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Big fast vortices in the d-wave resonating valence bond theory of high-temperature
superconductivity
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The effect of proximity to a Mott insulating phase on the superflow properties of ad-wave superconductor
is studied using the slave-boson U~1!-gauge-theory model. The model has two limits corresponding to super-
conductivity emerging either out of a ‘‘renormalized Fermi-liquid’’ or out of a non-Fermi-liquid regime. Three
crucial physical parameters are identified: the size of the vortexas determined from the supercurrent it induces,
the coupling of the superflow to the quasiparticles, and the ‘‘nondissipative time derivative’’ term. As the Mott
phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow
and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases.
The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical
field and the size of the critical regime in which paraconductivity may be observed are estimated and found to
be controlled by the supercurrent length scale.

DOI: 10.1103/PhysRevB.66.094513 PACS number~s!: 74.20.2z, 74.60.2w, 74.72.2h
nt
f-
ng
er
up
a
cs
am

t
ci-
or
r-
n
e
le
e

nd
e
id
tr

-

de
ng
o
ge
od
n-
of

a

i-
del

n
rgy
l

on-
on-

n-

en

and
een

m-
to

th
e
gh-
eful
ted
nd
om-
he
the
les
I. INTRODUCTION

High-Tc superconductors are created by doping an a
ferromagnetic ‘‘Mott insulating’’ parent material, and the e
fect of proximity to the Mott phase on their superconducti
properties remains a crucial and still incompletely und
stood issue.1 One expects on general grounds that the s
pression of the current response near a Mott insulator le
to ‘‘type-II’’ behavior, so a fundamental issue is the physi
associated with vortices in the superconducting order par
eter. An isolated vortex involves a quantized flux (hc/2e in
conventional superconductors!, a circulating supercurren
pattern, and a ‘‘core region’’ in which the quasiparticle ex
tation spectrum differs from that observed far from the v
tex. The possibility~apparently not realized in known supe
conductors! that proximity to the Mott phase could induce a
unconventional value of the flux quantum has be
discussed.2,3 An extensive literature exists on quasipartic
properties~including the possibility of interesting discret
core states4 and whether an antiferromagnetic5,6 or other7

state is induced in or near the vortex core!. However, apart
from the pioneering phenomenological work of Lee a
Wen8 and an analysis of the resistive transition in overdop
Tl-based materials,9 little theoeretical attention has been pa
to the superflow properties even though these in fact con
many physically important quantities includingHc2 and the
size of the ‘‘critical regime’’ in which superconducting fluc
tuation properties may be observed in the conductivity.

Theoretical analysis of vortex properties requires a mo
Conventional models of superconductivity in interacti
electron systems are based on Landau’s Fermi-liquid the
but as we show in the Appendix, analysis of the chan
occurring as the Mott phase is approached requires a m
which goes beyond Fermi-liquid theory, at minimum by i
cluding effects corresponding to a scale dependence
Landau parameter and perhaps more fundamentally by
0163-1829/2002/66~9!/094513~9!/$20.00 66 0945
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lowing for superconductivity to emerge from a non-Ferm
liquid state or regime. One widely studied theoretical mo
of a doped Mott insulator is the U~1!-gauge-theory
implementation10 of the resonating valence bond~RVB!
ideas of Anderson.11 This theory and its variants have bee
extensively studied as an approximation to the low-ene
physics of thet-J model believed1 to capture the essentia
aspects of the low-energy physics of high-Tc materials. It
exhibits ~at least in a large-N limit ! a non-Fermi-liquid
regime10,12 involving exotic excitations~‘‘spinons’’ and ‘‘ho-
lons’’ coupled by a gauge field! and a Fermi-liquid regime in
which the spinon and holon are bound together into a c
ventional electron and the gauge field effects produce a n
trivial doping dependence of the Landau parameterF1S .13,14

The model also possesses ad-wave superconducting state15

which may emerge either from the Fermi-liquid or no
Fermi-liquid regimes. Quasiparticle properties~including a
possible antiferromagnetic6 or staggered flux7 state in the
core of the vortex! have been studied and the model has be
shown to admith/2e vortices,16 but superfluid properties
such as the supercurrent distribution in the vortex state
the dissipation occurring when a vortex moves have b
less well studied.

As discussed at length elsewhere8,14,18 this theory dis-
agrees with experiment in a number of ways. Most proble
atically, the model predicts a strong doping dependence
the leading low-T correction to the London penetration dep
@dl22/dT;(doping)2# which is not observed. We therefor
do not believe the theory is a realistic representation of hi
temperature superconductors; however, it is a very us
model system. We stress that although as usually formula
the model involves exotic excitations such as holons a
spinons, for the properties we discuss these can be c
pletely eliminated: as shown in the text and Appendix, t
model can be viewed simply as a method of calculating
behavior of a Fermi-liquid-based system at length sca
©2002 The American Physical Society13-1
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short enough that the scale dependence of the Landau pa
eters becomes important.

The importance of the model is that it provides an expl
realization of a situation~which, we believe, is generically
realized in lightly doped Mott insulators! where the
supercurrent-defined and quasiparticle-defined length sc
are parametrically different. We show in this paper that
longer length scale is in fact the one relevant to the conv
tional superfluid properties such asTc(H) and the size of the
‘‘fluctuation regime’’ in which the model exhibits~for ex-
ample! a nontrivial paraconductivity.

