) (58)

Po(W—a)+ a(P;—Po—aPy) — (1+ a)(co+dg)

= asing(By+ B! (59)

Here B and B'®' are the magnetic fields for incident and
reflected light, respectively. We omitted in these equations

>\,p) layered superconductors, e.g., Bi- or Tl-based cuterms proportional tg/sin(g/2) andb/sin(@/2), which are of

prates. In our calculations we will keep only the terms oforder 5%~ e, /n3~(s/\,p)¥?<1

lowest order in the small parametefs and b. Equations
(49—(51) give the dispersion relatiofEq. (39)] with high

and b/pY4~1/n?
~s)\ab/)\§<1 in comparison with remaining terms of order
unity. After eliminating the fieldsBy' and B{,ef from Egs.

accuraciesb? and aB. This difference between the exact (57)—(59) we obtain in lowest order it and B the micro-
result following from Egs.(49) to (51) and the averaged scopic boundary condition

dispersion[cf. Egs.(36)] can be understood explicitly from

Egs. (46): the replacement ofE,(ms) by the averaged Po(W—a)+ a(Py—2Pg) — a(ex+ 1)[Co+do+ (a—1)Py]
Ex mm+1 IS correct in orde, i.e. when neglecting the dis-
crete layered structure within the unit cell.
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We can present this condition in a more transparent form by
calculating the difference between E§1) for m=0, where 0.06 | }
P_, (outside the crystalis formally given by Eq.(54) for i
m=—1, and the real equation fd?, [Eq. (60)]. We also i
take into account that in the lowest order ghand b we .’
obtain the relatiorc,+ dy+aPy~ P, nearw, with an accu- 0.04 |

which has the simple interpretation that the surface junction

(m=0) has only one neighboring junction, i.e., the junction 0 :
m=—1 is absent. This result is a microscopic derivation of 0.975 1 1.025 1.05

racy BY%~(e,/n3)?*<1 using Egs.(55) and (56). This £
gives the boundary condition ;
_ 0.02 | !

Prme—1= p;l | 7oP(dp)exp(—ig) =0, (61) ]

the ABC[Eq. (15)] by noting thatP,, is the average macro- W
scopic polarizatiorP,(z) between neighboring layers, i.e., FIG. 9. The dependence of the real and imaginary parteof
1 ro = k(coshe,él2) on w=w? w?, for e=5x10"* and a=0.001.
pil:_f P,(z)~P,(z=0)—sd,P,(z=0). (62 The line shape ok is asymmetric with a sharp edge at the ex-
SJ)-1 tremal frequencyw,=1+u~1 and the upper edge at=a(0)

Taking into account that the deviation & from unity is =1.05, which is determined by the angfeof incidence.

S|gn|f|cant only whedzq,?|<1, we expanq Eq61) in g, by <a, where both modeg,; and v, are real and propagating
usingP(q) — P(0)~q- (in leading order irb) from Eq.(56) o o
and obtain Eq(16) with 1= —s: and the transmissioil into the crystal is significant. The
q ' window of transmissiow, ma~We=w=a is therefore only
determined bya(6), and not by the bandwidth-«. The
> yp(l—igp)= 2 yp(1+iény,)=0. (63  width of the peak ink and T Nearw payassuming a 10%
p=12 p=12 criterion is of the order 100
Note that this result and consequently also the expression for In the intervala<w<1+4a, wherev,~ip"? becomes
x [Eq. (17)], is only valid in leading order irta/nf,~ﬂ3’4 imaginary and small while, is real,« is a complex number
(even foro,=0) with a real part proportional tov2|. In

<1.
With this identification of the parametéwe can estimate contrast to the standard Fresnel expressions, this makes
transmission possible, but it is weak, of the orbebecause
Enino|~Ne/Nap> E€a~Sh/N2>1 (64) only a small part of the incident light transforms into a

o _ propagating mode. Therefore, deviationsRofrom unity are
at w=w, in Bi- and Tl-based layered superconductors. Thisjgnificant only in the frequency range.~1<w<a, as in
shows that when the anisotropy/ 4y is large enough, the  he system without dispersion.

atomic structure modifies strongly the transmission; cf. Egs. |t the dissipation is very weak,

(18) and(19). Here we also justify the relations discussed in

Sec. Il, IM(Ny+Ny) < £nynys o<u?, (66)

¢ the nonuniversal term characterized by the paramétar
(Shzp) 12’ (65) Eq. (17) is important. Then according to E¢L8) the maxi-
a ; _ 32 :
mum of T is reached awg ma=We+U"7 y8a. The ampli-
which allows us to neglect the atomic structure away from aude
small frequency interval of width-u'? aroundw,. Due to
Inq|>|n,| (cf. Fig. 7) and|nin,|e, *~X\4p/s>1 away from . 2 -
we OF w; the usual one-mode Fresnel theory is valid every- e,max— 2 212
where, except near the resonancesat. [1+(ShcCosOl(Vecohap)) ] 1

A¢
ényn,|~—<n;+n,~
)\ab

is smaller than unity and it depends on the microscopic struc-
E. Transmission coefficient ture via the factos\ .\/eco/ A2, which may be of order unity

As a consequence, we reproduce in our microscopid? cuprates Iike_‘l;l-2212 With ¢/ 45~ 100 and the JPR fre-
theory the Eq(17) for « and therefore the transmission and duéncy~20 cm . This effect can be seen in Fig. 1@ft):
reflection coefficientd, 7,, andp,, [Egs.(19) and(23—  Without dispersion, i.e.o0>u(a)? for a=10"%, the peak
(25)]. The real and imaginary parts af= €2, are shown in  amplitude is limited by the small dissipatioa, only, while
Fig. 9 and have a characteristic shape with a sha@ edge fdr «=0.1 (c<u?) the peak atwe max is dampedaddition-
the extremal pointw,, provided that the dissipationr is  ally due to the termiénqn, in Eq. (17), as discussed above.
small. The real part is dominant only in the interwal<w  Physically this can be understood from the fact that the van-
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FIG. 11. Schematic picture of the dispersiow(v?)

