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Quasiparticle diffusion and the energy resolution of superconducting tunneling junctions
as photon detectors. I. Theory
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One of the factors that degrades the energy resolution of superconducting tunnel jut®Tidgsas photon
detectors at energies above a few keV is the spatial dependence of the response on the photoabsorption site. To
assess the role of spatial inhomogeneities we have analyzed quasiparticle diffusion processes in detail and
developed a general analytical theory to describe the evolution of the quasiparticle density in an STJ. This
theory underlies an analytical model of the STJ response surface, and the corresponding spectral line shape. It
accounts for effects of quasiparticle recombination, multiple quasiparticle tunneling, phonon coupling between
the electrodes, asymmetry between base and counter electrode, losses at edges and localized traps, and diffu-
sive losses into electrical connections, and is structured such that the effect of these features are added
independently, so that the influence of each process can be assessed independently and possible new processes
can easily be included.
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I. INTRODUCTION. spatial contributions tend to dominate at relatively higher
energies. Since the future development of STJ’s is directed
Superconducting tunnel junction$STJ'9 are currently towards low-gap materials, such as Mo and!® energy
being developed as photon-counting spectrometers for eesolution problems due to an inhomogeneous spatial re-
wide range of applications. Their potentially high energysponse are expected to become increasingly relevant at lower
resolution and their capability to handle high count ratesnergies as well.
make STJ's very promising as photon detectors in an energy In order to calculate the effect of inhomogeneous broad-
range that stretches from near IR to x-fafhe spectroscopic ening it is necessary to model simultaneously the temporal
performance of an STJ is conventionally expressed in termand spatial evolution of the quasiparticle distribution in both
of a full width at half maximum(FWHM) energy resolution electrodes. From a time-dependent map of quasiparticle den-
AE, which comprises several different contributions. Amongsity in both electrodes follows the tunneling current as a
these contributions are the statistical noise of the number diinction of time and photon-absorption position. Integration
quasiparticles initially created by the photon absorptionover time yields the charge output as a function of position,
(Fano nois® and of the average number of tunneling eventsthe response surface. The histogram of the response surface
per quasiparticlé* considered to be the intrinsic resolution gives the corresponding spectral line shape. The time evolu-
plus the noise from environmental factgstray IR radiation, tion of the quasiparticle and phonon populations is conven-
read-out electronics, ejc.For Nb/Al based STJ’s intrinsic tionally described by the Rothwarf-TaylofRT) balance
resolution close to the statistical limit has been achieved foequations:*>** However, these equations cannot describe
photon energieE up to 1 ke\? However, at energies beyond the spatial evolution of the quasiparticle population, for
this value the observedE is significantly larger than that which it is necessary to include the effects of spatial diffu-
calculated from all known contributing factors. sion of quasiparticles. These depend on the specific size, de-
In this paper we consider in detail the suggestion that theign and structure of the particular STJ under study, espe-
excess contribution to the energy resolution arises frontially on the crystallographic quality of the electrodesg.,
variations in the response of the STJ with the position of theepitaxial or polycrystalling In addition, quasiparticle dy-
photon-absorption site. Experimental support for this hypothnhamics is affected by localized traps, regions of reduced en-
esis is found in spatially resolved scans of the response witargy gap, presumably introduced at the edges and surfaces
technigues such as low-temperature scanning electron miuring the fabrication process. Finally the size and location
croscopy(LTSEM) (Ref. 6 and low-temperature scanning of the connecting leads to the electrodes is quite critical,
synchrotron microscopyLTSSM) (Ref. 7 and also in the since these are often a major source of quasiparticle loss.
fact that the same detectors have resolutions close to the In this paper we present the first, fully analytical theory in
statistical limit for optical photon§The energy dependence which the specific contributions due to all these structural
of the intrinsic resolution would then be explained by thefeatures are taken into account. Earlier work by Refs. 14-16
fact that the statistical contributions are proportionaEfé, considered simplified cases describing a single source of loss
on account of their Poissonian nature, while any contributiorin STJ's with very specific propertieso phonon coupling
due to spatial variations is proportionalEpbecause it arises between electrodes, no multiple tunneling, or multiple tun-
from differences in the magnitude of signaiSherefore any neling only between fully symmetric electrode®ur theory,

0163-1829/2002/68)/09451G14)/$20.00 66 094510-1 ©2002 The American Physical Society



A. G. KOZOREZOVet al. PHYSICAL REVIEW B 66, 094510 (2002

on the other hand, allows us to treat the most general case i
which all the sources of spatial inhomogeneity can be in-
cluded separately, taking account of the effects of quasipar
ticle recombination, multiple quasiparticle tunneling, phonon
coupling between the electrodes, asymmetry between bas
and counter electrode, and the various diffusion processes
several of which were not examined in detail before. The key \

element of our approach is the way in which the generalized A profiliyTayors:

Rothwarf-Taylor equations, containing all the necessary P ———

terms relating to inhomogeneous loss, are solved analytically

in the quasilinear regime. The major advance is that it allows FIG. 1. A schematic representation of STJ's with a definition of
all different contributions to be entered additively in the cal-their main features. STJ's may be single or, as shown here, con-
culation of the response surface, and their specific effect oﬁecte_d via bridges into an array. The top ele(_:trode of the STJ on the
the total energy resolution can be individually assessed. Cobight is smaller than the base electrode. This results in a so-called

tributions from possible new processes can be easily inmesa structure, which leaves a rim in the base electrode from which

cluded as well. quasiparticles cannot readily tunnel into the top electrode.
The outline of the paper is as follows. Section Il contains . N

the general description of our approach. The generalized R"f"hereNi ' .Pi are, respecuvely, the quasiparticle and phpnon

equations including all inhomogeneous terms are introduceaumbers In electrode_. Herei labels the electrode which

in Sec. Il A. The structure of the solution scheme is given inabso_rbs tr_'e photon andabels the counte_r electrode. In gen-

Sec. I B, resulting in an expression for the response surfac€ral. 1 =1 indicates t.he base electrode arel the top elec-

Its relation to the inhomogeneous line broadening is derive yode. \.N(_e.refer to Fig. 1 for a general layout of the S.T‘] qnd

in Sec. 11 C. We discuss the temporal evolution of the quasi_the definition of the relevant parts. The general quasiparticle

particle population in Sec. Il D. The main steps in arriving at2nd Phonon loss rates are defined as
the analytical solutions are described in Appendix A. Each of