The rest of this paper is organized as follows. Section
reviews necessary aspects of the U~1! gauge theory formal-
ism. Section III discusses in detail the current distributi
around a vortex. Section IV calculates the dissipation
duced when a vortex moves and uses this information
estimate the size of the ‘‘critical regime’’ in which superco
ducting fluctuation effects are visible in the conductivi
Section V considers the low-temperature limit of the upp
critical field. Section VI is a conclusion, summarizing th
results and their implications. The Appendix explicates
relation between the results presented here and the con
tional Fermi-liquid analysis.

II. FORMALISM

This subsection reviews results obtained in the early d
of the gauge theory,10,12,15,16in order to establish notation
and introduce important concepts.

In the gauge theory one writes the electroncia in terms of
a charge-e bosonb ~representing a hole! and a fermionic
‘‘spinon’’ representing a spin degree of freedom, thuscis

†

5bi f is
† . The superconducting state is described by ad-wave

BCS pairing of spinons15 ~involving a d-symmetry pairing
gap with maximum valueD) and a condensation of th
bosons. The low-energy, long-wavelength physics is c
trolled by the Hamiltonian

Hgauge5
1

2
rB~¹fB2a2A!21

1

2
rFS 1

2
¹fF2aD 2

1HD1Hmix1•••. ~1!

Here a is an internal gauge field which enforces the co
straint, arising because the physical fermionci5 f ibi

† , which
a longitudinal spinon current must cause an equal and op
site boson current.~It is possible to have transverse curren
of spinons with no holon motion but these are not relev
here!. fB is the phase of the boson field,rB is the T50
boson superfluid stiffness,fF is the phase of the spinon~fer-
mion! pairing amplitude, andrF is the correspondingT50
spinon ‘‘superfluid’’ stiffness.HD is the usual ~normal-
ordered! Dirac Hamiltonian describing the quasiparticle pa
of the spinon degrees of freedom and the ellipsis expre
terms irrelevant to the present discussion.

HD has eigenvaluesEp5Av1
2p1

21v2p2
2 with v1 the

spinon Fermi velocity andv2 related to thed-wave gap in the
usual way. The spinons are coupled to the gauge field
thus to the ‘‘holons’’ via the term
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a,s

S i
1

2
]mfF2eamD •vW 1cas

† cas . ~2!

We begin our analysis ofHgauge by considering length
and energy scales. The fermionic part of the Hamilton
involves the length scale

jF5
v1

D
~3!

and two energy scalesD and

rF;v1pF . ~4!

HerejF is relatively short and does not diverge as the M
phase is approached, andrF is relatively large~of orderJ in
the t-J model! and does not vanish as the Mott phase
approached.

The boson stiffnessrB has dimension of energy~in two
spatial dimensions! and is proportional to the dopingx and to
the basic electronic hopping parametert.10,12,15 rB is ex-
pected to vary19 on the length scalex21/2 which is the dis-
tance between charge carriers. We shall be interested pr
rily in the limit x21/2.jF . We note that as the doping i
increased,D decreases15 and eventually becomes smalle
than an energy of orderx1/2J, so the inequality is reversed
For larger dopings the theory becomes essentially the fa
iar BCS one, with only one important length scalejF .

The currents carried by boson and fermion degrees
freedom are, respectively,

j B5rB* ~¹fB2a2A!, ~5!

j F5rFS 1

2
¹fF2aD . ~6!

Here the * denotes convolution and is to remind the rea
that rB is scale dependent on scales relevant to the su
quent discussion.

The physical currentj phys5 j B and the constraint enforce
by the gauge fielda is j B1 j F50, i.e.,

rB* ~¹fB2a2A!1rFS 1

2
¹fF2aD50. ~7!

This implies

a5~rB1rF!21* @~rB* ~¹fB2A!1rF¹fF#. ~8!

In the long-wavelength limit the nonlocality ofrB may be
neglected. AsT→0 and assuming no fermions are excite
elimination ofa leads to10,16

Hphase5
rBrF

rB1rF
S ¹fB2

1

2
¹fF2AD 2

. ~9!

The meaning of this equation is that in a state with pai
spinons and condensed bosons at long wavelengths only
combination¹fB2 1

2 ¹fF couples to an external vector po
tential or is relevant to the energy, and the physical sup
fluid stiffnessrS5rBrF /(rB1rF). Similarly one finds
3-2



on
ut

s
om
g
ce

he
as
t
b

ar

c-

ely

w

ud
.
to

e

If
is
u
t

n

at
he

st
ted

-

n-

he
w

by

s

hin

uper-
n in
her-
t by
in

not
hat
ed
he

gth
, so

eld
m-
s
ects

cing
ap-
tly

he

BIG FAST VORTICES IN THEd-WAVE RESONATING . . . PHYSICAL REVIEW B66, 094513 ~2002!
Hmix5(
a,s

2rB

rB1rF
S ¹fB2

1

2
¹fF2AD •vW 1cas

† cas .

~10!

Because the gauge field has been eliminated, the fermi
degrees of freedom should be regarded not as spinons b
Bogoliubov quasiparticles of the superfluid~or near-
superfluid! state. They couple only to the combination¹fB
2 1

2 ¹fF and the coupling is via an effective chargeZe5
2rB /(rB1rF), which is negative~hole like! and vanishes
as the Mott insulator is approached.

