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Quasiparticle diffusion and the energy resolution of superconducting tunneling junctions
as photon detectors. I. Theory
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One of the factors that degrades the energy resolution of superconducting tunnel junctions~STJ’s! as photon
detectors at energies above a few keV is the spatial dependence of the response on the photoabsorption site. To
assess the role of spatial inhomogeneities we have analyzed quasiparticle diffusion processes in detail and
developed a general analytical theory to describe the evolution of the quasiparticle density in an STJ. This
theory underlies an analytical model of the STJ response surface, and the corresponding spectral line shape. It
accounts for effects of quasiparticle recombination, multiple quasiparticle tunneling, phonon coupling between
the electrodes, asymmetry between base and counter electrode, losses at edges and localized traps, and diffu-
sive losses into electrical connections, and is structured such that the effect of these features are added
independently, so that the influence of each process can be assessed independently and possible new processes
can easily be included.
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I. INTRODUCTION.

Superconducting tunnel junctions~STJ’s! are currently
being developed as photon-counting spectrometers fo
wide range of applications. Their potentially high ener
resolution and their capability to handle high count ra
make STJ’s very promising as photon detectors in an ene
range that stretches from near IR to x-ray.1 The spectroscopic
performance of an STJ is conventionally expressed in te
of a full width at half maximum~FWHM! energy resolution
DE, which comprises several different contributions. Amo
these contributions are the statistical noise of the numbe
quasiparticles initially created by the photon absorpt
~Fano noise2! and of the average number of tunneling eve
per quasiparticle,3,4 considered to be the intrinsic resolutio
plus the noise from environmental factors~stray IR radiation,
read-out electronics, etc.!. For Nb/Al based STJ’s intrinsic
resolution close to the statistical limit has been achieved
photon energiesE up to 1 keV.5 However, at energies beyon
this value the observedDE is significantly larger than tha
calculated from all known contributing factors.

In this paper we consider in detail the suggestion that
excess contribution to the energy resolution arises fr
variations in the response of the STJ with the position of
photon-absorption site. Experimental support for this hypo
esis is found in spatially resolved scans of the response
techniques such as low-temperature scanning electron
croscopy~LTSEM! ~Ref. 6! and low-temperature scannin
synchrotron microscopy~LTSSM! ~Ref. 7! and also in the
fact that the same detectors have resolutions close to
statistical limit for optical photons.8 The energy dependenc
of the intrinsic resolution would then be explained by t
fact that the statistical contributions are proportional toE1/2,
on account of their Poissonian nature, while any contribut
due to spatial variations is proportional toE, because it arises
from differences in the magnitude of signals.9 Therefore any
0163-1829/2002/66~9!/094510~14!/$20.00 66 0945
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spatial contributions tend to dominate at relatively high
energies. Since the future development of STJ’s is direc
towards low-gap materials, such as Mo and Hf,10,11 energy
resolution problems due to an inhomogeneous spatial
sponse are expected to become increasingly relevant at lo
energies as well.

In order to calculate the effect of inhomogeneous bro
ening it is necessary to model simultaneously the temp
and spatial evolution of the quasiparticle distribution in bo
electrodes. From a time-dependent map of quasiparticle d
sity in both electrodes follows the tunneling current as
function of time and photon-absorption position. Integrati
over time yields the charge output as a function of positi
the response surface. The histogram of the response su
gives the corresponding spectral line shape. The time ev
tion of the quasiparticle and phonon populations is conv
tionally described by the Rothwarf-Taylor~RT! balance
equations.9,12,13 However, these equations cannot descr
the spatial evolution of the quasiparticle population, f
which it is necessary to include the effects of spatial dif
sion of quasiparticles. These depend on the specific size
sign and structure of the particular STJ under study, es
cially on the crystallographic quality of the electrodes~e.g.,
epitaxial or polycrystalline!. In addition, quasiparticle dy-
namics is affected by localized traps, regions of reduced
ergy gap, presumably introduced at the edges and surf
during the fabrication process. Finally the size and locat
of the connecting leads to the electrodes is quite critic
since these are often a major source of quasiparticle los

In this paper we present the first, fully analytical theory
which the specific contributions due to all these structu
features are taken into account. Earlier work by Refs. 14–
considered simplified cases describing a single source of
in STJ’s with very specific properties~no phonon coupling
between electrodes, no multiple tunneling, or multiple tu
neling only between fully symmetric electrodes!. Our theory,
©2002 The American Physical Society10-1
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on the other hand, allows us to treat the most general cas
which all the sources of spatial inhomogeneity can be
cluded separately, taking account of the effects of quasi
ticle recombination, multiple quasiparticle tunneling, phon
coupling between the electrodes, asymmetry between
and counter electrode, and the various diffusion proces
several of which were not examined in detail before. The k
element of our approach is the way in which the generali
Rothwarf-Taylor equations, containing all the necess
terms relating to inhomogeneous loss, are solved analytic
in the quasilinear regime. The major advance is that it allo
all different contributions to be entered additively in the c
culation of the response surface, and their specific effec
the total energy resolution can be individually assessed. C
tributions from possible new processes can be easily
cluded as well.

The outline of the paper is as follows. Section II conta
the general description of our approach. The generalized
equations including all inhomogeneous terms are introdu
in Sec. II A. The structure of the solution scheme is given
Sec. II B, resulting in an expression for the response surf
Its relation to the inhomogeneous line broadening is deri
in Sec. II C. We discuss the temporal evolution of the qua
particle population in Sec. II D. The main steps in arriving
the analytical solutions are described in Appendix A. Each
the inhomogeneity generating terms is analyzed separa
with the analytic results given in Appendixes B to D. Appe
dix B relates to inhomogeneity arising from the combin
action of the effects of quasiparticle self-recombination, a
diffusion in a restricted geometry near the STJ corners
edges. In Appendix C we derive the localized loss terms
the quasiparticles diffusing into leads and bridge conn
tions. The same approach can also be used to describ
effects of local traps. Appendix D deals with imperfect
reflecting edges. Finally Appendix E gives the results
quasiparticle temporal evolution. In the main discussion
Sec. III, we concentrate on the relation between the topol
of the response surface and the spectral line shape. We s
that the response surface determines all the features o
observed line shapes. We also show that it is possible
relate specific sources of loss to specific features of the
sponse surface and singularities of the line shapes. In
following paper~paper II hereafter,17! we present two experi
mental case studies which validate the theory and dem
strate its usefulness.

II. BALANCE EQUATIONS

A. Generalization of the Rothwarf-Taylor equations to include
quasiparticle diffusion

The RT balance equations for the temporal evolution
quasiparticle populations in STJ’s read

dNi

dt
52NiGqpl,i1NjG t, j i 12PiGphl,i ,

dPi

dt
52PiGphl,i1PjGpe, j i 1

1

2
NiG r ,i , ~1!
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whereNi , Pi are, respectively, the quasiparticle and phon
numbers in electrodei. Here i labels the electrode which
absorbs the photon andj labels the counter electrode. In ge
eral, i 51 indicates the base electrode andi 52 the top elec-
trode. We refer to Fig. 1 for a general layout of the STJ a
the definition of the relevant parts. The general quasipart
and phonon loss rates are defined as

Gqpl,i5G t,i j 1G r ,i1G l ,i ,

Gphl,i5Gpe,i j 1Gpb,i1Gpl,i . ~2!

