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Strongly interacting systems are characterized by heavily dressed entities with internal degrees of freedom,
which, on a local level, can be described in terms of coherent quantum states. We examine the modification of
theselocal coherent quantum states when such entities condense maxescopiacoherent quantum state,
such as superfluidity. As an example, we consider a system of electrons coupled to local lattice deformations.
Significant changes in the phonon clouds surrounding the charge carriers occur when the system develops into
a spatially phase-locked state. The question of localized self-trapped charge c¢hipeleaons in the normal
state becoming delocalized upon entering the superconducting phase is discussed in terms of squeezing of the
local coherent phonon states. Suggestions for experimental verifications of these features associated with the
lattice dynamics are made.
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[. INTRODUCTION results in self-trapped composite entities, given by on-site
electron pairs, surrounded by local lattice deformations

Particles which locally strongly interact with their envi- which are described by clouds of phonons in local coherent
ronment polarize this environment and finish up in self-quantum states. In the intermediate-coupling limit these lo-
trapped states. On a local level, the environment surrounding@lized entities can be considered as two-particle resonant
the particles can be described in terms of a coherent supeftates of the underlying system of itinerant electrons. They
posmon (ln the form of Glauber Stat¢$f the e|ementary form out of paIrS of such uncorrelated itinerant electrons and
bosonic excitations of the bare environment. As a result, newltimately decay into them.
composite entities form, given by the charge carriers and
their surrounding clouds of bosonic excitations of the envi- Il. THE BOSON-FERMION MODEL
ronment. It is at present a matter of dispute whether in the
normal state such composite entities can exist as itinerant
Bloch-like states or are purely diffusive. The retarded inter- g
action between the charge carriers and the bosonic excita-
tions of the environment favors the picture of diffusive mo-Hggy,=(D — M)E N, — t 2 CinCiot(Ag—2p)
tion caused by a dephasing of the dynamics of the two
constituents.

The question we want to address here is whether this pro- X 2
cess of dephasing can be blocked, leading to a delocalization [
when such self-trapped composite entities condense into a
macroscopiccoherent quantum state. We investigate such a —ﬁwoaz
possibility in terms of a model of very general form, given
by bosonic charge carriers strongly coupled to local bosonic
excitations of the environment. The bosonic charge carriers +hw02
can, for instance, represent electron pairs induced by strong [
electron-phonon or electron-spin fluctuation interaction,
electron pairs in double valence fluctuation systdstabi-
lized by their ligand environmentFrenkel excitongstabi-
lized by their interaction with the surrounding lattice defor-
mations, and, in a more remote sense,’Hgoms in a bath
of He® with whose excitations they interact. Such bosonic . ; -4 2
entities can, in principle, condense into a superfluid state? Spin- commuta(tgn relations [p; ,p;"]-=2p; and
Our interest here is to show how in suchnecroscopic LPi P 1= cig denote the fermionic operators refer-
coherent quantum state the internal structure ofdbal co- ring to ann|h|Iat|on(creat|or) of itinerant electrons with spin
herent quantum state of the bosonic excitations of the envi?; Nio=Ci,Ci, being the number operator for such fermions.
ronment is modified. + denote annihilatior(creatior) operators of the excita-

We shall investigate this problem on the basis of a modeIIOI’lS of the environment, related to the local lattice displace-
of itinerant electrons, coupled to some purely local vibra-ments X;=(a;+a;")/V2Mwq/# where M is some atomic
tional modes. For moderately strong and strong coupling, imass characterizing the effective sites, angl is the fre-

A model Hamiltonian which captures such physics is
ven by the boson-fermion mod&FM)
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'Here p;- denote the creation and annihilation operators of
hard-core bosons$characterizing the self-trapped localized
electron pairs on some effective sites which should be
understood as of being made up of small clusters of atoms
rather than single atomic sites. Such hard-core bosons have
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quency of the local deformations of the lattice. The bare
hopping integral for the itinerant electrons is giventbyhe
bare electron half bandwidth By =zt (which will serve as
energy unit, z denoting the coordination number.denotes
the coupling of the hard-core bosons to the deformations of
the surrounding medium ang the exchange coupling be-
tween the bosons and the pairs of itinerant fermions. The
bare boson energy level is denoted Ay. The chemical
potentialu is common to fermions and bosons to guarantee
overall charge conservation.

The model defined by the Hamiltonidh) was introduced k
shortly after the proposition of the concept of bipolaronic BP
superconductivity (appropriate to the extreme strong-
coupling antiadiabatic regimen an attempt to extend this
concept to the regime of intermediate electron-lattice defor-
mation coupling. This model is based on a conjecture, rather FIG. 1. Schematic plot of the case of the bipolaf@®) level
than on a derivation from an underlying basic electron-falling below the band of itinerant electrons.
phonon Hamiltonian, such as, for instance, the Holstein

model? _ _ _ _ with the polaron binding energyngzhwo denoting the
We shall in the following develop the ideas which had gain in energy by the corresponding polaron level shift. The

initially led us to t_his conjecture. Let us start from a simple effective on-site interaction given by £2—U) controls the
Holstein model with purely local Einstein modes for the lat- possible formation of bipolaronic states
tice vibrations. The corresponding Hamiltonian is given by

2¢,-U/2

pi X =ciice2e@a) 5

n

H :(D_“)% ni‘f_ti;w (CiyCjgTH.C)F UEi Mithiy when 2,—U>0, with the single polaron states lying above
such bipolaron states. Foreg—U<0 we have the inverse