FIG. 10. Transmissioil depending 0rW/We near the JPR fre- :wZ( V)/wgo,l for two a|ternating junctions ((c: 0) The disper-
quency for conductivitiess=10"7 (left) or o=0.01 (right) for sion of the plasma mode a=0 (dashed ling i.e., when it is
variousa (8=10%, a=1.1, andée,cosg=2). For low dissipation  decoupled from the electromagnetic wave, is normal in the lower
o<u? (left) the resonance is additionally damped duextin the ~ band. Its mixing with a decaying electromagnetic waas shown
region neaw,, where the Fresnel approach is invalid. by the dashed, vertical line at negativé=sin’(q/2)~—2p) re-

sults in two propagating moddsolid) near the lower band edge
ishing group velocity leads to a slow motion of the wave-w,. This frequency forms an extremal point with vanishing group
packet and hence makes the transmission sensitive to thvelocity as in the one band caés. Fig. 6 below. The anomalous
inhomogeneous layered structure of the system, i.e. the trandispersion in the uncoupled upper band gives rise to one propagat-
lational invariance of the system is broken. ing and one decaying mode and a special point where

On the other hand, high dissipatiars>u overshadows 91~ ~id2- The band edgesi,, are defined in Appendix A.
the effect of spatial dispersion completéRig. 10, righ}. In . o B N
this case the result near the lower edge of the transmission For perpendicular incidena=1 (9=0) the longitudinal
window is almost the same as in the dispersionless model,P!aSma mode is decoupled from the transverse electromag-
netic wave, as the incident electric field has no component

4w)\321bkz O\ap ( ~)1/2 perpendicular to the layers. In this case the loviigope)

a—w
T 4x(W=1)= i — plasma bands have a norm@nomalous c-axis dispersion
ccost  coshya \w—1 (dashed lines in Fig. 21due to the charge coupling.

and is mainly determined by, . lRe(\/lz’Z)

IV. CRYSTAL WITH ALTERNATING JOSEPHSON
JUNCTIONS

For the geometry in Fig.(d) we consider the crystal with
two alternating Josephson junctiohs 1,2 characterized by
different critical current densitiedy, and two bare plasma ] [---t--t----f------mmzmmmnnoe-
frequencieswqg; and weg, related toJy, and Jg, as de-
scribed by Eg.(31). We denote w=w?w?; and &
= wly/wZ,<1. In the view of recent experimerit$we
also allow for differentc-axis conductivitieso (I=1,2),
which are expected to vary according to the different tunnel
matrix elements in the junctionsr,/o,= w2 /0l ,, as

found for La,_,Sr,Cu0,,*® and which are assumed to be 0 Yo 4 —
frequency independent in  the following o P P i W
=470 leqweo ). All other parameters of the junctions are A | |

assumed to be identical. We W, Wfé%v wl(li)) W, wl(;g

The equations inside the crystal are analogous to Egs.
(49—(51) and the details of their solution are given in Ap-  FIG. 12. Schematic dependence of the squared refraction indices
pendix A. Here we summarize the main features on the basig? (solid) and »3 (dashed on the squared frequenay= w?/ w2, ,
of the schematic dispersiom| v*=sir?(g/2)] in Fig. 11 and  for two alternating junctionsd,— 0) with the peak positionwe:i
the squared refraction indiceg (w) in Fig. 12. and the band edges(,,),,, as defined in Appendix A.
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0.001

scopic treatment, where the spatially averageds intro-
duced in Eq.(9). The regularization of the poles igy is
seen by comparing the behavior of Rg(~Re(kZ,) for
#0 (Fig. 12 and of Reg.y) ~ k2 for a=0 (Fig. 13 nearw,
andw; with the schematic picture in Fig. 3.

In Sec. V it will be shown that a situation, where a second
mode contributes in a similar way as near the paiptn the
upper band, can also develop from a pole in the dispersion-
less dielectric function without explicit spatial dispersion,
e.g., fora=0, due to the intrinsic atomic structure within the
unit cell; see Fig. 16. Also like in the single junction case, the
transmission into the crystal in the lower band is only sig-
‘ . . nificant, if both excited modes are propagating into the crys-
5 1.5 25 35 tal. Consequently, the width of the resonanag,,~w,

w —We (Ay~w))—w;) in transmissionT(w) in the lower

FIG. 13. The real part of the effective dielectric functiegy (uppe) band are considerqbly smaller tha+n the band Wjdth of
=« without explicit dispersion §=0, 6=wZ, J0%,~0.3, a the allowed eigenmodes in the crystal,) —w, or wi,’
=1.1, B=10"*, ando;=0). In this limit the dielectric function is _WEIB) respectively; see Fig. 12.
directly related to the refraction index and the wave vector of the As derived in Appendix A the additional boundary condi-
single excited modes.qn3ock? ; see Eqs(8) and(9). The poles at  tion near the special points, and w; is analogous to the
the lower band edges, where the averaged)=0 [cf. Eq.(2)]  Ccase of identical junctionfEq. (61)], and reflects the fact
vanishes, indicate the appearance of the special paingsdw; in ~ that on the surface one neighboring junction is missing. In
the two mode theory; cf. Fig. 12 for the corresponding case leading order of3¥4~e,/n? andb/p**~1/n? we obtain
#0, and Fig. 3 for the general picture.