HereG t,i j is the rate at which quasiparticle tunnel from ele
trode i into electrodej, G r ,i , is the quasiparticle recombina
tion rate in electrodei, andG l ,i is the rate at which quasipar
ticles are lost from electrodei due to trapping. The losses du
to quasiparticle diffusion out of the electrode cannot be
scribed in terms of a loss rate and are considered separa
Gpe,i j is the phonon escape rate from electrodei to electrode
j, Gpb,i is the rate at which phonons break Cooper pairs
form new quasiparticles, andGpl,i is the rate at which
phonons are lost from electrodei in processes other tha
escape into electrodej. The quasiparticle recombination ra
is given by

G r ,i5Ri* ~ni12nth!, ~3!

where under the assumption that max$Gpl,i ,Gpe,ij%!Gpb,i we
can write

Ri* 5Ri

Gpl,i1Gpe,i j

Gpb,i
, ~4!

where Ri5(2D/kBTc)
3/@4N(0)Dt0# is the recombination

coefficient,18 Tc the critical temperature,N(0) the density of
states per spin at the Fermi level in the normal state,t0 the
characteristic time of a superconductor,19 andnth the density
of thermally excited quasiparticles. Splitting the esca
routes for recombination phonons with an energy\V.2D
allows us to introduce another convenient quantity, nam
the phonon coupling rateGp,i j . By definition,Gp,i j 5G r ,i(1
1Gpl,i /Gpe,i j )

21 is the part of the overall recombination ra
in electrodei relating only to the recombination phonon

FIG. 1. A schematic representation of STJ’s with a definition
their main features. STJ’s may be single or, as shown here,
nected via bridges into an array. The top electrode of the STJ on
right is smaller than the base electrode. This results in a so-ca
mesa structure, which leaves a rim in the base electrode from w
quasiparticles cannot readily tunnel into the top electrode.
0-2
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which escaped through the barrier into the opposite electr
causing pair breaking there. Correspondingly,

Gp,i j 5Ri j* ~ni12nth! ~5!

with Ri j* 5Ri* (11Gpl,i /Gpe,i j )
21. The phonon loss rateGpl,i

is given in Ref. 20 as

Gpl,i5
hnph

4di
, ~6!

whereh is the phonon transmission coefficient through t
escape interface, andnph is the phonon velocity in the me
dium. These values are weighted averages over the var
phonon modes. The phonon transmission through a stac
layers~e.g., Al/AlOx /Al) can be calculated with the acoust
mismatch model.20,21Because the STJ’s are usually opera
at temperatures which are typically of the order 0.1Tc , nth
can be neglected in most cases. A direct consequence o
~3! is a quadratic dependence on quasiparticle density,
plying that Eq.~1! is nonlinear.

A considerable simplification of Eq.~1! can be obtained
by recognizing that phonons do not play a dynamical role
the processes that control the quasiparticle population. F
the velocity of sound in a lattice is typically two orders
magnitude slower than the Fermi velocity,19 so that diffusion
of phonons is negligible compared to quasiparticle diffusi
Second, the phonon pair-breaking time is small compare
other relevant time scales.13,19,22For all materials studied in
Ref. 20 the pair-breaking time is about two orders of mag
tude smaller than the material constantt0 that governs the
quasiparticle recombination time. Any phonons that are c
ated with energies larger than 2D immediately break Coope
pairs generating pairs of quasiparticles. Hence it is poss
to exclude the phonon RT equation and describe pho
transport between the electrodes by effective phonon c
pling terms.

In order to describe the spatial variation of the STJ
sponse it is necessary to include the effects of quasipar
diffusion in the RT equations, and we therefore replace
~1! with the following equations:

]ni

]t
2Dinni52niGqpl,i1nj

dj

di
~G t, j i 1Gp, j i !1

]ni

]t U
diff

1
N0

di
w~x2xa!d~ t!,

]nj

]t
2D jnnj52njGqpl, j1ni

di

dj
~G t,i j 1Gp,i j !1

]nj

]t U
diff

.

~7!

We point out that Eq.~7! is written in terms of quasipar
ticle area densities, thus implying that diffusion takes pla
only in the plane of the STJ, and that it contains the spa
derivative terms in the balance equations. The second t
on the left-hand side describes quasiparticle diffusion ins
either electrode, while the third term on the right-hand s
represents quasiparticle diffusion out of the electrode
leads, bridges or into localized traps. We also introduce
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pointlike source term describing instantaneous generatio
N0 quasiparticles att50 with the spatial profile

w~x2xa!51/~pr ini
2 !exp@2~x2xa!2/r ini

2 # ~8!

inside a small excitation spot of radiusr ini around the absorp
tion site with the coordinatexa . The magnitude ofr ini is
estimated in Ref. 23~from measurements in a Ta absorber! to
be of the order of 3mm. We have no reason to assume
will be strongly different for Nb. In practice,r ini exceeds the
thickness of most electrodes by an order of magnitu
Moreover, the energy gap is uniform in the vertical directio
even when it consists of several layers of different materi
as long as the thickness is smaller than five cohere
lengths.24 Again, this is a range in excess of the thickness
most practical electrodes. Therefore we ignore any varia
in the vertical reaction and treat the quasiparticle diffusion
the two lateral dimensions. For all linear response proble
however, it is sufficient to take the limitr ini→0 resulting in
limr ini→0$1/(pr ini

2 )exp@2(x2xa)2/r ini
2 #%5d(x2xa). In Eq.

~7! we implicitly assume that once diffusion has started,
diffusion constantsDi remain constant. Since the diffusio
constant depends on the quasiparticle energy distribution
therefore assume that the latter does not change significa
after the generation of quasiparticles has completed.

B. Outline of the solution scheme

Here we give a brief outline of the method of solution
Eq. ~7!; more details are given in appendixes A and B. Sin
the equations are non-linear, a general exact solution d
not exist, and we must therefore look for an accurate
proximation. We apply a standard method for the solution
Eq. ~7!. We expand the solutionni(x,t) in a complete, or-
thogonal system of eigenfunctionsumn(x) of the Helmholtz
equation for a square electrode25

ni~x,xa ,t !5 (
m,n50

`

f mn
i ~xa ,t !umn~x!. ~9!

The ~real! functionsumn(x) are solutions of the dispersio
equation

numn1kmn
2 umn50 ~10!

with the appropriate boundary conditions at the edg
Through these boundary conditions the various features
the model are introduced: ideal or partially reflective edg
or edges with leads, bridges or traps present. Inserting
~9! in Eq. ~7!, multiplying by umn(x) and integrating overx
then yields

] f mn
i

]t
1~Dikmn

2 1G t,i j 1G l ,i ! f mn
i 2

dj

di
G t, j i f mn

j

5Fmn
i ~xa ,t !1

N0

di
Qmnwmn~xa!d~ t !1

] f mn
i

]t
U

diff

,

~11!
0-3
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] f mn
j

]t
1~D jkmn

2 1G t, j i 1G l , j ! f mn
j 2

di

dj
G t,i j f mn

i

5Fmn
j ~xa ,t !1

] f mn
j

]t
U

diff

, ~12!

where

Qmn[
1

~11dm,0!~11dn,0!
,

wmn~xa![E
area

dxw~x2xa!umn~x!. ~13!