Equations~9! and ~10! constitute a derivation, from the
U~1! gauge theory, of phenomenological equations discus
in Ref. 18. The derivation makes it clear that deviations fr
the phenomenological equations of Ref. 18 occur at len
scales shorter than that specified by the scale dependen
the physical superfluid stiffness, i.e., than the longer ofjF
and x21/2. The derivation also makes it manifest that t
phenomenological action, discussed in Ref. 14 on the b
of Fermi-liquid theory, is more general and may apply also
situations in which the normal state is not described
Fermi-liquid theory.

III. VORTEX SOLUTION: STATIC CASE

Consider a vortex. Far from the vortex core the fields
found by minimizing Hphase @Eq. ~9!# which implies that
¹2(fB2 1

2 fF2A)50. Single valuedness of the wave fun
tion implies that bothfB and fF must have circulation
which is an integer multiple of 2p so that in a mean-field
approximation one would write

¹fB5
mû

r
, ~11!

¹fF5
nû

r
. ~12!

The energy associated with a vortex is thus, approximat

EV5Ecore~n,m!1
1

2
rSS m2

1

2
n2AD 2

lnS R

j D , ~13!

whererS is the physical superfluid stiffness defined belo
Eq. ~9!, R is of the order of the intervortex separation, andj
is the length scale below which the supercurrent magnit
deviates from 1/r and will be discussed more fully below
Ecore is the core energy of the vortex, i.e., the contribution
the energy arising from scales less thanj.

The superflow contribution is clearly minimized by th
choice m50, n51, corresponding to a conventionalh/2e
vortex. The core energy term requires more discussion.n
51, then a singularity in the fermion pairing amplitude
required. In a clean conventional superconductor one wo
estimate the energy cost of this singularity as the produc
the condensation energy per unit area (N0D2 with N0 the
density of states! and the area of the core (jF

25vF
2/D2), lead-

ing to Ecore;vF
2N0. In the present problem this implies a

Ecore of the order of the effective fermi energyJ. On the
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other hand, ifn50 andm51, then no singularity is required
in the fermion field and a calculation very similar to th
given in Eq.~19! then shows that the core energy is of t
order of the boson or superflow energyxt and can be ab-
sorbed into the definition ofj. These considerations sugge
that in the gauge theory the vortex energy may be estima
by

EV'CcoreJ~12dn,0!1Cs fxt lnS R

j D S m2
1

2
n2AD 2

,

~14!

with Ccore,s f constants. This estimate~proposed and pre
sented in more sophisticated form by Sachdev2! suggests that
when the superflow energy is dominant~low vortex density
or high doping! one has conventionalh/2e vortices but that
asx is reduced orR is decreased a transition to doubly qua
tized vortices may occur.

This argument, however, is vitiated by recent work on t
structure of the vortex core. From different points of vie
the authors of Refs. 5–7 show that~within certain reasonable
assumptions! some other ordered state, also characterized
an electronic gap of the order ofD, is very nearby in energy
and indeed becomes favored asx→0. The consequence i
that Ccore in Eq. ~14! decreases rapidly asx→0 and may
even become negative, implying that conventional (h/2e)
vortices are always favored. In more physical terms, wit
the classes of models~including the gauge model! consid-
ered by Refs. 5–7 the reason that the ground state has s
conducting rather than some other sort of order is the gai
energy associated with establishing superfluid phase co
ence, so it is natural that even the vortex core energy is se
the phase stiffness. The conventional nature of vortices
this theory was stressed in Ref. 16, which, however, did
consider the core energy explicitly. We note, however, t
even if not favored in the superfluid state, doubly quantiz
(h/e) vortices may be easily excited thermally once t
long-ranged superfluid order is disrupted.

We now study the structure of the vortex at shorter len
scales. We consider the case of very weak applied field
we may choose a gauge in whichA50. We assumerB
!rF and expand in powers ofrB . We find from Eqs.~8! and
~11!

a5
1

2
¹fF2

1

4rF
rB* ¹fF1•••, ~15!

where the ellipsis denotes both terms higher order inrB /rF
and fluctuations about the mean-field solution forfF,B .

We must now determine the behavior of the boson fi
and the fermion pairing amplitude. The fermion pairing a
plitude varies on the scalejF which by assumption remain
finite as the Mott phase is approached, whereas one exp
the Bose amplitude to vary on the scale set by the spa
between carriers, which diverges as the Mott phase is
proached. We therefore focus on the Bose field. In a ligh
doped Mott insulator the density of bosons is low. In t
limit of dilute bosons one expects19 that the bose amplitude
is described by the two-dimensional Hamiltonian density
3-3
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HBose5
1

2mB
@~¹2a2A!c#21

1

2
mc21

1

4
Uc4. ~16!

In the dilute limit, the parametersm and U are universal,
given in terms of the boson densityx and massmB by

m5Ux, ~17!

U5
4p

mBln~1/x!
. ~18!

We see thatmB;1/tb2 with b the underlying lattice constan
is required to reproduce the established result for the bo
stiffness cited above~for a more detailed derivation see Re
10!. Also, the dilute limit means that a mean-field appro
mation for the boson field is reliable.

