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The effect of proximity to a Mott insulating phase on the superflow propertiesdefvave superconductor
is studied using the slave-bosoril)}gauge-theory model. The model has two limits corresponding to super-
conductivity emerging either out of a “renormalized Fermi-liquid” or out of a non-Fermi-liquid regime. Three
crucial physical parameters are identified: the size of the vasedetermined from the supercurrent it induces
the coupling of the superflow to the quasiparticles, and the “nondissipative time derivative” term. As the Mott
phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow
and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases.
The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical
field and the size of the critical regime in which paraconductivity may be observed are estimated and found to
be controlled by the supercurrent length scale.
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I. INTRODUCTION lowing for superconductivity to emerge from a non-Fermi-
liquid state or regime. One widely studied theoretical model
High-T. superconductors are created by doping an antiof a doped Mott insulator is the (W)-gauge-theory
ferromagnetic “Mott insulating” parent material, and the ef- implementatiod® of the resonating valence bon@RVB)
fect of proximity to the Mott phase on their superconductingideas of Andersoft This theory and its variants have been
properties remains a crucial and still incompletely under-extensively studied as an approximation to the low-energy
stood issué.One expects on general grounds that the supphysics of thet-J model believed to capture the essential
pression of the current response near a Mott insulator leadsspects of the low-energy physics of hi§h-materials. It
to “type-IlI" behavior, so a fundamental issue is the physicsexhibits (at least in a largé\ limit) a non-Fermi-liquid
associated with vortices in the superconducting order paramregimé®!?involving exotic excitationg“spinons” and “ho-
eter. An isolated vortex involves a quantized flixc(2e in  lons” coupled by a gauge fieldand a Fermi-liquid regime in
conventional superconductgrsa circulating supercurrent which the spinon and holon are bound together into a con-
pattern, and a “core region” in which the quasiparticle exci- ventional electron and the gauge field effects produce a non-
tation spectrum differs from that observed far from the vor-trivial doping dependence of the Landau parametgy.*314
tex. The possibilityapparently not realized in known super- The model also possessesiavave superconducting state
conductorgthat proximity to the Mott phase could induce an which may emerge either from the Fermi-liquid or non-
unconventional value of the flux quantum has beenFermi-liquid regimes. Quasiparticle propertiéacluding a
discussed:® An extensive literature exists on quasiparticle possible antiferromagnefioor staggered fluk state in the
properties(including the possibility of interesting discrete core of the vortexhave been studied and the model has been
core statesand whether an antiferromagnétfcor othef  shown to admith/2e vortices'® but superfluid properties
state is induced in or near the vortex cordowever, apart such as the supercurrent distribution in the vortex state and
from the pioneering phenomenological work of Lee andthe dissipation occurring when a vortex moves have been
Werf and an analysis of the resistive transition in overdopedess well studied.
Tl-based material$little theoeretical attention has been paid ~ As discussed at length elsewh&t&!® this theory dis-
to the superflow properties even though these in fact contraigrees with experiment in a number of ways. Most problem-
many physically important quantities includirty., and the atically, the model predicts a strong doping dependence to
size of the “critical regime” in which superconducting fluc- the leading lowT correction to the London penetration depth
tuation properties may be observed in the conductivity. [d\~%/dT~ (dopingy] which is not observed. We therefore
Theoretical analysis of vortex properties requires a modeldo not believe the theory is a realistic representation of high-
Conventional models of superconductivity in interactingtemperature superconductors; however, it is a very useful
electron systems are based on Landau’s Fermi-liquid theorynodel system. We stress that although as usually formulated
but as we show in the Appendix, analysis of the changeshe model involves exotic excitations such as holons and
occurring as the Mott phase is approached requires a modspinons, for the properties we discuss these can be com-
which goes beyond Fermi-liquid theory, at minimum by in- pletely eliminated: as shown in the text and Appendix, the
cluding effects corresponding to a scale dependence of model can be viewed simply as a method of calculating the
Landau parameter and perhaps more fundamentally by abehavior of a Fermi-liquid-based system at length scales
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short enough that the scale dependence of the Landau param- 1

eters becomes important. Hmix:E (iz%fﬁF—eaﬂ
The importance of the model is that it provides an explicit “7

realization of a situatiofwhich, we believe, is generically We begin our analysis oflg,qe by considering length

realized in lightly doped Mott insulatorswhere the o4 energy scales. The fermionic part of the Hamiltonian
supercurrent-defined and quasiparticle-defined length scalgs, o1ves the length scale

are parametrically different. We show in this paper that the

v lCZUCaU . (2)

longer length scale is in fact the one relevant to the conven- vy
tional superfluid properties such &g(H) and the size of the §F:K )
“fluctuation regime” in which the model exhibitéfor ex-
ample a nontrivial paraconductivity. and two energy scales and
The rest of this paper is organized as follows. Section Il
reviews necessary aspects of thélJugauge theory formal- PE~U1PE. (4)

ism. Section lll discusses in detail the current distributionHere ¢ is relatively short and does not diverge as the Mot

around a vortex. Section IV calculates the dissipation inh-qqais approached, apg is relatively large(of orderJ in
duced when a vortex moves and uses this information t e t-J mode) and does not vanish as the Mott phase is

estimate the size of the “critical regime” in which supercon- approached.
ducting fluctuation effects are visible in the conductivity. The boson stiffnessg has dimension of energgin two

S(_at(_:tlolnf_vk;:orgdte_:rs t\r}? _Iow-templera_ture limit of 'gh_e uﬁﬁerspatial dimensionsand is proportional to the dopingand to
critical field. Section is a conclusion, summarizing the o asic electronic hopping parametéf 1215 pg is ex-

results and their implications. The Appendix explicates thepected to vary® on the length scale~ 2 which is the dis-

r_elat|on b“-‘t.W?e"? the resglts presented here and the CONVEfince between charge carriers. We shall be interested prima-
tional Fermi-liquid analysis. rily in the limit x " Y?>&-. We note that as the doping is
increased,A decreases and eventually becomes smaller
Il. FORMALISM than an energy of order*’2), so the inequality is reversed.