All nonlinear effects due to quasiparticle self-recombinat
are combined in the functionsFmn

i andFmn
j :

Fmn
i ~x,t !52Ri* Fmn

i ~x,t !1
dj

di
Rji* Fmn

j ~x,t ! ~14!

with

Fmn
i ~x,t !5(

kl
(
k8 l 8

f kl
i ~x,t ! f k8 l 8

i
~x,t !

3E
area

dx8ukl~x8!uk8 l 8~x8!umn~x8!. ~15!

The integration in Eq.~15! runs over the area of the STJ. F
simplicity we have omitted the dependence onxa of func-
tions f i and F i in Eqs. ~11!, ~14!, ~15!. The expression for
the functionFmn

j is given by Eq.~14! where i has to be
replaced byj and vice versa. This forms the basis for o
solution scheme.

As long as the functionsF are relatively small~i.e., the
system is only slightly nonlinear! we can apply an iterative
method to a linearized set of equations. By Fourier tra
forming the system of differential equations into a system
integral equations it is possible to invert the equations
obtain a formal expressionf̃ for the solution. This solution is
exact, but contains the self-recombination termF, which
couples to an infinite number of harmonics off via nonlin-
earity. It has the general formf̃ @F( f 2)#, which can be cal-
culated to any given accuracy via an iterative scheme.
ensure convergence,f must be small. The first step of th
iteration is obtained by taking functionsF50, leaving only
terms that are linear in the quasiparticle densityf̃ @0#5 f 0.
The second order iteration builds on this result, whereF is
taken to its lowest orderf̃ @F( f 0

2)#→ f 1. Higher order itera-
tions can be developed similarly.

C. Response surface

Now we consider the charge outputQi(E,xa) of the STJ
as a function of photon energyE and photon-absorption po
sition xa :
09451
-
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Qi~E,xa!5eE
area

dxE
0

`

dt@G t,i j ni~x,xa ,t !

1G t, j i nj~x,xa ,t !#. ~16!

This expression can be written as

Qi~E,xa!5eN0^ni&Si~E,xa! ~17!

whereN0 is the number of quasiparticles initially generat
by the photon and̂ni& is the charge multiplication facto
~average number of tunneling events for each quasiparti!
due to quasiparticle back tunneling, given by

^ni&5
G t,i j ~2G t, j i 1G l , j !

G t,i j G l , j1G t, j i G l ,i1G l ,iG l , j
. ~18!

In Eq. ~17! Si(E,xa) is a quantity which we call the normal
ized response of the device. Plotted as a function ofxa , it
determines the response surface. The density of points
this surface gives the spectral lineshape. We choose the
malization with respect to the ideal case for which all abo
mentioned factors causing the response inhomogeneity
absent. For this ideal caseSi51̂, the response surface is
plane and the spectral line a sharp peak.

By applying the iteration scheme toSi(E,xa) we find that
Si(E,xa)51̂1Si ,1(E,xa)1Si ,2(E,xa)1•••, where
Si ,n(E,xa) is thenth order iteration for the nonlinear system
For slightly nonlinear systems all the effects resulting in
dependence of the charge output on the coordinates of
absorption site are additive in the lowest order. This me
that the effects of quasiparticle recombination may be co
puted as a series of perturbations on an otherwise ideal
tem. On the other hand, effects like imperfect reflectivity
the edges or diffusion into leads should, to first order,
depend on nonlinearities. Hence we may compute the eff
of sticking at the edges or diffusion into the leads separa
for the linear system. In terms of the iteration scheme
response surface thus becomes a linear sum of perturb
surfaces added to the ideal, uniform response surface

Si~E,xa!51̂1Si ,1~E,xa!1Si ,2~E,xa!1•••1Si , leads~xa!

1Si ,bridges~xa!1Si ,traps~xa!1Si ,edges~xa!1••• .

~19!

Here the subscript ‘‘edges’’ indicates the contributions due
a non-ideal reflectivity of the edges. We have dropped
argumentE in the response from contributions of edge
leads, bridges and traps because these expressions wer
tained within linear theory and are energy independent
general,uSi ,nu!1, and uSi ,n11u!uSi ,nu are necessary condi
tions for the application of the scheme. The formal expr
sions forSi ,1(E,xa) andSi ,2(E,xa) are derived in Appendix
B, those forSi , leads(xa), Si ,bridges(xa), andSi ,traps(xa) in Ap-
pendix C, and that forSi ,edges(xa) in Appendix D.
0-4
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D. Time-dependent solutions

To obtain the dependence of the charge output on time
use Eq.~16! with an finite upper limit in the integral overt.
The charge output at a timet is expressed in terms of zer
order harmonics as

Qi~E,xa ,t !52eG t,i j diLE
0

t

dt8 f 00
i ~xa ,t8!

12eG t, j i djLE
0

t

dt8 f 00
j ~xa ,t8!. ~20!

In a manner similar to Eq.~19! the solution can be written a

Qi~E,xa ,t !5Qi ,0~E,xa ,t !1Qi ,1~E,xa ,t !1Qi ,2~E,xa ,t !

1•••1Qi ,edges~E,xa ,t !1Qi , leads~E,xa ,t !

1Qi ,bridges~E,xa ,t !1Qi ,traps~E,xa ,t !, ~21!

whereQi ,0(E,xa ,t) denotes the solution for an ideal STJ.
Appendix E we present the general framework for the g
eration of time-dependent solutions.

III. TOPOLOGY OF RESPONSE SURFACES
AND CLASSIFICATION OF SPECTRAL LINE SHAPES

In this section we give a general discussion of the so
tions to the generalized RT equations in Appendixes A to
These solutions describe the effects of the various feat
on the inhomogeneity of the response surface and, co
spondingly the shape of the spectral line for monochrom
photons. We consider below the most general case when
base and the top electrodes of the STJ are not identical. T
both the case of a high-quality epitaxial base film and a po
crystalline top film as well as the situation in which bo
films are polycrystalline can be treated within our scheme
limiting cases. However, it is clear that the number of fr
parameters in these models prohibits any exhaustive ex
ration of the model. All response surfaces in this sect
were calculated for realistic sets of STJ parameters, wh
were derived from fits to experimental data, as will be d
tailed in paper II.17 Here, we use the surfaces only for illu
trative purposes, as representing a number of distinctive
versal topological features. The quantitative scale of
inhomogeneity effects is basically ignored in the treatm
here, but will be discussed in detail in paper II.

A. Response surface due to self-recombination

The typical shape of the response surfaceS(E,xa)51̂
1Si ,1(E,xa) in the first perturbation order is illustrated i
Fig. 2~a!. The histogram of the points on this surface mim
the experimentally observed line shape, and is given in
2~b!. For photon absorption in the base film the respo
surface always acquires the shape of a dome with the m
mum response being at the geometric center of the STJ.
top film absorption, however, the response surface may
quire the shape of either a dome or an inverted dome sh
as in Fig. 3~a!, depending on the combination of the maj
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STJ parameters~ten in total: two diffusion parameters, fou
tunnel and loss times, two recombination coefficients, a
two phonon coupling parameters!. Both dome-shaped an
inverted dome-shaped surfaces possess zero-curvature p
at the geometrical center of the structure. As a result
corresponding line shapes in Figs. 2~b! and 3~b! show a
sharp vertical drop on the right~left! with an extended low
~high! charge tail. There are also small secondary bump
these line shapes~respectively, at 0.65 and 0.35 in the arb
trary units along the horizontal axis!. These are due to the
topology of the response surfaces close to the values of
response where the connectivity of equal-response cont
breaks and instead of one we get four equal-response
tours at the corners of the STJ. Equal-response contours
cross sections of the response surfaces in Figs. 2~a!, 3~a! in
the horizontal plane. While we approach the limiting co
nected contour from the center of the response surface
density of points along the one-dimensional sections of
contour close to the centers of the edges rise due to
nearly zero curvature along the edge. At even larger d
tances from the center, these contributions disappear ag
causing a decline of the density.

