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We consider the problem of the superconductor-insulator transition in the presence of disorder, assuming that
the fermionic degrees of freedom can be ignored so that the problem reduces to one of Cooper pair localization.
Weak disorder drives the critical behavior away from the pure critical point, initially towards a diffusive fixed
point. We consider the effects of Coulomb interactions and quantum interference at this diffusive fixed point.
Coulomb interactions enhance the conductivity, in contrast to the situation for fermions, essentially because the
exchange interaction is opposite in sign. The interaction-driven enhancement of the conductivity is larger than
the weak-localization suppression, so the system scales to a perfect conductor. Thus, it is a consistent possi-
bility for the critical resistivity at the superconductor-insulator transition to be zero, but this value is only
approached logarithmically. We determine the values of the critical expoments and comment on possible
implications for the interpretation of experiments.
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[. INTRODUCTION sive metallic critical point with auniversal conductivity
separating the insulating and superconducting phases. The

In a perfectly clean system @t=0, the free Fermi gas is analogy between Fermi and Bose systems is imprecise, but it
perched precariously at a critical point. An arbitrarily weak emphasizes the important point that in both cases there is a
interaction will drive the system superconductifiogy the  ballistic critical point in the clean system which must be
Kohn-Luttinger effect if the interaction is repulsivdn the  usurped by a diffusive fixed point in the disordered one.
presence of disorder, however, tti€usiveFermi liquid is a Such a fixed point should be amenable to analysis by
stable phase for a finite range of interaction and disordemethods similar to those used for the diffusive Fermi liquid.
strengths in dimensiond>2. In d=2, it remains an open Conversely, expansion about the pure critical point—which
problem whether or not fermions have a stable diffusive meis ballistic, not diffusive—should fail. In considering such a
tallic phase. Such a phase, if it exists, could not be adiabatperspective, one is faced with the following question: why
cally connected to the Fermi liquigince the noninteracting do quantum interference effects, which appear to be such an
Fermi gas is always insulating in the presence of disorder imevitable consequence of diffusive motion, not preclude a
d=2. In the limit of weak disorder, this can be understood adinite conductivity at the superfluid-insulator transition? The
a quantum interference effect which is singular as a result chnswer must lie in the effects of interactions, which one
the diffusive nature of electron propagation in a disorderednight hope to tame since spinless bosons, such as singlet
system: diffusion at intermediate length sca(lsger than  Cooper pairs, do not have a triplet channel—the trouble-
the elastic mean-free patithwarts diffusion at long scales some, singular one—through which to interact.
(longer than the localization length The interacting- In this paper, we present the results of such an analysis.
electron problem remains unresolved because interactions We find that there are two competing effects at a putative two
the spin-triplet channel are also singular as a result of thelimensional(2D) diffusive Bose liquid critical point: one
languid pace of diffusive motiofi. The upshot of the inter- resulting from interactions between the bosons; the other,
play between these different singularities is unknolsee, from quantum interference, i.e., weak localization. In the fer-
however, Refs. 7 and)8 mionic case, it is advisable to consider quantum interference

Consider the critical point separating the insulating andand interactions on the same footing since they lead to simi-
superfluid phases of a perfectly clean system of bosons &ir logarithmic corrections at the perturbative level. In the
T=0 in two dimensions. We would like to draw an analogy bosonic case, one must perforce do so, since quantum inter-
between it and the free Fermi gas. In the bosonic case, theference leads to the existence of localized states even in the
is a particular value of the chemical potential for which theweak disorder limit, and bosons would congregate in the
system has gapless critical modes, loosely analogous to thewest energy localized state in the absence of interactions.
excitations of the free Fermi gas. For any other value of theNe find that the effect of interactions is stronger than quan-
chemical potential, the bosons are either in a superfluidum interference and drives the system to a perfect conduc-
state—a superconducting state, if we assume that the bosotts, thereby explaining how diffusion can remain impervious
are Cooper pairs—or in a gapped insulating state. Suppoge localization. This result is congenial to one’s intuition that
we now add disorder to this system. What is the fate of thigepulsive interactions should disfavor localization. Potential
critical point? On general grounds, we believe that it is un-wells due to impurities diminish in attractiveness when they
likely to broaden into a stable diffusive metallic phase, andare occupied and, as a result, the random potential is effec-
that the only stable phases are insulat{iMptt insulator or  tively screened. This effect is present for both short-ranged
Bose glas$ or superconducting. Instead, we expect a diffu-interactions as well as long-ranged Coulomb interactions, but
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is stronger in the latter case. The same phenomenon occungs been called into question recedfy! If fermionic de-
in fermionic systems as well, but it competes with the ex-grees of freedom prove to play an important role at the
change part of the interaction, which is opposite in sign duesuperconductor-insulator transition, then our analysis will
to Fermi statistics. If the interaction is short ranged, it isneed to be modified to include them, but our description of
irrelevant for spinless fermions, so it has no effect on thedirty bosons will remain an important component of a richer
conductivity in the infrared limit.(This is clear in the description of the superconductor-insulator transition.
s-function limit, where the direct and exchange interactions Note that we are studying here the generic transittue:
cancel) In the case of Coulomb interactions, the exchangdween the Bose glass and superfluid phases which occurs at
interaction between spinless fermions dominates and su@h incommmenusurate boson density. In the special case in
presses the conductivity. In the case of spin-1/2 fermions, therhich there are an integer number of bosons per lattice site,
runaway flow of the triplet interaction amplitude indicatesthere may be a direct transition between Mott insulating and
that the Hartree interaction begins to prevail over the exsuperfluid phases which is tuned by varying the ratio of the
change interaction at longer length scales, thereby leading feopping and interaction parametéfs.
an enhanced conductivity. However, the interaction strength We begin with a system of interacting bosons moving in a
diverges before a metallic fixed point is reached, and nadandom potential in two dimensions. The derivation which
conclusion can be drawn about the existence of a metallifollows goes through in arbitrary dimension with minor
state at zero temperature. These difficulties do not arise inhanges, butd=2 is the most interesting case. The
the bosonic case. The exchange interaction has the same sigmaginary-time action is
as the direct one, and both enhance the conductivity.