) situation with the bipolaronic level lying above that of the
single polarons. What we are interested in here is the first

, . . ase.
The meaning of the various operators and coupling constanfé Let us begin by considering the situation of sufficiently

Ethe same as in the Hamiltoniah), except for the value of strong interaction such that the bipolaronic level lies below

a which is equal t0; a. __ the bottom of the unrenormalized electron band, i.e., for
The electron-phonon interaction with coupling strength 28p— 1U>D, as illustrated in Fig. 1. In that case bipolarons
is taken to be local, in view of the interaction with primarily can acquire itinerancy by decaying into virtual states of pairs
local phonon modes which favors small polaron formation.of itinerant electrons and reassembling subsequently on some
U denotes some effective Coulomb repulsion—not to be conneighboring site. Within the usual Lang-Firsov approxima-
fused with a Hubbard-type on-site interaction—on the effection, neglecting phonon creation as well as annihilation pro-
tive sites, which, we stress again, ought to be considered agsses during the charge transfer from one site to the other,
being_ composed of .smaII_m_oIecuIar clusters such as a dithe corresponding effective bipolaron hopping integral is
atomic molecular unit or similar small aggregates of atoms,o, given byt** :tze*Z“ZI(Zsp— Ly—D).! Within this

Electrons described by this Hamiltonian can gain energy eizn, 0ximation one obtains a system of itinerant bipolarons

ther by becoming itinerant and remaining essentially Unp 5 |attice which, at low temperatures, can condense into a

coup_led to the lattice or, alternat?vely, gefcting self-trap.peql. 'f’superfluid state, giving rise to what has been termed bipo-
the first case the energy gain is described by the intrinsigyronic superconductivity. This theoretical proposition has

band dispersion ever since remained a matter of dispute, questioning if such a
e=D(1—7) y== eiks 3 normal-state itinerant Bose liquid can be achieved in real
k k - ' materials. The main arguments against it is that the stability

& denoting lattice vectors linking nearest-neighbor sites. FoPf Iocall bipolarons requires a relatively high value of
self-trapped polaronic states, the local part of the Hamil=(D+3zU)/2hw, for realistic values oD, U, andw,, and

tonian (2) can be transformed by a shift in the phonon vari-hence leads to exceedingly small values of the bipolaron
ablesa-(+)—>a-(+)+;(n-T+n-l) upon which it acquires the bandwidth. A further hampering factor for the realization of
1 1 1 1

such bipolaronic itinerant band states is related to the retar-

1
aﬁai+§

—ahwo, Ni(ai+a] )+ fiwg
I,o 1

form dation effects between the motion of the charge carriers and
the lattice deformations which surround them. This gives rise
Hioe=(D—p—ep) 2 Niy—(2e,—U) 2 nyny; to dephasing between the two, as shown by exact diagonal-
7 ' ization approachdsand density matrix renormalization
+2 fiwo| a7 &+ 1) 4) group(DM_RG) studies";.ir.ldicating tha_t incoherent processes
i 2 in the optical conductivity are dominant. All these results
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When these systems are doped, the electrons responsible
for pairing are at the same time responsible for the—albeit
diffusive—transport. It is hence tempting to hypothesize that
l € such bipolaronic states can occur as resonant states inside a

band of itinerant electrons. In more complex systems, such
as ternary and quaternary compounds, different electrons
T BP come into play. Some of them are prone to form bipolarons

2e,-U/2

and others will remain itinerant, but coupled together via

some hybridization term. In systems like that, such a boson-

fermion scenario imposes itself more directly. It is the even-
k tuality of bipolaronic resonant states, rather than localized
states, which was at the origin of our proposal of the boson-
fermion scenarig.

The level scheme for the local bipolaronic states inside
the band of the bare itinerant electrons for this situation is
depicted in Fig. 2. Filling up such a system gradually with
suggest that coherent bipolaron motion is most unlikely tcelectrons, it is evident from Fig. 2 that, as long as the Fermi
occur in real systems and it was for that reason that théevel remains below the level of the local bipolaronic states,
boson-fermion model was initially proposeédhe aim was the charge carriers will be essentially bare itinerant electrons.
to capture the physics outside the regime of the extrem&ut upon further increasing the concentration of charge car-
strong-coupling antiadiabatic limit and to describe theriers, the itinerant electrons will eventually overlap in energy
intermediate-coupling case, where the bipolaron level liegvith the intrinsically localized bipolaronic level.
inside the band of the itinerant electrofsee Fig. 2 and The major supposition leading to this BFM is now to
where the superconducting state is controlled by the phas@ssume that this overlap can be simulated by some effective
correlations of these resonant bosonic bipolaron states, ~ ON-Sité hybridization describing a charge exchange between

