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Anomalous quantum diffusion at the superfluid-insulator transition
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We consider the problem of the superconductor-insulator transition in the presence of disorder, assuming that
the fermionic degrees of freedom can be ignored so that the problem reduces to one of Cooper pair localization.
Weak disorder drives the critical behavior away from the pure critical point, initially towards a diffusive fixed
point. We consider the effects of Coulomb interactions and quantum interference at this diffusive fixed point.
Coulomb interactions enhance the conductivity, in contrast to the situation for fermions, essentially because the
exchange interaction is opposite in sign. The interaction-driven enhancement of the conductivity is larger than
the weak-localization suppression, so the system scales to a perfect conductor. Thus, it is a consistent possi-
bility for the critical resistivity at the superconductor-insulator transition to be zero, but this value is only
approached logarithmically. We determine the values of the critical exponentsh,z,n and comment on possible
implications for the interpretation of experiments.
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I. INTRODUCTION

In a perfectly clean system atT50, the free Fermi gas is
perched precariously at a critical point. An arbitrarily we
interaction will drive the system superconducting~by the
Kohn-Luttinger effect if the interaction is repulsive!. In the
presence of disorder, however, thediffusiveFermi liquid is a
stable phase for a finite range of interaction and disor
strengths in dimensionsd.2. In d52, it remains an open
problem whether or not fermions have a stable diffusive m
tallic phase. Such a phase, if it exists, could not be adiab
cally connected to the Fermi liquid1 since the noninteracting
Fermi gas is always insulating in the presence of disorde
d52. In the limit of weak disorder, this can be understood
a quantum interference effect which is singular as a resu
the diffusive nature of electron propagation in a disorde
system: diffusion at intermediate length scales~longer than
the elastic mean-free path! thwarts diffusion at long scale
~longer than the localization length!.2 The interacting-
electron problem remains unresolved because interaction
the spin-triplet channel are also singular as a result of
languid pace of diffusive motion.3–6 The upshot of the inter-
play between these different singularities is unknown~see,
however, Refs. 7 and 8!.

Consider the critical point separating the insulating a
superfluid phases of a perfectly clean system of boson
T50 in two dimensions. We would like to draw an analo
between it and the free Fermi gas. In the bosonic case, t
is a particular value of the chemical potential for which t
system has gapless critical modes, loosely analogous to
excitations of the free Fermi gas. For any other value of
chemical potential, the bosons are either in a superfl
state—a superconducting state, if we assume that the bo
are Cooper pairs—or in a gapped insulating state. Supp
we now add disorder to this system. What is the fate of t
critical point? On general grounds, we believe that it is u
likely to broaden into a stable diffusive metallic phase, a
that the only stable phases are insulating~Mott insulator or
Bose glass9! or superconducting. Instead, we expect a dif
0163-1829/2002/66~9!/094506~12!/$20.00 66 0945
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sive metallic critical point with auniversal conductivity
separating the insulating and superconducting phases.
analogy between Fermi and Bose systems is imprecise, b
emphasizes the important point that in both cases there
ballistic critical point in the clean system which must b
usurped by a diffusive fixed point in the disordered one.

Such a fixed point should be amenable to analysis
methods similar to those used for the diffusive Fermi liqu
Conversely, expansion about the pure critical point—wh
is ballistic, not diffusive—should fail. In considering such
perspective, one is faced with the following question: w
do quantum interference effects, which appear to be suc
inevitable consequence of diffusive motion, not preclude
finite conductivity at the superfluid-insulator transition? T
answer must lie in the effects of interactions, which o
might hope to tame since spinless bosons, such as sin
Cooper pairs, do not have a triplet channel—the troub
some, singular one—through which to interact.

In this paper, we present the results of such an analy
We find that there are two competing effects at a putative
dimensional~2D! diffusive Bose liquid critical point: one
resulting from interactions between the bosons; the ot
from quantum interference, i.e., weak localization. In the f
mionic case, it is advisable to consider quantum interfere
and interactions on the same footing since they lead to s
lar logarithmic corrections at the perturbative level. In t
bosonic case, one must perforce do so, since quantum i
ference leads to the existence of localized states even in
weak disorder limit, and bosons would congregate in
lowest energy localized state in the absence of interactio
We find that the effect of interactions is stronger than qu
tum interference and drives the system to a perfect cond
tor, thereby explaining how diffusion can remain impervio
to localization. This result is congenial to one’s intuition th
repulsive interactions should disfavor localization. Poten
wells due to impurities diminish in attractiveness when th
are occupied and, as a result, the random potential is ef
tively screened. This effect is present for both short-rang
interactions as well as long-ranged Coulomb interactions,
©2002 The American Physical Society06-1
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is stronger in the latter case. The same phenomenon oc
in fermionic systems as well, but it competes with the e
change part of the interaction, which is opposite in sign d
to Fermi statistics. If the interaction is short ranged, it
irrelevant for spinless fermions, so it has no effect on
conductivity in the infrared limit.~This is clear in the
d-function limit, where the direct and exchange interactio
cancel.! In the case of Coulomb interactions, the exchan
interaction between spinless fermions dominates and
presses the conductivity. In the case of spin-1/2 fermions,
runaway flow of the triplet interaction amplitude indicat
that the Hartree interaction begins to prevail over the
change interaction at longer length scales, thereby leadin
an enhanced conductivity. However, the interaction stren
diverges before a metallic fixed point is reached, and
conclusion can be drawn about the existence of a met
state at zero temperature. These difficulties do not aris
the bosonic case. The exchange interaction has the same
as the direct one, and both enhance the conductivity.