This subsection reviews results obtained in the early daygor larger dopings the theory becomes essentially the famil-

of the gauge theor?215%in order to establish notation & BCS one, with only one important length scéle.
. . The currents carried by boson and fermion degrees of
and introduce important concepts.

In the gauge theory one writes the electmpin terms of freedom are, respectively,
? c_harg"ee boson b_ (represgntlng a holeand a fermionic i5=pi(Vdg—a—A), (5)
spinon” representing a spin degree of freedom, tmI§
= bifiT(,. The superconducting state is described lyveave 1
BCS pairing of spinors (involving a d-symmetry pairing JFZPF<§V¢F—3
gap with maximum valued) and a condensation of the
bosons. The low-energy, long-wavelength physics is conHere the * denotes convolution and is to remind the reader
trolled by the Hamiltonian that pg is scale dependent on scales relevant to the subse-
quent discussion.

The physical current,,ys= j g and the constraint enforced
by the gauge fieldis jg+ =0, i.e.,

. (6)

2

1 , 1 1
HgaugeZEPB(V(ﬁB_a_A) +§P|: EVqﬁ,:—a

+HD+HmiX+'“' (1) =0 (7)

1
§V¢F_a

ps(Vog—a—A)+pe
Here a is an internal gauge field which enforces the con-
straint, arising because the physical ferrm'pﬁ:fibfr, which  This implies
a longitudinal spinon current must cause an equal and oppo-
site boson currentlt is possible to have transverse currents a=(pg+pr)” *[(pg(Vdpe—A)+peV ¢El. ®)
of spinons with no holon motion but these are not relevan
hera. ¢g is the phase of the boson fieldg is the T=0
boson superfluid stiffnesg is the phase of the spindfer-
mion) pairing amplitude, angg is the correspondind =0

ﬁn the long-wavelength limit the nonlocality gfy may be
neglected. AST—0 and assuming no fermions are excited,
elimination ofa leads td%1°

spinon “superfluid” stiffness.Hy is the usual(normal- PEPE 1 2

ordered Dirac Hamiltonian describing the quasiparticle part thase:T Vog— §V¢F—A . 9

of the spinon degrees of freedom and the ellipsis expresses PeT PF

terms irrelevant to the present discussion. The meaning of this equation is that in a state with paired

Hp has eigenvaluest,= \/vl2p12+v2p22 with v, the  spinons and condensed bosons at long wavelengths only the
spinon Fermi velocity and, related to thel-wave gap in the combinationV ¢g— 3V ¢ couples to an external vector po-
usual way. The spinons are coupled to the gauge field antntial or is relevant to the energy, and the physical super-
thus to the “holons” via the term fluid stiffnessps= pgpe/(pg+pe). Similarly one finds
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—ps 1 - other hand, ih=0 andm=1, then no singularity is required

Hunix= 2 | V= 5Vdr— Al 01C0Ca0 - in the fermion field and a calculation very similar to that
o PBTPF (10 9gvenin Eq.(19) then shows that the core energy is of the

order of the boson or superflow energy and can be ab-

Because the gauge field has been eliminated, the fermiongorbed into the definition of. These considerations suggest

degrees of freedom should be regarded not as spinons but t&t in the gauge theory the vortex energy may be estimated

Bogoliubov quasiparticles of the superfluior near- by

superfluig state. They couple only to the combinati®mbg

—1V¢e and the coupling is via an effective chargé= R 1 2

—pe!(ps+ pr), Which is negativehole like) and vanishes Ev=Ceored(1— 8n0) + Csixt 'n(g) ( m-— gn—A) ,

as the Mott insulator is approached. (14)

Equations(9) and (10) constitute a derivation, from the

U(1) gauge theory, of phenomenological equations discussedith C.,ess CONstants. This estimat@roposed and pre-

in Ref. 18. The derivation makes it clear that deviations fromsented in more sophisticated form by Sactilsuggests that

the phenomenological equations of Ref. 18 occur at lengthvhen the superflow energy is domingfdw vortex density

scales shorter than that specified by the scale dependencemfhigh doping one has conventiondi/2e vortices but that

the physical superfluid stiffness, i.e., than the longegpf asxis reduced oRis decreased a transition to doubly quan-

and x"Y2. The derivation also makes it manifest that thetized vortices may occur.

phenomenological action, discussed in Ref. 14 on the basis This argument, however, is vitiated by recent work on the

of Fermi-liquid theory, is more general and may apply also tostructure of the vortex core. From different points of view

situations in which the normal state is not described bythe authors of Refs. 5—7 show thatithin certain reasonable

Fermi-liquid theory. assumptionssome other ordered state, also characterized by
an electronic gap of the order df, is very nearby in energy
IIl. VORTEX SOLUTION: STATIC CASE and indeed becomes favoredxas-0. The consequence is