Quite generally, this model can be considered as a paréhe bipolarons and pairs of itinerant electrons in the form of

digm for crossover situations. For the specific case that we
are interested in here, it describes a crossover between a v [pi X" cijcip+pi X ¢l ], (6)
BCS-type superconductor of Cooper pairs in the weak- !
coupling regime and the hypothetical, yet to be experimenwith the itinerant electrons and the localized bipolarons, Eq.
tally verified, bipolaronic superconductivity in the strong- (5), treated as commuting fields. Such a supposition is sup-
coupling regime. In a totally different physical situation, ported by the fact that the spectrum of electrons, moderately
namely, that of a strongly correlated electron system such agrongly coupled to local modes, is known to be given by the
described by the Hubbard model, it has been recently showpare spectrum for alk vectors, except where their energy
that the intermediate, coupling case can be mapped onto su€kosses the level of localized self-trapped electrons. In this
a boson-fermion scenarfoSuch an effective boson-fermion regime of energies the electron spectrum is strongly modi-
Hamiltonian was also derived recently for the exchange infied, as shown by exact diagonalization stutiéSas well as
teraction between spinon singlets of the resonating valencéariational methods] with the spectrum becoming rather flat
bond (RVB) electron pairs and holorisThe question of to and approaching the local level of the self-trapped polaronic
what extent such a BFM can emerge from a quite generg#tates. These are features which are characteristic of systems
class of interacting fermion systems has been addressed frofhere itinerant charge carriers are hybridized with localized
the point of view of a bosonization procedure of an intrinsi-charge carriers, and this was the center of our initial assump-
cally fermionic systeni.The presently much discussed mo- tion of an effective hybridization between localized bipo-
lecular Bose-Einstein condensate, involving entangled atomi@rons and pairs of itinerant electrons, as given by By.
in squeezed states, has also recently been andlyaetie On a local level the dynamics of a polaronic system, in-
framework of such a BFM. volving two-particle resonant states, is controlled by the
A derivation of the BFM for moderately strongly coupled atomic limit of such a system, which we thus propose to be
electron-phonon systems, starting from the Holstein modeklescribed by the following Hamiltonian:
is so far not available. In order to provide the physically 1
intuitive picture wh|_ch initially had led us to propose this Hat=(—48p+U—2M)2 (pi2+ >
model, let us consider the case where the local bipolaron [
states are stable relative to single polarons. This eventuality
can only be decided on the basis of direct experimental evi- +Pi_xi_cﬁci+1]+2 hw
dence for such local bipolaronic entities. The classical cases [
which initially had led to consider such a situation are sys-
tems such as amorphous semiconductorsTi,O;M" — 2, 1
12 13 ; =(U 2:“«)2 pit
Na\V,05,~ and WG,_,,~ and double valence fluctuation i 2
system&* such as PbTéTl), just to name a few, and all of
which representing such bipolarons eclusivelylocalized —hwgaS
o
self-trapped states. i

FIG. 2. Schematic plot of the case of the bipolak@®) level
falling inside the band of itinerant electrons.
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with a bare bipolaron level given byg=U. 05 F
The equivalent formulation of this Hamiltonidthe sec- 04
ond part of Eq.(7)] is obtained after employing an inverse 03
Lang-Firsov-type transformatiorH ,,— U H,U with U 86 i
+y . Z 1k

=e@~3)(i+12) Adding to this local Hamiltonian the 0
term describing the kinetic energy of the itinerant electrons 05 |
leads immediately to the BFM Hamiltonian given by Ef). 0.4
L 03
S o02f

N

lIl. COMPETITION BETWEEN LOCAL AND GLOBAL 2 01
COHERENCE S o

S, 0
A. THE PSEUDOGAP PHASE = gg i
. . . . . - o Ver
The basic physics contained in this BFM originates from Y o2}

a competition of the local electron pairing, acting as a pre- ¢, 0.1

requisite for superconductivity, with the delocalizing effect 'g 0
of the itinerant electrons which favors nonlocal Cooper pair--é 8'i i
ing as the temperature is lowered and the superconductinqs 0:3 L

phase is approached. The changeover from local pairing t= 45 |
Cooper pairing is not only manifest in the electronic proper- 01 b
ties of such systems but is expected to be accompanied b 0
corresponding lattice deformations, the study of which is the 05

issue of the present paper. 04
We shall examine this feature for the two following ex- g'g i
treme limits:(i) the normal-state phase, characterized by the o1 L
existence of a pseudogap in the density of stéi¥3S) of 0 ]
the itinerant electrons, which will be treated here in an ap- -1 -0.5 1

proximate fashion within the atomic limit of the BFM, and
(ii) the superconducting phase, which will be treated on a _ . .
mean-field level, taking into account the phase locking of the G- 3. Evolution of the fermionic DOS with temperature,
. showing the opening of the pseudogap at the chemical potential
bound-electron pairs. =0), as the temperature decreases beldw
Throughout this study we choose as a representative e>£f” ' P }
ample a set of parameters presenting a situation close to the
. .. . . . + _ | n
fully symmetric case. This implies an effective bipolaron |3|}at=2 ot +|O>0)(61 @) o a2 a
level (corresponding to the energy level for the bound pairs e < aP NI Jnt
given by Ag—4e,=0, resulting in a final-state bipolarons
level lying close to the center of the band of the itinerantwith |i,j}*" denoting thei-particle jth eigenstate. The open-
electrons, after the boson-phonon coupling has beeing of the pseudogap at a certain temperaffreshows up in
switched on. We moreover want to consider the cagg the rapid spectral weight increase, with decreasing tempera-
=2ng+ng=2, giving a concentration of electromg=0.5  ture belowT*, of the scattering amplitude involving transi-
and a concentration of bound paing=0.5 and choose tions from the lowest-energy two-particle bonding state
=0.25, wo=0.1, anda=2. |2,0+2! to the lowest-energy single-particle stafég0i?' and
Let us start from the purely local physics, described byfrom the lowest-energy three-particle stag@®}2' to |2,0,2".
the atomic limit ¢=0) of the BFM corresponding to the These contributions to the DOS of the itinerant electrons are
HamiltonianH,;, Eq. (7). This limit has been studied by us manifest by the winggsee Fig. 3 for energies below and
previously® in connection with the pseudogap phenomenormabove that of the single-particle nonbonding contributions,
and the incoherent background in the electron spectral funawvhich have spectral weight around the chemical potential
tion, which, in such a scenario, arise from phonon shake-oftequal tow=0) and which arise from transitions not involv-
processes. For the choice of parameters adopted here, thgy any of the two-particle states. Decreasing the temperature
physics controlling the changeover from the normal into thebelow T*, the spectral weight ab=0 decreases rapidly and
superconducting phase can essentially be represented by ttransfers to the wings of the DOS, thus resulting in the open-
one-, two-, and three-particle eigenstatedigf, ing of a pseudogap. Taking into account the dispersion of the
itinerant electrons in an approximate fashion, such as that
- within a coherent-potential approximation approatthe
11135 =c,[0)[0)[1), (8)  main features seen in Fig. 3 are maintained, simply leading
to a smearing of the DOS.
The two-particle eigenstates bffy;, Eq.(9), are obtained
at_ at + .+ at_+ by expanding the local oscillator states in terms of the eigen-
21} ; (uincr e +vinp™)[0)|0)In), © stateg|n); of the undeformed harmonic oscillator at a given