The physical reason for the dome shape following abso
tion in the base film is that, because of confinement effe
the quasiparticle diffusion near the edges and corner
slower than diffusion in the bulk of the STJ. As a cons
quence, the self-recombination of quasiparticles is sign
cantly stronger near the edges, and particularly in the corn
of the STJ, and a quasiparticle cloud created following p

FIG. 2. ~a! An example of the contribution to the response s
face from the first iteration step. The dome shape is typical for
base electrode. All scales are in arbitrary units, since these de
critically on the input parameters.~b! The corresponding spectra
line shape.

FIG. 3. Another example of the contribution to the respon
surface from the first iteration step. The inverted dome shape
occur in the top electrode.
0-5
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A. G. KOZOREZOVet al. PHYSICAL REVIEW B 66, 094510 ~2002!
ton absorption in the corner suffers larger losses than a c
created in the center of the STJ.13 The inverted dome shap
occurs when the quality of base and top films is very diff
ent, for example when the top electrode is polycrystalli
while the base is epitaxial. In this case we expect a co
sponding difference in the quasiparticle diffusion consta
and lifetimes. The inverted dome shape occurs only for
electrode with the slowest diffusion, in this case the top fi
Strong self-recombination near the edges and corners tr
fers a considerable fraction of the generated quasiparti
from the top film to the base film via direct phonon couplin
Because quasiparticles survive longer in the base film,
overall charge output becomes larger for absorptions clos
the edges and corners of the top electrode. The resp
surface also becomes flatter because of the slower diffu
in the top electrode. Finally, the response may become la
than unity and slightly superlinear, in the sense that the n
linearity present in the system brings about a rapid tran
of quasiparticles to the electrode where the contribution
the charge output per quasiparticle is larger. Thus the ne
sary conditions for the observation of the inverted dome
sponse shape are a significant difference in quality of
electrodeŝ ni&!^nj&, and quasiparticle diffusionDi ! D j ,
and a strong phonon coupling.

The inverted dome shape of the response surface du
self-recombination might be turned to our advantage i
could be designed deliberately into an STJ in order to b
ance the dome-shaped response surfaces which are the
tributions from other inhomogeneity factors~see below!.
Apart from narrowing the line and giving better resolutio
this might also contribute to a balancing of the STJ non
earity over some chosen photon energy range. In partic
if R̃i j can be made zero, the STJ response becomes perf
linear over the range of energies where second order eff
are negligible. Perfect linearity therefore requires that

^nj&

^ni&
5

Ri j*

Ri*
511

Gpl,i

Gpe,i j
. ~22!

The phonon escape rates depend on the quality of the in
faces between the various layers in the STJ and are diffi
to modify, but the average number of times that a quasip
ticle tunnels can be influenced, for instance, by tuning
thickness of the Al proximity layers.26

Finally, changing the parameters of the STJ can produ
very interesting transformation of the response surface
top absorption from dome-shaped to inverted dome-sha
with an intermediate form shown in Fig. 4~a!. Here, in addi-
tion to the central spot with zero curvature, there appea
many as eight other features@four saddle points and fou
minima in Fig. 4~a!# of zero curvature, giving rise to othe
sharp features of the line shape. The sharp drops on
sides of the line are due to the minima and maximum and
discontinuity of the derivative in the central part of the lin
It is interesting that the transformation from dome
inverted-dome topology occurs over a very small range
the loss time in the top electrode—the parameter to wh
the shape of the response surface turns out to be extre
sensitive in this transition range.
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The second-order contribution to response due to s
recombination at any point of the STJ is of different sign~see
Appendix B!, demonstrating the sign alternating behavior
the iteration series. As a result the second order contribu
has an inverted shape in comparison with that of first ord
An essential condition for the application of this scheme
that the magnitude of the second-order correction is sign
cantly smaller than the first-order correction. Thus, in
applicable cases, the exact shape of the second-order co
tion is of no practical interest.

B. Effect of leads, bridges, and traps on the response surface

In general, leads and bridges have the largest impac
the response surface, see, e.g., Ref. 6. In the expression
the response surface derived in Appendix C, each lead
bridge ~or trap! is described by a single quality paramet
which incorporates both geometric effects and quasipart
loss efficiency inside the lead or bridge. The experimen
data on leads and bridges plugged with higher-gap mate
do not always show an 100% efficient Andreev reflection27

But even in the case of effective Andreev reflection, the le
mouth may become an area of strong quasiparticle recom
nation, causing the formation of a local spot with enhanc
quasiparticle losses. The lead thus acquires traplike quali
We emphasize that the same expressions as Eq.~C7! can be
used to describe the effect of local traps attached to the e
at a random location with the coordinatextrap. In this model
of a local trap, the parameter similar togl will measure the
‘‘strength’’ of the trap. In fact, it is clear from the analysis i
Appendix C that ‘‘lossy’’ leads and bridges and local tra
are objects of the same one-parameter family, and are
characterized by a single strengthg.

Figure 5~a! illustrates the effect of an~unplugged! lead in
the corner of the STJ and two bridges in the centers of
two sides of the base electrode. Due to the symmetry of l
and bridge connections in the base film the response sha
quite symmetric although the lead connection at the top fi
causes a little distortion. The response surface possesse
most flat regions in all corners except in the one where
lead is present. Again due to symmetry considerations
elevation of the points in the corner opposite to the lead
smaller than that of the other two corners. The result is
double-peaked line shape shown in Fig. 5~b!. The extended

FIG. 4. Another example of the contribution to the respon
surface from the first iteration step. The inverted tulip shape m
occur in the top electrode under special circumstances.
0-6
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low charge tail is due to the lead connection, while sh
drop on the right is due to the last symmetry spot, cor
sponding to the large flat central part of the response surf
which is most distant from all degrading factors and hen
spawns the largest response. The double-peaked line sha
a consequence of the topology of the response surface
occurs even for a perfectly monochromatic input of photo
Finally, Fig. 6~a! shows the effect of a local trap, comparab
in strength to the bridges, and located at the edge of the
The response surface here was calculated for the same s
STJ parameters as used for Fig. 5~a!. Removal of the flat part
of the response surface at the corner where the local tra
located causes a redistribution in the weight of the lines
the double peak, although the double-peak structure it
survives. The overall charge output becomes noticea
smaller with the simultaneous line broadening, and the
ergy resolution degrades considerably. This illustrates an
portant general principle in the relation between the topolo
of the response surface and the width of the spectral line:
stronger the symmetry of the response surface is broken
broader the spectral line becomes.

C. Effect of imperfect edges on the response surface

The general expression for the response surface du
quasiparticle losses at the edges has been derived in Ap
dix D. The effect of imperfectly reflecting edges was pre
ously studied for the limiting cases of a single electrode
Ref. 14 and identical electrodes in Ref. 16. In both cases

FIG. 5. An example of the contribution to the response surf
of the base electrode from two bridges and one lead in the co
Note the double-peaked lineshape which occurs even when the
tected photons are perfectly monochromatic.