We must, however, consider the mean-field approxima
for the gauge field in more detail. In thed-wave RVB
(d-RVB! state, fluctuations ina are controlled by the stiff-
ness corresponding to fermion pairing. This stiffness is la
at length scales longer thanjF or energy scales less than th
fermion pairing amplitudeD, so a mean-field approximatio
is expected to be reliable at long-length and low-ene
scales. However, ifjF , D21 are shorter than the relevan
bosonic length scalex21/2 and time scale (xt)21, then fluc-
tuations ina may appreciably renormalize the parameters
LBose. Because the decay withq of the fermionic stiffness is
slow @;(jFq)21#, we focus here on the energy scale.
carriers are added to a lightly doped Mott insulator,D de-
creases andxt increases. WhenD/xt becomes less than unit
we expect that fluctuation corrections to the various para
eters become large. We thus distinguish two regimes: a ‘
perdilute regime’’ in whichD.xt and g;1 and a ‘‘dilute
boson regime’’ in whichx!1 but D,xt andg!1.

In the limit of interestjF,x21/2 the boson ground state i
the presence of a vector potential is given by the solution

21

2m
~¹1a1A!2c1Uc35mc. ~19!

Equations~19!, ~12!, and ~15! imply that in radial coordi-
nates we have~up to terms of relative orderx)

21

2m S ] r
21

1

r
] r1

1

4r 2D c1Uc35mc. ~20!

Defining

c5x1/2f ~r /j!, ~21!

with

j2252mm, ~22!

leads to the solution shown in Fig. 1. In particular, at lar
distancef→1 while at small distance

f 5Ar f 0 , ~23!

with f 050.886. In other words, as the core of the vortex
approached, the Bose amplitude decreases as the squar
09451
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of the distance from the vortex core. This result was pre
ously obtained by Franz and Tesanovic.20

The supercurrent is given from Eqs.~5! and ~16! as

j ~r !5
uc~r !u2

mB
a, ~24!

so in particular at small distances, in physical units

j 5
f 0

2j
rB~`!. ~25!

The resulting current profile is also shown in Fig. 1; we s
that the supercurrent varies as 1/r for r .x21/2 and is con-
stant for smallerr, justifiying the qualitative statements mad
in Ref. 16.

The fermion spectrum retains its long-distance va
down to a lengthjF5v1 /D which is parametrically less tha
j asx→0; below this length a variety of interesting physic
effects6,7 may occur. The physical electron spectrum, obse
able ~in principle! via tunneling, is calculated in the U~1!
gauge theory as a convolution of a holon and a spinon,11 and
so is relatively broad in the nonsuperconducting phase of
model. In the superconducting state theq50 boson ampli-
tude develops an expectation value and so the electron s
tral function acquires a sharp ‘‘quasiparticle pole’’ feature.
the limit x→0 the short length scales of the spinon spectr
control the convolution so the coherent part of the spectr
at distancer from the vortex core is proportional to the boso
amplitude at distancer. In other words, in this theory the
strength of the quasiparticle peak measured at a distanr
from the vortex core should begin to decrease for asr is
reduced belowj. This effect is not visible in published tun
neling data.21

To summarize, in the U~1! gauge theory of a lightly doped
Mott insulator, a vortex is characterized by two length scal
j;x21/2, below which the supercurrent ceases to vary asr
~and in fact becomes essentiallyr independent!, and the scale
jF , which does not diverge as the Mott phase is approac
and which controls the quasiparticle properties. The core
ergy is small~of order of the superfluid stiffness!; however,
the state in the core possesses a gap very similar to the

FIG. 1. Variation with distance from the vortex core of the b
son amplitudec and supercurrentj.
3-4
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perconducting gap. This behavior should be contrasted w
that of a conventional~BCS! superconductor, in which the
length defined by the supercurrent is essentially the sam
the length defined by the quasiparticle properties, the c
energy is large~of the order of the Fermi energy!, and the
core is gapless apart from the ‘‘finite-size effects’’ which le
to the Caroli-Matricon states.

IV. MOVING VORTEX

We consider a slowly moving vortex with center positio
XW v(t), so that time derivatives of fields may be replaced
the dot product of a field gradient and the vortex velocity:
example,] tc(r ,t)5] tXW v(t)•¹W c. The contribution to the ac
tion from vortex motion has two terms: a nondissipative te
corresponding to motion in an effective magnetic fieldBe f f
and a dissipative term arising because vortex motion exc
fermionic excitations. These terms imply a classical equa
of motion

Be f fẑ3] tXV1h] tXV5FV , ~26!

whereFV represents the forces acting on the vortex~arising
for example from an imposed current and from vortex-vor
interactions!. Equation~26! applies only for frequencies les
than a cutoff frequency which is the minimum ofD and the
boson frequency scalext.