Our result is valid for large conductivities in unitsef/h.
Hence, if the bare conductivity is large—as it can be if the 1
bosons have an anisotropic mass tensor—then the renormal- «_ 2 x| 9 T v2_
ized conductivity is infinite. If the bare conductivity is small, S d™xdry ((97 2mV pEVO) |
then there are two possibilities. If the conductivity initially
flows to sufficiently large values that we can apply our cal- +f d2xd%’ drg* (X) p(X)u(x—x" ) p* (X" ) p(X"),
culation, then it will continue to flow to infinity. However, it
is also possible that the system will flow in this case to a (1
different fixed point at which the conductivity if finite. In
such a scenario, there would be two different possible uni-

U . . ] . .
versality classes of superconductor-insulator transitions. | (x—x') is tfhg Tr;[erﬁct[[on betv(\;e'e? bostqns, we dWIC” cc:nsuégr
either case, we conclude that it is a consistent possibility foF € cases of both short-ranged Interactions and L-oulomb 1n-

the critical point between the superfluid and insulating State%gractlons.V(x) is the .random potent!a!; We use t_he replica
of a disordered Bose liquid to beperfect conductor rick to average over it, thereby obtaining the action

We derive these results in a nonlineasmodel (NLo-M)
formulation of the problem of diffusing, interacting bosons. 1
Our NLoM is very similar to Finkelstein’s model for Szf dzxdrwg(x,f)(aT—Z—VZ—M
fermions® However, the NioM plays a very different role in m
this problem than in the fermionic problem. There, the 1
NLoM describes the entire metallic phase. If- 2 dimen- —J dedeT'Evolﬂz(X,T)lﬁa(X,T)l/'E(X,T) (X, 7")
sions, the metal-insulator transition occurs near the metallic
fixed point, so the NbM excompasses it as well. In the 5 o, . e )
bosonic problem which models the superconductor-insulator "'J dxd*X" d 7 (X) ha(X)UX=X") g (X7) Pha(X"),
transition, our NloM describes thesritical point. The anti-
ferromagnetic Heisenberg model a>2 provides an en- )
lightening analogy. For isotropic exchange couplidg
=Jyy, the model is ordered and is described by aoMA In a=1,2,... N is a replica index. We have assumed that the
the ordered phase, continuous symmetries are broken gmtential has the Gaussian white noise distribution
there are Goldstone modes; this is the analog of our critical/(x)V(x') =vo8(x—X').
point. ForJ,>J, ,, the model develops Ising order with a  This action is problematic because it is not positive defi-
gap; this is analogous to our insulating phase. Bgr nite as a result of the second term. To cure this, we will rotate
<Jyy, the model developXY order, which is analogous to the integration contour in the functional integral, as one does
our superconducting phase. in the noninteracting case. This can be done more conve-
niently if we work in the Matsubara frequency representation
and separate the real and imaginary parts of the Matsubara
fields ¢,a= dpa1+ i Pnan, Wheree,=2mn/B. The action can

Following Ref. 9, we will treat the Cooper pairs in a dirty be made positive definite by rotating the fields in the follow-
superconductor as bosons moving in a random potential. Weg way: ¢paa—e (791s00W g A=1,2. We rotate the
will assume that all fermionic degrees of freedom are gappee- 0 mode along with th@>0 modes. The action now takes
or localized and are therefore unimportant. This assumptiothe form

‘/’a(xa T)

II. DIRTY BOSONS
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1
ApnmPmanX,7) + 2 J d2X§U0¢naAAnn’ D anPmbeAmm @mrbe

n,n’,mm’

ient 1V2+
T om Y TH

S=2 | d*idnaa(x,7)

+ 2 dZXdZX/[e—wiEsgn(mi)IA] ¢m1aA(X) ¢m2aA(X)u(X_x,)¢m3aB(X,)¢m4aB(X,)5m1+m2+m3+m41 (3)

whereA .,y =sgnMm) Sy - with 4—e— €, spatial dimensions and, time dimensions

In the absence of disorder, repulsive interactions are mafthe interesting case=2 occurs ate=e¢,=1). B>0, so
ginally irrelevant, and the critical behavior of E@) is con-  there is no fixed point at weak coupling; instead, there is a
trolled by the Gaussian fixed poifitNow consider a pertur- runaway flow to strong disorder. We interpret this as an in-
bative treatment of the disorder. In the self-consistent Borrstability of the pure critical point, at which the critical modes
approximation, we find a self-energy due to disorder of theare ballistic, to the diffusive fixed point. To access the latter

form, fixed point, we will construct a nonlinear model which is
, appropriate for physics at length scales longer than the mean-
(€)= Mvo n A®/2m ‘ free path. In this regime, transport is diffusive, and we may
voo2n ien+,u+2(en)| neglect degrees of freedom, such as ¢héelds, which are
short lived.
. entIm3(ep)
+itan Y ———=—1|. 4
Mmt Ré(en) ( )
The random potential shifts the chemical potential and also Iil. SADDLE POINTS FOR DIRTY BOSONS

gives the bosons a finite lifetime As a result of the lifetime

7, single-boson excitations are no longer long-lived degrees In the absence of thies, term, the noninteracting part of

of freedom. However, particle-hole pairs are long-lived, asthe action(3) has arO((k+ 1)N,kN) symmetry, wherd is a

may be seen from the conductivity which, at this level of cutoff on the Matsubara frequencies. The key assumption of

approximation, iso=1/27°. Finkelstein's theoryfor fermions is that the elevation of the
This doesnot preclude critical behavior in the single- energies of the diffusion modes by the, term and the in-

particle properties, as has already been seen in the context @fractions can be neglected compared to the gaps associated

interacting fermion$ and of quasiparticles in a disordered with other degrees of freedom; when this condition is satis-

d-wave superconductor where there are density-of-states cofied, it is valid to retain only interacting diffusion modes and

re_ctions and also in_the context of noninteract?ng electr_on$gnore all other degrees of freedom. We make the same as-

with an extra sublattice symmetry, where the single-particlesymption here in our description of the critical point. In the