Our result is valid for large conductivities in units ofe2/h.
Hence, if the bare conductivity is large—as it can be if t
bosons have an anisotropic mass tensor—then the renor
ized conductivity is infinite. If the bare conductivity is sma
then there are two possibilities. If the conductivity initial
flows to sufficiently large values that we can apply our c
culation, then it will continue to flow to infinity. However, i
is also possible that the system will flow in this case to
different fixed point at which the conductivity if finite. In
such a scenario, there would be two different possible u
versality classes of superconductor-insulator transitions
either case, we conclude that it is a consistent possibility
the critical point between the superfluid and insulating sta
of a disordered Bose liquid to be aperfect conductor.

We derive these results in a nonlinears-model (NLsM)
formulation of the problem of diffusing, interacting boson
Our NLsM is very similar to Finkelstein’s model fo
fermions.3 However, the NLsM plays a very different role in
this problem than in the fermionic problem. There, t
NLsM describes the entire metallic phase. In 21e dimen-
sions, the metal-insulator transition occurs near the meta
fixed point, so the NLsM excompasses it as well. In th
bosonic problem which models the superconductor-insul
transition, our NLsM describes thecritical point. The anti-
ferromagnetic Heisenberg model ind.2 provides an en-
lightening analogy. For isotropic exchange couplingJz
5Jx,y , the model is ordered and is described by a NLsM. In
the ordered phase, continuous symmetries are broken
there are Goldstone modes; this is the analog of our crit
point. For Jz.Jx,y , the model develops Ising order with
gap; this is analogous to our insulating phase. ForJz
,Jx,y , the model developsXY order, which is analogous to
our superconducting phase.

II. DIRTY BOSONS

Following Ref. 9, we will treat the Cooper pairs in a dir
superconductor as bosons moving in a random potential.
will assume that all fermionic degrees of freedom are gap
or localized and are therefore unimportant. This assump
09450
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has been called into question recently.10,11 If fermionic de-
grees of freedom prove to play an important role at
superconductor-insulator transition, then our analysis w
need to be modified to include them, but our description
dirty bosons will remain an important component of a rich
description of the superconductor-insulator transition.

Note that we are studying here the generic transition9 be-
tween the Bose glass and superfluid phases which occu
an incommmenusurate boson density. In the special cas
which there are an integer number of bosons per lattice s
there may be a direct transition between Mott insulating a
superfluid phases which is tuned by varying the ratio of
hopping and interaction parameters.12

We begin with a system of interacting bosons moving in
random potential in two dimensions. The derivation whi
follows goes through in arbitrary dimension with mino
changes, butd52 is the most interesting case. Th
imaginary-time action is

S5E d2xdtc* S ]t2
1

2m
¹22m1V~x! Dc

1E d2xddx8dtc* ~x!c~x!u~x2x8!c* ~x8!c~x8!,

~1!

u(x2x8) is the interaction between bosons; we will consid
the cases of both short-ranged interactions and Coulomb
teractions.V(x) is the random potential; we use the repli
trick to average over it, thereby obtaining the action

S5E d2xdtca* ~x,t!S ]t2
1

2m
¹22m Dca~x,t!

2E d2xdtdt8
1

2
v0ca* ~x,t!ca~x,t!cb* ~x,t!cb~x,t8!

1E d2xd2x8dtca* ~x!ca~x!u~x2x8!ca* ~x8!ca~x8!,

~2!

a51,2, . . . ,N is a replica index. We have assumed that t
potential has the Gaussian white noise distribut
V(x)V(x8)5v0d(x2x8).

This action is problematic because it is not positive de
nite as a result of the second term. To cure this, we will rot
the integration contour in the functional integral, as one d
in the noninteracting case. This can be done more con
niently if we work in the Matsubara frequency representat
and separate the real and imaginary parts of the Matsu
fieldscna5fna11 ifna2, whereen52pn/b. The action can
be made positive definite by rotating the fields in the follo
ing way: fnaA→e2(p/4)isgn(n)fnaA ,A51,2. We rotate then
50 mode along with then.0 modes. The action now take
the form
6-2
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S5(
n,m

E d2xifnaA~x,t!S i en1
1

2m
¹21m DLnmfmaA~x,t!1 (

n,n8,m,m8
E d2x

1

2
v0fnaALnn8fn8aAfmbBLmm8fm8bB

1 (
m1 , . . . ,m4

E d2xd2x8@e2p i (sgn(mi )/4#fm1aA~x!fm2aA~x!u~x2x8!fm3aB~x8!fm4aB~x8!dm11m21m31m4
, ~3!
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whereLmm85sgn(m)dmm8 .

In the absence of disorder, repulsive interactions are m
ginally irrelevant, and the critical behavior of Eq.~3! is con-
trolled by the Gaussian fixed point.9 Now consider a pertur-
bative treatment of the disorder. In the self-consistent B
approximation, we find a self-energy due to disorder of
form,

S~en!5
mv0

2p F lnU L2/2m

i en1m1S~en!
U

1 i tan21S en1ImS~en!

m1ReS~en! D G . ~4!

The random potential shifts the chemical potential and a
gives the bosons a finite lifetimet. As a result of the lifetime
t, single-boson excitations are no longer long-lived degr
of freedom. However, particle-hole pairs are long-lived,
may be seen from the conductivity which, at this level
approximation, iss51/2p3.