_ _ that C¢qre in EQ. (14) decreases rapidly as—0 and may
Consider a vortex. Far from the vortex core the fields argyen pecome negative, implying that conventionai2¢)

found byl minimizing Hphase [EQ. (9)] which implies that  yortices are always favored. In more physical terms, within
V2(¢g—3pr—A)=0. Single valuedness of the wave func- the classes of modekincluding the gauge modetonsid-
tion implies that both¢g and ¢¢ must have circulation ered by Refs. 5—7 the reason that the ground state has super-
which is an integer multiple of 2 so that in a mean-field conducting rather than some other sort of order is the gain in
approximation one would write energy associated with establishing superfluid phase coher-
ence, so it is natural that even the vortex core energy is set by

>

Ve _me (11) the phase stiffness. The conventional nature of vortices in
B™ this theory was stressed in Ref. 16, which, however, did not
consider the core energy explicitly. We note, however, that

no even if not favored in the superfluid state, doubly quantized
Vd),::T. (12 (h/e) vortices may be easily excited thermally once the

long-ranged superfluid order is disrupted.
The energy associated with a vortex is thus, approximately, We now study the structure of the vortex at shorter length
scales. We consider the case of very weak applied field, so
1 2 R we may choose a gauge in whicgk=0. We assumepg
m—sn-A '”(E (13 </, and expand in powers @k, . We find from Eqs(8) and
11
where pg is the physical superfluid stiffness defined below( :
Eq. (9), Ris of the order of the intervortex separation, @d 1 1
is the length scale below which the supercurrent magnitude a=5Vor- 4—P§V¢F+ ey (15
deviates from ¥/ and will be discussed more fully below. PF

Ecore is the core energy of the vortex, i.e., the contribution towhere the ellipsis denotes both terms higher ordesgipr
the energy arising from scales less than and fluctuations about the mean-field solution figr g .

The superflow contribution is clearly minimized by the  we must now determine the behavior of the boson field
choicem=0, n=1, corresponding to a conventional2e  and the fermion pairing amplitude. The fermion pairing am-
vortex. The core energy term requires more discussion. If plitude varies on the scalg- which by assumption remains
=1, then a singularity in the fermion pairing amplitude is finite as the Mott phase is approached, whereas one expects
required. In a clean conventional superconductor one woulghe Bose amplitude to vary on the scale set by the spacing
estimate the energy cost of this singularity as the product ofetween carriers, which diverges as the Mott phase is ap-
the condensation energy per unit aréd4” with No the  proached. We therefore focus on the Bose field. In a lightly
density of statésand the area of the coré{=v?/A?), lead-  doped Mott insulator the density of bosons is low. In the
ing to E¢ore~vZN,. In the present problem this implies an limit of dilute bosons one expedfsthat the bose amplitude
E.ore Of the order of the effective fermi energy On the is described by the two-dimensional Hamiltonian density

1
Ev=Ecore(n,m)+ EPS
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Hiooem ! \Y A) ]2 Lo 1u 4. (16
Bose_z_mB[( —a— )‘//] +§:U~¢+Z /a8 ( )

In the dilute limit, the parametergs and U are universal,
given in terms of the boson densityand massng by

0.6
u=Ux, (17
0.4
4 .
U= mgIn(1/x) 18 4 J(r/‘i)/pB

We see thatmg~ 1/tb? with b the underlying lattice constant
is required to reproduce the established result for the bosor ©

stiffness cited abovéor a more detailed derivation see Ref. 0 ! 2 3 * r/& >
10). Also, the dilute limit means that a mean-field approxi-
mation for the boson field is reliable. FIG. 1. Variation with distance from the vortex core of the bo-

We must, however, consider the mean-field approximatiorson amplitude/ and supercurrerjt
for the gauge field in more detail. In thd-wave RVB
(d-RVB) state, fluctuations i are controlled by the stiff- of the distance from the vortex core. This result was previ-
ness corresponding to fermion pairing. This stiffness is larg@usly obtained by Franz and Tesanoffc.
at length scales longer thai or energy scales less than the ~ The supercurrent is given from Ed$) and(16) as
fermion pairing amplitudé\, so a mean-field approximation )
is expected to be reliable at long-length and low-energy i(r)= [ ()] a (24)
scales. However, i€z, A~! are shorter than the relevant J mg
bosonic length scale™? and time scalext) "2, then fluc- . . . . . .
tuations ina may appreciably renormalize the parameters in°0 1N particular at small distances, in physical units
Lgose- Because the decay withof the fermionic stiffness is f
slow [~ (&:q) 1], we focus here on the energy scale. As j= —OpB(oo)_ (25)
carriers are added to a lightly doped Mott insulathrde- 28
creases angt increases. Whei/xt becomes less than unity The resulting current profile is also shown in Fig. 1; we see
we expect that fluctuation corrections to the various paramgat the supercurrent varies as Tér r>x"2 and is con-
eters become large. We thus distinguish two regimes: a “SUgtant for smaller, justifiying the qualitative statements made
perdilute regime” in whichA>xt and y~1 and a “dilute  ;, Ref. 16.
boson regime” in whichx<1 butA<xt and y<1. . The fermion spectrum retains its long-distance value
In the limit of interestéz <x ™2 the boson ground state i gown to a lengthér = v, /A which is parametrically less than
the presence of a vector potential is given by the solution otg» asx—0; below this length a variety of interesting physical
1 effect€” may occur. The physical electron spectrum, observ-
——(V+a+A)2y+Uys= . (19  able(in principle) via tunneling, is calculated in the (1)
2m gauge theory as a convolution of a holon and a spifi@md
so is relatively broad in the nonsuperconducting phase of the
model. In the superconducting state tpe 0 boson ampli-
tude develops an expectation value and so the electron spec-
tral function acquires a sharp “quasiparticle pole” feature. In
J+UPs= . (200  the limitx—0 the short length scales of the spinon spectrum
control the convolution so the coherent part of the spectrum
at distance from the vortex core is proportional to the boson
amplitude at distance. In other words, in this theory the
y=x 2 (r/¢), (21) strength of the quasiparticle pealg measured at a dis.tance
from the vortex core should begin to decrease forr as
with reduced belowé. This effect is not visible in published tun-
5 neling date*
& 7=2mu, (22 To summarize, in the (1) gauge theory of a lightly doped
Mott insulator, a vortex is characterized by two length scales:
£~x"12 below which the supercurrent ceases to vary as 1/
(and in fact becomes essentiallindependent and the scale
f=rf (23) &6, which does not diverge as the Mott phase is approached
0> . . . .
and which controls the quasiparticle properties. The core en-
with f;=0.886. In other words, as the core of the vortex isergy is small(of order of the superfluid stiffnesshowever,
approached, the Bose amplitude decreases as the square rtat state in the core possesses a gap very similar to the su-