Green function itself is criticall . superfluid state, this is clearly not sufficient, and we will
The conductivity is small because there are no particler, 4 e to retain an extra degree of freedom. It may also be

hole pairs forr=c» (since the transition occurs at the bottom o .oqsary 1o include extra degrees of freedom to properly
of a quadratic bandA finite lifetime leads to a small density describe the Bose glass insulating state

of states~ 1/7 for particle-hole pairs, which cancels the fac- Our treatment of the critical saddle point and & for

tor of the lifetime to whicha is customarily proportional, interacting bosons follows that of Finkelstein for the fermi-

thereby leading to a conductivity which @&(1). However, ) ) .
we note that a parametrically large condu(cti)vity can be ob2hic case and also that of the bosonic representation of the

tained in a slight generalization to a model of two species o _onmterha_ctlng problem. Hence, we will merely give an out-
bosons with anisotropic masses and that mix upon scatteringn€ in this section and the following one, emphasizing the

Suppose that one of them hag,=m;,m,=m,, while the important differences. Details are presented in Appendix A.

other has masses reversed. Then we find ahaf /m, /m, We begin by using the Hubbard-Stratonovich transforma-
+Jm,/my )27, For sufficiently large or small ratio tion to decouple the, term with a matrixQgy'ag - We then
m, /m,, the conductivity will be large. Such a situation could d&couple the interaction in two different ways wkhwhich
occur, for instance, in a two-band model in which the twodecouples the direct and exchange channels accordikg to
bands of electrons have anisotropic masses, leading to aniso-¢/* #, and X., which decouples the Cooper channel ac-

tropic masses for the Cooper pairs. cording to X.~ . Finally, we decouple the chemical po-
An RG analysis of the dirty boson problem vyields the tential term with®~¢. In this way, we have a system of
following RG equation in are expansion about=4:° noninteracting bosons at zero chemical potential—their criti-

cal point—moving in the background field§ X., and ®.
Integrating out thep fields, we obtain the effective action
(see Appendix A

dUQ 2
W:(6+ET)UO+BUO+~~- (5
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1 : ) ) 1 )
Seﬁ[Q,Y,Z,ZT,q)]:E J trin i€n+2mv2+ Q_| lzre—l(wl4)AXe+l(7T/4)A_i Zl"ce—l('n'/4)AE(XC+XCT)e+I(w/4)A
! 2 1x2 1xTx q>*q>c‘;q)* 6
+§Otf(Q )+§tf( )+§tf( ¢ Xe)+ u( ) o || (6)

The Green functioi® of the &S is written as a X 2 matrix consistent solution is the one still diagonal in replicas but
in the final line to emphasize the particle-hole structure. It igVith zero matrix elgments fop rephca; G}lf\d unit matrix el-
the operator inverse of the expression inside the logarithméments fom—p replicas. Another possibility is that there are
For »<0, it is not even necessary to introdude we can nontrivial instanton saddle points which generate a finite
simply drop the last term of E6) and insertu inside the density of state$® In the absence of interactions, the bosons
logarithm. will condense into these localized states, so we must con-

Let us now consider the saddle points of this effectivesider the corresponding instantons withl’.# 0. At present,
action. For x>0, there is a saddle point withd®)+#0. We do not have a description of the Bose-glass insulator, but
(When we include fluctuationg; will be renormalized, so this does not affect our ability to describe the critical point
the critical value will not be zerp.When ® develops an Petween it and a superconductor.

expectation valueQ,X., and X are forced to follow since ~Itis useful, in thinking about this theory, to imagine low-
they are coupled directly to bilinears @. This is the super- €ring the temperature of a system of dirty bosons. At finite
fluid phase. temperature, there will be a finite_wedge in the phase
For x=<0, let us consider the noninteracting cdseI’;  diagram—the quantum critical regii>—where the bosons
—0. The saddle-point condition is will be effectively critical. In this regime, we may begin by
considering noninteracting bosons which are semiclassically
R d?p 1 scattered by impurities. As we decrease the temperature, we
Q= —vof > 1 . (7) must begin to include the effects of interactions and of quan-
(2m) i€+ 2—V2+M+Q tum interference processes. If we stray too far from the criti-
m

cal u as we lower the temperature, thereby leaving the quan-
Let us absorb the real part of the saddle-point valu® afto ~ tum critical region, then we cannot include these effects
a renormalizequg and focus on the imaginary part. perturbatively. Itis clear that they completely destabilize the
For ug=0, the saddle-point solution of E¢7) is diffusive saddle pom;, so they must be |ncIL_Jded right from
the start(e.g., by starting from new saddle points, as we have
on . Mug sketched abovein order to describe the superfluid or insu-
Qab,ae= 1 S9N €n) Snndasdap- (8)  lating phases correctly. However, so long as we remain at
criticality, we can hope to account for these effects perturba-

This is the diffusive saddle point for self-consistent Borntively. To such an analysis we turn in the following section.
scattering of critical bosons by impurities. It corresponds to a

finite density of states for the bosons at this level of approxi- IV. & MODEL FOR INTERACTING BOSONS
mation. Notice that this saddle-point solution is taken to be . , iclassical vsi
replica symmetric. To go beyond a noninteracting, semiclassical analysis and

Now, for £z<0, there is another translationally invariant include the effects of interaqtions and quantum interf(_arence,
saddle point withQ=0. For this solution, a nonzero density- W& construct the N&M which accounfi t%rA quEEl(Je}i;cA)ns
of-states in not generated in the insulating state at this levélf Q- We shift Q by '_fn+\/fe TUXe T
of approximation; it remains a Mott insulator. We would like + 2L e (™A (X + X" e (™A to remove these terms
to point out two possible mechanisms to generate the finitcom the trif-]. Then, we expand the trlln] about the
density of states that occurs in the Bose-glass phase. Onesaddle point and integrate ot X.. We obtain an effective
that the correct saddle points are replica symmetry brokeaction which is essentially the same as Finkelstein’s action
mixtures of theQ=0 and Eq.(8) solutions. A possible self- for the fermionic problenisee Appendixes A and)B

seﬁ[Q]=f ddx[Dtr(VQ)2—4iZtr(EQ)