FIG. 6. Same configuration as in Fig. 5, but now with a stro
trap added at the location (20.5L,10.4L).
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authors demonstrated the dome-shaped surfaces for the
response similar to the surface shown in Fig. 7~a!. Our for-
malism given in Appendix D is more general than the resu
of Refs. 14,16 and allows us to model STJ’s with arbitra
base and top films. Despite the superficial similarities
tween Figs. 2~a! and 7~a!, the actual curvature and shape
the dome is different for this situation compared to that
the self-recombination induced effect. This is best seen in
shape of the spectral lines, which are markedly different.

The topology of the response surfaces and correspon
line shapes for the STJ with different edge quality para
eters in the base and in the top films can be comple
different from the simple dome shape. Figure 8 illustrates
fact that for an STJ with different edge reflectivities for ba
and top electrodes, the response surface acquires a
shape with a totally different set of symmetry points. T
necessary condition for the tulip shape of the response
large difference in the edge-quality parametersb i!b j for
base and top electrodes. Apart from the central spot of z
curvature which accounts for the sharp drop on the left of
line there appears a sharp feature, a discontinuity of the
rivative in the center of the line due to four saddle points
a small distance from each side center. The sharp drop on
right is due to the four zero curvature spots near the corn
of the electrode.

The model of imperfect edge reflectivity used in Re
14,16 and in Appendix D assumes homogeneous quasip
cle losses at the perimeter of the electrode. Now, the ques

e
er.
e-

FIG. 7. An example of the contribution to the response surf
from nonideal edges. The dome shape is the usual topology.

FIG. 8. Another example of the contribution to the respon
surface from non-ideal edges. The tulip shape may arise when
edge losses in the counter electrode are much larger than in
electrode of absorption.
0-7
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arises what physical phenomena could underlie the con
of homogeneous losses at the perimeter.

One special case where the concept of homogene
losses at the edge can be fully justified is that of the b
electrode in a mesa structure as shown in Fig. 1. Here
base electrode is slightly larger in size than the top electro
leaving a narrow rim around the perimeter from which qu
siparticles cannot directly tunnel into the top electrode.
there exists a bulk loss mechanism for quasiparticles, the
quasiparticle which approaches the edge in the base
spends some time in the rim without access to barrier.
quasiparticles have a finite probability to get lost during th
random walk through the rim, this situation is clearly equiv
lent to a base electrode without a rim, but with an imp
fectly reflecting edge. Of course, this model implies perfec
reflecting edges for the top electrode. We will encounter t
situation in practice in paper II. It is interesting to note th
for the corresponding choice of STJ parameters in
model, the response surface is dome-shaped for photon
sorption in the base electrode and tulip shaped for absorp
in the top electrode.

Usually, it is assumed that imperfectly reflecting edges
a limiting case of a situation in which the perimeter conta
many small local traps. Oxidation of the Nb at the edge
the electrode may result in small sites that are either su
conducting with a small gap~NbO! or normally conducting.
Provided that these sites cause the immobilization~or loss!
of quasiparticles, and are present in a sufficient large num
they could give rise to an effect that resembles an imper
edge. This is illustrated in Fig. 9, where 50 small, random
located local traps, with randomly distributed strengths,
indeed seem to give rise to a dome-shaped response su
as seen in Fig. 7. We finally note that experimental evide
for local traps at the perimeter of a top electrode was fou
in LTSEM scans,6 although the traps did not seem to occur
the numbers assumed for Fig. 9.

IV. CONCLUSIONS

We have developed a theory for the degradation of ene
resolution in STJ’s. This theory connects the diffusive pro
erties of quasiparticles with the spatial inhomogeneity in
response of the STJ to the absorption of a photon. The to
ogy of the STJ response surface contains the complete in

FIG. 9. An approximation of the dome shaped response surf
typical of nonideal edges, arising from a large number~50! of ran-
domly positioned local traps, with randomly distributed strength
09451
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mation of the effect of various factors that cause the in
mogeneity of the STJ response. In the absence of str
nonlinearity all factors contributing to the inhomogeneo
line broadening are additive. This theory provides therefor
basis for the reconstruction of observed line shapes and
identification of the origin of different spectral features.
includes the effects of quasiparticle recombination, multi
quasiparticle tunneling, phonon coupling between the e
trodes, asymmetry between base and counter electr
losses at edges and in localized traps and diffusive losses
electrical connections. Because it shows quantitatively
extent of the resolution degradation due to the various f
tors, it can be used as a diagnostic tool to assess the qu
of STJ’s—its edges, corners, lead and bridge connectio
edge trapping efficiency, local traps, etc., and to explore
rections of optimization of the STJ performance. A detail
experimental study illustrating the quantitative descripti
based on the results in this paper and supporting the con
sions in this section is presented in the follow-up paper.

APPENDIX A: SOLUTION OF THE BALANCE
EQUATIONS

To solve the set of coupled balance equations~7! we ex-
pand the unknown solutionni(x,t) in a complete, orthogona
system of eigenfunctions$umn(x)% ~9!. The functionsumn(x)
are solutions of the Helmholtz equation for a square STJ~10!
with the proper boundary conditions at the edges~ideal,
sticky or with leads, etc!. The task is now to find the func
tions f mn

i , j (xa ,t). We do this by transforming the system o
differential equations~11! into a system of integral equation
for the Fourier transforms of thef mn

i , j (xa ,t), which we denote

f̃ mn
i , j (xa ,v). Solving the Fourier transformed system of equ

tions ~11! yields

f mn
i ~xa ,v!52

Amn
i ~xa ,v!

~v1 i«mn
1 !~v1 i emn

2 !
, ~A1!

where we have used the following definitions:

Amn
i ~xa!5QmnH ~2 iv1Bmn

j !FFmn
i 1

N0

2pdi
ũmn~xa!G

1
dj

di
G t, j i Fmn

j J ,

Amn
j ~xa!5QmnH ~2 iv1Bmn

i !Fmn
j

1
di

dj
G t,i j FFmn

j 1
N0

2pdi
ũmn~xa!G J

Bmn
i 5Dikmn

2 1G t,i j 1G l ,i

«mn
6 5

1

2
@Bmn

i 1Bmn
j 6A~Bmn

i 2Bmn
j !214G t,i j G t, j i #,

~A2!

where by definition

e,
0-8
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ũmn~xa!5umn~xa!expF2
~m21n2!p2r ini

2

4L2 G.wmn~xa!.

~A3!

For r ini→0 we haveũmn(xa)→umn(xa). We will only use
functions ũmn(xa) different from umn(xa) to treat the self-
recombination effects~see below!. In all other cases the limi
r ini→0 gives an adequate description. Although Eq.~A1! is
exact, it is nonlinear through the self-recombination ter
which not only couples an infinite number of harmonics v
the nonlinear interaction, but also contains an integral ov
part of these terms. However, the functionsFmn

i , j are qua-
dratic in f mn

i , j , so provided the nonlinearity is small, the s
lutions of Eq.~A1! can be found via an iterative scheme. T
first step of the iteration is obtained by taking functio
Fmn

i , j 50, leaving only terms linear in the quasiparticle de
sity. This leads to

f̃ mn
i ~xa ,v!52

N0

2pdi
ũmn~xa!Qmn

~2 iv1Bmn
j !