Equations(19), (12), and (15) imply that in radial coordi-
nates we havéup to terms of relative order)

“1f 11
om| Tyt

Defining

leads to the solution shown in Fig. 1. In particular, at large
distancef — 1 while at small distance
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perconducting gap. This behavior should be contrasted with We next consider a superconducting condensate made of

that of a conventionalBCS) superconductor, in which the paired electrons. The important different here is that “two-

length defined by the supercurrent is essentially the same dlsiid” effects may be important even at very low for ex-

the length defined by the quasiparticle properties, the corample, because of impurity-induced pair breaking or of vor-

energy is larggof the order of the Fermi energyand the tices. The conventional result is that if a Landau expansion

core is gapless apart from the “finite-size effects” which leadmay be constructed about a nonsuperconducting state

to the Caroli-Matricon states. example, very near t@ . or in the presence of strong pair
breaking, then one has

IV. MOVING VORTEX

— d 2
We consider a slowly moving vortex with center position Sse f dtd™xNoTo

)Zu(t), so that time derivatives of fields may be replaced by

+ 2 2 _ 2 4
the dot product of a field gradient and the vortex velocity: for x| v A7oA + &(vVa) +T Tea” + UA_ )
example g,y (r,t)=3,X,(t) - V. The contribution to the ac- T T To T3 To
tion from vortex motion has two terms: a nondissipative term (27)

corresponding to motion in an effective magnetic fiBlgk;

and a dissipative term arising because vortex motion excitedere Ny is the electronic density of stateg, is an energy
fermionic excitations. These terms imply a classical equatiorscale of the order of the transition temperature or the pair-
of motion breaking scattering rata is a coefficient of the order of
unity, and the coefficienyr of the time derivative term has
both real and imaginary party==yr+ivyg. In a usual su-
perconductor the dissipatieea) part of y¢ is of the order

of unity (the conventional result igf==/8). Because a

whereF,, represents the forces acting on the vortassing me-d d h . ibuti he chemical
for example from an imposed current and from vortex-vortextMe-dependent phase Is a contribution to the chemical po-

interactions. Equation(26) applies only for frequencies less tential, we may identify the imaginary parye with
than a cutoff frequency which is the minimum afand the ~ —@Tc/dp. In conventional superconductors this is very
boson frequency scale. smgll (of or('jerTc/E'F),.so the total coefﬁmen.t of the dissi-
B,; may be obtained by considering the action arisingPationless time derivativé¥oToy¥ ~(Tc/E)?, is extremely
from moving a vortex around a closed loop. For orientationSmall and for most purposes may be negledfied excep-
we first consider the related purely bosonic problem of dions see, e.g., Refs. 17 and)2@f course in a conventional
vortex in a two-boson condensate. The standard bosonic L&UPerconductor with weak pair breaking, a Landau expan-
grangian density includes a “nondissipative time deriva- Sion only applies for temperatures very neaiTtoand asT
tive” term iygy' g, with coefficient yg=1. A superfluid —0 one expectsyz—0 while the dissipationless term
state is described by a condensate amplitugte|(1)|> and ~ NoToyf must approach the total fermion density For a
condensate phasg, leading to a terningd.¢ in the action.  type-Il superconductor in a magnetic field one similarly ex-
This term ensures that dragging a long straight vortex in thgects thalNoToyE—n only for temperatures of the order of
boson condensate around a loop enclosing ansieads to  the core-state level spacinif/Ex and only in the “super-
a contribution to the action aAS=2mngs. This contribu-  clean” limit. To summarize, known results from simple fer-
tion is just the action appropriate to a particle in a magnetianion and boson problems imply that the dissipationless time
field of strengthh.¢;=27ng. For particles on a lattice, a derivative term in the superfluid action involves a nonuniver-
magnetic flux of 2r per unit cell has no dynamical conse- sal coefficient which depends on the interplay between the
guences, so that one measurgsmodulo 1 per lattice site. superfluid and non-superfluid components of the system, is
Finally, we consider the relation between the condesate derin general quite small for fermion-based superfluids, and is
sity ng and the total boson densityg. Gauge invariance of the order of the particle density for boson-based systems.
means that—id;¢p is a chemical potential and therefore ~ We now turn to the boson-fermion-gauge-field problem of
couples to the total particle densitys. In simple boson interest here. The discussion above shows that there is no
problems, aff=0 the only gapless excitation is the phasesimple, generally valid expression for the nondissipative co-
mode of the superfluid state and therefoke=ng. As T is  efficient, except in th& — 0 no-pair-breaking limit, in which
increased fronT=0 gapless “normal fluid” excitations oc- the coefficient is the total particle density. Nevertheless, a
cur. The presence or absence of Galilean invariance thefew remarks can be made and limits can be estimated. At
becomes crucial. One may interpret #e term in the vor-  high dopings t>J) the bosons condens@r quasicon-
tex action in terms of the acceleration of a vortex in a givendensg at temperatures well abovie., so in this limit super-
force. In a Galilean-invariant situation one expects that if aconductivity arises out of a more or less Fermi-liquid-like
vortex is accelerated, it will drag all particles in the systemstate, so neaf. one expects the resulting superfluid state to
with it, so that the coefficient of,¢ is simply the total be described by a nondissipative coefficienivhich is of a
particle density in the system. However, in a non-Galileanfermionic order of magnitude and thus much less than unity.
invariant system the superfluid component may acceleraté/e note, though, that in the present model the spinon Fermi
independently of the normal component ang<ng . energy is of orded and the pairing amplitude varies from a