This doesnot preclude critical behavior in the single
particle properties, as has already been seen in the conte
interacting fermions3 and of quasiparticles in a disordere
d-wave superconductor where there are density-of-states
rections and also in the context of noninteracting electr
with an extra sublattice symmetry, where the single-part
Green function itself is critical.16

The conductivity is small because there are no partic
hole pairs fort5` ~since the transition occurs at the botto
of a quadratic band!. A finite lifetime leads to a small densit
of states;1/t for particle-hole pairs, which cancels the fa
tor of the lifetime to whichs is customarily proportional,
thereby leading to a conductivity which isO(1). However,
we note that a parametrically large conductivity can be
tained in a slight generalization to a model of two species
bosons with anisotropic masses and that mix upon scatte
Suppose that one of them hasmx5m1 ,my5m2, while the
other has masses reversed. Then we find thats5@Am1 /m2

1Am2 /m1#/2p3. For sufficiently large or small ratio
m1 /m2, the conductivity will be large. Such a situation cou
occur, for instance, in a two-band model in which the tw
bands of electrons have anisotropic masses, leading to a
tropic masses for the Cooper pairs.

An RG analysis of the dirty boson problem yields t
following RG equation in ane expansion aboutd54:9

dv0

dl
5~e1et!v01Bv0

21••• ~5!
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with 42e2et spatial dimensions andet time dimensions
~the interesting cased52 occurs ate5et51). B.0, so
there is no fixed point at weak coupling; instead, there i
runaway flow to strong disorder. We interpret this as an
stability of the pure critical point, at which the critical mode
are ballistic, to the diffusive fixed point. To access the lat
fixed point, we will construct a nonlinears model which is
appropriate for physics at length scales longer than the m
free path. In this regime, transport is diffusive, and we m
neglect degrees of freedom, such as thef fields, which are
short lived.

III. SADDLE POINTS FOR DIRTY BOSONS

In the absence of thei en term, the noninteracting part o
the action~3! has anO„(k11)N,kN… symmetry, wherek is a
cutoff on the Matsubara frequencies. The key assumptio
Finkelstein’s theory3 for fermions is that the elevation of th
energies of the diffusion modes by thei en term and the in-
teractions can be neglected compared to the gaps assoc
with other degrees of freedom; when this condition is sa
fied, it is valid to retain only interacting diffusion modes an
ignore all other degrees of freedom. We make the same
sumption here in our description of the critical point. In th
superfluid state, this is clearly not sufficient, and we w
have to retain an extra degree of freedom. It may also
necessary to include extra degrees of freedom to prop
describe the Bose glass insulating state.

Our treatment of the critical saddle point and NLsM for
interacting bosons follows that of Finkelstein for the ferm
onic case and also that of the bosonic representation of
noninteracting problem. Hence, we will merely give an o
line in this section and the following one, emphasizing t
important differences. Details are presented in Appendix

We begin by using the Hubbard-Stratonovich transform
tion to decouple thev0 term with a matrixQab,AB

mn . We then
decouple the interaction in two different ways withX, which
decouples the direct and exchange channels accordingX
;c* c, and Xc , which decouples the Cooper channel a
cording toXc;cc. Finally, we decouple the chemical po
tential term withF;c. In this way, we have a system o
noninteracting bosons at zero chemical potential—their c
cal point—moving in the background fieldsX,Xc , and F.
Integrating out thef fields, we obtain the effective actio
~see Appendix A!,
6-3
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Seff@Q,Y,Z,Z†,F#5( E F tr lnS i en1
1

2m
¹21Q2 iA2Ge2 i (p/4)LXe1 i (p/4)L2 iA2Gce

2 i (p/4)L
1

2
~Xc1Xc

†!e1 i (p/4)LD
1

1

2v0
tr~Q2!1

1

2
tr~X2!1

1

2
tr~Xc

†Xc!1m~F* F!ĜS F*

F
D G . ~6!
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The Green functionĜ of thefAs is written as a 232 matrix
in the final line to emphasize the particle-hole structure. I
the operator inverse of the expression inside the logarit
For m<0, it is not even necessary to introduceF; we can
simply drop the last term of Eq.~6! and insertm inside the
logarithm.

Let us now consider the saddle points of this effect
action. For m.0, there is a saddle point witĥF&Þ0.
~When we include fluctuations,m will be renormalized, so
the critical value will not be zero.! When F develops an
expectation value,Q,Xc , and X are forced to follow since
they are coupled directly to bilinears inF. This is the super-
fluid phase.

For m<0, let us consider the noninteracting caseG5Gc
50. The saddle-point condition is

Q̂52v0E d2p

~2p!2

1

i ên1
1

2m
¹21m1Q̂

. ~7!

Let us absorb the real part of the saddle-point value ofQ into
a renormalizedmR and focus on the imaginary part.

For mR50, the saddle-point solution of Eq.~7! is

Qab,AB
m,n 5 i

mv0

2
sgn~en!dmndABdab . ~8!

This is the diffusive saddle point for self-consistent Bo
scattering of critical bosons by impurities. It corresponds t
finite density of states for the bosons at this level of appro
mation. Notice that this saddle-point solution is taken to
replica symmetric.

Now, for mR,0, there is another translationally invaria
saddle point withQ50. For this solution, a nonzero densit
of-states in not generated in the insulating state at this le
of approximation; it remains a Mott insulator. We would lik
to point out two possible mechanisms to generate the fi
density of states that occurs in the Bose-glass phase. O
that the correct saddle points are replica symmetry bro
mixtures of theQ50 and Eq.~8! solutions. A possible self-
09450
s
.

a
i-
e

el

te
is

n

consistent solution is the one still diagonal in replicas b
with zero matrix elements forp replicas and unit matrix el-
ements forn2p replicas. Another possibility is that there a
nontrivial instanton saddle points which generate a fin
density of states.13 In the absence of interactions, the boso
will condense into these localized states, so we must c
sider the corresponding instantons withG,GcÞ0. At present,
we do not have a description of the Bose-glass insulator,
this does not affect our ability to describe the critical po
between it and a superconductor.