In), (10
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FIG. 4. Comparison ofP(n) in the atomic limit and in the
superconducting state for different temperatures

sitei. |0) and|0) denote, respectively, the vacuum states of
the itinerant electrons and of the bound-electron pairs on n

; g t at ;
such a .Slte' The c.oeff|C|en.t:fn and.vm_ a_re determlne_d .by FIG. 5. Decomposition, for different temperatures,R{in) in
exac.t dlago_nallzatlon of this atomlc_ limit prpblem within a.the normal statéfilled squaresinto contributions coming from the
restricted H|Ib_e_rt space of those excited oscillator states. It ne-, wo-, and three-particle statéB,(n), P,(n), and P4(n),
generally sufficient to take into account up to 50 such Stateﬁaspectively. P5(n) andP3(n) represent the contributions coming,

in order to get converging results. _ . respectively, from the lowest-energy two-particle stétending
The qualitative changes in the lattice deformations eX4nd from the first excited two-particle sta@ntibonding.

pected to occur when going from the pseudogap phase into

the superconducting phase are essentially described by tio-, and three-particle states, E¢8)—(10). As illustrated
lowest-energy one-, two-, and three-particle states, whiclin Fig. 5, these various contributions have noticeably differ-
contain the information on the relative weight of the bound-ent features as far as the phonon distributions are concerned.
electron pairs z(f’nt) and of the induced pairing in the sub- The one-particle states_are_ totally decoupled_ from the lattice
system of the itinerant electronsi}{). The first ones are and hence have a contribution only fo=0, while the three-
intrinsically coupled to the local lattice deformations while Particle contribution is maximally coupled to the lattice
the second ones acquire such local lattice deformations du0wing a broad peak in this distribution which corresponds
to the charge exchange mechanism acting between the twi that of a shifted oscillator ground state. The two—p_artlcle
As we shall see below, the efficiency of this transfer of po-bonding stateg2,01* has features of a displaced oscillator
laronic features is noticeably different in the normal and inWhich is particularly noticeable at low temperatures where it
the superconducting phase. It shows up in the compositiof$ the main contribution, together with a much reduced con-
P(n) of the coherent phonon states describing the local photibution from the two-particle antibonding std@&1;*". That

non clouds surrounding the charge carriers on a giveni site latter contribution toP(n), considered without a thermal

which in the normal statéatomic limit) is given by weighting factor, clearly shows strong contributions for low
values ofn, which is indicative of weak correlations between

1 at.at at the electronic degrees of freedom and those of the lattice.
Pal(n)=> ; exp(— BER) A {m,I[n)(n|m, 1}, (11) The onset of the local coherence between bound pairs and
' of the induced pairing in the itinerant subsystem can be
Z denoting the partition function ari, the eigenvalues of tracked in the pair distribution functio#®DPF) g(X), given in
H .. associated with the eigenstates |}?'. Upon decreasing the normal statéatomic limit) by
the temperatureP,(n) shows a redistribution of weight 1
from high to small values of the phonon numiresee Fig. Jarl( X) = > > e~ BEmi Am, 1 8(X—Xp)|m, 1}, (12)
4(a)]- m,|
In the temperature regime of interest here, i.e., fromwhich describes the probability of finding a local deforma-
slightly aboveT* all the way down toT =0, the contribu- tion of sizeX and which can be studied by extended x-ray-
tions toP(n) come essentially from the lowest-energy one-,absorption fine structurdEXAFS) and pulsed neutron-
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FIG. 6. Comparison of the PDF as a function of the displace- 01k i
mentX, measured by the dimensionless paraméteX\M wq /%,
in the atomic limit and in the superconducting phase for diffeflent 0 L L L
-4 2 0 2 4 6

scattering experimentS. g,,(X) is obtained by expressing §

the eigenstates df,; in terms of a real-space representation  F|G. 7. Decomposition, for different temperatures, of the PDF in
involving the harmonic-oscillator wave functions. In Fig. the normal phaséfull lines) into contributions coming from the
6(a) we illustrate the temperature evolution of the PDF. ItSone-, two-, and three-particle stateg, (&), g,(£), andgz(£), re-
decomposition into the contributions arising from the one-spectively. gb(£) and gi(¢) represent the contributions coming,
two-, and three-particle states given in E¢®~(10) are il-  respectively, from the two lowest bonding and antibonding two-
lustrated in Fig. 7. The one- and three-particle states contribparticle eigenstates d¢f ;.