BetZX Xy + 73 Xy=Fy, (26)
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(not too small fraction of J at low doping to a very small We see that as the insulator is approached, the vortex viscos-
value at high dopind® so 9A/du is not particularly small; ity vanishes very rapidly, indeed as’. One factor ofx

the main smaliness is provided by the fachyT,~T./J. comes from the large size of the vortégroportional to

On the other hand, as doping is reduced, the physics changes.?); the other two factors dz/ps)? come from the de-
The fermions pair at a higher scale and the superconductingreased coupling of the vortex motion to the spinons; we
transition is set by the condensation scale of the bosons. Aimterpret this as a signature of the vanishing of the quasipar-
upper bound on the nondissipative coefficient is then set byicle charge in this theoryfor a discussion of other signa-
the total particle densitymodulo 1), i.e.,y<x. In this limit  tures see Refs. 14 and )18

one expects that by temperatures of the ordef othe fer- It is instructive to view this result in a slightly different
mions are mostly paired, so that a Landau expansion is navay. The “internal electric field”e felt by the spinons is
appropriate and the coefficient is set by bosonic physics; i.ed,(a— 3V ¢¢) = (1/epg) 3] phydr)). Application of the

v is not that different from itsT=0 no-pair-breaking value. usual composition rules of the gauge thé8ishows that the
We therefore propose the following approximate interpolaphysical electric fieldE=epg/pg (in the limit pe>pg) so

tion formula for the efffecitve magnetic fieBl¢; implied by  that the physical electric field generated by a moving vor-

the nondissipative terms in the action of our problem: tex is
l I’—XV A~
Befi~ : (29 fz( ) 6
(mx) "+ (A1) _ o) ¥
B(N) = g dpmyd 1=K, ()-V | — =
We turn next to the dissipative term. In the gauge model, (33

the dissipation arises from the continuum of spinon excita- ) o
tions, and we assume that the temperature, magnetic field, dhis shows that a moving vortex generates an electric field
impurity density is large enough that an appreciable numbewhich varies on the length scale set by the physical current.
of these exist and may be characterized by a spinon condu&(r) varies as 1F far from the vortex and as iffor &
tivity o, which we take to be local on the scales of interest.<F <X ““ A standard argumefft says that the dissipative
The “electric field” felt by the spinons is)(3Vé—a) so contnbutu_)n may he estlmateq by mqupIymg the square of
that the dissipative contribution to the action is the e'eCF”C field by the pf;ysmal'conduqtlwty, which from
Eq. (10) is of order (pg/pg)*, leading again to Eq.32) for
7.
The result forn, along with the estimates of the core
energy, has implications for the width of the resistive super-
conducting transition in this model. In a two-dimensional
, (290  superconductor, the resistive transition is of the Kosterlitz-
t Thouless(KT) vortex unbinding type. Near to the transition
. . . point, but in the normal state, one has a dilute gas of vortices
with K the Fourier transfornj of ]. In a slowly moving and antivortices. The physical conductivity is the sum of the
vortex with center positiorX, (t), iV¢—a is a function  conductivity due to the moving vortices and the conductivity
a[r—X,(t)] Substitution into Eq(29) and some rearrange- due to the quasiparticles. Use of E¢E0) and(32) leads(at
ment leads to the standard form for a particle moving in deading order in the small parameigs/pg) to
dissipative medium, namely,

sdisg,:%’J d2rdtdt’

1V
PR

K(t—t’)at(%Wi)—a
t

(39

[pg)\? wioIn( ¢l ér)
Suss=g | AAVIZ O IKA-1)[3X,()], (30 Tonys= E) e SV

with viscosity 7 given by Thus, recalling that in the pseudogap regime of this model
the quasiparticle contribution to the conductivity is
1 2 (pB/pF)ZO'Sp we see that the total conductivity is dominated
(Equ—a) by proximity to the superconducting phase only(up to a
N (31) logarithm) vortices are dilute on the length scale set by the
ar; supercurrent pattern; as, increases further the supercon-
ducting fluctuation contribution to the conductivity quickly
Use of Eq.(5) shows thaip(5V ¢—a) is just the physical becomes negligible. However, even when vortices overlap
Currentfphys= paf3(rlé) DIr. Substitution of our result fof  rom the “current” point of view(so the superfluid conden-

leads to(note that the logarithm comes from the angularS&t€ does not make an appreciable contribution to the con-
derivative[ V— (1/r)3,]) ductivity), they may still be dilute on the scale set by the

“quasiparticle core size’¢g, so we would therefore expect
2 the gap in the fermionic excitation spectrum to persist to
— 77059#(@) In(&/&). (32)  much higher temperatures than does the “superfluid” contri-
¢ °lpe F bution to the conductivity.