Be f f may be obtained by considering the action aris
from moving a vortex around a closed loop. For orientat
we first consider the related purely bosonic problem o
vortex in a two-boson condensate. The standard bosonic
grangian density19 includes a ‘‘nondissipative time deriva
tive’’ term igBc†] tc with coefficient gB51. A superfluid
state is described by a condensate amplitudens5u^c&u2 and
condensate phasef, leading to a terminS]tf in the action.
This term ensures that dragging a long straight vortex in
boson condensate around a loop enclosing an areas leads to
a contribution to the action ofDS52pnSs. This contribu-
tion is just the action appropriate to a particle in a magne
field of strengthhe f f52pnS . For particles on a lattice, a
magnetic flux of 2p per unit cell has no dynamical cons
quences, so that one measuresnS modulo 1 per lattice site
Finally, we consider the relation between the condesate d
sity nS and the total boson densitynB . Gauge invariance
means that2 i ] tf is a chemical potential and therefo
couples to the total particle densitynB . In simple boson
problems, atT50 the only gapless excitation is the pha
mode of the superfluid state and thereforenS5nB . As T is
increased fromT50 gapless ‘‘normal fluid’’ excitations oc
cur. The presence or absence of Galilean invariance
becomes crucial. One may interpret the] tf term in the vor-
tex action in terms of the acceleration of a vortex in a giv
force. In a Galilean-invariant situation one expects that
vortex is accelerated, it will drag all particles in the syste
with it, so that the coefficient of] tf is simply the total
particle density in the system. However, in a non-Galile
invariant system the superfluid component may accele
independently of the normal component andnS<nB .
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We next consider a superconducting condensate mad
paired electrons. The important different here is that ‘‘tw
fluid’’ effects may be important even at very lowT, for ex-
ample, because of impurity-induced pair breaking or of v
tices. The conventional result is that if a Landau expans
may be constructed about a nonsuperconducting state~for
example, very near toTc or in the presence of strong pa
breaking!, then one has

Ssc5E dtddxN0T0
2

3FgF

D1] tD

T0
3

1
j0

2~¹D!2

T0
2

1
T2Tc

T0

D2

T0
2

1u
D4

T0
4G .

~27!

Here N0 is the electronic density of states,T0 is an energy
scale of the order of the transition temperature or the p
breaking scattering rateu is a coefficient of the order o
unity, and the coefficientgF of the time derivative term has
both real and imaginary parts,gF5gF81 igF9 . In a usual su-
perconductor the dissipative~real! part of gF is of the order
of unity ~the conventional result isgF95p/8). Because a
time-dependent phase is a contribution to the chemical
tential, we may identify the imaginary partgF9 with
2]Tc /]m. In conventional superconductors this is ve
small ~of orderTc /EF), so the total coefficient of the dissi
pationless time derivative,N0T0gF-;(Tc /EF)2, is extremely
small and for most purposes may be neglected~for excep-
tions see, e.g., Refs. 17 and 22!. Of course in a conventiona
superconductor with weak pair breaking, a Landau exp
sion only applies for temperatures very near toTc and asT
→0 one expectsgF9→0 while the dissipationless term
N0T0gF9 must approach the total fermion densityn. For a
type-II superconductor in a magnetic field one similarly e
pects thatN0T0gF9→n only for temperatures of the order o
the core-state level spacingTc

2/EF and only in the ‘‘super-
clean’’ limit. To summarize, known results from simple fe
mion and boson problems imply that the dissipationless t
derivative term in the superfluid action involves a nonuniv
sal coefficient which depends on the interplay between
superfluid and non-superfluid components of the system
in general quite small for fermion-based superfluids, and
of the order of the particle density for boson-based syste

We now turn to the boson-fermion-gauge-field problem
interest here. The discussion above shows that there is
simple, generally valid expression for the nondissipative
efficient, except in theT→0 no-pair-breaking limit, in which
the coefficient is the total particle density. Nevertheless
few remarks can be made and limits can be estimated
high dopings (xt.J) the bosons condense~or quasicon-
dense! at temperatures well aboveTc , so in this limit super-
conductivity arises out of a more or less Fermi-liquid-lik
state, so nearTc one expects the resulting superfluid state
be described by a nondissipative coefficientg which is of a
fermionic order of magnitude and thus much less than un
We note, though, that in the present model the spinon Fe
energy is of orderJ and the pairing amplitude varies from
3-5
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~not too small! fraction of J at low doping to a very smal
value at high doping,15 so ]D/]m is not particularly small;
the main smallness is provided by the factorN0T0;Tc /J.
On the other hand, as doping is reduced, the physics chan
The fermions pair at a higher scale and the superconduc
transition is set by the condensation scale of the bosons
upper bound on the nondissipative coefficient is then se
the total particle density~modulo 1), i.e.,g,x. In this limit
one expects that by temperatures of the order ofTc the fer-
mions are mostly paired, so that a Landau expansion is
appropriate and the coefficient is set by bosonic physics;
g is not that different from itsT50 no-pair-breaking value
We therefore propose the following approximate interpo
tion formula for the efffecitve magnetic fieldBe f f implied by
the nondissipative terms in the action of our problem:

Be f f'
1

~px!211~D/J!21
. ~28!