~v1 i«mn
1 !~v1 i emn

2 !
,

f̃ mn
j ~xa ,v!52

N0

2pdj
ũmn~xa!Qmn

G t,i j

~v1 i«mn
1 !~v1 i emn

2 !
.

~A4!

The second order iteration is then given by Eq.~A1!, where
theFmn

i , j are taken to their lowest order, which is obtained
substituting result~A4! into Fourier transforms of Eqs.~14!
and~15!. Higher order iteration steps are built similarly. Th
convergence for the summations overm,n is ensured by the
fact that f̃ mn}(m21n2)22exp@2(m21n2)2p2r ini

2 /4L2#.
We consider the charge outputQ(E,xa) of the STJ as a

function of photon energyE and xa , assuming the STJ to
have an ideal edges. In that case theumn(x) are simple os-
cillatory functions

umn~x!5
2

L
cosFmpS 1

2
1

x

L D GcosFnpS 1

2
1

y

L D G , ~A5!

wherekmn
2 5(p/L)2(m21n2) and L is the size of the STJ

Using Eqs.~9!, ~16!, and ~A5! we obtain after integration
over STJ area and time

Q~E,xa!54peL@G t,i j di f̃ 00
i ~xa ,v50!

1G t, j i dj f̃ 00
j ~xa ,v50!#. ~A6!

This expression can be written in the form~17! with

Si~xa ,E!

512
2p

N0
(

m,n50

`

Qmn
21

3E
2`

` diR̃i j uAmn
i ~xa ,v!u21djR̃j i uAmn

j ~xa ,v!u2

@v21~«mn
1 !2#@v21~«mn

2 !2#
dv.

~A7!
09451
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Here we introduced the following notations for the effecti
recombination coefficients:R̃i j 5Ri* 2Ri j* ^nj&/^ni& and R̃j i

5Rj* ^nj&/^ni&2Rji* . The effective recombination coeffi
cients take into account the phonon coupling between
electrodes. This makes it explicit that even in the case
strong self-recombination it is possible to have nearly lin
behavior of the charge response, at least for for photon
sorption in one of the electrodes, when the phonon coup
between the electrodes is properly matched to the quas
ticle tunnel and loss times.

APPENDIX B: NONLINEAR RESPONSE, FIRST
AND SECOND ITERATIONS

The first iteration is obtained by the substitution of t
linearized solutionsf̃ mn

i , j ~A4! into the expressions forAmn
i , j in

Eq. ~A7!:

Si ,1~xa ,E!52
N0

2pdi
(

m,n50

`

ũmn
2 ~xa!Qmn

3E
2`

`
R̃i j @v21~Bmn

j !2#1
di

dj
R̃j i G t,i j

2

@v21~«mn
1 !2#@v21~«mn

2 !2#
dv.

~B1!

For the second iteration we keep first and second order te
in the expressions foruAmn

i , j u2:

Si ,2~xa ,E!522Re (
m,n50

`

ũmn~xa!Qmn

3E
2`

` dv

@v21~«mn
1 !2#@v21~«mn

2 !2#

3H F̃mn
i ~xa ,v!F R̃i j @v21~Bmn

j !2#1
di

dj
R̃j i G t,i j

2 G
1F̃mn

j ~xa ,v!Fdj

di
R̃i j G t, j i @ iv1~Bmn

j !#

1R̃j i G t,i j ~2 iv1Bmn
i !G J . ~B2!

FunctionsF̃mn
i , j are analytic in the upper half of the comple

v plane. Thus, the integration inSi ,1(xa ,E) is straightfor-
ward and yields

Si ,1~xa ,E!52
N0

2di
R̃i j (

m,n50

`

ũmn
2 ~xa!Qmn

3

F ~Bmn
j !21«mn

1 «mn
2 1

di

dj

R̃j i

R̃i j

G t,i j
2 G

«mn
1 «mn

2 ~«mn
1 1«mn

2 !
. ~B3!

After some tedious algebra we obtain the second iteratio
0-9
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Si ,2~xa ,E!522p (
m,n50

`

ũmn~xa!Qmn@~«mn
1 !22~«mn

2 !2#21H F̃mn
i ~xa ,i«mn

2 !

«mn
2 F R̃i j @~Bmn

j !22~«mn
2 !2#1

di

dj
R̃j i G t,i j

2 G
2

F̃mn
i ~xa ,i«mn

1 !

«mn
1 F R̃i j @~Bmn

j !22~«mn
1 !2#1

di

dj
R̃j i G t,i j

2 G1
F̃mn

j ~xa ,i«mn
2 !

«mn
2

3F R̃i j

dj

di
G t, j i ~Bmn

j 2«mn
2 !1R̃j i G t,i j ~Bmn

i 1«mn
2 !G2

F̃mn
j ~xa ,i«mn

1 !

«mn
1

3F R̃i j

dj

di
G t, j i ~Bmn

j 2«mn
1 !1R̃j i G t,i j ~Bmn

i 1«mn
1 !G J , ~B4!
o
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where, in accordance with Eqs.~14! and ~15!,

F̃mn
i ~xa ,v!

52
Ri* N0

2Qmn
21

4pLdi
2 (

k,l 50

`

ũkl~xa!ũm2k,n2 l~xa!Qkl

3
@Ckl,mn

11 ~v!1Ckl,mn
22 ~v!2Ckl,mn

12 ~v!2Ckl,mn
21 ~v!#

~«kl
12«kl

2!~«m2k,n2 l
1 2«m2k,n2 l

2 !

and

Ckl,mn
67 ~v!5

~Bkl
j 2«kl

6!~Bm2k,n2 l
j 2«m2k,n2 l

7 !2
diRji*

djRi*
G t,i j

2

2 iv1«kl
61«m2k,n2 l

7
.

Similarly

F̃mn
j ~xa ,v!

52
Ri j* N0

2Qmn
21

4pLdidj
(

k,l 50

`

ũkl~xa!ũm2k,n2 l~xa!Qkl

3
@Dkl,mn

11 ~v!1Dkl,mn
22 ~v!2Dkl,mn

12 ~v!2Dkl,mn
21 ~v!#

~«kl
12«kl

2!~«m2k,n2 l
1 2«m2k,n2 l

2 !

and

Dkl,mn
67 ~v!5

~Bkl
j 2«kl

6!~Bm2k,n2 l
j 2«m2k,n2 l

7 !2
diRj*

djRi j*
G t,i j

2

2 iv1«kl
61«m2k,n2 l

7
.

An estimate of the order of magnitude ofSi ,1 can be obtained
from the leading term (n,m50):

Si ,1.2
2Ri* n0

G t,i j 1G t, j i 1G l ,i1G l , j
. ~B5!

The criterion for applicability of the iteration schemeuSi ,1u
!1 and uSi ,2u!uSi ,1u then impliesRi* n0!G t,i j 1G t, j i 1G l ,i

1G l , j , i.e., the quasiparticle recombination rate in the hom
09451
-

geneous state with quasiparticle densityn0 should be much
slower than the total quasiparticle tunnel and loss rates.

APPENDIX C: DIFFUSION INTO LEADS AND BRIDGES

To discuss the effects of leads and bridges quantitativ
we consider the inhomogeneous diffusion equation in
dissipative medium

]n

]t
2Dnn1Gn54pr~x,t !. ~C1!

This equation is a simplified form of Eq.~7!. The general
solution of this equation is, see Ref. 25:

n~x,t !5E
0

t

dt8E dx8r~x8,t8!G~x,t;x8t8!