Re(e,q)

-0.001
0

In contrast to this, fom>1 the frequencyn(q) increases Pm=-12= pzzl ) YpPa(dp)exp(—iqp) =0. (70

asq—0 due to the inductive coupling in both ban@wlid
lines in Fig. 11. For the lower band this can lead for suffi- Therepy Pm—_12=/"P,dz is the average of thé=2
ciently largea to an extremal poiniv, at the lower band  componen,, of the macroscopic polarization vector in the
edge as in the case of identical layers, whéve 0y =0) tWo  yjssing junction in the celn=—1, [P4(q),P,(q)] denotes
modes with rea exist, while near the upper band edgf,)  the eigenvector of the excited mode ang describes the
one mode propagates and the other decays. In the upper bapdative amplitude of the excited modes=1,2; see Eq.
there is one real solution and one imaginary solution every¢a13). This microscopic result gives am posteriori justifi-
where in the band due to the anomalous dispersion, and agation of the phenomenological ABC in E@.5) for the mul-
COI’ding to Eq(ZO) in Sec. Il the maximal transmission is at timode case, where the |ength scake —2s is identified
w;, whereq?=—q3. with the lattice constant in the direction. This shows in
All special frequencies mentioned in Figs. 11 and 12 argarticular that the macroscopic approach is possible, if and
explicitly expressed by microscopic parameters in Appendixonly if different components of the local polarizatid®,, and
A. For the frequenciesve,; of the resonance maxima we p, inside the unit cell are introduced. ExpandiRg(q)

obtain approximately :=P,(q)exp(iq)~P,(0)(1—ig/2) with the help of Eq.
_ 5 5 (A13), P,(q)=~P,(0)(1+iq), and taking into account the
We,i~(1+0)(1+2a)/26+[(1+0)%(1+2a) doubled unit cell inq=2sk,, we obtain Eq.(16) with the

_ + 12195 effective parameteg= —_ws/c. It is pointed out that the _
4o(1+4a)]720 (69 same result for the amplitude ratio of the excited modes as in
As for identical layers the optical properties are dominatecfhte S|r|19Ie I?%/her IC"’}[?e IS reacthﬁlctj:gere Irc]j f;tlhnopttrlwal I"V":t‘y by an
; _ i inter i n n internal struc-
by the mode with smallein,|=c|v,|/sw and significant de- tur((aa F(;fat);g o 2n6r1nocdeegoc;n?ainedsﬁr? ) € Internal struc
viations from the one mode Fresnel regime occuirat gel g iNa). :
~[n,|. Now we are in the position to calculate the reflection and

Keeping only the solutions with smallést,| nearw; and trans_mission qoegl;jlcientﬁezand T neﬁr thezresonance_s in
We, €.9.,v, (v1) for w<w, (w>w,) in the upper band, we Igadmg order inB*"~e,/ny and b/ g7~ 1/n*, wherex is
obtain in the limita—0 a pole inv?~g?~ ey, as can be 9iVen by
seen from Fig. 13. This is an explicit microscopic confirma- _ _
tion of the general expectation that critical frequencies, 1 NN, Po(q1)na—Po(gz)ny ]

_ ; ; a2 K= ~ =
whgre|v_1|—_|v2|, appear, if there is a pole |k§_ €efr- FOT €,C0S0 B,(qy)n2— P,(0p)Nn2
oblique incidence the singularities ¥4(w) coincide with
the zeros of the averaged ) introduced in Eq(2) with and shown in Fig. 14. Due to the lattice constarst the
ec|=eco(1—w§0’|/wz) . This can be expected from a macro- refraction indices of the bulk eigenmodes are hexg

. (7D
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FIG. 14. Real and imaginary parts @h= x(cosfe,ws/c) for o .
alternating junctions ¢=0.2, a=1.1, 5= wgo’llwg()z: 0.3, andg FIG. 15. Transmissivityl near the lowefleft) and uppe(right)

=10"%) nearw,~1.244 (left) and w,~4.823 (right) for different ~ Plasma bands with the frequency E‘)iis normalizedwmg, (Wyp)
respectively. Parametefs=0.3, =10, ande ¢ cosf=1; differ-

ent conductivities in the plots abover{= 8a,=10"8, a=1.05)
and below ¢, = 85,=0.01,a=1.1), and varyingr (see the plot

quasiparticle dissipations;=d0,=10"° (above or 0.005 (be-
low).

=ck,p/w=Cv,/sw. This result reduces to E¢17) when ex-

panding®,(q), and the results of Sec. Il can be used ratio of the peak amplitudes has been observed in this mate-

The lower band is similar to the case of identical junctionsgalffoggddzngg parallel to the layef$;*see below and in
in the sense that in the transmission windews w=<w, two €ls. afan :
propagating modes are excited and we obtain the same maxi-

mal transmission coefficieM,ay jow= Te. max[Cf. Ed. (19)]. V. INCIDENCE OF LIGHT PARALLEL TO THE LAYERS
In the upper. biand.wg obtain from the general equation In this section we discuss the reflectivity for incidence
(20) for small dissipationr;<uy, atw=w;, parallel to the layergcf. Fig. 1(b), for 6=0] in the crystal
a2 1a with two alternating junctions, when the explicit spatial dis-
2N ap€a0 (@a—1)Lyp persion, i.e., the dependence on the wave vegtis negli-

T =T(w)=
mevtp 7 No(Seco) Y2cosh

gible. We will microscopically confirm the breakdown of the
(72) macroscopic Fresnel approach using the effective dielectric

function . [Eq. (2)], when the wave vectofk,,| of the
excited modes becomes large and the group velocity is small;

=w;(1+ 6)—2—8a). This can be seen in the upper part of -
cf. Eq. (1). This happens near the polg,q of €;, which