It is useful, in thinking about this theory, to imagine low
ering the temperature of a system of dirty bosons. At fin
temperature, there will be a finite wedge in the pha
diagram—the quantum critical region14,15—where the bosons
will be effectively critical. In this regime, we may begin b
considering noninteracting bosons which are semiclassic
scattered by impurities. As we decrease the temperature
must begin to include the effects of interactions and of qu
tum interference processes. If we stray too far from the cr
cal m as we lower the temperature, thereby leaving the qu
tum critical region, then we cannot include these effe
perturbatively. It is clear that they completely destabilize t
diffusive saddle point, so they must be included right fro
the start~e.g., by starting from new saddle points, as we ha
sketched above! in order to describe the superfluid or ins
lating phases correctly. However, so long as we remain
criticality, we can hope to account for these effects pertur
tively. To such an analysis we turn in the following sectio

IV. s MODEL FOR INTERACTING BOSONS

To go beyond a noninteracting, semiclassical analysis
include the effects of interactions and quantum interferen
we construct the NLsM which accounts for fluctuations
of Q. We shift Q by i en1A2Ge2 i (p/4)LXe1 i (p/4)L

1A2Gce
2 i (p/4)L 1

2 (Xc1Xc
†)e1 i (p/4)L to remove these term

from the tr ln@•#. Then, we expand the tr ln@•# about the
saddle point and integrate outX,Xc . We obtain an effective
action which is essentially the same as Finkelstein’s ac
for the fermionic problem~see Appendixes A and B!,
Seff@Q#5E ddxH Dtr~¹Q!224iZtr~ êQ!

1G (
n1 , . . . ,n4

@e1 i (p/4)n1Q
aa,AA8

n1n2 e2 i (p/4)n2#JAA8JBB8@e1 i (p/4)n3Q
aa,BB8

n3n4 e2 i (p/4)n4#dn12n21n32n4

1Gc (
n1 , . . . ,n4

@e1 i (p/4)n1Q
aa,AA8

n1n2 e2 i (p/4)n2#SAA8
1 SBB8

2
@e1 i (p/4)n3Q

aa,BB8

n3n4 e2 i (p/4)n4#dn11n22n32n4J , ~9!
6-4
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where JAB5(1/A2)(dAB2sAB
2 ) and SAB

6 5sAB
3 6 isAB

1 ex-
press the particle-hole matrix structure for the dens
density and Cooper channels, respectively. The parameZ
is 1 in the bare action above; however, this quantity is ren
malized, so we have introduced it explicitly here. We ha
absorbed the density of states into the diffusion constanD
~and also the coefficients of the other terms!; the resulting
quantity is just the bare conductivity and is given byD
51/2p3 in the above model. However, as we noted ear
by considering a model with anisotropic masses, and a
ficiently large or small ratiom1 /m2, the bare conductivity
will be large. The resistivity g51/(2pD) is the ex-
pansion parameter used in our RG equations, so this ob
vation gives us a limit in which they can be applied witho
apology.

It may strike the reader as strange that we are usin
NLsM to describe a critical point; usually NLsMs are used
to describe stable phases because they are so highly
strained by symmetry. However, the NLsM of Eq. ~9! is not,
in fact, so rigidly constrained at all. The interaction term
and the tr(êQ) term explicitly breaks theO„(k11)N,kN…
‘‘symmetry’’ of the model. The latter breaks it in such a wa
as to push the theory into a diffusive metallic state. Howev
this symmetry-breaking ‘‘field’’ is small in the low-energ
limit, so other symmetry-breaking fields~or anisotropies! can
intervene instead. WhenF orders in Eq.~6!, Q is forced
away from the diffusive ‘‘direction’’ in its saddle point man
fold, and into the superfluid ‘‘plane,’’ whereQ has nonvan-
ishing components which are off diagonal in particle-ho
indices. Thus, we can understand the perturbations wh
lower the symmetry of the saddle-point manifold as pert
bations which drive the system away from criticality.There
are a variety of ways in which one can imagine driving t
system into an insulating phase. In the absence of a b
understanding of the Bose glass phase, we consider the
plest which is just a ‘‘mass’’ term of the form tr(MQ), with
M a constant matrix say in replica space, which breaks
symmetry of the saddle point manifold and leads to an in
lating state. Such a perturbation differs only in index struc
with the one imposed by a finiteF. Such a term is also
generated by shiftingm out of the tr ln@•# term when consid-
ering replica symmetry broken saddles. Note that none
these possibilities can occur in the noninteracting proble
where the symmetry of the saddle-point manifold is a ge
ine symmetry.

We parametrizeQ about the noninteracting saddle poi
as

Q5
mv0

2 S i ~11qqT!1/2 q

qT 2 i ~11qTq!1/2D , ~10!

where the block structure is in frequency space, i.e., the
trix qnm is such thatn>0 andm,0.

The resulting action is very similar to theO(N) sigma
model which is appropriate for a system of fermions w
spin-orbit scattering. Indeed, one can be transformed into
other by redefiningq→q,qT→2qT, andD→2D. The in-
teraction terms look somewhat strange at first glance, but
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extrai ’s in Eq. ~10! are precisely compensated by the expli
factors ofe6 i (p/4)ni in Eq. ~9! ~see Appendix C!.