ute to the PDF in form of peaks centered aroxf0 and
around some finite value of, respectively. This expresses
the fact that the one-particle stat@ are completely decou- Let us now put such single units, as describedHyy,

pled from the lattice, while the three-particle staf®&8) con-  together in an infinite lattice, and let them interact with each
tain a bound-electron pair and thus give a maximal shift inother via the hopping term of the itinerant electrons. When
the PDF. The two-particle bonding and antibonding statesthe system undergoes a transition into a superfluid state of
Eq. (9), with =0,1, respectively, give contributions to the the charge carriers, the on-site correlations between bound
PDF with two peaks lying very close together, which is apairs and pairs of itinerant electrons will be weakened, since
result of the strong correlation between the bound-electrotthe k-space pairing of the itinerant electrons enters into com-
pairs and the induced pairs in the itinerant electron systenpetition with the strong on-site pairing which controls the
characterizing the normal-state phase. At high temperaturephysics in the normal state. As a result, upon entering the
the PDF is thus given by a very broadened smeared owtuperconducting phase, a substantial modification of the co-
double-peak structure. But as the temperature is lowered bé&erent phonon states of the individual units will occur.

low T*, local coherence between the bound-electron pairs We shall, for a moment, make the assumption that the
and the pairs of the itinerant electrons sets in. As a result, thdeformation of the medium surrounding the bosonic charge
opening of the pseudogap in the local density of states isarriers is not influenced by boson-fermion charge fluctua-
accompanied by a changeover in the PDF from this vengions. In that case the coupling of the bound-electron pairs to
smeared out double-peak structure to a rather well-definethe lattice deformations can be eliminated, along the lines
single-peak structure. The latter is essentially due to theisually adopted in studies of the polaron problem, leaving us
lowest-energy bonding two-particle eigenstate contributingvith an effective Hamiltonian given by the first four terms of
to a PDF with a maximum at some finite valueXfThis is  the Hamiltonian(1) and with a renormalized hybridization

a signature of the strong correlations which gradually buildcoup”ngve*az/Z_ Such a Hamiltonian has been studied in
up, as we go below*, between the bound pairs and the detail within different schemes, such as self-consistent dia-
induced pairing in the itinerant electron Subsystem, |eadin@rammatic techr\ique?é-7 dynamica| mean-field theo?ﬁ and

to roughly equal weight coming from the coefficienf§ and  renormalization-group procedur&and gives rise to the fol-
v, lowing physics. As the temperature is lowered below a cer-

B. THE SUPERCONDUCTING PHASE
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tain characteristic temperatufé*, pairing of the itinerant tion between the bosophsand the Einstein-like phonon
electrons sets in, leading to an emptying out of the singlenodes. At long wavelengths this results in a modified sound
electron spectrum near the chemical potential and thus to theelocity of the Bogoliubov mode, with little spectral weight
opening of a pseudogap. Upon further decreasing the tencarried by the phonons, and a moderately renormalized Ein-
perature these electron pairs become itinefhmyentually  stein mode, principally of phonon character. In such a con-
condensing into a macroscopic superfluid ground state of thext, what the present mean-field study permits us to do is to
form investigate the effect of the superfluid state on such an
Einstein-like mode. Due to the strong coupling between the

il atigif2t _ bound-electron pairs and the phonons, such an Einstein mode
l_i[ [uie Tuie pi110); (13 will undergo a substantial renormalization, as will be shown
) ) below.
(u; ,v; being some model-dependent parametarsl exhib- The fermionic partHe of Hyea, being dynamically de-

iting sound-wave-like collective excitations as a conse-coup|ed from the bosonic patiz and hence from the
guence of the rigidity of the local phasés.

In order to study how such a superfluid state affects thé)hon+ons, ca+n be cast |’nto the ’standard fbden=2 2 ()
surrounding lattice deformations, we now investigate this™ (@ @k* Bk Bi). The a’s and B's denote the operators of
problem on the basis of a mean-field treatment of the fullBogoliubov quasi-particles having the dispersiep(p) =
Hamiltonian with the coupling of the phonons to the bound* v(ex— &)+ (vp)?/4 which differs from the bare electron
pairs explicitly taken into account. To this purpose, we intro-dispersione, by showing a gap of sizep. The correspond-
duce the following order parameters for the charge carfrers: ing eigenstates dfi¢ are given by the standard BCS expres-

sion

1 1 _

x=§ 2 (e p=g 2 el te) (14

PBCS = Ut vicrcty 1/0). 16

which we assume to be homogeneous in space. The corre- | ) l_k[ [t vicig € 110) (16)
sponding mean field Hamiltonian is given by

5 The bosonic parHg of Hyga, Showing intrinsic coupling
Huea=Hg+Hg—vpx+ ﬂ’ between the bosonic charge carriers and the phonons, is di-
2 agonalized in terms of a set of states of the form

H=(D—M)i2 CiyCiot i; CioCio _ .
v e [11°= 2 LU+ 10xIm: (@7
vp
+ > [cicii+cicl,
: having eigenvalueg;(x). The eigenstates of the mean-field
Hamiltonian, Eq.(15), are thus given by

1
pits

He=(Ag—2u) 2 +ox2 [p 47 ]