+T Z [e+i('rr/4)lenln2 e*i(ﬂ/4)n2]JAA/JBB/[e+i(7'r/4)n3Qn3n4 e*i(ﬂ'/4)n4]5

aa,AA’ aa,BB’ Np=Np+Nz=—ny

+FC E [e+i(77/4)lenln2 e—i('n’/4)n2]SXA’S;B’[e+i(77/4)n3Qn3n4 e—i(7T/4)n4]5

aa,AA’ aa,BB’ Ny+ny—ng—ng(» (9)

094506-4



ANOMALOUS QUANTUM DIFFUSION AT THE . .. PHYSICAL REVIEW B 66, 094506 (2002

where Jag=(1/12)(8ag— 0ag) and Syg=o0ag*ioag €X-
press the particle-hole matrix structure for the density-
density and Cooper channels, respectively. The parardeter
is 1 in the bare action above; however, this quantity is renor-
malized, so we have introduced it explicitly here. We have
absorbed the density of states into the diffusion condfant
(and also the coefficients of the other tejmhe resulting
quantity is just the bare conductivity and is given by K S . , . ,
=1/27% in the above model. However, as we noted earlier X X
by considering a model with anisotropic masses, and a suf-
ficiently large or small ratian; /m,, the bare conductivity
will be large. The resistivityg=1/(27#D) is the ex- energy.
pansion parameter used in our RG equations, so this obser- . . . .
vation gives us a limit in which they can be applied without extrai’s in %9(75,}1)2) are precisely compensgted by the explicit
apology. factors ofe~ iin EQ. (9) (see Appendix €

It may strike the reader as strange that we are using a
NLoM to describe a critical point; usually NEMs are used V. RG EQUATIONS
to describe stable phases because they are so highly con-
strained by symmetry. However, the &M of Eq. (9) is not,

FIG. 1. The Hartree and Fock diagrams for the boson self-

Taking advantage of the observation at the end of the

in fact, so rigidly constrained at all. The interaction termsprecedmg S_EC“.O”' we can_obtaln the R.G equations foiour
model by flippingg— —g in the equations for the corre-

and the tr€Q) term explicitly breaks the((k+1)N,kN) sponding fermionic model. Some factors of 2 will be differ-

‘symmetry” of the model. The latter breaks it in such a way o hecause our bosons are spinless. More details may be
as to push the theory into a diffusive metallic state. Howevers, 4 in Appendix C

this symmetry-breaking “field” is small in the low-energy

I > . . The renormalization groufRG) equation forl'2 is
limit, so other symmetry-breaking fieldsr anisotropiescan groufRG) eq €

intervene instead. Whe orders in Eq.(6), Q is forced dr
away from the diffusive “direction” in its saddle point mani- €= —ch—Fg. (12)
fold, and into the superfluid “plane,” wher® has nonvan- dl

ishing components which are off diagonal in parucle-holeObserVe thal", flows to zero, even i§=0. Hence, we set

indices. Thus, we can understand the perturbations whichr 1o its fixed point value of zero and consider the RG equa-
lower the symmetry of the saddle-point manifold as pertur-. © P q

bations which drive the system away from criticalityhere '[IO(;IS fqr % (Fiﬂ?ndﬁ mflts absence. To ortdegl and all
are a variety of ways in which one can imagine driving theOrders It taithough, of course, we cannot access nonper-

yrbative effects associated with saddle points which are far

system into an insulating phase. In the absence of a bettiN . . oo .
understanding of the Bose glass phase, we consider the si om the noninteracting diffusive ohethe RG equations are

plest which is just a “mass” term of the form M Q), with

M a constant matrix say in replica space, which breaks the d_g: Egz_gz 242 E—l)ln( 1— E) ' (12)
symmetry of the saddle point manifold and leads to an insu- dl 2 I z
lating state. Such a perturbation differs only in index strucure
with the one imposed by a finitd. Such a term is also dz
generated by shifting. out of the trif -] term when consid- dar =gl’, (13
ering replica symmetry broken saddles. Note that none of
these possibilities can occur in the noninteracting problem, dr
where the symmetry of the saddle-point manifold is a genu- —=gr. (14)
ine symmetry. di
We parametrizeQ about the noninteracting saddle point
as The physics of these equations is clear from the discus-

sion in the Introduction. Interactions always enhance the
i(1+qqT)2 conductivity to ordery? because the exchange term has the
_ Mo a9 d (100  same sign as the direct tefithey are folded into a singlE
2 q —i(1+q"q)*?) in the bosonic NizM (9)]. The gist of the effect can be seen
from the Hartree and Fock diagrams for the boson self-
where the block structure is in frequency space, i.e., the maenergy displayed in Fig. 1. In the Hartree diagram, the boson
trix gpm is such thah=0 andm<0. line is repelled by the boson bubble which is a measure of
The resulting action is very similar to th®@(N) sigma the ground-state densit{in a pure system, this is uniform
model which is appropriate for a system of fermions withand cancelled by the neutralizing background. a fermi-
spin-orbit scattering. Indeed, one can be transformed into thenic system, the Fock diagram comes with the opposite sign,
other by redefiningl—q,q"— —q", andD— —D. The in-  so itis an effective attraction. In a bosonic system, however,
teraction terms look somewhat strange at first glance, but thieoth diagrams come with the same sign and lead to a repul-
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g g-dependent interactioi’'(q), which generalized™ to the
case of Coulomb interactions, to satisfy the idertity

Z-T(q)= = . 17
Im q+4me(onlap)