1
1

4pE0

t

dt8E dx8@G¹x8n2n¹x8G#

1
1

4pDE dx8@nG# t50 . ~C2!

Here n(x,t) is the density of excess quasiparticles in t
electrode, 4pr(x,t)5N0 /did(x2xa)d(t) is the source den-
sity term andG(x,t;x8,t8) is the Green function for the dif-
fusion equation. Considering the quasiparticle diffusion f
lowing the photon absorption, we will drop the last term
Eq. ~C2! describing the effect of initial conditions. Th
Green functionG(x,t;x8,t8) has to be calculated for a pa
ticular geometry with appropriate boundary conditions. T
simplest case is two-dimensional diffusion in the bulk, whe

G~x,t;x8,t8!5
Q~ t2t8!

Dt
expF2

~x2x8!2

4D~ t2t8!
2

t2t8

t G .

~C3!

This Green function can be used to model the expansio
the quasiparticle distribution out of the absorption site dur
the initial period of time when the influence of edges
small. For a lead in the form of a semi-infinite bar with wid
0-10
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wl and the lead mouth atxl50 the Green function describin
one-dimensional diffusion becomes

G~x,t;x8,t8!5
2pD

@pD~ t2t8!#
1
2
H expF2

~x2x8!2

4D~ t2t8!
G

2expF2
~x1x8!2

4D~ t2t8!
G J expS 2

t2t8

t D .

~C4!

Since the photon absorption takes place outside the lear
50, and because the lead is initially empty, only the sec
term in Eq.~C2! survives, so that

n~x,t !5
x

A4pD
E

2`

t

dt8
n0~ t8!

~ t2t8!3/2

3expF2
x2

4D~ t2t8!
2g l~ t2t8!G , ~C5!

whereg l is the loss rate in the lead. Using Eq.~C5! to cal-
culate the quasiparticle flux into the lead at the lead mou
and applying the continuity equation for the quasiparticles
the electrode, we finally arrive at

]n

]t Udiff, lead52
wlDl

L2

]n

]t U
x50

5
L2

At l

d~x2xl ! lim
e→0

H 1

eE0

`

dj~122j2!

3expS 2j22g l

e2

j2D K nS x,t2
e2

j2D L J .

~C6!

Heret l5pL4/wl
2Dl is a characteristic diffusion time for th

lead, Dl is the quasiparticle diffusion coefficient inside th
lead and̂ n& denotes the quasiparticle density averaged o
the lead cross section. For the lead mouth located at
center of the STJ sidên&51/w*2w/2

w/2 ndy, whereas for a
corner location ^n&52/w2*L/22w/A2

L/21w/A2*L/22w/A2
L/21w/A2 ndxdy. Ex-

panding the loss rate due to diffusion into the lead in h
monics of the square STJ, we obtain

]n

]t
udiff, lead52L2d~x2xl ! (

m,n50

`

^umn~x!&

3E
2`

`

dv f mn~v!exp~2 ivt !gl~v!, ~C7!

where we have introduced the functiongl(v)
5Ap(g l2 iv)t l

21 to describe the effect of quasiparticle di
fusion into the lead. To arrive at this formula we have us
the following result:
09451
,
d

h,
n

r
he

r-

d

lim
e→0

H 1

eE0

`

dj~122j2!expF2j21S iv2g l

e2

j2D G J
52Ap~g l2 iv!. ~C8!

For a narrow rectangular bridge of lengthdb and width
wb at the coordinatexb it is most convenient to expand th
Green function in terms of corresponding eigenfunctio
Performing exactly the same calculations as earlier for se
infinite lead and introducing the characteristic diffusion tim
for the bridge connectiontb5pL4/wb

2Db , whereDb is dif-
fusion coefficient in the bridge, we obtain instead of Eq.~C6!

]n

]t Udiff,bridge52
wbDb

L2

]n

]t U
x5d/2

5
L2

Atb

d~x2xb!
4ADb

db
E

db/4ADbt

`

dj~122j2!

3expS 2j22gb

db
2

16Dbj2D
3F K n2S x,t2

db
2

16Dbj2D L
2K n1S x,t2

db
2

16Dbj2D L G , ~C9!

where^n7& are quasiparticle densities on the left and on
right of the bridge respectively, andgb is the quasiparticle
loss rate in the bridge. In most practically important cases
bridge may be considered as short, in the sense that the
fusion time across the bridge is small compared to the t
scales governing the evolution of the quasiparticle distri
tion in the STJ. In this case, upon taking the limitdb→0 and
keeping only the principal terms in Eq.~C9!, one obtains a
similar result to Eq.~C7! with the only difference being the
counter flux from the right of the bridge

]n

]t
udiff,bridge52L2d~x2xb! (

m,n50

`

^umn~x!&

3E
2`

`

dv@ f mn
2 ~v!2 f mn

1 ~v!#

3exp~2 ivt !gb~v!, ~C10!

where gb(v)5Ap(gb2 iv)tb
21 and, as earlier, the supe

scripts7 refer to the harmonics on the left and right of th
bridge, respectively. It immediately follows from Eqs.~C7!
and ~C10! that one cannot describe the effects of leads a
bridges by simply introducing another quasiparticle loss ra
The quasiparticle loss in the electrode due to diffusion i
leads and across the bridges is a nonexponential proc
With the Eqs. ~C7! and ~C10! we can now derive
Si , leads(E,xa) and Si ,bridge(E,xa). First, it follows from Eq.
~16! that to find the charge response and then the normal
0-11
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response we need to know only the Fourier component
harmonicsf mn(xa ,v) taken atv50. Thus we take the Fou
rier transform of the main system of equations~11!, ignore
the nonlinear terms, keep the loss terms into leads
bridges, Eqs.~C7! and~C10!, and takev50. We stress tha
the effect of bridges and leads on the charge output and
response is fully accounted for by a single parameter
bridge~lead!, namely,gb( l )(v50)[gb( l )5Apgb( l )tb( l )

21 . As-
suming that the bridge connections exist only to the b
electrode, we then obtain

Bmn
i f mn

i ~0!2G t, j i

dj

di
f mn

j ~0!

1QmnL
2gl ,iumn~xl ,i ! (

k,l 50

`

^ukl~xl ,i !& f kl
i ~0!

1QmnL
2(

n
gb,numn~xb,n! (

k,l 50

`

^ukl~xb,n!& f kl
i ~0!

5
N0

2pdi
umn~xa!,

Bmn
j f mn

j ~0!2G t,i j

di

dj
f mn

i ~0!

1QmnL
2gl , jumn~xl , j ! (

k,l 50

`

^ukl~xl , j !& f kl
j ~0!

5
N0

2pdj
umn~xa!, ~C11!

where f mn
i ( j )(0)[ f mn

i ( j )(xa ,v50) andn labels the bridges on
the base electrode. We introduce

pl ,i5 (
k,l 50

`

^ukl~xl ,i !& f kl
i ~0!,

pl , j5 (
k,l 50

`

^ukl~xl , j !& f kl
j ~0!,

pb,n5 (
k,l 50

`

^ukl~xb,n!& f kl
i ~0!. ~C12!