[wEeS e [T |1}e. (189

1
pits

—ﬁwoaz
I

(a+a)+hwe, a'a;.
]

(15 As in the atomic limit, the diagonalization ¢fg is car-
) o ried out in a truncated Hilbert space spanned by the eigen-
On the level of this approximation, the effect of the gtates|n) of the undeformed harmonic oscillator. We ulti-
charge fluctuations between bound pairs and pairs of itinefmately arrive at the following set of self-consistent equations

ant electrons is diminished, being taken into account in getermining the temperature dependence of the order param-
global, spatially independent fashion. The itinerancy of theaters:

intrinsically localized bound-electron pairs, induced by the
exchange coupling:?® is not contained in the present ap-
proximation and therefore we cannot account for collective vp 1 Be(p)
sound-wave-like excitations and the spatially correlated lat- X==gN & = ta”hT,
tice deformations which result from them. Nevertheless, the
present study does permit to investigate local excitations of
the lattice, controlled by the local fluctuations of the order 1
parameters to which they are coupled, and which can be p=> > usSolex — BES(X) ], (19
related to a number of experiments. In

Considering itinerant bosons on a deformable lattice with
weak boson-phonon couplirf§,leads to a hybridization of Z==,exd—BE(X)] denoting the partition function corre-
the Bogoliubov modescoming from the repulsive interac- sponding toHg. This set of equations must be solved with

094508-7



J. RANNINGER AND A. ROMANO PHYSICAL REVIEW B66, 094508 (2002

the constraint that the total densny of bosons and fermiongalue ofn (associated with the coefficient$;) arises from

remains fixed, i.e.n,;=Ng+2ng+ 3 p?, where the deformation induced by the presence of the bound-
electron pairs, while the contribution ®.,(n) leading to a
_1 S (el maximum forn=0 (associated with the coefficients)’)
o a

arises from the absence of such an induced deformation for
configurations where no bound pairs are present, with the

1 I/J’Zk(P) oscillators being essentially undeformésee Fig. 8, top
N 2 Sk(P) tan 2 ’ pane). The coherent superposition of deformed and unde-

formed oscillator states in the ground state is a direct conse-
quence of the macroscopic phase locking of the composite

=—+ — 2 (p}) bosonic states in the superconducting phase, resulting from
the variational ground state &fg of the form

1 . _
=5 ZZE[w.nZ (Win?] LT (7% +e %% pj0yil0). (22

xexfd — BEF(x)]. (200 The operatorX;" are defined as

Let us now examine the modification of the composition -
of the local coherent phonon states on the individual lattice Xi10)i=2 uga(i)|n;, (23)
sites(discussed above on the basis of the atomic limit for the "
normal stattwhen a macroscopic phase-coherent state of the
charge carriers emerges and the bound-electron pairs con- $(i+|o>i:2 ve(i)|ny; (24)
dense into a superfluid state. The probability distribution of
the phonons in the superconducting phase is then describ

by %%d differ significantly from the usual polaron shift operators

X =e*@~a") characterizing the deformations of a simply
1 shifted oscillator stateMacroscopicphase locking and ho-
Psdn) == 2| ex — BEF 0N+ (vin)?]. (2D mogeneity imply that the coefficientSS(i) and vSS(i) as
well as phaseg,; are the same for all sites. Equati®®) is
The evaluation ofPg((n) in the superfluid phase follows a direct generalization of the superfluid ground state of a
closely the calculation foP;(n) in the atomic limit. In fact, system of hard-core bosons on a lattice, which is of the form
the secular equation determining the coefficiaffSandv;s  given in Eq.(13), and thus shows explicitly the locking to-
iS formally the same as in the atomic limit, with the statesgether of the chargep(’) and lattice &;*) degrees of free-
¢/ ¢/ [0)®|0)®[n) and|0)®p*|0)®|n) spanning the Hil- dom on a local level.
bert space being now replaced [§)®|n) andp*|0)®|n), We shall next address ourselves to the question of how
respectively. The only modifications which then appear insuch amacroscopiccoherent quantum state of the phonons
this set of equations af@ a renormalized hybridization con- can be tracked experimentally and, in particular, what differ-
stantv=vX, instead ofy in the atomic limit, and(ii) an  €nce there is to be expected with respect to the normal-state
energy level for the diagonal elements involving the stategeatures of the PDF, examined in the previous section. The
|0)®|n) being equal tdh wgn, instead of 2D — w) + 7 wgn PDF in the superconducting phase is given by
for the diagonal elements involving the stategc,|0)

®|0)®|n). This renormalization ob is important since it g X) = 1 > e BEOS | S(X— X[}, (25)
reduces the bare by roughly an order of magnitudéor the Z9
set of parameters chosen throughout this pagpressing In Fig. 6 we compare the PDF in the normal state and in