J
_Isp| 42
=5 3
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The density(and naturg of thermally excited vortices we note that in a vortex lattice the force term in E26) may
bears further discussion. The factors influencing the densithe written for small amplitude displacements &5,
of vortices may be understood from simple mean-field free=K,;Xy, where K 4 is the coefficient of the quadratic
energy arguments. For conventiondh/Ze) vortices the term in the restoring potential acting on the vortex and aris-
mean-field free energy as a function of conventional vortexng from the other vortices in the vortex latti¢gplus any
densityn, is (note that the position of the conventional vor- pinning forces which may exist and which we do not treat
tex may be defined to withigg but the logarithm from the Equation(26) applies only for frequencies less than a cutoff

superfluid stiffness is cut off bg) frequency which is the minimum oA and the boson fre-
) 5 quency scalext. Here K, is of the order of the physical
En=1m=0=EcoreN1—psn1In(n1€%) — TnyIn(ny &¢). superfluid stiffnespg divided by the square of the intervor-

(39 tex spacing, i.e.K ;= Kgnypg. The long-rangglogarith-

mic) form of the intervortex potential means thej<<1. We

may now quantize Eq26) and thereby estimate the zero-

point fluctuations of a vortex asa(, is a Matusbara fre-
2 guency andr”¥ is a Pauli matrix

n,§2=">e Feore/T, (36)
F

Away from the KT fluctuation regimeps becomes less
thanT and we have, approximately,

, o , (XP=TrX [g]wgl+0"BerrontKI ™ (39)
The factor= £/ ¢ makes it easier than one might guess n

to obtain a reasonable density of conventional vortices; of, .. .ctimate that the vortex lattice melts when the mean-

course the small value of the core energy, arising as dlféquare vortex displacement divided by the square of the int-
cussed above from the proximity in energy of other gappe

H H 2 2
states within thel-RVB theory, is also important. ehrvortex d'St?nEé)’ |_.e(.j, (Xy)/b%, belcoﬁmesh of thle or(:erhof
It is also of interest to consider the density of doubly t_e square of the Lindemann numbgr. T € value o .t €
quantized vorticesi.e., vortices in the boson field onlype- ~ Lindemann number depends on the physical situation and

cause their motion leads to dissipation too. As noted above/2M€s frome?=0.01 toc{=0.1* The estimate 0(X5> de-
in this case the core energy is entirely determined by th@ends on the values ofy and By and in particular on
superfluid stiffness, so we haveb(is a scaling function Whether the system is in the superdilute regimg,t
which is exponentially small at large argument and becomes 7Ng and 7—0) or the dilute regimeR. unimportant,,
of order unity when its argument becomes of order unity andlominani. In the superdilute regime we neglect theand
the factor of 4 comes from the doubly quantized nature of thdind (the numerical factors give the relation betwegnand

vortex) ny for a triangular vortex lattice
NyE2=D(4pg/T). (37 (X3) _3+3ny 39
Therefore, even if the core energy of a conventional vor- b? 8Bers
tex is very high(which in thed-RVB theory it is noj, above
a temperature scale set py double-quantized vortices will In fact, if dissipation is negligible, then we may look at
proliferate and will suppress the superfluid contribution tothe problem in a different way. The vortices move in an
the conductivity. effective field which is large, leading to Landau-level quan-
tization. If the density of vortices is much less than the den-
V. QUANTAL FLUCTUATIONS AND THE MELTING sity of bosonsny<ng, then only the lowest Landau level is
OF THE VORTEX LATTICE populated and we may use known results for the melting of

the Wigner crystal in a high magnetic field to argue that
We now consider the physics at low temperature in arattice melting occurs wheny, /ng~1/10 corresponding to a
applied magnetic field. An applied field induces a vortex lat-| indemann numberc?~0.01, reasonably consistent with
tice and, ultimately, a nonsuperconducting state. In a convernknown results for two-dimensional triangular latticés.
tional (BCS) superconductor the transition is driven by the | the dilute regime, the frequency cutoff is needed. If
collapse of the superconducting gap. In the present model the. > A | then this scale id4 and we obtain
important physics involves quantal fluctuations in the posi-

tions of the vortices, leading via a first-order transition to a <X2) 3\/§n A
“quantal vortex liquid” state. In particular, although an ap- vi_ Yinl 1+ _77} (40)
plied field leads to pair breaking and thus to a nonvanishing b2 4mn K

density of quasiparticles and to a reduction of the superfluid
stiffness and gap amplitude, in the gauge model of interest Use of Eq.(32) and our estimate foK shows that the