Taking theq—0 limit of Eq. (17), we obtainZ=1I". Substi-
tuting this identity into Eq(12), we see that the second term
inside the square bracket in Ed.2) vanishes. Thus, the RG
equation forg is dg/dl=—23g?/2, and the resistivity flows
logarithmically to zero. The system is controlled by the same
infinite-conductivity fixed point as in the short-ranged case.
Before concluding this section, let us write down the
FIG. 2. RG flow for the resistivity and interaction parameter aSymptotic behavior near the fixed poigt =0, y*=1,
y=TIZ. which we will need later to obtain the critical exponengs:
~2/3 and 1— y~exp(—fdig)~1~2?
sion of particles from regions of high density—which, of
course, are precisely the regions where there are deep wells VI. CRITICAL BEHAVIOR
in the random potential.
The interaction strengtH;, grows in importance at low

0 1 Y

The most striking conclusion about the critical behavior

energies because it plays a role somewhat analogous to tl% this system is that the critica}I resistivity is Z€r0. In other
Pauli exclusion principle: in its absence, all of the boson§"’°rds’ the 2D superconductor-insulator transition is broadly

would sit in the lowest minimum of the random potential. Similar to the 3D one. This is somewhat unexpected. In mod-
must follow T in order to maintain a finite compressibility. €IS Such as the Bose—Hubbard model, which describes a su-

Notice from Eqs(13) and(14) thatZ—T" remains invari- perfluiq insu_lator transition in a_cleap system, or the (2
ant under the RG flow, as a result of Ward identities that™ 1)-dimensionaXY model, one findsr =ce’/h, withca

originate from charge conservation. It is very useful to intro-finite universal number. At our fixed point=c. Another
duce the coupling constant=T"/Z, which allows us to re- odd feature is the logarithmic approach to the critical resis-
write the RG equations in a simp,ler way. tivity which we find; this logarithm is rather different from

the type which are encountered in the lower critical dimen-
dg 1 1— sion of a phase transitiofwhich happens to bé=1 for the
—~=_g?-g¥2+ 2_7|n(1_ 1, (15)  superfluid-insulator transition Since a logarithmic flow is
dl 2 Y rather slow, it may not be possible to obseoex. Instead,
the critical conductivity at a given temperature may actually
dy appear to be a nonuniversal number which depends on the
a7 ~97(1=7). (16)  bare conductivity.
Let us also consider the single-boson density of states,
N(w). This may be studied by introducing a source term for

For g>0, it follows from Eq.(16) that there are two fixed- . . : o
point valuesy* = 0,1 (a closer analysis rules out the possi- f[r(AQ) into the effective action and computing its renormal-

bility of another value ofy* with g=0), as shown in Fig. 2 ization. In a system with short-ranged interactions, we find
The v* =0 fixed point is unstable, while thg* =1 one is d

stable. Consider the RG equation fprThe first term on the —InN=—-gyIn(1-7y). (18)
right-hand side is the weak-localization correction, while the dl

second term is the interaction correction. The valye N . .
—0423FB... separates the regime where the Weak_Substltutlng the asymptotic forms of and y, we find that

localization correction dominates over the interaction contri the single-particle density of states diverges weaklf)

bution (dg/dI<0 for y<0.423 B ... anddg/dl>0 for y  ~e@IINNeD” Since the boson creation operator is the

>0.423% .. .).Although the entire surfacg=0 with arbi- ~ order parameter for the superfluid phase and

trary vy is left invariant under the RG flow, any system with

bareg, y# 0 will necessarily flow into thg=0, y=1 fixed N(w)=Im{" (X, @) (X, — w)) (19

point. This is the case for short-range interactions, where the . ) o .

flow starts with a valuey<1. Note that if the bare interac- (N€ Scaling relation foN(w) implies that the critical expo-

tion is weak,y<1, then the resistivity will initially increase €Nt 7=0 with logarithmic corrections. However, in the

before eventually decreasing to zero. presence of dynamlcally screened Coulomb interactions,
Now, consider the case of dynamically screened Coulom§1€re is a more severe divergence, and we find

interactions. As in the fermionic case, the Ward identity for

charge conservation requires the density-density correlation iln N=g| (20

function to vanish atq=0. This, in turn, requires the dl '
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Consequently, the single-boson density of states diverges at VII. DISCUSSION
the transition with the power laN(w)~ w~?2. This implies
that the critical exponentg andz satisfy »/z= —2/3. Note
that we have calculated the density of states amedallic

Diffusion in two dimensions is marginal, and small cor-
rections(in the limit of large conductivity such as that due
o . to quantum interference or interactions can tip the balance
critical point. Thus, we should not expect Coulomb gap . . o
hvsics to suppress it and give=0. In the fermionic case one way or the other. Contrary to conventional wisdom, it is
bny PP give="0. ' hardly a foregone conclusion which effect will win. After all,

the suppression of the Qen5|ty .Of states is due to the dom{fveak localization isveak Interactions can easily overpower
nance of the exchange interaction.

N . it, leading to metallic behavior. According to our analysis,
Our NLoM does not explicitly include single-boson op- © 910 b © ording y

t Wi that thei " be deduced f this is precisely what occurs at the superconductor-insulator
erators. VVe assume that Ineir properties can be deauced WO, iion The effect of interactions is so dominant that the

the _the density of states. I'.[ s certamly possible fqr Slngle'universal value of the conductivity at the transition is infinity.
particle operators to be critical even in a theory in which

only collective modes are retained; this is the idea behin(‘fUCh a diverging conductivity has been found in models with

o . . : nteraction and dissipation, but without disorder.
bosonization. It is conceivable, however, that ourdl is P

: : . ) The possibility of a metallic phase within the Bose-glass
incomplete, as regards single-boson properties. This coul8hase has been studied receAtl} We focus on the diffu-
occur if the critical exponent controlling the correlation func-

. tx 0 0 lated h li sive properties at the critical point, and do not investigate
tion (47(x,0)(x,0)) were unrelated to that controlling whether saddle-point solutions whithin the Bose glass could