the fact that the superfluidity leads to a considerable reduahe superconducting phase for different temperatures. The
tion of the on-site correlation between the configurationsfeatures examined above on the basis of the composition of
with bound-electron pairs present and with such pairs being,(n) (see Fig. 8 are perfectly reflected in the PDF. In the
absent. This has significant consequences on the compositiglormal state one observes a single peak at some fifite
of the local phonon clouds surrounding the individual sitesindicative of well-defined shifted oscillator states. In the su-
and thus on their corresponding PDF’s. perconducting phase, on the contrary, one observes a weakly
Just below the superconductinf, (=0.0067 in our temperature-dependent double-peak structure, which, as we
present cage P¢(n) is determined by an incoherent super- can see from Fig. 9, arises essentially from two contributions
position of essentially the two lowest eigenstates of theassociated with the ground state and the first excited state of
mean-field Hamiltonian, E|15), one giving rise to a broad Hg. At temperatures just belo, this double-peak struc-
peak at some finite and the other to a sharp maximum at ture results from an incoherent superposition of these two
n=0 (see Fig. 8, bottom panelAt low temperatures, how- states, corresponding to a situation where localized bipo-
ever, the ground state alone is sufficient to descRbgn). larons are randomly distributed over the lattice. The statisti-
The contribution toPs(n) leading to a peak at some finite cal distribution of empty and doubly occupied sites will thus
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05% ' ' T ' i long since been recognized as a signature of delocalization of
04 |},  T=0001  superconducting phase  P(n) --&- | the charge carriers in polaronic systethhe present study

03 L\ Tc=0.00665 Po() -] shows that as the superconducting state sets in and is
o2 L A Py - | strengthened upon lowering the temperature, thacro-

o1 L \ P ] scopicphase coherence of the system not only involves the
'0 e P e S | charge carriers but also the deformations which surround

them. This is only possible if &t =0 these deformations are
controlled by a single quantum state, i.e., the ground state
I1;|0}7°¢. The superconductivity-induced delocalization of the
self-trapped entities which characterize the normal state is
caused by the locking together of the local lattice deforma-
tions in a coherent superposition of deformed and essentially
undeformed oscillator states, resulting in the developement
of a double-peak structure in the PDF. At least in the scenario
presented here, this result does not bear out any
undressing® of the charge carriers, stripping off partially
the phonon clouds, as one enters the superconducting phase.
Such an effect would show up in a PDF which, in the super-
conducting phase, would be given by essentially a single-
peak structure centered arouKe-0.

0.5

P(n)

FIG. 8. Decomposition, for different temperatures, Bfn) IV. DYNAMICAL LATTICE PROPERTIES

(squaresin the superconducting phase in terms of the contributions . . . . .
Po(n) coming from the ground statériangles and P;(n) coming The .dlscu_ssmn in the. previous section demonstrat(_ad the
from the first excited statécircles of Hg . qualitative difference which exists between some basic lat-

tice properties in the normal and the superconducting phases,

give rise to that double-peak structure. In the limit of low _and largely being controlled by the induced electron pairing

temperature, on the contrary, the PDF ariseslusivelyfrom in the subsystem of the intrinsically uncorrelated itinerant
the ground s'tate with a peai< centered néar0 (being de- electrons. What results is a competition between the local
termined by the coefficients};) and a peak centered around pairing, ch'a'ract'enzmg the norma]-state phase, and the
a finite value ofX (being determined by the coefficients’) k-space pairing in the superconducting phase, expected to be

: articularly relevant around the superconducting transition
The appearence of a double-peak structure in the PDF h ere the spatial phase fluctuations play a major role and

residual local electron pairifgpersists in the superconduct-

05 1 0001 . A ing phase. The qualitative difference in the structure of the
=0. superconducting phase (3] . .
0.4 T =0.00665 206 - PDF in the two phases leads us to expect squeezing effects of
03 | ¢ 81©) | the local coherent phonon quantum states which are stronger
02 | i in the pseudogap phase than in the superconducting phase.
01 b i Associated with it, one should expect larger fluctuations of
0 ! ! . the local deformations of the environment and of the mo-

05 F ' ' ' ' ] menta of the ions representing it. These fluctuations are
04 - given by

E 03 2 2 2 2 2

& ook OXT= (X)) —(Xi)%, 6Py =(P}), (26)

01 | with

0

05 [ T T T T i ﬁ .
o4 T=0.00665 i Xi= VZMwO (aj +a),

03 F _
0.2 * T . ﬁM wq n
01k _ . Pi=i > (a —&). (27)
0 T e L St
4 -2 0 P 4 6

&, The expectation values in ER7) have to be calculated
with respect to the eigenvectors Hf,; and Hg for, respec-

FIG. 9. Decomposition, for different temperatures,gg) in ~ tively, the normal and the superconducting phases. The re-
the superconducting phagiill lines) into the contributionsyo(&) sults for these fluctuations in the two phases are illustrated in
coming from the ground statélashed lingsand g,(£) coming  Fig. 10. In particular, the produ@X?sP? clearly shows that
from the first excited statélotted line$ of Hg. the coherent phonon states in the normal state are consider-
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g T S g 4 FIG. 11. Evolution of the phonon spectrum in emission experi-
~ ments as a function of temperature in the normal state.
o 1 4
Eg sk e i measurement$ and been related to strong local displace-
= e ments of the ions. In this context, the appearance of new

0 : ' ' ' additional modes occurring with changes from the normal

' ‘ ‘ into the superconducting phase have also been reported, al-
though this is still a matter of debate>® More established

are the strong intensity changes of certain Raman-active
tum fluctuations of the lattice in the norméV) and in the super- Mmodes and the strong frequency renormghzagons and life-
conducting(SO) phase as a function of relative temperatiid,  me broadening occurring at such transitidfs: Such ef-

(To={Tc,T*}) and with \2=(1/2Mwie,. (c) Degree of the fects can best be studied by energy-loss spectra in inelastic

squeezing of the coherent phonon states as a functidii . neutron scattering or Raman spectroscopy where phonons
are emitted. The cross section for it is given by