Fig. 15, where for Iow~r,<u|owiup<l (see definitions in Ap- L X
pendix A the upper plasma resonance is considerably Supgommdes with the upper edge of the lower plasma resonance

pressed by increasing, while the lower band is weakly in the.reflectiv'ity(cf. Fig. 17)..This frequency is sc:metimes
%ssomated with the excitation of a so-called “transverse

8aa

which is smaller by the factors(\,p)? than T axionLup

affected. This suppression can be understood physically b ; . )
the fact that at the surface the energy of the incident wave i§109€; 9077 although all the modes excited in the plasma
distributed between a propagating wave and a decaging :_inds are transverse in this geometry. For simplicity here we
finally reflected one and is therefore less efficiently trans- W_'” present the _formulas for=0; the general results are
mitted in the crystal than in the lower band, where the twodiVen in Appendix B. o
excited modes are propagating. Physically, the eigenvectors Physically, the conventm_na] theory IS insufficient, because
nearg=0 in the lower(uppe) band involve in phaséout of It averages _Eqs(.32)—(35) within the unit cell and n.eglects
phase plasma oscillations and consequently external Iongthe electric field components pa~raIIeI to the layers, in order to
wave length radiation couples more efficiently to the excita-2rive at the response functiog, for the averaged field
tions in the lower band than to those in the upper band.  Ezma=J % 2°E,dz. This corresponds to neglecting the
The difference between the valuesQfax jow @A Traxyp  AVErage fgqms*z)sdzﬁZByz B,[(m+2)s]-By,(ms) and the
decreases as dissipation increases; see Fig. 15. It vanishesaverage ofd,E,, respectively, i.e. to setting,=0 in Egs.
the Fresnel limit, for which (40 /wcg1€c0)(Nap/ @S) be-  (3)—(5). This assumption is justified away frowy,., where
comes much larger than unity. the wave vectotk,| is small, as the gradient of the electric
In oblique incidence the suppression of the peak in thdield vanishes, if the charge density on the layers is slowly
upper band is quite limited to systems with very low dissi-varying; d,E4~|k,|. On the other hand, ab. the charge
pation and perfect crystal structure and might be difficult todensity varies on atomic scales, the intra junction mode with
observe in SmLa ,Sr,CuQ,_ 5. Instead of this, a quite high polarization of the electric field in the direction is excited
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FIG. 17. Reflectivity Rj=|1—«||?/|1+«|* in parallel inci-
dence fora=0, = w2y /wl,=0.3, €=19, and Bo=s%2\3,
=10*as in the cuprates and different conductivities= 6o, (see
the plo).

0
05 w
low Woole

FIG. 16. Schematic refraction inden(f(w) without dispersion
(a=0), but with (solid Iine,B0=32/2)\§b>O) or without (dashed
line, By=0) accounting for the intrinsic inhomogeneity in the unit is removed. This is shown schematically in Fig. 16 and is a

Il. The latter implicit tial dispersion corr nds to the excita- : . g .
ce € latter Implcit spatia d.Spe sion correspo ds to the exc aconsequence of the presence of two junctions in the unit cell
tion of the mode with electric field polarization parallel to the lay-

ers. The frequencies=wq,, ,, form the plasma edges in the re- (implif:it spatial dispersiop even in the absence afaxis
flectivity R;. We can also interpret the plot fo8,=0 as the coupling (@=0 org=0).

averaged dielectric functio"éb~k)2(~n)2( [cf. Eq.(74)] as a function In_cludlng the dISSIp.atI(.m due to, .|n thg cgseqéb
L~ ) (esin6<1) of parallel incidence the dispersion is given by
of w. Then the pole ine(w) at wye in the one mode approach

O i Eqg. (A5), and the general solutions,,=ck,,/w are pre-
|n2d|cates the appearance of a special frequencysfst 0, where sented in Eqs(B1) in the Appendix. Away from the pole

2 . . . . . . .
Ny, = —Ny,, Which is similar to the general picture in Fig. 3 and the . . . .
upper band in oblique incidence; cf. Fig. 12. Wpole these splutlons can be expa_nded in Iead|r_19 o_rd¢f0|n
and we obtain the usual wave with the refraction inaegx

strongly and the basic assumption of the averaged theory i§ CKxi/@ corresponding to the averagg(w) (for «=0):
invalid.

A more careful averaging of Eq$32)—(35) within the 21 ki :NEC(W) _ S(W = Wigy) (W= Wyp) +iS
junctions rather than the whole unit cell leads to a relation a1 wle, €co WO(W—Wpgie) +iS;
between the average electric fields inside the junctians (
=0, 0,=0; for the general case see Appendix A S,= (L2)W325(3,+ ),

2 ~ ~
(C_"X) 1 (4B 1 (Bl S=W T o (SW— 1)+ 5o(W—1)]. (74)
w 2+Bo 1 1+B0 = EZZ
73 The zeros ok, are at the plasma edges
Here the dielectric tensoe is given as €= eq = el Wiowup= (1+ 8)(1+2a)/26F [(1+ 6)*(1+2a)?—45(1
— w§0’|/w2) and €10= 621:0, and BOZ aB=SZ/(2)\§b)<1 +4a(1_,320))]1/2/25- (75)

accounts for the coupling of the averaged electric fiélds,
in the junctions of typd=1,2 via the electric field compo- For B,=0 this corresponds to the single excited madde