-

top leads

mesa
structure

polycrystalline top electrode
AIOx barrier bridges
base lead

the inhomogeneity generating terms is analyzed separately Papri=Teij i+ T,
with the analytic results given in Appendixes B to D. Appen- _
dix B relates to inhomogeneity arising from the combined Foni=Tpeijt Tppi+ i @)

action of the effects of quasiparticle self-recombination, ande e, ij is the rate at which quasiparticle tunnel from elec-
diffusion in a restricted geometry near the STJ corners anfjrodei into electrodd, ', ;, is the quasiparticle recombina-

edges. In_ App_endix C we de_rive the localized IQSS terms fOIEion rate in electrode andT’| ; is the rate at which quasipar-

t_he quasiparticles diffusing into leads and bridge CONNECsicies are lost from electrodedue to trapping. The losses due

tions. The same approach can also be useq to describe t guasiparticle diffusion out of the electrode cannot be de-

f;?ecé;nm Ic:jcal traps. Appendix D dea!s with imperfectly scribed in terms of a loss rate and are considered separately.
g edges. Finally Appendix E gives the results o.ane,ij is the phonon escape rate from electrode electrode

guasiparticle temporal evolution. In the main discussion i T, is the rate at which phonons break Cooper pairs to
. ob,i
Sec. lll, we concentrate on the relation between the topolog orm new quasiparticles, andl,; is the rate at which

of the response surface and the speciral line shape. We sh Wonons are lost from electrodein processes other than

that the response e th(_a feature; ol escape into electrode The quasiparticle recombination rate
observed line shapes. We also show that it is possible t% given by

relate specific sources of loss to specific features of the re-
sponse surface and singularities of the line shapes. In the
following paper(paper Il hereaftet’) we present two experi-

mental case studies which validate the theory and demoRghere under the assumption that i3t T peii}<Tpn; We

I i=RF(ni+2ny), 3

strate its usefulness. can write
Lo+ e
Il. BALANCE EQUATIONS Ri* -R, p|,|r peij ’ )
A. Generalization of the Rothwarf-Taylor equations to include pbii
quasiparticle diffusion where R;=(2A/kgT.)3/[4N(0)A 4] is the recombination
The RT balance equations for the temporal evolution ofcoefficient:® T, the critical temperatureé(0) the density of
quasiparticle populations in STJ's read states per spin at the Fermi level in the normal stajethe
characteristic time of a superconductdandny, the density
dN, of thermally excited quasiparticles. Splitting the escape
rTin —Nilgpi+ NIy i +2Pil ppyi s routes for recombination phonons with an enefdy>2A

allows us to introduce another convenient quantity, namely
the phonon coupling ratg, ;; . By definition,I"y;; =T ;(1
dP; 1 +T,, /T e:) " Lis the part of the overall recombination rate
—L =P T+ PiToeii+ =NiT, @ L pkiltpei) IS IeD com
dt RRLE T T pet T T in electrodei relating only to the recombination phonons
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which escaped through the barrier into the opposite electrodgointlike source term describing instantaneous generation of
causing pair breaking there. Correspondingly, N, quasiparticles at=0 with the spatial profile

I'pi=RE(ni+2ny) ) e(Xx—Xa) =L wr ) exr] — (x—Xa) /1 ;] ®
with R% =R (1+ T i/T'pe ) ~*. The phonon loss raté

pli inei itati s -
is given in Ref. 20 as inside a small excitation spot of radiug; around the absorp

tion site with the coordinate,. The magnitude of;, is
Mon estimated in Ref. 2&rom measurements in a Ta absoner
F""i:4_d-’ (6)  be of the order of 3um. We have no reason to assume it
! will be strongly different for Nb. In practice,,,; exceeds the
where 7 is the phonon transmission coefficient through thethickness of most electrodes by an order of magnitude.
escape interface, ang,, is the phonon velocity in the me- Moreover, the energy gap is uniform in the vertical direction,
dium. These values are weighted averages over the vario®syen when it consists of several layers of different materials,
phonon modes. The phonon transmission through a stack @fs long as the thickness is smaller than five coherence
layers(e.g., AI/AIO, /Al) can be calculated with the acoustic lengths?* Again, this is a range in excess of the thickness of
mismatch modei®?! Because the STJ's are usually operatedmost practical electrodes. Therefore we ignore any variation
at temperatures which are typically of the orderT.1n,,  in the vertical reaction and treat the quasiparticle diffusion in
can be neglected in most cases. A direct consequence of Edje two lateral dimensions. For all linear response problems,
(3) is a quadratic dependence on quasiparticle density, imhowever, it is sufficient to take the limit,;— O resulting in
plying that Eq.(1) is nonlinear. lim, _o{ (i) exd—(x—x)?/r i1} = 8(x—xa). In Eq.

A considerable simplification of Eq(1) can be obtained (7) we implicitly assume that once diffusion has started, the
by recognizing that phonons do not play a dynamical role ingiffusion constantD; remain constant. Since the diffusion
the processes that control the quasiparticle population. Firsgonstant depends on the quasiparticle energy distribution, we
the velocity of sound in a lattice is typically two orders of therefore assume that the latter does not change significantly

magnitude slower than the Fermi velocifiso that diffusion  after the generation of quasiparticles has completed.
of phonons is negligible compared to quasiparticle diffusion.

Second, the phonon pair-breaking time is small compared to
other relevant time scaléd!®?2For all materials studied in
Ref. 20 the pair-breaking time is about two orders of magni- Here we give a brief outline of the method of solution of
tude smaller than the material constagtthat governs the EQg. (7); more details are given in appendixes A and B. Since
quasiparticle recombination time. Any phonons that are crethe equations are non-linear, a general exact solution does
ated with energies larger tham\Zmmediately break Cooper hot exist, and we must therefore look for an accurate ap-
pairs generating pairs of quasiparticles. Hence it is possiblgroximation. We apply a standard method for the solution of
to exclude the phonon RT equation and describe phonoBEg. (7). We expand the solution;(x,t) in a complete, or-
transport between the electrodes by effective phonon couhogonal system of eigenfunctions,(x) of the Helmholtz
pling terms. equation for a square electrade

In order to describe the spatial variation of the STJ re-
sponse it is necessary to include the effects of quasiparticle c
diffusion in the RT equations, and we therefore replace Eq. MK )= 2 Fron(Xa,DUme(0). (©)
(1) with the following equations: m.n=0

B. Outline of the solution scheme

The (rea) functionsu,,,(x) are solutions of the dispersion

o dj o equation
E—DiAni=—ninp“-i—njd—i(Ft’ji+prji)+ﬁ » q
I
N, AUmp+ krznnumn:O (10
* d; e(x=xa) (), with the appropriate boundary conditions at the edges.
Through these boundary conditions the various features of
an; d; an; the model are introduced: ideal or partially reflective edges
St DN ==l ni (P + D)+ —-| or edges with leads, bridges or traps present. Inserting Eq.
] diff . . . . .
@ (9) in Eg. (7), multiplying by u,(x) and integrating ovex
then yields
We point out that Eq(7) is written in terms of quasipar- _
ticle area densities, thus implying that diffusion takes place fn ) : i _
; . : : _ i
only in the plane of the STJ, and that it contains the spatial ot T (Dikmat Lo 100 fon d, T jifinn
derivative terms in the balance equations. The second term .
on the left-hand side describes quasiparticle diffusion inside i No fn
either electrode, while the third term on the right-hand side = Pmn(Xa )+~ Omn@mn(Xa) 6(1) + — :
represents quasiparticle diffusion out of the electrode via ' dift
leads, bridges or into localized traps. We also introduced a (11
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j
m