FIG. 10. Comparison ofa) the positional andb) the momen-

ably squeezed, i.e., this product is for- 0 very close to the
lower limit of the Heisenberg uncertainty principle, equal to _ :J' i ot
2 . Aemi( ) dt € Agmi(t)

f</4. In the superconducting phase, on the contrary, we ob-

serve practically no squeezing effect with decreasing tem- 1

perature, the produa&X?&Pi2 being always bigger than what =_ 2 e—ﬁ€||<| |a|m)|25(w+sm—s|), (29

would be expected in the normal state in this temperature Z1m

regime. A possible experimental verification of these feature§ .,

comes from neutron absorption measuren@ntdich mea-

sure the kinetic energf,,=1/2M(P?) of the local lattice Aemi(t)=(a(0) a’(t))o(—1). (29)

vibrations. Indeed, the experimental results shown that, as

the temperature is reduceB,;, saturates in the supercon- Here g;={EX ,E}%(x)} and [I)={|m,1)@,]1)5% are the ei-

ducting phase and is distinctly above the values expected igenvalues and eigenvectors of the Hamiltonidhg and

the normal state at the same temperature. This fact is borrdg, respectively. We illustrate the results of such phonon

out in our study, as can be seen by inspection of Figb)l0 emission spectra for the two phases in Figs. 11 and 12. Quite
Finally, an issue which ought to be of crucial interest ingenerally, one observes a quasielastic contribution at fre-

studying the lattice properties connected with the onset of thguency zero, which is the standard signature of coherent

superconducting order or of the electron pairing atin the  phonon states. As the temperature is lowered below elther

normal state is the question of the changes in the phonoar T, and the itinerant electrons get correlated by local pair-

spectral properties upon going from one phase to the otheing in the normal state or by Cooper pairing in the supercon-

Strong changes in the frequency of specific local modesgucting phase, the local phonon mode first splits into several

induced by strong electron-phonon coupling, have beemodes and finally evolves into a well-defined mode which is

well established by photoinduced infrared-absorptionsofter in the pseudogap phase and harder in the supercon-
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see to what extent a macroscopic coherent quantum state can

2 T=0.00665  superconducting phase be induced in the system of these bosonic excitations. As a
151 T=0.0067 specific example we chose a system of electrons, moderately
r strongly coupled to local lattice deformations, which can be
05k u described in terms of resonant local-pair statesalized bi-
0 polarong inside a Fermi sea of essentially uncorrelated itin-
2T T=0.005 erant electrons with which they interact via a charge-
;* 15 - exchange term. We find noticeable qualitative differences in
Z r the structure of the local coherent quantum states of the
L 05r M A phonons in the superconducting phase and in the phase
= 0 | . . .
- above it which corresponds to a normal state characterized
‘5 21 120.003 by a pseudogap in the DOS of the single-particle spectrum.
@ 15F Several measurable quantities related to static and dynamic
g r lattice properties were examined, such as the pair distribution
L 05 | ~ | function, the fluctuations in the lattice positions and the cor-
QE) 0 " " = responding ion kinetic energies of the atoms making up such
g 2F 120001 a lattice, and, finally, the phonon spectral properties given by
g st energy-loss spectroscopyneasurable by inelastic neutron
a 1 scattering or Raman spectroscopyhe difference between
0.5 A\ /|\/\ local electron pairing in the normal state angpace pairing
90.15 _0'.1 _0.'05 0 505 in the superconducting phase has noticeable consequences on

such measurable quantities, resulting (in a single-peak
structure of the PDF in the normal state and a double-peak

FIG. 12. Evolution of the phonon spectrum in emission experi-Structure in the superconducting phaseé) distinctively
ments as a function of temperature in the superconducting phaselarger positional fluctuations and kinetic energy of the atomic

clusters(making up the latticein the superconducting phase

ducting phase. These features of the phonon spectral propehan in the normal state, angiji) associated with it, a more
ties are expected to hold qualitatively true. A quantitativeeffective squeezing of the phonon coherent quantum states in
linkup between the normal phase and the superconductintipe latter. For the superconducting phase, the present mean-
phase as the temperature is decreased would require a fiilld study is restricted to local phase fluctuations of the su-
description of the local boson-fermion exchange correlationsperconducting state given by a generalization of a phase-
incorporating the electron itinerancy in the normal state andocked state of bosons on a lattice, E€f?), (18), and(22),
allowing for local electron pairing in the superconductingin which these bosons correspond to composite particles in
phase. These are presently largely unresolved fundamentdie form of bipolarongsee Eq.(5)]. The examination of
problems in such system where amplitude and phase ordeound-wave-like collective excitations of such a system is
occur independently, as in the high-temperature supercorplanned for future work. There, the question arises as to
ductors with its pseudogap phase abdyevhere local elec- whether the local dynamical deformations get spatially cor-
tron pairing persists in an incoherent fashion. related upon entering the superconducting state, as possibly
suggested by ion channeling experimefité possible ap-
proach to solving this problem could be to integrate out the
fermionic sector of the BFM Hamiltonian, E€L), resulting

The present study is an attempt to examine the condenséad a Gross-Pitaevskii Lagrangi#for the effective itinerant
state of a system of composite particles such as charge casesonic charge carriers coupled to the phonons, followed by
riers surrounded by clouds of bosonic excitations of thea treatment similar to that adopted for bosons on a deform-
neighboring environment to which they are coupled and taable lattice?®

w

V. CONCLUSIONS
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