here these effects are smatirder x 2),'® so we neglect important dimensionless parameter is given by
them.
. . . )
We estimate the mag_nltude of the q_uan_tal qu_cFuatlons of Ay A&\ mogps 2 (e
the vortices by considering the fluctuation in position of one raarn vl rabs In| —1. (41
vortex about its ideal Abrikosov lattice position. To do this Pe\ &) Mo \PF &F
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This parameter may be larger or smaller than unity, becausthe small value and strong doping dependence of the “qua-
pe/ps~X while Ko<1 andog, must by consistency be of siparticle charge” defined in Eq10). Further, our calcula-
order 1% (because we have written clean-limit formulastion has a number of phenomenological aspects. For ex-
which  require that osp=pele/2m>peé/l2m>pslpg  ample, we assumed a finite “spinon conductivity” which
~1/X). However, as one goes more deeply into the siall- could reasonably be expected to arise from the “gapless

regime, the parameter shrinks and we obtain Fermi arcs” induced by a nonvanishing temperature or ap-
plied magnetic field, but we did not attempt to calculated this

(X3 33A (& from first principles; nor did we investigate the subtle quan-

b2 4mKops §_§ - (42)  tum mechanics of fermions in the presence of conventional

vortices. However, we believe the results presented here are
Thus in the dilute limit the lattice still melts when the flux USeful because they provide an explicit demonstration in a

per boson is of the order of the square of the Lindemanryvell-defined model that if the supercurrent-defined correla-
number up to a factor of ordgrg /A. tion length is parametrically larger than the quasiparticle-

The melted phase is an interesting example of a “nondefined length, then the resistive properties are controlled by
Fermi liquid” the vortex motion is dampethlbeit weakly, the length scale over which the supercurrent varies. _
so the model is characterized by a nonvanishing and Other workers have observed that the theory adml'gs dou-
T4y, @S in a normal metalalthough theo,, value is rather bly quantized vortices. \We have r)oted that they proln‘erate
large, but also by a “non-Luttinger” Fermi surface with a above a scale defined by the physical superfluid stiffness and

gap over large regions of the nominal Fermi surface. (if _the' core energy of conventional vortices were large,
which it is not in this modelwould suppress the supercon-

ducting fluctuation contribution to the conductivity. We also
showed how, in this model, the “nondissipative time deriva-

One of the most interesting aspects of high-temperaturéve,” whose importance was stressed in Ref. 17, is important
superconductivity is the “pseudogap” regime of underdopedfor the estimation of the upper critical field and argued that it
materials. This regime is characterized by a ¢@fpapproxi- ~ Crosses over from the “fermionic” valuel;/Er to the
mately d-wave fornj in the quasiparticle spectrum but nei- “bosonic” value proportional to the density of chargesA
ther long-ranged superconducting order nor particularly nosubsequent paper will apply these ideas to a different model
ticeable superconducting fluctuations. One possibility is tha®f high-T. superconductivity.
this regime involves electron pairin@s in a conventional
superconductgrbut with long-ranged superconducting order ACKNOWLEDGMENTS
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In this paper we studied one theoretical implementation o
the “phase fluctuation” scenario for the pseudogap: namely,
the d-RVB regime of theU (1) gauge theory of lightly doped
Mott insulators. In this approach the spin degrees of freedom

are mostly paired into d-wave pairing state and the loW-  Thjs appendix treats the case of superconductivity devel-
charge.response is essentially that.of. a superfluid, but V\{Ithing out of a state which is well described by the usual
properties strongly affected by proximity to the Mott transi- Fermi-liquid theory. The necessary formalism was developed
tion. One important feature of the model is that the vortexyy | arkin and Leggett, and some of the results were sketched
excitations are characterized by two length scales: the “quag|sewheré’ A Fermi-liquid state is characterized by a qua-
siparticle coherence lengthfr=v/A, which controls the  gjparticle velocityv* (8) which may depend on positiord)
distance over which the excitation spectrum differs from thatyn the Fermi surface, a characteristic energy sE4leand a

far from a vortex, and the “current coherence leng#)" | andau interaction functio(6,6’). In order for Fermi-
which varies as the inverse of the square root of the dopmgquid theory to be applicable, the maximum superconduct-
and cuts off the familiar ¥/divergence of the supercurrent jq gapA, must be less thaE*. Transcription of the stan-

near a vortex. We studied the charge transport propertiegarg results to the langauge of the section above leads to
(many of which are dominated by vortigeand showed in

VI. CONCLUSION

APPENDIX: FERMI-LIQUID-BASED APPROACHES
TO DOPED MOTT INSULATORS

partic'ula}r th'at the electric f?eld created by a moving vortex, p30:<v*(9)(1_1-);;,0*(9')), (A1)
the dissipation due to moving vortex, the valuekbf, and
the size of the fluctuation regime near the resistive transition vE=0"*, (A2)
are all controlled by¢ which diverges near the Mott transi-
28?, rather than by the “quasiparticle lengtlj which does dps <v*(0)(1_1—);%}(01)(1_T);1%0,U*(0,»

As noted elsewhefé**8the theory disagrees in a number dT (v*(6)?) '
of ways with experiments; the most significant difficulty is (A3)
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where the angular backets mean multiplication by density ofvith |, the current-channel Landau interaction paramieter

states and average over the Fermi line and that the Landau parametBrs= 21, x4,(0,A)] and
2
dwdd w A(6)? o2 A(0)
L(6)= f Xap(@4)=T2
A T, r( ) [w?+A(6)2]%% qp 2w>2 *(o> " VA 0?
2T“cot
2T
1
Comparison of the these results with those presented in Xw2+ A(6)2+[v*qcog o— gq)]2/4'
Sec. Il shows that the (@) theory corresponds to a fermi
liquid with a weakly angle-dependent Landau interaction (AS)
function whose “current-channel” value is of orderx1?’ (Note that the result depends on the anglebetween the