o -
S (DjKE Dy AT =T Qi(Exa)=e dXJO di[I'ini(X,Xa 1)

at d] J mn area
: of} +T5in (X, Xg, )] (16)
=Ohy(Xa Dt (12) e
dift This expression can be written as
where
Qi(E,Xa) =eNog(ni)Si(E,Xa) 17
1
Omn= (1+6m0)(1+ 6,0 whereNy is the number of quasiparticles initially generated
by the photon andn;) is the charge multiplication factor
(average number of tunneling events for each quasiparticle
@mn(xa)zf dX@(X—Xz) Umn(X). (13 due to quasiparticle back tunneling, given by
area
All nonlinear effects due to quasiparticle self-recombination ()= Lo (20 i+ T 5) 18)
are combined in the function®,,, and®!, . S IR AR MO AR N AR
- - d - In Eq. (17) S(E,x,) is a quantity which we call the normal-
i _ i - i 1
Prmn(x,t) = Ri*':mn(x't)"'di RiFm(xt) (14 jzed response of the device. Plotted as a functiom,of it
determines the response surface. The density of points on
with this surface gives the spectral lineshape. We choose the nor-

malization with respect to the ideal case for which all above-
i i i mentioned factors causing the response inhomogeneity are
an(x,t)=% E Fa (O T (1) absent. For this ideal casg=1, the response surface is a
Kl plane and the spectral line a sharp peak.
. , , , By applying the iteration scheme ®(E,x,) we find that
X J e WO OO (A9 g ) =T 45, (B x) + S AE XD+, where
S n(E,Xy) is thenth order iteration for the nonlinear system.
The integration in Eq(15) runs over the area of the STJ. For For slightly nonlinear systems all the effects resulting in a
simplicity we have omitted the dependence xynof func-  dependence of the charge output on the coordinates of the
tions f' and ®' in Egs. (11), (14), (15). The expression for absorption site are additive in the lowest order. This means
the function(I){nn is given by Eq.(14) wherei has to be that the effects of quasiparticle recombination may be com-

replaced byj and vice versa. This forms the basis for our Puted as a series of perturbations on an otherwise ideal sys-
solution scheme. tem. On the other hand, effects like imperfect reflectivity of

As long as the functiond are relatively smalli.e., the the edges or diffusion into leads should, to first order, not
system is only slightly nonlineawe can apply an iterative depend on nonlinearities. Hence we may compute the effects
method to a linearized set of equations. By Fourier transOf sticking at the edges or diffusion into the leads separately
forming the system of differential equations into a system offor the linear system. In terms of the iteration scheme the
integral equations it is possible to invert the equations andesponse surface thus becomes a linear sum of perturbation
obtain a formal expressidhfor the solution. This solution is surfaces added to the ideal, uniform response surface
exact, but contains the self-recombination tedm which

couples to an infinite numbe~r of harmonicsfofia nonlin- Si(EaXa):i+si,1(EvXa)+Si,2(vaa)+ o+ S jeadd Xa)
earity. It has the general forf{ ®(f2)], which can be cal- N N N N
culated to any given accuracy via an iterative scheme. To St bridged Xa) + Si trapd Xa) + S edgebXa) + - - -
ensure convergencé,must be small. The first step of the (19

iteration is obtained by taking functiornB=0, leaving only

terms that are linear in the quasiparticle densitp]= f,. Here the subscript “edges” indicates the contributions due to

The second order iteration builds on this result, whérés  a non-ideal reflectivity of the edges. We have dropped the

taken to its lowest ordef{ ®(f3)]— f,. Higher order itera- argumentE in the response from contributions of edges,

tions can be developed similarly. leads, bridges and traps because these expressions were ob-

tained within linear theory and are energy independent. In

general,|S /<1, and|S ,;1/<|S | are necessary condi-

tions for the application of the scheme. The formal expres-
Now we consider the charge outpQi(E,x,) of the STJ  sions forS 1(E,x,) andS; 5(E,x,) are derived in Appendix

as a function of photon enerdy and photon-absorption po- B, those forS jcaafXa): Si bridgedXa), @aNdS; yapdXa) in Ap-

sition X, : pendix C, and that fo§; ¢qgefXa) In Appendix D.

C. Response surface
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D. Time-dependent solutions first iteration for base electrode

To obtain the dependence of the charge output on time we
use Eq.(16) with an finite upper limit in the integral over
The charge output at a tinteis expressed in terms of zero
order harmonics as

Signal

Counts

t .
Qi(E,Xa,t)=ZeFt,ijdiLf dt,fIOO(Xa,t,)
0

Signal b.

t )
+2eFt’jidjLJ’ dt’ flo(xa,t").  (20) & X
0

FIG. 2. (a) An example of the contribution to the response sur-
In a manner similar to Eq19) the solution can be written as face from the first iteration step. The dome shape is typical for the
base electrode. All scales are in arbitrary units, since these depend
Qi(E, X3, 1) =Qj ol E\Xa,t) + Qi 1(E, X5, 1) + Q) o E X5, 1) critically on the input parametergb) The corresponding spectral

line shape.
+oee +Qi,edgeéEvXavt)+Qi,Iead£EaXavt) . . i
STJ parameteréen in total: two diffusion parameters, four
+ Qi bridge§ B Xa s 1) + Qi rapd E.Xast), (21 tunnel and loss times, two recombination coefficients, and
two phonon coupling parametg¢rsBoth dome-shaped and
inverted dome-shaped surfaces possess zero-curvature points
at the geometrical center of the structure. As a result the
corresponding line shapes in Figsbp and 3b) show a
sharp vertical drop on the rigfiteft) with an extended low
Ill. TOPOLOGY OF RESPONSE SURFACES (high) charge tail. There are also small secondary bumps in
AND CLASSIFICATION OF SPECTRAL LINE SHAPES these line shapegespectively, at 0.65 and 0.35 in the arbi-
trary units along the horizontal ayisThese are due to the
In this section we give a general discussion of the solutopology of the response surfaces close to the values of the
tions to the generalized RT equations in Appendixes A to DI€Sponse where the connectivity of equal-response contours
These solutions describe the effects of the various featurdy®aks and instead of one we get four equal-response con-
on the inhomogeneity of the response surface and, corrdours at the corners of the STJ. Equal-response contours are
spondingly the shape of the spectral line for monochromatigrOSS sections of the response surfaces in Figs, 3@ in
photons. We consider below the most general case when tH8€_horizontal plane. While we approach the limiting con-

. . nected contour from the center of the response surface, the
base and the top ele_ctrodes_of the_ ST‘J are not identical. Thu&ensity of points along the one-dimensional sections of the
both the case of a high-quality epitaxial base film and a poly

; . Te : ‘contour close to the centers of the edges rise due to the
qrystalllne top film as well as the situation in which both nearly zero curvature along the edge. At even larger dis-