V. RG EQUATIONS

Taking advantage of the observation at the end of
preceding section, we can obtain the RG equations for ous
model by flippingg→2g in the equations for the corre
sponding fermionic model. Some factors of 2 will be diffe
ent because our bosons are spinless. More details ma
found in Appendix C.

The renormalization group~RG! equation forGc
2 is

dGc

dl
52gGc2Gc

2 . ~11!

Observe thatGc flows to zero, even ifg50. Hence, we set
Gc to its fixed point value of zero and consider the RG eq
tions for g, G, and Z in its absence. To orderg2 and all
orders inG ~although, of course, we cannot access nonp
turbative effects associated with saddle points which are
from the noninteracting diffusive one!, the RG equations are

dg

dl
5

1

2
g22g2F212S Z

G
21D lnS 12

G

ZD G , ~12!

dZ

dl
5gG, ~13!

dG

dl
5gG. ~14!

The physics of these equations is clear from the disc
sion in the Introduction. Interactions always enhance
conductivity to orderg2 because the exchange term has
same sign as the direct term@they are folded into a singleG
in the bosonic NLsM ~9!#. The gist of the effect can be see
from the Hartree and Fock diagrams for the boson s
energy displayed in Fig. 1. In the Hartree diagram, the bo
line is repelled by the boson bubble which is a measure
the ground-state density.~In a pure system, this is uniform
and cancelled by the neutralizing background.! In a fermi-
onic system, the Fock diagram comes with the opposite s
so it is an effective attraction. In a bosonic system, howev
both diagrams come with the same sign and lead to a re

FIG. 1. The Hartree and Fock diagrams for the boson s
energy.
6-5



of
e

n

.

ha
ro

-
si-

h

k
tr

th

th
-

m
fo
tio

m

me
e.
e

ior
er
dly
od-

su-
(2

is-

n-

lly
the

tes,
for
l-
d

he

e
ns,

r

CLAUDIO CHAMON AND CHETAN NAYAK PHYSICAL REVIEW B 66, 094506 ~2002!
sion of particles from regions of high density—which,
course, are precisely the regions where there are deep w
in the random potential.

The interaction strength,G, grows in importance at low
energies because it plays a role somewhat analogous to
Pauli exclusion principle: in its absence, all of the boso
would sit in the lowest minimum of the random potential.Z
must follow G in order to maintain a finite compressibility

Notice from Eqs.~13! and~14! thatZ2G remains invari-
ant under the RG flow, as a result of Ward identities t
originate from charge conservation. It is very useful to int
duce the coupling constantg5G/Z, which allows us to re-
write the RG equations in a simpler way,

dg

dl
5

1

2
g22g2F212

12g

g
ln~12g!G , ~15!

dg

dl
5gg~12g!. ~16!

For g.0, it follows from Eq.~16! that there are two fixed
point valuesg* 50,1 ~a closer analysis rules out the pos
bility of another value ofg* with g50), as shown in Fig. 2.
The g* 50 fixed point is unstable, while theg* 51 one is
stable. Consider the RG equation forg. The first term on the
right-hand side is the weak-localization correction, while t
second term is the interaction correction. The valueg
50.423 16 . . . separates the regime where the wea
localization correction dominates over the interaction con
bution (dg/dl,0 for g,0.423 16 . . . anddg/dl.0 for g
.0.423 16 . . . ).Although the entire surfaceg50 with arbi-
trary g is left invariant under the RG flow, any system wi
bareg,gÞ0 will necessarily flow into theg50, g51 fixed
point. This is the case for short-range interactions, where
flow starts with a valueg,1. Note that if the bare interac
tion is weak,g!1, then the resistivity will initially increase
before eventually decreasing to zero.

Now, consider the case of dynamically screened Coulo
interactions. As in the fermionic case, the Ward identity
charge conservation requires the density-density correla
function to vanish atq50. This, in turn, requires the

FIG. 2. RG flow for the resistivityg and interaction paramete
g5G/Z.
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q-dependent interactionG(q), which generalizesG to the
case of Coulomb interactions, to satisfy the identity3–5

Z2G~q!5
]n

]m

q

q14pe2~]n/]m!
. ~17!

Taking theq→0 limit of Eq. ~17!, we obtainZ5G. Substi-
tuting this identity into Eq.~12!, we see that the second ter
inside the square bracket in Eq.~12! vanishes. Thus, the RG
equation forg is dg/dl523g2/2, and the resistivity flows
logarithmically to zero. The system is controlled by the sa
infinite-conductivity fixed point as in the short-ranged cas

Before concluding this section, let us write down th
asymptotic behavior near the fixed pointg* 50, g* 51,
which we will need later to obtain the critical exponents:g
;2/3l and 12g;exp(2*dlg);l22/3.

VI. CRITICAL BEHAVIOR

The most striking conclusion about the critical behav
of this system is that the critical resistivity is zero. In oth
words, the 2D superconductor-insulator transition is broa
similar to the 3D one. This is somewhat unexpected. In m
els such as the Bose–Hubbard model, which describes a
perfluid insulator transition in a clean system, or the
11)-dimensionalXY model, one findss* 5ce2/h, with c a
finite universal number. At our fixed point,c5`. Another
odd feature is the logarithmic approach to the critical res
tivity which we find; this logarithm is rather different from
the type which are encountered in the lower critical dime
sion of a phase transition~which happens to bed51 for the
superfluid-insulator transition!. Since a logarithmic flow is
rather slow, it may not be possible to observec5`. Instead,
the critical conductivity at a given temperature may actua
appear to be a nonuniversal number which depends on
bare conductivity.