WT(Q'T) ¢(0_,0)>. o . lead to nonzero conductivities. However, it is noteworthy
SinceZ diverges only logarithmically, the dynamical x- hat an infinite critical conductivity is consistent with a Bose
ponent,z=2, as in a noninteracting system. However, in themetal with a diverging conductivity at the transitih.
case of dynamically screened Coulomb interactions, there e derive these results in a MM approach, in which
are actually two different diverging time scales. One, withwe discard those critical modes of the clean system which
exponentz, is the scale associated witfy it controls the are extraneous and retain only the particle diffusion modes of
scaling of the specific heat and energy diffusion. There is ahe disordered system. The resulting & leads to a num-
second exponent,, associated witlz —I", which controls  ber of nontrivial predictions(1) the critical conductivity is
charge diffusion. By the same argument as in a fermionidnfinite; (2) there are two diverging times scales if the inter-
systent, Eq. (17) implies at smallq that Z—T'~q, from  action is Coulombic, one associated with charge diffusion,
which we conclude thaZ —T'~ ¢~ %, i.e., z.=1. This result ~which has exponerz=1, the other associated with energy
was obtained for the superconductor-insulator transition by aliffusion, which has exponert=2; (3) the single-boson
closely related argument in Ref. 9. Combining this with ourdensity of states diverges as 3 which implies a critical
density-of-states calculation, we haye= —2/3 for Coulomb  exponenty= — 2/3 in the case of Coulomb interactions; for
interactions. Notice thaty=—2/3<0 satisfies the lower short-range interactions, it diverges logarthmicall§) the
boundn<2-—d of Ref. 9 ford=2. The density of states and correlation-length exponent takes the mean-field value
the dynamical exponeng., are the only quantities which =1/2.
distinguish short-ranged and dynamically screened Coulomb If boson-vortex duality were to hold exactly, then one
interactions in the infrared limit. would expecg* =1 [in units of (22)?/h]. Our result appears
As we discussed in Sec. 1V, the leading perturbation ofo imply that duality is violated logarithmically: bosons are
our o model is a trM Q) term, whereM is a constant matrix more mobile than vortices in the infrared limit. However, it
say in replica space, which breaks the replica symmetry ofs hard to see how the physics of vortices enters at all into
the diffusive saddle-point manifold possibly in the direction our calculation, so it is possible that we have missed impor-
of the Bose-glass phase. This is a dimension 2 operator &nt nonperturbative effects. Our results do not agree with the
tree level.(If the matrix M is proportional to the identity in  numerical study of Walliret al?®> However, the flow to our
replica space, this operator is instead just a constant at tHtxed point is logarithmic, and this may be too slow for a
diffusive saddle point.Since the coupling constagtflows  numerical study on a finite-sized system. Alternatively, they
to zero, we expect a critical exponewt1/2, up to logarith-  may simply be accessing a different fixed point which at-
mic corrections. This value ob—the mean-field value— tracts systems with small bare conductivities. And finally,
violates the bound=2/d of Ref. 17. However, the exponent since their starting point studies phase but no amplitude fluc-
bounded by the theorem of Ref. 17 is, in fact, a finite-sizetuations, the two models may simply be in different univer-
scaling exponentveg which can be different fronv. The  sality classes. Our results also differ quantitatively
bound is known to be violated in the depinning of a chargefrom those of Herbut, which are based on an expansion
density wave, wherergs# v=1/21 As we discuss below, aboutd=12°
some experimental results on the superconductor-insulator The measured critical exponents for the zero-field
transition also violate the bourffias do experiments on he- superconductor-insulator transition, which is accessed by
lium in aerogel and the metal-insulator transition in dopedvarying the thickness of a thin filf;?® are those of classical
semiconductord’ These violations have been emphasized inpercolation. This does not agree with our theory, but it also
Ref. 20, which explains them as arising from a failure ofsuggests that the experiments are not quite in the asymptotic
self-averaging, but this interpretation has been challenged iquantum critical regime, but rather in some higher-
Ref. 21. temperature classical regime. There is disagreement about
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the values of the critical exponents at the magnetic-field- 2. Disorder term

tuned superconductor-insulator transition. One experifient Let us next decouple the four bosons in the disorder term
finds percolationlike exponents, while anotifefinds v in Eq. (3)

=0.7+0.2, which includes our theoretical prediction at the ’

edge of its error barAll of these experiments find~1, as

expected on general ground$and in our theory. The ap-

plicability of our strategy to a magnetic-field-tuned
superconductor-insulator transition is a question for future Srand™ 2 f d? X > Bran(X)
study. n.n’,m,m’

X Ann'd’n’aA(X) ¢mbB(X)Amm’ ¢m’bB(X)’ (A3)
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APPENDIX A: DERIVATION OF THE o MODEL

Here we derive the effective action for the interactingWhere
disordered bosons in terms of two fieldsand Q. We work,
in sequence, on the free part, the disorder part, and finally the
interaction part of Eq(3). S.dQ, ]

1. The free action =i 2 f d? X¢naA(X)Qab AB(X) A mmy Prrps(X)-

We start by introducing a bosonic amplitude to de- nmm
couple the chemical potentiau term. ® acquires a finite (AS)
expectation value when bosons condense.