We turn next to the dissipative term. In the gauge mod
the dissipation arises from the continuum of spinon exc
tions, and we assume that the temperature, magnetic fiel
impurity density is large enough that an appreciable num
of these exist and may be characterized by a spinon con
tivity ssp which we take to be local on the scales of intere

The ‘‘electric field’’ felt by the spinons is] t(
1
2 ¹f2a) so

that the dissipative contribution to the action is

Sdiss5
ssp

2 E d2rdtdt8

3] tS 1

2
¹f2aD

t

K~ t2t8!] tS 1

2
¹f2aD

t8

, ~29!

with K the Fourier transform of 1/uvu. In a slowly moving
vortex with center positionXW v(t), 1

2 ¹f2a is a function
ã@rW2XW v(t)# Substitution into Eq.~29! and some rearrange
ment leads to the standard form for a particle moving in
dissipative medium, namely,

Sdiss5
h

2E dtdt8@] tXW v~ t !#K~ t2t8!@] t8X
W

v~ t8!#, ~30!

with viscosityh given by

h5
ssp

2 E d2r(
i j

S ]S 1

2
¹f2aD

i

]r j

D 2

. ~31!

Use of Eq.~5! shows thatrF( 1
2 ¹f2a) is just the physical

current jWphys5rBf 2(r /j) û/r . Substitution of our result forf
leads to„note that the logarithm comes from the angu
derivative@¹→(1/r )]u#…

h5
pssp

j2
f 0

2S rB

rF
D 2

ln~j/jF!. ~32!
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We see that as the insulator is approached, the vortex vis
ity vanishes very rapidly, indeed asx3. One factor ofx
comes from the large size of the vortex~proportional to
j22); the other two factors (rB /rS)2 come from the de-
creased coupling of the vortex motion to the spinons;
interpret this as a signature of the vanishing of the quasip
ticle charge in this theory~for a discussion of other signa
tures see Refs. 14 and 18!.

It is instructive to view this result in a slightly differen
way. The ‘‘internal electric field’’e felt by the spinons is
] t(a2 1

2 ¹fF)5(1/erF)] t„j phys(r )…. Application of the
usual composition rules of the gauge theory10 shows that the
physical electric fieldE5erF /rB ~in the limit rF@rB) so
that the physical electric fieldE generated by a moving vor
tex is

E~r !5
1

erB
] t„j phys~r !…5] t„XW v~ t !…•¹W S f 2S r 2XV

j D û

r 2XV

D .

~33!

This shows that a moving vortex generates an electric fi
which varies on the length scale set by the physical curr
E(r ) varies as 1/r 2 far from the vortex and as 1/r for jF
,r ,x21/2. A standard argument23 says that the dissipative
contribution may be estimated by multiplying the square
the electric field by the physical conductivity, which from
Eq. ~10! is of order (rB /rF)2, leading again to Eq.~32! for
h.

The result forh, along with the estimates of the cor
energy, has implications for the width of the resistive sup
conducting transition in this model. In a two-dimension
superconductor, the resistive transition is of the Kosterl
Thouless~KT! vortex unbinding type. Near to the transitio
point, but in the normal state, one has a dilute gas of vorti
and antivortices. The physical conductivity is the sum of t
conductivity due to the moving vortices and the conductiv
due to the quasiparticles. Use of Eqs.~10! and~32! leads~at
leading order in the small parameterrB /rF) to

sphys5S rB

rF
D 2

sspS 11
p f 0

2ln~j/jF!

nVj2 D . ~34!

Thus, recalling that in the pseudogap regime of this mo
the quasiparticle contribution to the conductivity
(rB /rF)2ssp we see that the total conductivity is dominate
by proximity to the superconducting phase only if~up to a
logarithm! vortices are dilute on the length scale set by t
supercurrent pattern; asnV increases further the superco
ducting fluctuation contribution to the conductivity quick
becomes negligible. However, even when vortices over
from the ‘‘current’’ point of view ~so the superfluid conden
sate does not make an appreciable contribution to the c
ductivity!, they may still be dilute on the scale set by th
‘‘quasiparticle core size’’jF , so we would therefore expec
the gap in the fermionic excitation spectrum to persist
much higher temperatures than does the ‘‘superfluid’’ con
bution to the conductivity.
3-6
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The density~and nature! of thermally excited vortices
bears further discussion. The factors influencing the den
of vortices may be understood from simple mean-field f
energy arguments. For conventional (h/2e) vortices the
mean-field free energy as a function of conventional vor
densityn1 is ~note that the position of the conventional vo
tex may be defined to withinjF but the logarithm from the
superfluid stiffness is cut off byj)

En51,m505Ecoren12rSn1ln~n1j2!2Tn1ln~n1jF
2 !.

~35!

Away from the KT fluctuation regime,rS becomes less
thanT and we have, approximately,

n1j25
j2

jF
2

e2Ecore /T. ~36!

The factor5j2/jF
2 makes it easier than one might gue

to obtain a reasonable density of conventional vortices
course the small value of the core energy, arising as
cussed above from the proximity in energy of other gapp
states within thed-RVB theory, is also important.

It is also of interest to consider the densityn2 of doubly
quantized vortices~i.e., vortices in the boson field only!, be-
cause their motion leads to dissipation too. As noted abo
in this case the core energy is entirely determined by
superfluid stiffness, so we have (F is a scaling function
which is exponentially small at large argument and becom
of order unity when its argument becomes of order unity a
the factor of 4 comes from the doubly quantized nature of
vortex!

n2j25F~4rS /T!. ~37!

Therefore, even if the core energy of a conventional v
tex is very high~which in thed-RVB theory it is not!, above
a temperature scale set byrS double-quantized vortices wil
proliferate and will suppress the superfluid contribution
the conductivity.