— 1 fances from the center, these contributions disappear again,
limiting cases. However, it is clear that the number of freecausing a decline of the density.

parameters in these models prohibits any exhaustive explo- The physical reason for the dome shape following absorp-
ration of the model. All response surfaces in this sectionjon in the base film is that, because of confinement effects,
were calculated for realistic sets of STJ parameters, whickhe quasiparticle diffusion near the edges and corners is
were derived from fits to experimental data, as will be de-gjower than diffusion in the bulk of the STJ. As a conse-
tailed in paper IF.” Here, we use the surfaces only for illus- quence, the self-recombination of quasiparticles is signifi-
trative purposes, as representing a number of distinctive Unkantly stronger near the edges, and particularly in the corers

versal topological features. The quantitative scale of thgy the STJ, and a quasiparticle cloud created following pho-
inhomogeneity effects is basically ignored in the treatment

here, but will be discussed in detail in paper II. first iteration for tfop electrode

whereQ; o(E, X, ,t) denotes the solution for an ideal STJ. In
Appendix E we present the general framework for the gen
eration of time-dependent solutions.

A. Response surface due to self-recombination

Signal

The typical shape of the response surf&{&,x,)=1

+ S 1(E,Xy) in the first perturbation order is illustrated in
Fig. 2(a). The histogram of the points on this surface mimics
the experimentally observed line shape, and is given in Fig.
2(b). For photon absorption in the base film the response
surface always acquires the shape of a dome with the maxi
mum response being at the geometric center of the STJ. For
top film absorption, however, the response surface may ac- FIG. 3. Another example of the contribution to the response
quire the shape of either a dome or an inverted dome showurface from the first iteration step. The inverted dome shape may
as in Fig. 3a), depending on the combination of the major occur in the top electrode.

Counts

X Signal b.
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ton absorption in the corner suffers larger losses than a clouc  first iteration for top electrode
created in the center of the S¥IThe inverted dome shape
occurs when the quality of base and top films is very differ- _
ent, for example when the top electrode is polycrystalline, 2
while the base is epitaxial. In this case we expect a corress
sponding difference in the quasiparticle diffusion constants
and lifetimes. The inverted dome shape occurs only for the
electrode with the slowest diffusion, in this case the top film.
Strong self-recombination near the edges and corners trans
fers a considerable fraction of the generated quasiparticle:
from the top film to the base film via direct phonon coupling.
Because quasiparticles survive longer in the base film, the FiG. 4. Another example of the contribution to the response
overall charge output becomes larger for absorptions close @urface from the first iteration step. The inverted tulip shape may
the edges and corners of the top electrode. The responsecur in the top electrode under special circumstances.

surface also becomes flatter because of the slower diffusion

in the top electrode. Finally, the response may become larger The second-order contribution to response due to self-
than unity and slightly superlinear, in the sense that the Nonscompination at any point of the STJ is of different sigae
linearity present in the system brings about a rapid transfefpnendix B, demonstrating the sign alternating behavior of
of quasiparticles to the electrode where the contribution tQne jteration series. As a result the second order contribution
the charge output per quasiparticle is larger. Thus the necefys an inverted shape in comparison with that of first order.
sary conditions for the observation of the inverted dome rexn essential condition for the application of this scheme is
sponse shape are a significant difference in quality of thenat the magnitude of the second-order correction is signifi-
electrodes(n;)<(n;), and quasiparticle diffusioD; <Dj,  cantly smaller than the first-order correction. Thus, in all

and a strong phonon coupling. applicable cases, the exact shape of the second-order correc-
The inverted dome shape of the response surface due {fy, is of no practical interest.

self-recombination might be turned to our advantage if it
could be designed deliberately into an STJ in order to bal- _
ance the dome-shaped response surfaces which are the coR- Effect of leads, bridges, and traps on the response surface

tributions from other inhomogeneity factofsee below In general, leads and bridges have the largest impact on
Apart from narrowing the line and giving better resolution the response surface, see, e.g., Ref. 6. In the expressions for
this_ might also contribute to a balancing of the STJ no_nlin-the response surface derived in Appendix C, each lead and
ea~r|ty over some chosen photon energy range. In partlculeqc)ridge (or trap is described by a single quality parameter

if R;; can be made zero, the STJ response becomes perfectishich incorporates both geometric effects and quasiparticle

linear over the range of energies where second order effecigss efficiency inside the lead or bridge. The experimental

Counts

X Signal b.

are negligible. Perfect linearity therefore requires that data on leads and bridges plugged with higher-gap material
do not always show an 100% efficient Andreev reflecfibn.

(nj) R Lo But even in the case of effective Andreev reflection, the lead

mzﬁzl“L Toeij’ (22 mouth may become an area of strong quasiparticle recombi-

nation, causing the formation of a local spot with enhanced
The phonon escape rates depend on the quality of the intequasiparticle losses. The lead thus acquires traplike qualities.
faces between the various layers in the STJ and are difficudVe emphasize that the same expressions ag@&#f.can be
to modify, but the average number of times that a quasiparused to describe the effect of local traps attached to the edge
ticle tunnels can be influenced, for instance, by tuning theat a random location with the coordinatg,,. In this model
thickness of the Al proximity layeré of a local trap, the parameter similar ¢gp will measure the

Finally, changing the parameters of the STJ can produce ‘strength” of the trap. In fact, it is clear from the analysis in

very interesting transformation of the response surface foAppendix C that “lossy” leads and bridges and local traps
top absorption from dome-shaped to inverted dome-shapeate objects of the same one-parameter family, and are all
with an intermediate form shown in Fig(a. Here, in addi- characterized by a single strenggh
tion to the central spot with zero curvature, there appear as Figure Ja) illustrates the effect of atunplugged lead in
many as eight other featur¢four saddle points and four the corner of the STJ and two bridges in the centers of the
minima in Fig. 4a)] of zero curvature, giving rise to other two sides of the base electrode. Due to the symmetry of lead
sharp features of the line shape. The sharp drops on bo#nd bridge connections in the base film the response shape is
sides of the line are due to the minima and maximum and thguite symmetric although the lead connection at the top film
discontinuity of the derivative in the central part of the line. causes a little distortion. The response surface possesses al-
It is interesting that the transformation from dome tomost flat regions in all corners except in the one where the
inverted-dome topology occurs over a very small range ofead is present. Again due to symmetry considerations the
the loss time in the top electrode—the parameter to whictelevation of the points in the corner opposite to the lead is
the shape of the response surface turns out to be extremedynaller than that of the other two corners. The result is the
sensitive in this transition range. double-peaked line shape shown in Figh)5 The extended
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two bridges + lead

Counts

Signal
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gp trapping at edge in base electrode

Counts

Signal b.

a. a.

X Signal b.