The free part of the action The matrixQ has indices in three separate spaces, i.e., it is

assembled as a direct product in energyn, replicaa,b,
and real-imaginarA,B spaces. The trace 6> corresponds
to

Stred 1

An m¢maA(X)

1
=2 d2xi¢naA<x>(ien+ﬁv2+u
nm trQ*=Qap AeQbapA: (A6)
(A1)
where repeated index summation is carried out in all three
is generated upon integration of a decoupling fidd, spaces. When we write for sho@,,, we mean a matrix

=@ +iD, 5 I whose elements are matrices in replica, and real-imaginary
spaces.
. . 1 3. Interaction term
Sfree[¢r®]zz J' d2X|¢naA(X) lent ﬁvz> . . . .
n,m Let us consider the case of short-range interactions, in the
density-density(s) and pairing(c) channel. Once again, we
1 will omit sums over indices for replica and real-imaginary
2y ®H*
XA“md’maA(X)“LEn: f d qu)naq)”a parts, and write explicitly the Matsubara sums,
+2 j d2 d)n A[e—l(w/4)sgn(n)]q) an.- Sini=S+ S, (A7)

(A2)  where
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=T Z ddxexp<—|22 sgr(no)[¢>nlaA<x>JAA/¢nzaA<x>][¢n3aB<x)JBBf¢n4aB<x)]5nln2+n3n4,

(A8)

S=Te X ddxexp(—lgz sgrtn))wnlaA(x)sAN%aA, (][ bna8(X)Sapr Pn,as (X)18n 4ny-ny—n,s (A9)

with the matrices) xg= (1/1/2) (Spp— UAB) andS,;BzoABiioAB (the o' being Pauli matricés Notice that the different terms
within square brackets above correspond, in terms of the original basaisy™ i, * * , and .
We now introduce two Hubbard-Stratonovich fieldsand X, ,X? to decouple the foug interactions,

e*Ss[d)]:f DXe SIXlg=Susix[X. 4] (A10)
Susx X1=1V2I's, f %X pnan(x)e " (THSNOXTT, p(x) e DM g 5(X) (Al1)
n,m
and
—Scl¢l = IDX*DX e~ SdXcl g™ Snsix [Xc 4] (A12)
Swsix [ Xel =1\2I'c 2 f d%%bnan(x)€” '<”’4>39”@>2[xcabAB<x>+XCTQEAB(xne*i<”’4>59“%mb5<x>, (A13)
|
where 1
Sred ¢.P]= J dxig(x) immvz)w(x)
XabAB Xgimaab‘JAB! XCabAB X n+m5 bSXB'
/ 2 Ta—i(m/4)A

Notice that the matriceXZp'sg and X5 45 depend, respec- + Zl“f d*xgpTe M, (A17)

tively, only on the energy difference—m and sumn+m.
The action for the matriceX and X; is

1 SHS[d)vQ]:f d*>x@T()IQ(X)Ap(x),  (A18)
sx[x1=§; J dixX2x, ", (A14)

Susi[ X]=1V2T's f dxgT(x)e (MDA (x)e (TN g(x),
SixI=5 3 [aocixd. a10)

n

4. Integrating out the ¢ fields

SusnXel =1V [ 0T 006 9 10

We can summarize all terms discussed in the preceding
section,

+ XCT(X)]efi('n-M)Ad)(X), (AZO)
Xc=f D#DPDQDXDX; DX, where the matrix,, = €,6,m-

Integrating out the boson fieldg, we obtain

Xexr{ - iJ ddxter) e~ SXlg™ Sk [Xdl
2U0

1
X @ Sted 6. %1 g~ Sndl . Ql g~ Susixl ¢ Xl g~ Srsix [ 6 Xl Xc= f D4DPDQDXDX: DXcexp< - EJ ddxter)
0
(A16) o~ X @S, [Xd g~ Sol QB XX (A21)
where we can expreSee, Shs: SHs/x » andSHS,Xc in a more
concise(matrix) notation as follows: with
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So[Q, P, X, X]

—,uf ddxcpTchJrj d9trIn i

1

|Q+—V2)A
2m

FIQ(X)A +i2T e~ (TN X (x)e i (mAA

: 1 _
+iy2T e (I STX (%) + X (x)Je 7 (7D

(A22)

) 1

:,uf ddxCIDTG<D+fddxtrln |Q+—V2)

2m

+Q(X)—i Zl"se—i(w/4)AX(X)e+i(7r/4)A

: 1 :

—j 2I*Ce7|(17/4)AE[XC(X)+XCT(X)]e+I(w/4)A

+const. (A23)

The propagato depends o, X, andX,,X? .

5. Shifting Q
Let us now shiftQ,

Q—>(~2=Q—i ere—i(v/4)AXe+i(7r/4)A
—j zrce*i(ﬁm)f\%(xc_i_XCT)e+i(17/4)A
and
trQ2=trQ2+i2 2L L[ Qe (TMAX gt i(m4A]

+i2y2 ;tr

~ 1 .
Qe— i (7T/4)A§ ( XC + XCT) e+ i(ml4)A

(A24)

1 d 2 d ; 12
Seﬁ[Q,CD]=2—Uo d%trQ<+ | d%trin |Q+%V

d +i(m/4)sgm,"1"2
d X[e QaaLAA’

d +i(m/4)sgmqN1N2 -
> dix[e Qi aae

APPENDIX B: SEPARATION OF LONGITUDINAL
AND TRANSVERSE (DIFFUSIVE ) MODES

+Q(x)

e—i(w/4)sgm2] yZA’

i(w/4)ng2] 7,(’:-\

PHYSICAL REVIEW B 66, 094506 (2002
— 4T 2k, J ddx XX, "
n

— 4T 2k, f d9XXE X D, (A25)
n

The Matsubara cuto# comes from the extra frequency sum
in the trace, and there are factors of 2 from the traces over
the real-imaginary components])#2 and t6*S™ =4.

The next step is to integrate out the X, fields. This
generates quadratic i@ terms(we now drop the tildes for
notational simplicity. It is useful to define

7 :Fs,c 1
¢ vg 1—8r3*°k,

Uo

Sin=Tsc E dix[e"(mhsamQ™™? e~i(misomz]
..... N
« ,yi,;,'BB’[e+i(7r/4)sgm3Q2?;§B’e—i(q-r/4)sgm4]
X 8n,Fnyngtny: (A26)
where the tensorgaa: g depend on the channel
'VZA',BB/ =JaaJdee (A27)
YZA’,BB’ AA’SBB’ : (A28)