V. QUANTAL FLUCTUATIONS AND THE MELTING
OF THE VORTEX LATTICE

We now consider the physics at low temperature in
applied magnetic field. An applied field induces a vortex l
tice and, ultimately, a nonsuperconducting state. In a conv
tional ~BCS! superconductor the transition is driven by t
collapse of the superconducting gap. In the present mode
important physics involves quantal fluctuations in the po
tions of the vortices, leading via a first-order transition to
‘‘quantal vortex liquid’’ state. In particular, although an a
plied field leads to pair breaking and thus to a nonvanish
density of quasiparticles and to a reduction of the superfl
stiffness and gap amplitude, in the gauge model of inte
here these effects are small~order x22),18 so we neglect
them.

We estimate the magnitude of the quantal fluctuations
the vortices by considering the fluctuation in position of o
vortex about its ideal Abrikosov lattice position. To do th
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we note that in a vortex lattice the force term in Eq.~26! may
be written for small amplitude displacements asFV
5KlattXV , where Klatt is the coefficient of the quadrati
term in the restoring potential acting on the vortex and a
ing from the other vortices in the vortex lattice~plus any
pinning forces which may exist and which we do not trea!.
Equation~26! applies only for frequencies less than a cuto
frequency which is the minimum ofD and the boson fre-
quency scalext. Here Klatt is of the order of the physica
superfluid stiffnessrB divided by the square of the intervor
tex spacing, i.e.,Klatt5K0nVrB . The long-range~logarith-
mic! form of the intervortex potential means thatK0!1. We
may now quantize Eq.~26! and thereby estimate the zero
point fluctuations of a vortex as (vn is a Matusbara fre-
quency andsy is a Pauli matrix!

^XV
2&5Tr(

n
@huvnu1syBe f fvn1K#21. ~38!

We estimate that the vortex lattice melts when the me
square vortex displacement divided by the square of the
ervortex distanceb, i.e., ^XV

2&/b2, becomes of the order o
the square of the Lindemann numbercL

2 . The value of the
Lindemann number depends on the physical situation
varies fromcL

250.01 tocL
250.1.24 The estimate of̂Xv

2& de-
pends on the values ofh and Be f f and in particular on
whether the system is in the superdilute regime (Be f f
;pnB andh→0) or the dilute regime (Be f f unimportant,h
dominant!. In the superdilute regime we neglect theh and
find ~the numerical factors give the relation betweenb2 and
nV for a triangular vortex lattice!

^XV
2&

b2
5

3A3nV

8Be f f
. ~39!

In fact, if dissipation is negligible, then we may look
the problem in a different way. The vortices move in
effective field which is large, leading to Landau-level qua
tization. If the density of vortices is much less than the de
sity of bosons,nV!nB , then only the lowest Landau level i
populated and we may use known results for the melting
the Wigner crystal in a high magnetic field to argue th
lattice melting occurs whennV /nB'1/10 corresponding to a
Lindemann numbercL

2'0.01, reasonably consistent wit
known results for two-dimensional triangular lattices.24

In the dilute regime, the frequency cutoff is needed.
rB.D, then this scale isD and we obtain

^XV
2&

b2
5

3A3nV

4ph
lnF11

Dh

K G . ~40!

Use of Eq.~32! and our estimate forK shows that the
important dimensionless parameter is given by

Dh

K
;

D

rB
S jV

2

jB
2 D pssp

K0
S rB

rF
D 2

lnS jB

jF
D . ~41!
3-7
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This parameter may be larger or smaller than unity, beca
rB /rS;x while K0!1 andssp must by consistency be o
order 1/x ~because we have written clean-limit formul
which require that ssp5pFl F/2p.pFj F/2p.rS /rB
;1/x). However, as one goes more deeply into the smalD
regime, the parameter shrinks and we obtain

^XV
2&

b2
5

3A3D

4pK0rB
S jV

2

jB
2 D . ~42!

Thus in the dilute limit the lattice still melts when the flu
per boson is of the order of the square of the Lindema
number up to a factor of orderrB /D.

The melted phase is an interesting example of a ‘‘n
Fermi liquid’’ the vortex motion is damped~albeit weakly!,
so the model is characterized by a nonvanishingsxx and
sxy , as in a normal metal~although thesxy value is rather
large!, but also by a ‘‘non-Luttinger’’ Fermi surface with
gap over large regions of the nominal Fermi surface.

VI. CONCLUSION

One of the most interesting aspects of high-tempera
superconductivity is the ‘‘pseudogap’’ regime of underdop
materials. This regime is characterized by a gap~of approxi-
mately d-wave form! in the quasiparticle spectrum but ne
ther long-ranged superconducting order nor particularly
ticeable superconducting fluctuations. One possibility is t
this regime involves electron pairing~as in a conventiona
superconductor! but with long-ranged superconducting ord
disrupted by strong phase fluctuations, arising physic
from the strong suppression of charge response expe
mear a Mott insulator. A difficulty with this idea is the ab
sence of noticeable ‘‘paraconductivity’’: transport measu
ments indicate a critical regime of order 10 K at most.25,26