nentE,. The latter is weak: 8o, due to the strong anisot- ¢ and we see from Fig. 16dashed ling that |n| be-
ropy of the material. FoB,=0 one eigenmode of Eq73)  comes large at the pol@ge= (1/2+2a)(1+ 5~ 1). The dis-
corresponds to the solution in the averaged theory detegrete layered structure@gy# 0) results in the regularization
mined by’e., c2k§1=wzzc, and its eigenvector obeyB,  of the pole and its transformation into a special frequency
=e.1E,1= €E,» as itis assumed in macroscopic electrody- w; , wherenilz - nfz without dissipation; see Fig. 1@olid
namics. Consequently, near the lower band edgggs only  line). This is similar to the behavior in the upper plasma band
the plasmon in the junction of typleis excited. The other in oblique incidencegsee Fig. 11, where a pole in the one
mode has an eigenvaluek})=0 and corresponds to an out mode Fresnel dielectric functioe., is transformed into the

of phase mode with the eigenvecti, = —E,,, which is  special pointw;. There it was a consequence of explicit
not excited by a homogeneous incident beam. Accounting fospatial dispersiond # 0), while now the second solutian,

the excitation of the electric field components parallel to theappears due to the atomic structure within the unit cell even
layers, aB,>0, both modes mix and the singularity@g,e ata=0.
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Away from the polew,. we obtain(for «=0) 1 f vy
——— B,=0.
1 ¢k, wew-wy0+iS, .y | By=0.01
1— — = - x2: ( poli 1, (76) 08 | - B0=104
aZ W € (,BO/Z)W (S
and|k,,|~O(1/8,) is large in comparison withk,;|. As the 06 |
solution with the smallest refraction index determines the — &
optical properties, the wave with wave vectgp can there- o4l
fore be neglected everywhere excepwgt., wherek,, can '
be small and the general equatidii) have to be used.
Let us now find the solutions for the magnetic and electric 0.2} ,
fields inside the crystal which determine the reflection coef- !
ficient Rj=|(1—x)/(1+x)|>. The solution forB, at X 0 :
: R i ref
<0 consists of the incident and reflected wagsandBy”™, 0 Wow  oole v3v W, 6

which are homogeneous in tkedirection, and the wavé,

with kaO, Whlch_ is excned due to the_\ mhompgenelty ofthe FiG. 18. Reflectivity Rj=|1—x|%|1+ x)|? in parallel inci-

crystal in thez direction and which is localized near the jance fora=0 6=0.3. 5=10"° e »=19, and differents,
1] -y ] C 1]

surface, =s?/2)\2, (see the plot It is seen that, when the second solution is

taken into account, gB,>0.0001, the reflectivity drops near the

pole w,ye Of the averaged dielectric functiore,, where

2 __ 2
Ny1= — Nio.

By (x)=Bylexplik,X) + Bilexp( —ik,X)

+ > By(kpexplik,z—ikyx), (77)
k70

nZ,=—n%, becomes relevant, the reflectiviy; drops for

212 2y _ 2 : H H
wherec® (ki +k3) = »”. The solution ak>0 is given by EQ.  |5r9e 8, and the lineshape is modified. This behavior is simi-
(46), when introducingk,, explicitly by substituting si |5, {5 the resonance at, in the upper plasma band for ob-
——Ck/w and taking into account the superposition of the|jq,e incidence due to spatial dispersion; see Sec. IV. This

two solutionsp=1,2. o modification of the JPR line shape is beyond the conven-
_In addition to this, we need an additional boundary con+jgna| one mode Fresnel approach, which is valid away from
dition, in order to determine the ratio, in which the mOdeSmee, in particular near the plasma resonances.

p=12 are excited. Atd=0 the in-plane currentsl, Therefore for the interpretation of the main peak ampli-

i 2 (g i ~
=103E(z=mg)/(47w) and consequently th&, compo- — yoq e simplified effective dielectric functiaq is suffi-

Per;tskms'ldg the dlayerm vgl?_lsg ibéﬁoh.-rﬁ'f’ IS equ?/?legt cient and has been used in Ref. 38 to extract the parameter
0 Fekars boundary condition, =9, Which rns outtobe g4 fom  the experimental loss function in

sufficient in this case c_Jue to the absence of extremal pOim%mLal _SLCUO,_ 5. In contrast to Ref. 37 the dissipation
thrse\?vt)jkgzd%o%t(?;. Klgleln%ix B this leads to the reflection V2 introduced here microscopically in the quasiparticle cur-
coefficientR; [Eq. (7)] \?v?lere @=0) rents and it is taken into account that the quasiparticle con-
| L=G- “ ductivities alternategy /o= w3y / w2 ,, in the same way as
a,+a,Z the critical current densities and plasma frequenaigg, .

K|= W = (79 Correctly accounting for dissipation is crucial for a quantita-
tive interpretation of the experimental loss function. As the
parametefa can be extracted independently from the mag-

7= — (1712 (A +12)(81 = Dkiods (79  netic field dependence of the plasma resonarises Ref.
(1-1f)(1+f)(a— Dkaay’ 39), this is also a way to determine tleeaxis conductivities
o). Both ways to extractr~0.4 from far-infrared data are

well compatible with the angle-resolved photo emission
spectroscopyARPES measurements.