It is clear that using the system~C11! we can easily obtain a
finite linear algebraic system for the variablespl ,i ,pl , j ,pb,n .
The solution of this system is straightforward. Subsequ
substitution of the results into Eq.~C11! yields all harmonics
f mn

i ( j )(0) . Finally, the result for the response acquires
form

Sleads1bridges
base ~xa!52

2L2pdi

N0
Fgl ,i pl ,i1(

n
gb,npb,nG

2
2L2pdj

N0

G t, j i

G t,i j

2G t,i j 1G l ,i

2G t, j i 1G l , j
gl , j pl , j

~C13!
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Sleads1bridges
top ~xa!52

2L2pdi

N0
gl ,i pl ,i

2
2L2pdj

N0

G t, j i

G t,i j

2G t,i j 1G l ,i

2G t, j i 1G l , j

3Fgl ,i pl ,i1(
n

gb,npb,nG . ~C14!

Using the solutions of Eq.~C11! we can easily find the qua
siparticle density in any of the neighboring electrodes due
cross talk over the bridge connections. This yields

Scross talk,n~xa!5
2L2pdi

N0
gb,npb,n . ~C15!

Finally, we point out that although we have not specifica
dealt with local traps, it may be clear from the above analy
that traps, leads and bridges all belong to the same famil
localized loss channels, characterized by one parametergn .

APPENDIX D: IMPERFECTLY REFLECTING EDGES

Following Refs. 14,16 the model assumption is that
quasiparticle losses at the edges of an electrode can be
scribed by a single edge-quality parameterb i . In Ref. 14b i
is related toRi ,edge, the edge reflectivity, or the probabilit
that a quasiparticle is trapped upon hitting the edge, as

b i5
3L

4l i
~12Ri ,edge!, ~D1!

where l i is the electron mean free path in electrodei. In
generalb iÞb j , even when the edge reflectivityRi ,edgeis the
same in both electrodes, becauseb i ( j ) also depend on the
accessibility of the edges, i.e., the diffusive properties of
quasiparticles. An example is the case of STJ’s with an e
taxial base electrode and a polycrystalline top electrode.
causeRi ,edge depends on details of the processing route
may be considered identical for both electrodes; however,
diffusion coefficients may differ by an order of magnitude

Let $umn
j (x)% be the complete set of orthogonal eige

functions, which are solutions of the Helmholtz equations
each electrode with the following boundary conditions:

@b jumn
j 1ê¹umn

j #edge50, ~D2!

whereê is the unit vector normal to the corresponding ed
of the STJ. The solution of Helmholtz problem with th
boundary conditions~D2! is

umn
j ~x,y!5

2

L F S 11
2b j

b j
21kj ,m

2 L2D S 11
2b j

b j
21kj ,n

2 L2D G2 1/2

3sinS mp

2
1kj ,mxD sinS np

2
1kj ,nyD , ~D3!
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wherekj ,m is the solution of the dispersion equation

kj ,mL5mp22 arctanS kj ,mL

b j
D . ~D4!

Note that to compare Eq.~D3! with Eq. ~A5! for the ideal
edge limit b→0 we have to make a shift in Eq.~D3!: n
→n11,m→m11, so that the eigenfunctions in Eq.~D3!
belong to similar eigenvalues. Then sin(mp/21kj ,mx)
→cos(mp/21kj ,m11x) and Eq. ~D3! coincides with Eq.
~A5! in the ideal edge limit. Evenly spaced harmoni
umn

i (x) from one electrode andumn
j (x) from the other are no

orthogonal. As a result, the system of Rothwarf-Taylor eq
tions, when expanded into harmonics, becomes an infi
system of coupled equations with cross-coupling terms
to the nonorthogonal harmonics. Their contributions, ho
ever, become negligible for high-quality STJ’s, in which t
edge losses are small. Quantitatively, this is the case w
p22ub i2b j u!1. Neglecting all cross-coupling terms to th
accuracy we obtain exactly the same equations for the
monics as the linearized system~11!. After some simple al-
gebra, which differs slightly from the derivation in Append
A due to the expansion into two different sets of eigenfu
tions, we obtain
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Si ,edge~E,xa!5
8G t,i j L

^ni&
(

m,n50

`
ũmn~xa!

«̃mn
1 «̃mn

2
@b i

2B̃mn
j Fm

i Fn
i

1b j
2G t, j i Fm

j Fn
j #21, ~D5!

where

Fm
i 5

1

um
i @b i

212b i1~um
i !2#1/2

.

In Eq. ~D5! we used the notationum
i [k2m11

i to make the
comparison with the results of Refs. 14 and 16 straightf
ward and alsoũmn(x)[u2m11,2n11

i , ẽmn
6 [e2m11,2n11

6 , B̃mn

[B2m11,2n11. The results of the model considered in Ref.
immediately follow from Eq.~D5! by takingG t, j i 50, while
the results of Ref. 16 are obtained by takingb i5b j .

APPENDIX E: TIME-DEPENDENT SOLUTION
OF THE BALANCE EQUATIONS

The general solution of the balance equations~11! permits
an iteration scheme which is obtained by assuming nonlin
terms as known entries:
xpression

lse
f mn
i 5

2pQ~ t !Qmn

«mn
1 2«mn

2 H N0

di
ũmn~xa!@~Bmn

j 2«mn
2 !e2«mn

2 t2~Bmn
j 2«mn

1 !e2«mn
1 t#1~Bmn

j 2«mn
2 !e2«mn

2 t

3E
0

t

e«mn
2 t8Fmn

i ~xa ,t8!dt82~Bmn
j 2«mn

1 !e2«mn
1 tE

0

t

e«mn
1 t8Fmn

i ~xa ,t8!dt8

2
dj

di
G t, j i Fe2«mn

2 tE
0

t

e«mn
2 t8Fmn

j ~xa ,t8!dt82e2«mn
1 tE

0

t

e«mn
1 t8Fmn

j ~xa ,t8!dt8G J ,

f mn
j 5

di

dj
Q~ t !Qmn

2pG t,i j

«mn
1 2«mn

2 H N0

di
ũmn~xa!@e2«mn

2 t2e2«mn
1 t#1e2«mn

2 tE
0

t

e«mn
2 t8Fmn

i ~xa ,t8!dt8

2e2«mn
1 tE

0

t

e«mn
1 t8Fmn

i ~xa ,t8!dt82
dj

diG t,i j
F ~Bmn

i 2«mn
1 !e2«mn

1 tE
0

t

e«mn
1 t8Fmn

j ~xa ,t8!dt8

2~Bmn
i 2«mn

2 !e2«mn
2 tE

0

t

e«mn
2 t8Fmn

j ~xa ,t8!dt8G J . ~E1!

The zeroth order iteration is given by Eq.~E1!, which is obtained by ignoring all nonlinear terms with functionsFmn
i , j . The next

order iteration is straightforward to implement. These solutions can be used to findQi ,1(E,xa ,t), Qi ,2(E,xa ,t) and higher
order terms. The calculations are simple but the results are too cumbersome to present fully here. We give only the e
for the ideal solution, integrated over the area of the STJ:

Q0,i~E,t !5eN0F ^ni&1
G t,i j ~B00

j 2e00
1 1G t, j i !

~e00
1 2e00

2 !e00
1

exp~2e00
1 !t2

G t,i j ~B00
j 2e00

2 1G t, j i !

~e00
1 2e00

2 !e00
2

exp~2e00
2 !tG . ~E2!

When differentiated with respect to time, it provides a~usually! good approximation to the shapes of the current pu
produced by the STJ as a function of time.
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