Let us also consider the single-boson density of sta
N(v). This may be studied by introducing a source term
tr(LQ) into the effective action and computing its renorma
ization. In a system with short-ranged interactions, we fin

d

dl
ln N52gg ln~12g!. ~18!

Substituting the asymptotic forms ofg and g, we find that
the single-particle density of states diverges weakly,N(v)
;e(2/9)[ln ln(1/vt)] 2

. Since the boson creation operator is t
order parameter for the superfluid phase and

N~v!5Im^c†~x,v!c~x,2v!& ~19!

the scaling relation forN(v) implies that the critical expo-
nent h50 with logarithmic corrections. However, in th
presence of dynamically screened Coulomb interactio
there is a more severe divergence, and we find

d

dl
ln N5gl. ~20!
6-6
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Consequently, the single-boson density of states diverge
the transition with the power lawN(v);v22/3. This implies
that the critical exponentsh andz satisfyh/z522/3. Note
that we have calculated the density of states at ametallic
critical point. Thus, we should not expect Coulomb g
physics to suppress it and giveh.0. In the fermionic case
the suppression of the density of states is due to the do
nance of the exchange interaction.

Our NLsM does not explicitly include single-boson op
erators. We assume that their properties can be deduced
the the density of states. It is certainly possible for sing
particle operators to be critical even in a theory in whi
only collective modes are retained; this is the idea beh
bosonization. It is conceivable, however, that our NLsM is
incomplete, as regards single-boson properties. This c
occur if the critical exponent controlling the correlation fun
tion ^c†(x,0)c(x,0)& were unrelated to that controllin
^c†(0,t)c(0,0)&.

SinceZ diverges only logarithmically, the dynamical ex
ponent,z52, as in a noninteracting system. However, in t
case of dynamically screened Coulomb interactions, th
are actually two different diverging time scales. One, w
exponentz, is the scale associated withZ; it controls the
scaling of the specific heat and energy diffusion. There
second exponent,zc , associated withZ2G, which controls
charge diffusion. By the same argument as in a fermio
system,5 Eq. ~17! implies at smallq that Z2G;q, from
which we conclude thatZ2G;j21, i.e., zc51. This result
was obtained for the superconductor-insulator transition b
closely related argument in Ref. 9. Combining this with o
density-of-states calculation, we haveh522/3 for Coulomb
interactions. Notice thath522/3,0 satisfies the lower
boundh,22d of Ref. 9 ford52. The density of states an
the dynamical exponent,zc , are the only quantities which
distinguish short-ranged and dynamically screened Coulo
interactions in the infrared limit.

As we discussed in Sec. IV, the leading perturbation
our s model is a tr(MQ) term, whereM is a constant matrix
say in replica space, which breaks the replica symmetry
the diffusive saddle-point manifold possibly in the directi
of the Bose-glass phase. This is a dimension 2 operato
tree level.~If the matrix M is proportional to the identity in
replica space, this operator is instead just a constant a
diffusive saddle point.! Since the coupling constantg flows
to zero, we expect a critical exponentn51/2, up to logarith-
mic corrections. This value ofn—the mean-field value—
violates the boundn>2/d of Ref. 17. However, the exponen
bounded by the theorem of Ref. 17 is, in fact, a finite-s
scaling exponentnFS which can be different fromn. The
bound is known to be violated in the depinning of a char
density wave, wherenFSÞn51/2.18 As we discuss below
some experimental results on the superconductor-insu
transition also violate the bound,28 as do experiments on he
lium in aerogel and the metal-insulator transition in dop
semiconductors.19 These violations have been emphasized
Ref. 20, which explains them as arising from a failure
self-averaging, but this interpretation has been challenge
Ref. 21.
09450
at

i-

om
-

d

ld

re

a

ic

a
r

b

f

of

at

he

e

-

or

d
n
f
in

VII. DISCUSSION

Diffusion in two dimensions is marginal, and small co
rections~in the limit of large conductivity! such as that due
to quantum interference or interactions can tip the bala
one way or the other. Contrary to conventional wisdom, it
hardly a foregone conclusion which effect will win. After al
weak localization isweak. Interactions can easily overpowe
it, leading to metallic behavior. According to our analys
this is precisely what occurs at the superconductor-insul
transition. The effect of interactions is so dominant that
universal value of the conductivity at the transition is infinit
Such a diverging conductivity has been found in models w
interaction and dissipation, but without disorder.22

The possibility of a metallic phase within the Bose-gla
phase has been studied recently.23,24 We focus on the diffu-
sive properties at the critical point, and do not investig
whether saddle-point solutions whithin the Bose glass co
lead to nonzero conductivities. However, it is notewort
that an infinite critical conductivity is consistent with a Bo
metal with a diverging conductivity at the transition.24

We derive these results in a NLsM approach, in which
we discard those critical modes of the clean system wh
are extraneous and retain only the particle diffusion mode
the disordered system. The resulting NLsM leads to a num-
ber of nontrivial predictions:~1! the critical conductivity is
infinite; ~2! there are two diverging times scales if the inte
action is Coulombic, one associated with charge diffusi
which has exponentz51, the other associated with energ
diffusion, which has exponentz52; ~3! the single-boson
density of states diverges asv22/3, which implies a critical
exponenth522/3 in the case of Coulomb interactions; fo
short-range interactions, it diverges logarthmically;~4! the
correlation-length exponent takes the mean-field valuen
51/2.