Ny +an,eZ’

_(Wl_l)(zap+ﬂo)_(ap_1)(ap+ﬁo)
P (ap_l)(ap+ﬂo) .
In Fig. 17 the reflectivityR|(w) is shown for different
conductivitieso;= 8o, and a valueB,=10"* appropriate
for high temperature superconductors. The resonances in the VI. CONCLUSIONS
lower and upper plasma bands are asymmetric and have a | conclusion, the effect of spatial dispersion and the
sharp lower edge alvo,,p- The upper edge of the lower atomic structure on the optical properties of strongly aniso-
band is given by the pol@/,e, where in the conventional {ropic uniaxial crystals has been studied in general, taking as
one mode theory,. becomes negative and the single exciteda generic example the Josephson plasma resonance in stacks
mode with an imaginary wave vector decdgé Fig. 16. of identical or alternating junctions.
In Fig. 18 the effect of the discrete layered structysg ( Thereby, multiple eigenmodes, propagating or decaying,
#0) on the reflectivityR in parallel incidence is shown. At are excited by incident light, which interfere with each other.
the special point wy,., where the second solution This intrinsic birefringence can be detected in transmission

f

(80)

094514-18



OPTICAL PROPERTIES OF LAYERED. .. PHYSICAL REVIEW B6, 094514 (2002

by oscillations with respect to the sample thickness or theeneral for any modes, e.qg., for optical phonons with anoma-
splitting of the incominglase) beam(cf. Sec. 11 Q. lous dispersion in insulators, which form a polariton branch
In contrast to the usual assumption that the effect of diswith an extremal point; see Fig. 2. However, the condition of
persion or of the atomic structure on optical characteristics isveak dissipation and a perfect crystal structure are crucial to
strongly suppressed s/A<1, as the wavelength of light  observe deviations from the Fresnel regime.
is much larger than the lattice constatwe showed that For the JPR this theory was used to extract the parameter
near resonance frequencies the reflectivity may differ signifie~0.4  from the optical data obtained for
cantly from the conventional Fresnel formulas, if dissipationSmLa _,Sr,CuQ,_ s with two different alternating intrinsic
and disorder are weak. Josephson junctions between the Gugingle layers® This
Near extremal frequencias,, where the group velocity value corresponds to an electronic compressibility, which is
vg=N\4/w vanishes, the stopping of the wave packet makesinrenormalized by the interaction, while for multilayer cu-
the propagating light sensitive to short length scalgsAs a  prates a smaller value af is expected. This result is com-
consequence, for oblique incidence the transmissivity intgatible with the ARPES measuremehitand gives an impor-
the crystal cannot be expressed by the bulk dielectric functant input parameter for the coupled Josephson dynamics in
tion alone and the amplitude of the resonance neacru-  the stack. Thereby the correct treatment ofdfexis conduc-
cially depends on the atomic structure of the crystal. Thidivities in different junctions is essential for a quantitative
additional damping due to the-axis couplinge for low interpretation.
dissipation is shown in Fig. 10. In contrast to this, the width It is also pointed out that spatial dispersion provides a
of the resonance in transmission is not affected bycthgis ~ way to stop light in a crystal, which is different from previ-
charge coupling, but is rather determined by the angle obus proposals based on the frequency dispersion of the me-
incidence. dium; see Sec. Il D. From the application point of view, this
These extremal points, may appear, whenever an opti- suggests future magneto-optical devi¢esing e.g., the JPR
cally active crystal mode with normaghnomalous disper- ~ for storing light coherently, as it is required in an optical
sion is mixed with a propagatin@lecaying electromagnetic gquantum computer. By imprinting a group velocity profile
wave. For these results it was crucial to realize that the rewith the help of an inhomogeneous external magnetic field,
sulting two eigenmodes with normal and anomalous disperevent horizons with respect to the propagation of light can be
sion have wave vectors and refraction indices with oppositereated in a solid.
sign nearw, in order to preserve causality. To summarize, possible experiments to demonstrate the
In addition to this, for a crystal with several optical bandseffect of spatial dispersion on the optical properties of solids
we predict different amplitudes of the resonance transmisinclude the demonstration @) intrinsic birefringence and
sion into bands, which are characterized by different types opeam splitting,(b) stopping(delaying light pulses,(c) the
dispersion and which are equivalent in a dispersionlesselative amplitude of bands with a different number of propa-
theory. When inside the crystal one mode is propagating angating excited modes, ar(d) the intrinsic damping of peak
the other one is decaying, the maximumTofs at frequen- amplitudes in materials with negligible dissipation and dis-
cies w;, where the relatiom,=—in, for the refraction in- order.
dices holds. At these frequencies the peak amplitudE isf From a general point of view, these results shed light on
strongly suppressed in comparison with bands, where ththe long standing question of the treatment of spatial disper-
two excited modes are propagatifigig. 15, provided that sion for optical properties of solids, and provide the first
the dissipation is low. This provides the unique opportunitymicroscopic derivation of the ABC as suggested in Ref. 3. It
to extract microscopic information about the eigenvectors ofs expected that the phenomenological results presented here
the excited modes from the line shape in optical experimentgzan have wide implications for the interpretation of reso-
For incidence parallel to alternating layers a second modeance amplitudes and line shapes in optical experiments, es-
is excited even without explicit spatial dispersidndepen-  pecially near frequencies, or w;, which appear near poles
dence ofe.) due to the intrinsic inhomogeneity within the of the conventional dielectric function. Moreover, the
unit cell. Near the pole of the effective dielectric function at method to obtain the parametemicroscopically by consid-
the upper edge of the lower plasma band a special poirgring the difference between the hypothetical bulk and the
appears, Wherail: — n)2(2_ For an appropriate choice of pa- real equation of motion for surface degrees of freedom, can
rameters this can modify the lineshape of the resonance. be generalized to other systems. In particular for optical
This behavior neat, and w; cannot be obtained in the Phonons (polaritong in insulators® and  photonic
one mode approach without dispersion. The only intrinsiccrystals;”®°some of the above deviations from the conven-
indication for the breakdown of the conventional Fresneltional Fresnel theory can be expected.
theory is the appearance of poles in the effective dielectric
function es; see the schematic Fig. 3. There the excited
wave vectork’~ e.¢ are large, the group velocity is small,
cf. Eq. (1), and concomitantly small atomic length scales The authors thank G. Blatter, M. Cardona, M. Dressel, B.
become importantcf. Figs. 13 and 16 for oblique and par- Gorshunov, D. van der Marel, |. Ka, and A. Pimenov for
allel incidence. useful discussions. This work was supported by the Los Ala-
These features were demonstrated explicitly for the JPRnos National Laboratory under the auspices of the U.S. De-
with identical and different alternating junctions, but they arepartment of Energy and by the Swiss National Science Foun-
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dation through the National Center of Competence in V2 (w)=(—P* P2~ 16a%8Q)/8a?,
Research “Materials with Novel Electronic Properties- ’
MaNEP.” P(W)=W25—W(1+ 8)(1+2a) +1+4a(1- Bzy),
APPENDIX A: EIGENMODES FOR ALTERNATING Q(W)=2W25—W(1+ 8)(1+a+4a)+2a(l+4a).
JUNCTIONS (A6)