In this paper we studied one theoretical implementation
the ‘‘phase fluctuation’’ scenario for the pseudogap: nam
thed-RVB regime of theU(1) gauge theory of lightly doped
Mott insulators. In this approach the spin degrees of freed
are mostly paired into ad-wave pairing state and the low-T
charge response is essentially that of a superfluid, but w
properties strongly affected by proximity to the Mott tran
tion. One important feature of the model is that the vor
excitations are characterized by two length scales: the ‘‘q
siparticle coherence length’’jF5v/D, which controls the
distance over which the excitation spectrum differs from t
far from a vortex, and the ‘‘current coherence length’’j,
which varies as the inverse of the square root of the dop
and cuts off the familiar 1/r divergence of the supercurren
near a vortex. We studied the charge transport prope
~many of which are dominated by vortices! and showed in
particular that the electric field created by a moving vort
the dissipation due to moving vortex, the value ofHc2 and
the size of the fluctuation regime near the resistive transi
are all controlled byj which diverges near the Mott trans
tion, rather than by the ‘‘quasiparticle length’’jF which does
not.

As noted elsewhere8,14,18the theory disagrees in a numb
of ways with experiments; the most significant difficulty
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the small value and strong doping dependence of the ‘‘q
siparticle charge’’ defined in Eq.~10!. Further, our calcula-
tion has a number of phenomenological aspects. For
ample, we assumed a finite ‘‘spinon conductivity’’ whic
could reasonably be expected to arise from the ‘‘gapl
Fermi arcs’’ induced by a nonvanishing temperature or
plied magnetic field, but we did not attempt to calculated t
from first principles; nor did we investigate the subtle qua
tum mechanics of fermions in the presence of conventio
vortices. However, we believe the results presented here
useful because they provide an explicit demonstration i
well-defined model that if the supercurrent-defined corre
tion length is parametrically larger than the quasipartic
defined length, then the resistive properties are controlled
the length scale over which the supercurrent varies.

Other workers have observed that the theory admits d
bly quantized vortices. We have noted that they prolifer
above a scale defined by the physical superfluid stiffness
~if the core energy of conventional vortices were larg
which it is not in this model! would suppress the supercon
ducting fluctuation contribution to the conductivity. We als
showed how, in this model, the ‘‘nondissipative time deriv
tive,’’ whose importance was stressed in Ref. 17, is import
for the estimation of the upper critical field and argued tha
crosses over from the ‘‘fermionic’’ valueTc /EF to the
‘‘bosonic’’ value proportional to the density of chargesx. A
subsequent paper will apply these ideas to a different mo
of high-Tc superconductivity.
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APPENDIX: FERMI-LIQUID-BASED APPROACHES
TO DOPED MOTT INSULATORS

This appendix treats the case of superconductivity de
oping out of a state which is well described by the us
Fermi-liquid theory. The necessary formalism was develop
by Larkin and Leggett, and some of the results were sketc
elsewhere.27 A Fermi-liquid state is characterized by a qu
siparticle velocityv* (u) which may depend on position (u)
on the Fermi surface, a characteristic energy scaleE* , and a
Landau interaction functionT(u,u8). In order for Fermi-
liquid theory to be applicable, the maximum supercondu
ing gapD0 must be less thanE* . Transcription of the stan-
dard results to the langauge of the section above leads t

rs05^v* ~u!~12T!u,u8
21 v* ~u8!&, ~A1!

vF5v* , ~A2!

drS

dT
5

^v* ~u!~12T!u,u1

21 L~u1!~12T!u1 ,u8
21 v* ~u8!&

^v* ~u!2&
,

~A3!
3-8
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where the angular backets mean multiplication by density
states and average over the Fermi line and

L~u!5E dvdu

2p2

v

2T2cothS v

2TD
D~u!2

@v21D~u!2#3/2
.

Comparison of the these results with those presente
Sec. II shows that the U~1! theory corresponds to a ferm
liquid with a weakly angle-dependent Landau interact
function whose ‘‘current-channel’’ value is of order 1/x.27

We now consider the situation in more detail by calcul
ing the low-T current-current correlation function for a su
perconducting Fermi liquid, making the usual assumpt
that the Landau interaction function may be decomposed
angular channels in the conventional way and that the m
mum value of the superconducting gap is small compare
the characteristic quasiparticle energy scaleE* so that qua-
siparticle damping effects may be neglected. The gau
invariant current-current correlation function is then27

x j j ~q,D!5
xqp~q,D!

11I 1xqp~q,D!
, ~A4!
,

ys

ys

.

09451
f

in

-

n
to
i-
to

e-

with I 1 the current-channel Landau interaction parameter@so
that the Landau parameterF1s52I 1xqp(0,D)] and

xqp~q,D!5T(
v

E du

~2p!2v* ~u!
vx*

2 D~u!2

AD~u!21v2

3
1

v21D~u!21@v* q cos~u2uq!#2/4
.

~A5!

~Note that the result depends on the angleuq between the
direction ofq and the nodes in the gap.!

Standard calculations28 show that at vq@D0 , xqp
;D0 /vq, so that we expect an appreciable change inx j j
when vq;D0 /x. In other words, a naive application o
Fermi-liquid theory would predict a very short characteris
length scale of orderxv/D. However, from the usual physi
cal picture of the doped Mott insulator as a dilute collecti
of holes one might expect the interparticle spacingx21/2 to
be an important scale. The discrepancy is resolved by no
that the Landau parameter presumably varies on the s
x21/2. This effect is beyond the scope of Landau theory bu
captured in the U~1! approach.
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