X

FIG. 5. An example of the contribution to the response surface FIG. 7. An example of the contribution to the response surface
of the base electrode from two bridges and one lead in the cornefrom nonideal edges. The dome shape is the usual topology.
Note the double-peaked lineshape which occurs even when the de-

tected photons are perfectly monochromatic. authors demonstrated the dome-shaped surfaces for the STJ

low charge tail is due to the lead connection, while shar response similar to the surface shown in Figa)7Our for-
9 ’ Pmalism given in Appendix D is more general than the results

drop on the right is due to the last symmetry spot, corre- o .
sponding to the large flat central part of the response surfac f Refs. 14,16 gnd allows_us to model .ST‘]S W't.h a}r.br[rary
ase and top films. Despite the superficial similarities be-

which is most distant from all degrading factors and henc :
spawns the largest response. The double-peaked line shapd¥&€n Figs. &) and qa), the actual curvature and shape of

a consequence of the topology of the response surface afige dome is different for this situation compared to that of
occurs even for a perfectly monochromatic input of photons.the self-recombination _mduced _effect. This is best seen in the
Finally, Fig. §a) shows the effect of a local trap, comparable shape of the spectral lines, which are markedly different. _

in strength to the bridges, and located at the edge of the ST, 1he€ topology of the response surfaces and corresponding
The response surface here was calculated for the same set/t}e shapes for the STJ with different edge quality param-
STJ parameters as used for Fige)SRemoval of the flat part €€rs in the base and in the top films can be completely
of the response surface at the corner where the local trap fifferent from the simple dome shape. Figure 8 illustrates the
located causes a redistribution in the weight of the lines ifact that for an STJ with different edge reflect|V|t|e§ for base.
the double peak, although the double-peak structure itsef"d tOP electrodes, the response surface acquires a tulip
survives. The overall charge output becomes noticeably@P€ With a totally different set of symmetry points. The
smaller with the simultaneous line broadening, and the enfl€cessary condition for the tulip shape of the response is a
ergy resolution degrades considerably. This illustrates an im&/9¢€ difference in the edge-quality parametgs< g; for
portant general principle in the relation between the topologyP@S€ and top electrodes. Apart from the central spot of zero
of the response surface and the width of the spectral line: thgUrvature which accounts for the sharp drop on the left of the

stronger the symmetry of the response surface is broken, tHi1€ there appears a sharp feature, a discontinuity of the de-
broader the spectral line becomes. rivative in the center of the line due to four saddle points at

a small distance from each side center. The sharp drop on the
right is due to the four zero curvature spots near the corners
of the electrode.

The general expression for the response surface due to The model of imperfect edge reflectivity used in Refs.
quasiparticle losses at the edges has been derived in Appeké,16 and in Appendix D assumes homogeneous quasiparti-
dix D. The effect of imperfectly reflecting edges was previ- cle losses at the perimeter of the electrode. Now, the question
ously studied for the limiting cases of a single electrode in
Ref. 14 and identical electrodes in Ref. 16. In both cases the

C. Effect of imperfect edges on the response surface

qpP 'rrapping at edge; Bfop << ﬁbuse

two bridges + lead + trap

Signal

Signal
Counts

Counts

Signal b.

a. X

a. FIG. 8. Another example of the contribution to the response
surface from non-ideal edges. The tulip shape may arise when the
FIG. 6. Same configuration as in Fig. 5, but now with a strongedge losses in the counter electrode are much larger than in the

trap added at the location-0.5L,+0.4L). electrode of absorption.

X Signal b.
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50 small local traps mation of the effect of various factors that cause the inho-
mogeneity of the STJ response. In the absence of strong
nonlinearity all factors contributing to the inhomogeneous

g 3 line broadening are additive. This theory provides therefore a
7] £ F basis for the reconstruction of observed line shapes and the
3 3t identification of the origin of different spectral features. It
(&) . . . . . .
E includes the effects of quasiparticle recombination, multiple
P 4 g quasiparticle tunneling, phonon coupling between the elec-

» 3 ] trodes, asymmetry between base and counter electrode,
. e éi nq'l ' L losses at edges and in localized traps and diffusive losses into
’ X 9 ' electrical connections. Because it shows quantitatively the
FIG. 9. An approximation of the dome shaped response surfac&xtent of the resolution degradation due to the various fac-
typical of nonideal edges, arising from a large num@ of ran-  tors, it can_be used as a diagnostic tool to assess the qgahty
domly positioned local traps, with randomly distributed strengths. of STJ's—its edges, corners, lead and bridge connections,
edge trapping efficiency, local traps, etc., and to explore di-
arises what physical phenomena could underlie the concefgctions of optimization of the STJ performance. A detailed
of homogeneous losses at the perimeter. experimental study illustrating the quantitative description
One special case where the concept of homogeneolsed on the results in this paper and supporting the conclu-
losses at the edge can be fully justified is that of the bas8&ions in this section is presented in the follow-up paper.
electrode in a mesa structure as shown in Fig. 1. Here the
base electrode is slightly larger in size than the top electrode, APPENDIX A: SOLUTION OF THE BALANCE
leaving a narrow rim around the perimeter from which qua- EQUATIONS
siparticles cannot directly tunnel into the top electrode. If .
there exists a bulk loss mechanism for quasiparticles, then a_1© SOIVe the set of coupled balance equatiéhswe ex-

P ; : . nand the unknown solutiom (x,t) in a complete, orthogonal
quasiparticle which approaches the edge in the base filR : X .
spends some time in the rim without access to barrier. ASYstem of eigenfunctionii(x)} (9). The functionaiyy(x)

guasiparticles have a finite probability to get lost during their?'® solutions of the Helmholtz equation for a square GT)

random walk through the rim, this situation is clearly equiva—v‘;'.thk the p_rt%p;ar gounda_% C?ndk't'.ons attth](:._ Sdt%m?al'
lent to a base electrode without a rim, but with an imper—s icky or with leads, efc The task is now to find the func-

fectly reflecting edge. Of course, this model implies perfectiytions frin(Xa,t). We do this by transforming the system of

reflecting edges for the top electrode. We will encounter thiglifférential equation¢1l) into a system of integral equations
situation in practice in paper II. It is interesting to note thatfor the Fourier transforms of thigy) (x, ,t), which we denote
for the corresponding choice of STJ parameters in thif ;) (Xs,®). Solving the Fourier transformed system of equa-
model, the response surface is dome-shaped for photon atiens (11) yields
sorption in the base electrode and tulip shaped for absorption _
in the top electrode. i Apn(Xa, )

Usually, it is assumed that imperfectly reflecting edges are frnn(Xa, @)=~
a limiting case of a situation in which the perimeter contains
many small local traps. Oxidation of the Nb at the edge ofwhere we have used the following definitions:
the electrode may result in small sites that are either super-
conducting with a small gafNbO) or normally conducting.
Provided that these sites cause the immobilizatmmlosg
of quasiparticles, and are present in a sufficient large number,

— —, (A1)
(otieg)(wtiey,)