Summarizing it all, we have an effective action

+ 1 f dixdTGD

- [ e+ i (7T/4)ng3Qn3n4

—i(m/4)sgm
aa,BB’e (s 4]5r‘1_”2+“3,_r‘4

) Nan .
A’,BB'[e+|(w/4)ng3QazSB/e |(1-r/4)sgm4]5

n1+n2—n3—n4-

(A29)

arises even in the absence of a small parametgr 7/

Expansion to quadratic order i#Q leads to a term

In this appendix we show that the transverse fluctuations

of the Q field correspond to boson diffusion fer=0, simi-

larly to the fermionic case. We show that the diffusion term

niny

SMM2(q)5QI2, () 8Q, W(A),  (B1)
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where

. 1 d%
M 2(Q):v_o_f(zqr)d

G(p,n1)G(p+q,ny). (B2

The first term on the right-hand side comes from ti@?tm

the action, and the second term has its origin in the tyIn(
M""2(q) is selected to be diagonal in and independent of

replicaa,a’ and real-imaginanA,A’ indices. The Green's
function

1

G(p.ny)= i . ®

ien—E(p)+ E_Sgr(fn)

For sgm,sgm,>0, the real part of the integral vanishes for

g—0, so that REM"1"2(q)]=1/v,, and we are left with a
massive longitudinal mode.
Let us turn to the interesting case sgegm,<<0. For

simplicity, we neglect thd €n, , terms in the denominator
(these terms can be handled alternatively by shifting@he

field). Expanding the integral in EqB2) in powers ofq,

d
f(zw)dGo(p,nl)Go(pm,nz)

_J‘dd_pG()G()
= (2m)° +(P)G-(p

1 2
i
2m

d
XJ (2m)d

where G (p)=[—E(p) *i/27] 1. The integrals over mo-
menta can be transformed into integrals over energging
the density of states(e)=(1/2)[ Sy/(2)](2m)%2¥?~1,
Define

4E(p)

GL(P)G-(p)+ —5 G (P)G-(p) .

(B4)

Q
lasem | den(a TG (PG (A, @9

SO

dp
J 2m)° G°(p,n1)G%(p+a,nz)

19?

=loaat 5o (B6)

lo21F d | 1,3,1}

PHYSICAL REVIEW B 66, 094506 (2002

S, e
labc=3 e (2m) H2n) e
27Q) d/i2—1+a
[Ty
0 (=y+i)°(=y—i)
yd/27l+a

—at+b+c 27-Qd
~uzn Yy
(B7)
with Ag=(1/2)[ Sy/(27)%(2m)¥2(27) 92,

One can check that oneeis fixed by the saddle point Eq.
(7), which can be cast as

Imlg 0= —1Iml 001 0 (B8)
then it follows trivially that
1
lo11=—> B9
0117 (B9)

so that the leading order term M, (q) is of orderg?, which
allows us to define the diffusion constant

oo L
~4m

4
lo21F d | 1,3,1}- (B10)

The last step remaining is to show tHis purely real After
simple manipulations, one can show that

_ Sy dr2 —d/2+3
Im —m(zw)d(Zm) (27)
ijmdy (9—1 y2—1}£ (B11)
0 d (y?+1)*

It is trivial to show by integration by partfsplitting the
integrands intd (y) =y/(y?+ 1)® andg(y) =y“] that the in-
tegral in Eq.(B11) scales as£Q)¥?~%. Thus the cutoff can
be safely taken to infinite fod<8, and InD=0.

Notice the difference between the fermionic and bosonic
cases. In the fermionic case one can also interchange mo-
mentump integrals for energy integrals, using the density
of states at the Fermi lev& . The integrals are cutoff by
the bottom of the band;-Eg away from the zero energy
states. In the bosonic case, one starts from the bottom of the
band, and needs to include an energy dependent density of
statesv(€); the cutoff() is introduced only for convergence,
and()— is possible ford<8. In contrast to the fermionic
case, whereeg is finite, in the bosonic case for a perfect

(a finite upper frequency cutoff) is needed depending on parabolic spectrum()—c. The small parameter for the
d,a,b,c). It is also convenient to rescale the energies, definFermi case is Ex7) !, whereas for the Bose case it is

ing y=27e, SO we can write

Q) 1-o0.
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APPENDIX C: PARAMETRIZATION OF THE SADDLE Mo, (1_qu)1/2 q
AND RELATION TO THE FERMIONIC o MODEL Qp=—7—
. . . . F 2 qT _(1_qTq)l/2
As we previously mentioned, we can easily obtain the RGshows that the terms in the Finkelstein type action for

equations for the conductance and interaction couplings b%osons UDON Darametrization in termsuofi™. are the same
determining a correspondence with the fermionic model. » ubon p 008

Here we show how this is achieved. as the ones for fermions upon the identificatipn>q and

T . _ AT ;
Let us first look at the Finkelstein type terms in the eﬁec'?be_c)auge. tggiiﬁﬁgﬁs tfe?rcltfern%is :reEqﬁgggtg ncr(re]ai%usatrr?g
tive action for theQ fields. TheQ matrices are parametrized . . q in i
as in in Eq.(10), repeated here for convenience sign of the interaction term for bosons and fermions the
' ' same.

For discussing the diffusive ter fd%tr(VQ)?, notice

(C4

Mmoo (i(1+qq"H)*? q that by rewriting
T2 q’ —i(1+q"q)*?)" €D T\11/2 :
_ Moo ([1=a(=q)] —iq
The quantities that appear in the Finkelstein type terms for Q= 2 i(—qh —[1-(—-qNq]*?
the bosonic problem are
e (TN Q i(mA we again identify it with the fermionic saddle poi@i-, but
now the off-diagonal elements have extra factors-i.
Mo, i(1+qu)1’2 iq These factors will cancel each other in the expansion of the
== _ (" —i(1+qTq)1’2) , (C2)  quadratic inQ diffusive term, and hence can be dropped, and

once again the fermionic saddle expansion can be used. The

overall factor ofi has the effect of changing— —D.

moo ([1-d(—q")]" q i irty interacti

0, (C3 In summary, all the RG equations for the dirty interacting

2 (—q") ~[1-(=qNal*?)’ boson problem can obtained from those of tirteracting
fermionic orthogonal ensemble upon replacigig: —g (or

Direct comparison with the fermionic saddle point D— —-D).
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