~ We introduce the unit cell, which contains two different Thereby and in the following the effect of dissipation can be
junctions and describes the system by the parametgrs included by replacingv—w; andwé—w, and we will re-

dmi, andPp, [cf. Egs.(46)], wherem denotes the unit cell  gyict the discussion to the casé>(a—1)8(1— 8)/4 and
andl = 1,2 labels the junctions in the unit cell. The equationsmT lweg1€c0< ] (a—1)B1MA[(1— 8)(1+22)]¥2 " when
C cO,1*c )

inside the crystal are analogous to E(E)—(51), where the 5 oyiremal point, exists in the lower band, provided that
quasiparticle dissipation is taken into account By  1- §is of order unity.

= wfl 0l andwfw?=1—47i 0wl egwly, : At a=1 we obtainQ(w)=2P(w)+O(a?g) and v?, is
. ., small near the zeros,,,, of P(w), which are given by Eq.
C1?  —dmi7—Cm—127+dm_127" =0, (75). The reflection coefficient is determined predominantly
. oy by smallviz(w), as in the case of identical junctions. There-
Cmz? "~ dmz7—Cmantdmy "=0, (A1) fozre, in the following we will analyze the behavior of
_ v7 (W) by expanding aroun#, (w,,) for the lower(up-
2(Cmn ' Cme127) + (2= 1) Py = P10 p(léS band. With u,owyupzw—wmupp) we obtain P(w)
i -1_ = =F\U and w)=—[£2x+(a—1)(1+8)]u
1B (Cm O 7) =0, +(a— io)vlm_u,zw’up, wk?e(re) we [denote)f=[(l)£ 5)2()1]+|04v2:)p
2(Cm27]71— Crum)+(@a—1)(Py2—Pm1) +4a’2(1+ 5)2]1/2 and I—Iow,up: =[2+ 8CV_WIow,up(]-"' 9)]
>0 (upper/lower sign for lower/upper band-rom this the
+i(BIb)(Cmpn~ "= dmp7) =0, (A2)  pand edgesv{,,,, and special frequencies,; of the bands
_ can be obtained in the limi; =0, cf. Figs. 11 and 12.
Pmi(wWi—a)+a(Pma+ P12~ 2Pm) In the lower band positive real solutions fof exist for

01=0 at We=Wi,+ Ugw<W<W{)=1+2a, where uy,
=[16a?B(a— 1)L gy]Y%\. At the extremal pointv, we ob-
tain v2=v3=[B(a— 1)L, ]"%2a, while the upper edge
w(}) is determined by the condition?=1 by noting that
=(Cm2tdm2)(1—2aB)(sinb/b). (A3) P(1+2a)=—4a? The value v§ is positive atw=w
=Wiont(@—1)L,ow/[2N+(a—1)(1+ )] and approaches
Using the Fourier transformation with respect to the dis-—2g for w>w till the second band is reached. In the fol-
crete indexm we obtain the dispersion relation in the limit lowing we consider the CaSE(+)>W0 and hence the upper

low

b<q, 82 which is appropriate for oblique incidence in Sec. edge of the lower band i&(") . In the rangg w,,wo] two

IV, propagating modes with (no)rmal and anomalous dispersion
exist, while forwe[wg,wi,/], v, is propagating and-,
(v +2B-pH)D+4a(a-1)(1-vH)p+(@-1)%? decaying, which is very similar to a system with identical
+(v2+ B)(a—1)(Wy+W,— 2a—4a) =0, Iayers: Also note thgt the Widl\hro—V\./e of the. resonance in
T(w) is not proportional to thes-axis couplingea, but is
mainly given by the angle of incidence.

In contrast to this, the behavior of andv3 in the upper
band is quite different because the dispersion here is anoma-
lous at any frequency. In this rangé is negative andv§|
>2, and the band edges are determined by the conditions
v2=0 or v3=1, respectively. The valug? is positive inside
=0, the bandw(,’<w<w{)), where w(,)=(1+2a)/s and

Wi =Wypt Uy, where uy,=—(a—1)L/[ —2\+(a—1)
A€||=[1—wgy|(l+2a)/'(:)|2], e1=ey=2a, (A5) ><(12+ 0)]>0. At '[hl(/=32 pOiI’]tW_=Wi=Wup we obtain — v3
=vi=[B(a=1)Lp]"/2a, which corresponds to the fre-
whereW, €, and A are matricesW,, =w,;, W;,=W,,=0,  quency of maximal transmission according to E2)).
andA; =1+, App=An=1. Similarly to Egs.(52—(54) we make an ansatz for the

Using Eqs(A4) for b<q, %2 and taking into account the bulk eigenvectors
lattice constant 2 in q,=2sk; ,, the refraction indices,
=ck,p/o=cvy/so of the bulk eigenmodes for, =0 are
determined by fy=a—1—2«)

=(Cm1tdm1)(1—2aB)(sinb/b),

Pma(Wo—a)+ (P 11+ Pra— 2P )