If boson-vortex duality were to hold exactly, then on
would expectg* 51 @in units of (2e)2/h#. Our result appears
to imply that duality is violated logarithmically: bosons a
more mobile than vortices in the infrared limit. However,
is hard to see how the physics of vortices enters at all i
our calculation, so it is possible that we have missed imp
tant nonperturbative effects. Our results do not agree with
numerical study of Wallinet al.25 However, the flow to our
fixed point is logarithmic, and this may be too slow for
numerical study on a finite-sized system. Alternatively, th
may simply be accessing a different fixed point which
tracts systems with small bare conductivities. And fina
since their starting point studies phase but no amplitude fl
tuations, the two models may simply be in different unive
sality classes. Our results also differ quantitative
from those of Herbut, which are based on an expans
aboutd51.26

The measured critical exponents for the zero-fie
superconductor-insulator transition, which is accessed
varying the thickness of a thin film,27,28are those of classica
percolation. This does not agree with our theory, but it a
suggests that the experiments are not quite in the asymp
quantum critical regime, but rather in some highe
temperature classical regime. There is disagreement a
6-7
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the values of the critical exponents at the magnetic-fie
tuned superconductor-insulator transition. One experime29

finds percolationlike exponents, while another28 finds n
50.760.2, which includes our theoretical prediction at t
edge of its error bar.~All of these experiments findz'1, as
expected on general grounds,5,9 and in our theory.! The ap-
plicability of our strategy to a magnetic-field-tune
superconductor-insulator transition is a question for fut
study.
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APPENDIX A: DERIVATION OF THE s MODEL

Here we derive the effective action for the interacti
disordered bosons in terms of two fieldsF andQ. We work,
in sequence, on the free part, the disorder part, and finally
interaction part of Eq.~3!.

1. The free action

We start by introducing a bosonic amplitudeF to de-
couple the chemical potential (m) term. F acquires a finite
expectation value when bosons condense.

The free part of the action

Sfree@f#

5(
n,m

E d2xifnaA~x!S i en1
1

2m
¹21m DLnmfmaA~x!

~A1!

is generated upon integration of a decoupling fieldFna
5Fna11 iFna2 in

Sfree@f,F#5(
n,m

E d2xifnaA~x!S i en1
1

2m
¹2D

3LnmfmaA~x!1(
n
E d2x

1

2
Fna* Fna

1(
n
E d2xA2mfnaA@e2 i (p/4)sgn(n)#FnaA .

~A2!
09450
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2. Disorder term

Let us next decouple the four bosons in the disorder te
in Eq. ~3!,

Srand5 (
n,n8,m,m8

E d2x
v0

2
fnaA~x!

3Lnn8fn8aA~x!fmbB~x!Lmm8fm8bB~x!, ~A3!

whereLmm85sgn(m)dmm8 . The same disorder term is gen
erated upon integration of the Hubbard-Stratonovich ma
field Qab,AB

mn ,

e2Srand[f]5E DQ expS 2
1

2v0
E ddxtrQ2De2SHS[Q,f] ,

~A4!

where

SHS@Q,f#

5 i (
n,m,m8

E d2xfnaA~x!Qab,AB
nm ~x!Lmm8fm8bB~x!.

~A5!

The matrixQ has indices in three separate spaces, i.e.,
assembled as a direct product in energyn,m, replica a,b,
and real-imaginaryA,B spaces. The trace ofQ2 corresponds
to

trQ25Qab,AB
nm Qba,BA

mm , ~A6!

where repeated index summation is carried out in all th
spaces. When we write for shortQnn8 we mean a matrix
whose elements are matrices in replica, and real-imagin
spaces.

3. Interaction term

Let us consider the case of short-range interactions, in
density-density~s! and pairing~c! channel. Once again, w
will omit sums over indices for replica and real-imagina
parts, and write explicitly the Matsubara sums,

Sint5Ss1Sc , ~A7!

where
6-8
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Ss5Gs (
n1 , . . . ,n4

E ddx expS 2 i
p

4 (
j

sgn~nj ! D @fn1aA~x!JAA8fn2aA~x!#@fn3aB~x!JBB8fn4aB~x!#dn12n21n32n4
,

~A8!

Sc5Gc (
n1 , . . . ,n4

E ddx expS 2 i
p

4 (
j

sgn~nj ! D @fn1aA~x!SAA8
1 fn2aA8~x!#@fn3aB~x!SBB8

2 fn4aB8~x!#dn11n22n32n4
, ~A9!

with the matricesJAB5(1/A2)(dAB2sAB
2 ) andSAB

6 5sAB
3 6 isAB

1 ~thes i being Pauli matrices!. Notice that the different terms
within square brackets above correspond, in terms of the original bosonsc, to c* c,c* c* , andcc.

We now introduce two Hubbard-Stratonovich fieldsX andXc ,Xc* to decouple the fourf interactions,

e2Ss[f]5E DXe2Sy[X]e2SHS/X[X,f] , ~A10!

SHS/X@X#5 iA2Gs(
n,m

E ddxfnaA~x!e2 i (p/4)sgn(n)Xab,AB
nm ~x!e2 i (p/4)sgn(m)fmbB~x! ~A11!

and

e2Sc[f]5E DXc* DXce
2Sz[Xc]e2SHS/Xc

[Xc ,f] , ~A12!