A‘mn(xa):®mn[(—iw+ Bl )

o+ N0g (%)
mn 27le mn' a

they could give rise to an effect that resembles an imperfect n ﬁl‘ Pl )

edge. This is illustrated in Fig. 9, where 50 small, randomly d, birTmnp

located local traps, with randomly distributed strengths, do

indeed seem to give rise to a dome-shaped response surface . ) . .

as seen in Fig. 7. We finally note that experimental evidence Aln(Xa) = ®mn[(_ 0+ B Pry,

for local traps at the perimeter of a top electrode was found

in LTSEM scan$ although the traps did not seem to occur in d; J. Ng ~

the numbers assumed for Fig. 9. + d_jrt,ij Pinnt Fdiumn(xa)
IV. CONCLUSIONS Blinn=DiKnnt Teij+ T

We have developed a theory for the degradation of energy 1 . _
resolution in STJ's. This theory connects the diffusive prop- s,ﬁnzz[B'anr Blint V(Brn—Bh)?+4T ;i T jil,
erties of quasiparticles with the spatial inhomogeneity in the
response of the STJ to the absorption of a photon. The topol-
ogy of the STJ response surface contains the complete infowhere by definition

(A2)
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(m?+n?) 72r2

42 i =@mn(Xa)-

(A3)

amn(xa) = umn(xa)exf{

For ri;—0 we havelmn(Xa) — Umn(Xa). We will only use
functions Uy, ,(x,) different from up,(x,) to treat the self-
recombination effectésee below. In all other cases the limit
rini— 0 gives an adequate description. Although &) is

exact, it is nonlinear through the self-recombination term,

which not only couples an infinite number of harmonics via

PHYSICAL REVIEW B56, 094510(2002

Here we introduced the following notations for the effective
recombination coefficientsR; =R —R* (n;)/(n;) and R;;

=R (nj)/(n)—R}. The effective recombination coeffi-
cients take into account the phonon coupling between the
electrodes. This makes it explicit that even in the case of
strong self-recombination it is possible to have nearly linear
behavior of the charge response, at least for for photon ab-
sorption in one of the electrodes, when the phonon coupling
between the electrodes is properly matched to the quasipar-
ticle tunnel and loss times.

the nonlinear interaction, but also contains an integral over a

part of these terms. However, the functiod$), are qua-
dratic in f};J,, so provided the nonlinearity is small, the so-
lutions of Eq.(Al) can be found via an iterative scheme. The
first step of the iteration is obtained by taking functions
&) =0, leaving only terms linear in the quasiparticle den-

sity. This leads to

. 5 (—iw+Bl )

fl(Xa, =270 (x)0 ,

mn( a w) 27Tdi mn( a) mn(a)+i8;m)(w+i6;m)

. - 1" ..

fl (X, 0 =270 (x,)0 bl

mn( a ) 27Td] mn( a) mn(a)+i8:]n)(w+|fmn)
(A4)

The second order iteration is then given by E&1), where
the®):). are taken to their lowest order, which is obtained by
substituting resultA4) into Fourier transforms of Eq$14)
and(15). Higher order iteration steps are built similarly. The
convergence for the summations ovem is ensured by the
fact thatf .o (m?+n?) ~2exd — (mP+n?)272r2,/4L2].

We consider the charge outp@{(E,x,) of the STJ as a
function of photon energ¥ and x,, assuming the STJ to
have an ideal edges. In that case thg(x) are simple os-
cillatory functions

cofrr3

x
2 L

(A5)

2 L

2
Umn(X) = co{
wherek?, = (m/L)?(m?+n?) andL is the size of the STJ.
Using Egs.(9), (16), and (A5) we obtain after integration
over STJ area and time

Q(E,xa)=4mel[T;;diTh(Xa,0=0)

+ T dTho(Xa, 0=0)]. (»6)
This expression can be written in the fofd7) with
Si(xaaE)
—1— — 0.,
No m; 0
y f diRyj | Amn(Xa, @)|*+dRji | Al (Xa, )|
- [0?+ (emp)*][0°+(2mp)?]
(A7)

APPENDIX B: NONLINEAR RESPONSE, FIRST
AND SECOND ITERATIONS

The first iteration is obtained by the substitution of the
linearized solutions,), (A4) into the expressions ok, in
Eq. (A7):

No
d; E

i mn=0

U2 (Xa) O,

Si,l(xa!E): - 2

- di~
Rij[ w2+ (BL )2+ —R T2

X dw
J’*w [w2+(8:1n)2][w2+(8mn)2]
(B1)

For the second iteration we keep first and second order terms
in the expressions fgi) |?:

o

S o(%a,E)= —2Rem;:0 Un(Xa) O

XJW dw
—=[w?+ (e mp) N[0+ (e ]

X{a)imn(xa,w) ﬁij[w2+( n)2]+d lertzu
dj

+<I>mn(xa,w) R,JFt],[|w+(an)]

+?R‘J|Ft’”(_|w+Blmn) ] (BZ)

Functions®'-) are analytic in the upper half of the complex
o plane. Thus, the integration i§; ,(x,,E) is straightfor-
ward and yields

Now - ~
Si,l(xa-E): - Z_diRijm;:O urznn(xa)G)mn
2 d ﬁ 2
(B n +8mn8mn+d_J~EFt]

X . (B3)

+ -t -
EmmEmn(EmnT €mn)

After some tedious algebra we obtain the second iteration
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[

Si,Z(XaaE): —2m 2 ijn(xa)

m,n=0

mn(Xa,ISmn)

+
mn

&

x| R

o_|g.

t]I(an

o_|<;.

x| R

where, in accordance with Eqdl4) and (15),

DX, @)
R*NZO®,. & - ~
= U (X)) Um— i n—1(X5) O
AL k,|2=o k(X)) Um— i n—1(Xa) O
[Ckl (@) + C mn(@) = Cyy (@) = i (@) ]
(8k|_8k|)(8m—k,n—|_8m—k,n—|)
and
i _o*\(Bl - diRj
(Bkl_sk_l)(Bmfk,nfl_gmfk,nfl)_W tij
Ci+ w)= — — L
kl’mn( _i(l)+8|2|+8r;,k'n,|
Similarly
Dl(Xa, ©)
* N2 —1 *®
== ;leén]n kJE:o Ui (Xa) Um—k,n—1(Xa) O
[Dkl mn(w)+Dlzl;qn(w)_Dlz;rln(w)_DIZI;qn(w)]
(815_8|Z|)(8r;—k,n—|_Sr;—k,n—ﬂ
and
| —e*)(Bl ¥ AR} 2
(Bki— &) (Bm_kn—1—&m—kn-1) — dR* tij
Dlzgl;nn(w)z Il

_i(l)+8f|+8r?],k'n,|

An estimate of the order of magnitude §f; can be obtained
from the leading termr{,m=0):

2R¥ng

Si1=— (B5)

The criterion for applicability of the iteration schenm ;|
<1 and|S; 5|<|S 4 then impliesRf no<I'y;j+ T ;i +T;

®mn[(8r;n)2_(8r71n)2]71
2_ 2 d 2

RI][(an) (Smn) ]+ lert ij

mn) +~F‘2jirt’ij(Bimn+8_

tJl(an 8mn)—’_lert |](B _’_s:m)

PHYSICAL REVIEW B 66, 094510 (2002

D (Xaviem) [~

di~
R [(BJ n)2 (Smn)2]+ I‘t2|J
J

€mn
(IJﬂnn(xa,is,;m)

&

mn

~ -
Pl Xa i €mn)
+
8mn

mn) -

geneous state with quasiparticle densityshould be much
slower than the total quasiparticle tunnel and loss rates.