D=(W;—a—2a)(W,—a—2a)—4a?(1-1%). (A4)

In the opposite limitg<<b used for parallel incidence in
Sec. V, we obtain the dispersion

DetWa— 224
etWe—o 5

Cmi= p:Zl  7o0i(dp)explicpm), (A7)
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dm|=p§12 ¥pdi(qp)expliqm), (A8)

Pm|:p§12 ,Pi(dp)expliq,m). (A9)

Using Egs. (A1)-(A3) we obtain the coefficients(P
=[P1(a),P2(a)]):

a(a—1)(1+e'%)

c,=1, c = = . (Al10
! A e Dwya2a) O
1-[1+(7°— 5 2)ca(q)]e
di= e . (A1)
n*—n ‘e
-2 2 —i
n "= +(1-e")cy(q)
dy= P R (A12)
n*—n ‘e
P=M(c+d), (A13)
1{ wo,—a—2a —a(l+e™ ')
M=—= i - (A14)
— D\ —a(1+€9) w;—a—2a

Herec,(q) is given in leading order it and 8*2. In order
0O(b% we obtaind;=c;=1 andd,=c,(q).

To determiney; /vy, we use the microscopic boundary
condition for the surface junctiofpanalogous to Eq(60)].
Nearwe, , in leading order in32~e,/n> we obtain

Poi(W;—a)+ a{Pg,—[1+a+(a—1)elPos}

:(C01+d01)[1+ CY(EC()+ 1)] (A15)

Again we simplify this equation by subtracting tlileypo-
thetica) bulk equation forPy;, which follows from Eq.(A3)
with Pp,—_;, given by Eq.(A9), and the real surface Eq.
(A15) for Pgy:

Pm:_l,f% YoPa(ap)exp(—ig,)=0.  (A16)

PHYSICAL REVIEW B6, 094514 (2002
K=2Bo(W26—2aw(1+ 8)+iS,)
X (S(W—Wigy) (W—=Wy) +i1S)(1+ Bo/2)
S=w¥ (2a+1)dW(a,+ 05— (1+4a)(oy+,8)],
S, =w¥25(2a+1/2) (o1 + 0),
S,=2awW¥25(o,+ 7). (B2)

Away from the polewpein ‘e We obtain, in leading order in
B, for arbitrary «,

1 ¢k

ai (1)26(;0

_ (W —Wigu) (W—W,p) +iS
WS(W—Wpoie) +1S1— BoCo

(B3)

1o’k (WS(W—Wpoe) +iS1)(1+Bo)

Cay (Bo/2)(W25—2aW(1+ 8)+iS,)
(B4)

(1)2600

In the ansatz Eq(77) for the fieldB, outside the crystal,
the continuity equation at=0 gives forB,(k,) the expres-
sion

€co® .
By(k,) = f dzGQ(z)exp( —ik,z), (B5)
cky
where  for 2ns<z<(2m+1)s we obtain @,
=wesdl[cay?)
G(2)= 2, cPexp(igyz)+dPexp —ig,z), (B6)
p=1,2

and for (an+1)s<z<(2m+2)s analogously withc{"
—cP andd{P—d{P) .

We derivek,= *=g,+(m/s)j, wherej is an integer. For
nonzerg we obtaink,= /s and hencd,, is imaginary with
large |kyp|. Forj=0 we obtain(53(g,))=(B(—g,))=0 by
averaging over the two junctions in the unit cell,
+cP=d{P +diP =0 with accuracyp/ Bo~ A 4p/\ <1 from
Egs.(A1)—(A3). As a result, in Eq(77) the terms with am-
plitudes B, (k,) may be dropped. Then the amplitude of the
reflected waveB;"f is determined by Eq(7), where the av-

Note that this ABC has only been derived in leading order ineraged magnetic and electric fields at the boundeaxp are

ea/nﬁ and near the resonance frequencigs .

APPENDIX B: REFLECTIVITY IN PARALLEL INCIDENCE

For arbitraryB, and « the solutions of the dispersion Eq.
(A5) in the caseq<<b are given by
1+ ( 1

1/2

C*Kep _ (W(W—Wpoie) +iS1)(1+ Bo)
Bo[W26—2aw(1+ 8)+iS,]

wZECO
B K
[W(W—Wpoie) +iS112(1+ Bo)?

(B1)

(Byy=— o p=21 . agk, [ PP+ PP, (B7)
1 ® 1 pP)
<Ez>=§pgzap[P1 +P37]. (B8)

These equations lead to the reflection coefficidd. (7)],
where

1 1
PH+pM

a;ta,Z 5
T b2, p@)’
P+ p2)

alnxl+ aznxzz , (Bg)

— [ Bl _
KI= Ve =
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with n,,=ck,p/w. As a,<a, for w#wpg e the conventional

Fresnel expression is valid everywhere except at the upper

edgew,e of the lower band.

To determineZ, we use the additional boundary condition

P,=0 of the Pekar type in the form

Ex(x=0)=
X( ) p:El,Z kxpaélz

(P 7yt =dP m,)=0.
(B10)

From this and the relationc(”’=d{" the condition
3 P [kypa,] =0 follows. To express it in terms dP{”
+P{P we derive, from Eqs(A1)—(A3),

PHYSICAL REVIEW B 66, 094514 (2002

cP=— (14 (a,— )PP (1-1,),

:ﬁz (W;—1—2a)(2a,+ Bo) — (a,— 1)(a,+ Bo)
P pP) (ap—=1)(ap+ Bo) —2a(2a,+ Bo)

Finally we obtain

(1= (1+f)(a;—Dkya,

2= T A=) (1+ f) (= Dkaay’

(B11)
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