We now consider the situation in more detail by calculat-direction ofq and the nodes in the gap.

ing the lowT current-current correlation function for a su-  Standard calculatioR$ show that at vg>A,, Xap
perconducting Fermi liquid, making the usual assumption~A,/vq, so that we expect an appreciable changeyjn
that the Landau interaction function may be decomposed intvhen vg~A,/x. In other words, a naive application of
angular channels in the conventional way and that the maxiFermi-liquid theory would predict a very short characteristic
mum value of the superconducting gap is small compared téength scale of ordexv/A. However, from the usual physi-
the characteristic quasiparticle energy sdafeso that qua- cal picture of the doped Mott insulator as a dilute collection
siparticle damping effects may be neglected. The gaugesf holes one might expect the interparticle spacing’ to

invariant current-current correlation function is thén be an important scale. The discrepancy is resolved by noting
that the Landau parameter presumably varies on the scale
X3 (@A) = Xqp(d,A) (Ad) x~ 2, This effect is beyond the scope of Landau theory but is

1+11xgp(a,A)° captured in the (1) approach.

1For a review, see J. Orenstein and A.J. Millis, Scie@88 468  8L.B. loffe and A.J. Millis, cond-mat/0112509, J. Phys. Chem.
(2000. Solids (to be published
23. Sachdev, Phys. Rev. 45, 389(1992). 19V.N. Popov, Collective Excitations and Functional Integrals
3C. Wynn, D.A. Bonn, B.W. Gardner, Yu-Ju Lin, Ruixing Liang, __ (Cambridge University Press, Cambridge, England, 1987
W.N. Hardy, J.R. Kirtley, and K.A. Moler, Phys. Rev. Letto - M. Franz and Z. Tesanovic, Phys. Rev6B, 064516(2001.
be published 21s. Panet al, Phys. Rev. Lett85, 1536(2000.
22
“See, e.g., Chap. 6 of V.N. Kopnitheory of Nonequilibrium 23A-T- Dorsey and S. Ullah, Phys. Rev. 4}, 262 (1991). o
SuperconductivityClarendon Press, Oxford, 2001 See Sec. 5.5.1 of M. Tinkharmtroduction to Superconductivity

°D.P. Arovas, A.J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys.,, 2nd ed.(McGraw;;iIl, Nev(\; York,|1996. o
Rev. Lett.79, 2871(1997. See, e.g., H. Nordborg and G. Blatter, Phys. Re\o&3 14 556

. 1998 (2+1 dim vortex lattice, scalar and vector interactions
6Jung Hoon Han and Dung-Hai Lee, Phys. Rev. L88, 1100 ( %32(5). S. Ryu, S. Doniach, Guy Deutscher, and A. Kapit-
(2000. Lol T ' ) o )
e . . . ulnik, Phys. Rev. Lett68, 710(1992 (simulation of supercon-
7 Jun-ichiro Kishine, Patrick A. Lee, and Xiao-Gang Wen, Phys. ductor inymagnetic fielat, ~0.1); L. Xing and Z. Tesanovich,
Rev. Lett.86, 5365(2000. ibid. 65, 794 (1990 (2+ 1 dim vortex lattice, scalar interaction

-PA. Lee and X.-G. Wen, Phys. Rev. LeTB, 4111(1997. only ¢, ~0.28); Ph. Choquard and J. Clerouibid. 50, 2086
V. Geshkenbein, L.B. loffe, and A.J. Millis, Phys. Rev. L0, (1983: V.M. Bedanovet al, Zh. Eksp. Teor. Fiz.88, 1622
10 5778(1998. ) (1985 [Sov. Phys. JETB1, 967(1985] [thermal melting of 2D
llL-B- loffe and A.l. Larkin, Phys. Rev. B89, 8988(1989. Wigner crystal with Coulomb and short-ranged interactions;
P.W. Anderson, Sciencg35, 1196(1987). shown in M.V. Feigelman, V.B. Geshkenbein, L.B. loffe, and
12N, Nagaosa and P.A. Lee, Phys. Rev. L6, 2450(1990. A.l. Larkin, Phys. Rev. B48, 16 641(1993 to be equivalent to
13M. Grilli, B.G. Kotliar, and A.J. Millis, Phys. Rev. B42, 329 ¢,~0.08].
(1990. 5], Corsoret al, Nature(London 398 221 (1999.
14a 3. Millis, S.M. Girvin, L.B. loffe, and A.l. Larkin, J. Phys. 263.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Anderson, T.
Chem. Solid$9, 1742(1998. Kimura, and K. Kitazawa, Phys. Rev. Left5, 1391(1995.
15B.G. Kotliar and J. Liu, Phys. Rev. B8, 5142(1988; Y. Su-  2’A.l. Larkin, Sov. Phys. JETR4, 1498(1964); A.J. Leggett, Phys.
zumuraet al, J. Phys. Soc. Jp&7, 2768(1988. Rev. 140, A1869(1965.
8D H. Lee, Phys. Rev. LetB4, 2694 (2000. 28N A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskiilethods of
17y B. Geshkenbein, L.B. loffe, and A.l. Larkin, Phys. Rev5B, Quantum Field Theory in Statistical Physi@over, New York,
3173(1997). 1964).

094513-9