APPENDIX C: DIFFUSION INTO LEADS AND BRIDGES

To discuss the effects of leads and bridges quantitatively,
we consider the inhomogeneous diffusion equation in the
dissipative medium

oan
E—DAn+Fn=4fnp(x,t). (C1

This equation is a simplified form of Eq7). The general
solution of this equation is, see Ref. 25:

t
n(x,t)zf dt’f dx' p(x",t")G(x,t;x't")
0
477 dt’fdx [GV,n—nV,,G]

—Df dx'[nG]i—o. (C2)

Here n(x,t) is the density of excess quasiparticles in the
electrode, 4rp(X,t) =Ng/d; 5(x—Xx,) &(t) is the source den-
sity term andG(x,t;x’,t") is the Green function for the dif-
fusion equation. Considering the quasiparticle diffusion fol-
lowing the photon absorption, we will drop the last term in
Eq. (C2) describing the effect of initial conditions. The
Green functionG(x,t;x’,t") has to be calculated for a par-
ticular geometry with appropriate boundary conditions. The
simplest case is two-dimensional diffusion in the bulk, where

O(t—t")
v

This Green function can be used to model the expansion of
the quasiparticle distribution out of the absorption site during
the initial period of time when the influence of edges is

(x—x")? -t 1
aD(t—-t') T |
(C3

G(x,t;x't")=

+1I'y;, i.e., the quasiparticle recombination rate in the homo-small. For a lead in the form of a semi-infinite bar with width
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w, and the lead mouth af=0 the Green function describing e ) , | €2
one-dimensional diffusion becomes “mo _fo dé(1-2¢&%exg —&°+ lw—%?
27D x—x")? = i
G(KHXZV):-———————T{ex%——fa—r—%— mnie). 8
[7D(t—t)] ( ) For a narrow rectangular bridge of lengtly and width
(X+X')2 Y wy, at the coordinate, it is most convenient to expand the
—eXF{—— F(— ) Green function in terms of corresponding eigenfunctions.
4D(t—t') T Performing exactly the same calculations as earlier for semi-

(Ca) infinite lead and introducing the characteristic diffusion time
for the bridge connectiom,= wL*w2Dy,, whereD,, is dif-
Since the photon absorption takes place outside the fead, fusion coefficient in the bridge, we obtain instead of Eop)
=0, and because the lead is initially empty, only the second

term in Eqg.(C2) survives, so that an wpDy dn
ot diﬁ,bridgez_?g )
X no(t/) x=d/2
n(X,t): 4 DJ ,(t_tr)S/Z L2
v ) o J _dé(1-28)
X2 \/T—b 4 b
exg —————y(t-t")|, (C5H
p[ AD(—1) %( )1 (CH ) o2
X ex _f ~Yp
16D &2

where v, is the loss rate in the lead. Using E&5) to cal-
culate the quasiparticle flux into the lead at the lead mouth,
and applying the continuity equation for the quasiparticles in X
the electrode, we finally arrive at

<n(x't_16gi§2>>
| emngl)

an
ot

W|D| an
diff, lead ™ L2 E

(C9

x=0

2 . where(n*) are quasiparticle densities on the left and on the
. * right of the bridge respectively, ang, is the quasiparticle
=\/—;|5(X—X|)LI’T:)[ Efo dg(1-2¢%) loss rate in the bridge. In most practically important cases the
bridge may be considered as short, in the sense that the dif-
€2 €2 fusion time across the bridge is small compared to the time
><exp< E— 2>< (x,t— —2) >} scales governing the evolution of the quasiparticle distribu-
3 3 tion in the STJ. In this case, upon taking the limhit—0 and
(ce)  keeping only the principal terms in E¢C9), one obtains a
similar result to Eq(C7) with the only difference being the
Here r,= wL*/W?D, is a characteristic diffusion time for the counter flux from the right of the bridge
lead, D, is the quasiparticle diffusion coefficient inside the
lead and/n) denotes the quasiparticle density averaged over an 5
the lead cross section. For the lead mouth located at the it |t bridge= — L 5(X_Xb)m;:0 (Umn(X))
center of the STJ sidén)=1M["2, ndy, whereas for a '
corner location (n)= 2/\N2ft§§tzv_"§§f_t§§+m\g ndxdy. Ex- « f“ dolf (@)~ ()]
panding the loss rate due to diffusion into the lead in har-
monics of the square STJ, we obtain

xexp —iot)gp(w), (C10
an " h = —iw)m, ! and, as earlier, the super-
A L285(x— where gp(w) =7 (yp—iw)T, , : p
7 laitjeag (x X')m,;:o {Umn0) scripts = refer to the harmonics on the left and right of the

bridge, respectively. It immediately follows from EqE7)
* o and (C10 that one cannot describe the effects of leads and
X f_wdwfmn(w)exp( lohai(w), (€7 bridges by simply introducing another quasiparticle loss rate.
The quasiparticle loss in the electrode due to diffusion into
where  we have introduced the functiong(w) leads and across the bridges is a nonexponential process.
={m(y—iw)7 T to describe the effect of quasiparticle dif- With the Egs. (C7) and (C10 we can now derive
fusion into the lead. To arrive at this formula we have usedS eag E,Xa) and S; pigqd E;Xa). First, it follows from Eq.
the following result: (16) that to find the charge response and then the normalized
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response we need to know only the Fourier components aind
harmonicsf (X, , @) taken atw=0. Thus we take the Fou-

rier transform of the main system of equatioiid), ignore to0p 2L27d;
the nonlinear terms, keep the loss terms into leads and Seambridgeixa):_—No 91,iPui
bridges, Eqs(C7) and(C10), and takew=0. We stress that
the effect of bridges and leads on the charge output and STJ 2L%7d; Tyj 20+ 1
response is fully accounted for by a single parameter per N m 2T i+
bridgdlead, namely,gb(|)(w=0)Egb(|)= \lﬂT’yb(DTE(D. As-
suming that the bridge connections exist only to the base sl an o+ c1
electrode, we then obtain 91iP.i EV O,sPo.r|- (€19
| e i i Using the solutions of EqC11) we can easily find the qua-
Bmnfmn(0)—Lji d_ifmn(o) siparticle density in any of the neighboring electrodes due to
cross talk over the bridge connections. This yields
+®mn|-29|,iUmn(XLi)kZ (Ua(X1.)) fla(0) 2L2%7d,
1=0 Scross talkp(xa): NO gb,vpb,v' (Cl@

+Omak 22 GbUmn(Xb,) 2 (Uki(Xp,)) fla(0) Finally, we point out that although we have not specifically
! k1=0 dealt with local traps, it may be clear from the above analysis
0 that traps, leads and bridges all belong to the same family of
= mumn(xa)v localized loss channels, characterized by one parargeter

S d i APPENDIX D: IMPERFECTLY REFLECTING EDGES
BJmanmn(o)_Ft,ij Efmn(o) . . .
j Following Refs. 14,16 the model assumption is that the
o quasiparticle losses at the edges of an electrode can be de-
40 L20 Um(X: - Uui(X VL0 scribed by a single edge-quality parameger In Ref. 148;
o9l I'J)k,lz:O< 404, T(0) is related toR; ¢4qe the edge reflectivity, or the probability

N that a quasiparticle is trapped upon hitting the edge, as
= 2 Upn(Xa), (C11)

3L
- o =—(1-R; , D1
wheref!1(0)=f)(x,,w=0) andv labels the bridges on Ai 47\i( edd (b1

the base electrode. We introduce , . ,
where \; is the electron mean free path in electrdden

> _ generalB;# B;, even when the edge reflectiviBf ¢yqiS the
pi= > (Ur(X))) fla(0), same in both electrodes, becaysg, also depend on the
k=0 accessibility of the edges, i.e., the diffusive properties of the
. quasiparticles. An example is the case of STJ's with an epi-
_ 2 (0 taxial base electrode and a polycrystalline top electrode. Be-
PLj o {uia(x,1))fla(0), causeR; ¢qqe depends on details of the processing route, it
may be considered identical for both electrodes; however, the
o ' diffusion coefficients may differ by an order of magnitude.
Pp,,= > (Ur(Xp ) Fla(0). (C12 Let {ul,(x)} be the complete set of orthogonal eigen-
kI=0 functions, which are solutions of the Helmholtz equations for
It is clear that using the syste(@11) we can easily obtain a €ach electrode with the following boundary conditions:
finite linear algebraic system for the variabl@s ,p; j Py, - o
The solution of this system is straightforward. Subsequent [ Bjuint VUl Jedge= 0, (D2)
substitution of the results into EGC11) yields all harmonics A
f'n(ﬂn)(O) . Finally, the result for the response acquires thewheree is the unit vector normal to the corresponding edge
form of the STJ. The solution of Helmholtz problem with the
boundary conditiong¢D2) is

~ 12
2 28, 2;
<1+ 2 sz 2)(1+ 2 sz 2)

2L27d;
S%aasdeskbridgegxa): - N—Ol gl,ipl,i+§V: Ob,.Pb,»

Uho(XY)=

2L27de Ft,ji 21-‘“]' +F|,i
NO Ft,ij 2Ft’ji +F|'j gI’JpI’J
(C13

mar

. [ nmT
X sin| —=+kj X |sin —=+k; 0y |, (D3)
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wherek; , is the solution of the dispersion equation 8l il < Unpn(Xa)
, t .
O e L
I

j,mL mn=0 &m€mn

KjmL=mm—2 arctar%—. : (D4) o
j + BT iFLFL -1, (D5)
Note that to compare EdD3) with Eq. (A5) for the ideal h
edge limit 3—0 we have to make a shift in ED3): n where
—n+1m—m+1, so that the eigenfunctions in E¢D3) 1
belong to similar eigenvalues. Then smf/2+K; x) |:im: — s
—cosm/2+K; m-1X) and Eq. (D3) coincides with Eq. U B +2Bi+ (U]

(,?‘5) in the ideal edge limit. Evenly spaced harmonlcsIn Eq. (D5) we used the notatiouimzkizml to make the
Uy (X) from one electrode andf, () from the other are not comparison with the results of Refs. 14 and 16 straightfor-
orthogonal. As a result, the system of Rothwarf-Taylor equa- ~ : ~ N ~

tions, when expanded into harmonics, becomes an infinitd’ard and alsQy(X)=Uzm 12041+ €mn=€2m+12n+1+ Bmn
system of coupled equations with cross-coupling terms du& Bam+1,20+1- The results of the model considered in Ref. 14
to the nonorthogonal harmonics. Their contributions, how/Mmediately follow from Eq/(D5) by taking['y ;;=0, while
ever, become negligible for high-quality STJ’s, in which the the results of Ref. 16 are obtained by takifig=5; .

edge losses are small. Quantitatively, this is the case when

T 2| Bi— Bj|<1. N.eglecting all cross—coupling terms to this APPENDIX E: TIME-DEPENDENT SOLUTION

accuracy we ob_taln _exactly the same equations for the har- OF THE BALANCE EQUATIONS

monics as the linearized systetil). After some simple al-

gebra, which differs slightly from the derivation in Appendix ~ The general solution of the balance equatittig permits

A due to the expansion into two different sets of eigenfunc-an iteration scheme which is obtained by assuming nonlinear

tions, we obtain terms as known entries:
. 270 (1)0O [ No~ ) o , 4 ) -
Ir11n:+— Eumn(xa)[(Bgnn_smn)e Em”t_(BJmn_sntn)e smnt]"_(Bffnn_Smn)e Emnf
Emn™ €mn I

o, . Cot e,
X foe‘gmnt <I>'mn(xa,t’)dt’—(BJmn—srﬁn)e*mntfoeamnt D (Xa, ) dt

d;
- d_irt,ji

e*sn‘mtfeaant’qﬂ (x t')dt'—e*sﬁmtfes%nt'qﬂ (x t’)dt’H
0 mn\an 0 mn\a ]

) d. 27, [N
f’mn=d—;®<t>®mn—“i { %

_ . T S
+ _umn(xa)[eism”t_ei‘gmnt]+e78mntf esmnt,q)lmn(xa-t,)dt,
mn~ €mn di 0

et e @l (g 1)t — | (B~ eye st e B ()t
0 mn\“a» d|rt|J mn mn 0 mn\a

_ [t
—(B'mn—sr;n)e**'fmntJoesmnI (I)'mn(xa,t’)dt’”. (ED

The zeroth order iteration is given by Eé1), which is obtained by ignoring all nonlinear terms with functidng,. The next

order iteration is straightforward to implement. These solutions can be used tQ{fy{&, x,,t), Q;(E,X,,t) and higher

order terms. The calculations are simple but the results are too cumbersome to present fully here. We give only the expression
for the ideal solution, integrated over the area of the STJ:

Tt i (Bho— €got Teji) Tt (Bho— €00t T ji)

Qo,(E,t)=eNg| (n;)+ exp(— eyt — expl— o)t |- (E2)

+ -\ _+ + -\ —
(€00~ €00) €00 (€00~ €00) €00

When differentiated with respect to time, it provideqwsuallyy good approximation to the shapes of the current pulse
produced by the STJ as a function of time.
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