SHS/Xc
@Xc#5 iA2Gc(

n,m
E ddxfnaA~x!e2 i (p/4)sgn(n)

1

2
@Xcab,AB

nm ~x!1Xc
†

ab,AB
nm ~x!#e2 i (p/4)sgn(m)fmbB~x!, ~A13!
-

in
where

Xab,AB
nm 5Xa

n2mdabJAB , Xcab,AB
nm 5Xca

n1mdabSAB
1 .

Notice that the matricesXab,AB
nm andXcab,AB

nm depend, respec
tively, only on the energy differencen2m and sumn1m.
The action for the matricesX andXc is

Sx@X#5
1

2 (
n
E ddxXa

nXa
2n , ~A14!

Sxc
@Xc#5

1

2 (
n
E ddxXc* a

nXca
n . ~A15!

4. Integrating out the f fields

We can summarize all terms discussed in the preced
section,

Xc5E DfDFDQDXDXc* DXc

3expS 2
1

2v0
E ddxtrQ2De2Sx[X]e2Sxc

[Xc]

3e2Sfree[f,F]e2SHS[f,Q]e2SHS/X[f,X]e2SHS/Xc
[f,Xc] ,

~A16!

where we can expressSfree,SHS,SHS/X , andSHS/Xc
in a more

concise~matrix! notation as follows:
09450
g

Sfree@f,F#5E d2xifT~x!S iV1
1

2m
¹2DLf~x!

1A2mE d2xfTe2 i (p/4)LF, ~A17!

SHS@f,Q#5E d2xfT~x!iQ~x!Lf~x!, ~A18!

SHS/X@X#5 iA2GsE ddxfT~x!e2 i (p/4)LX~x!e2 i (p/4)Lf~x!,

~A19!

SHS/Xc
@Xc#5 iA2GcE ddxfT~x!e2 i (p/4)L

1

2
@Xc~x!

1Xc
†~x!#e2 i (p/4)Lf~x!, ~A20!

where the matrixVnm5endnm .

Integrating out the boson fieldsc, we obtain

Xc5E DfDFDQDXDXc* DXcexpS 2
1

2v0
E ddxtrQ2D

3e2Sx[X]e2Szc
[Xc]e2S0[Q,F,X,Xc] ~A21!

with
6-9
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S0@Q,F,X,Xc#

5mE ddxFTGF1E ddxtr lnF i S iV1
1

2m
¹2DL

1 iQ~x!L1 iA2Gse
2 i (p/4)LX~x!e2 i (p/4)L

1 iA2Gce
2 i (p/4)L

1

2
@Xc~x!1Xc

†~x!#e2 i (p/4)LG
~A22!

5mE ddxFTGF1E ddxtr lnF S iV1
1

2m
¹2D

1Q~x!2 iA2Gse
2 i (p/4)LX~x!e1 i (p/4)L

2 iA2Gce
2 i (p/4)L

1

2
@Xc~x!1Xc

†~x!#e1 i (p/4)LG
1const. ~A23!

The propagatorG depends onQ,X, andXc ,Xc* .

5. Shifting Q

Let us now shiftQ,

Q→Q̃5Q2 iA2Gse
2 i (p/4)LXe1 i (p/4)L

2 iA2Gce
2 i (p/4)L

1

2
~Xc1Xc

†!e1 i (p/4)L

and

trQ25trQ̃21 i2A2Gstr@Q̃e2 i (p/4)LXe1 i (p/4)L#

1 i2A2GctrF Q̃e2 i (p/4)L
1

2
~Xc1Xc

†!e1 i (p/4)LG
~A24!
on

rm

09450
24Gs2k(
n
E ddxXa

nXa
2n

24Gc2k(
n
E ddxXc* a

nXca
n . ~A25!

The Matsubara cutoffk comes from the extra frequency su
in the trace, and there are factors of 2 from the traces o
the real-imaginary components, trJ52 and trS1S254.

The next step is to integrate out theX,Xc fields. This
generates quadratic inQ terms~we now drop the tildes for
notational simplicity!. It is useful to define

G̃s,c5
Gs,c

v0
2

1

128
Gs,ck

v0

,

Sfink5G̃s,c (
n1 , . . . ,n4

E ddx@e1 i (p/4)sgnn1Q
aa,AA8

n1n2 e2 i (p/4)sgnn2#

3gAA8,BB8
s,c

@e1 i (p/4)sgnn3Q
aa,BB8

n3n4 e2 i (p/4)sgnn4#

3dn17n26n31n4
, ~A26!

where the tensorsgAA8,BB8 depend on the channel

gAA8,BB8
s

5JAA8JBB8 , ~A27!

gAA8,BB8
c

5SAA8
1 SBB8

2 . ~A28!

Summarizing it all, we have an effective action
Seff@Q,F#5
1

2v0
E ddxtrQ21E ddxtr lnF S iV1

1

2m
¹2D1Q~x!G1mE ddxFTGF

1G̃s (
n1 , . . . ,n4

E ddx@e1 i (p/4)sgnn1Q
aa,AA8

n1n2 e2 i (p/4)sgnn2#gAA8,BB8
s

@e1 i (p/4)sgnn3Q
aa,BB8

n3n4 e2 i (p/4)sgnn4#dn12n21n32n4

1G̃c (
n1 , . . . ,n4

E ddx@e1 i (p/4)sgnn1Q
aa,AA8

n1n2 e2 i (p/4)sgnn2#gAA8,BB8
c

@e1 i (p/4)sgnn3Q
aa,BB8

n3n4 e2 i (p/4)sgnn4#dn11n22n32n4
.

~A29!
APPENDIX B: SEPARATION OF LONGITUDINAL
AND TRANSVERSE „DIFFUSIVE … MODES

In this appendix we show that the transverse fluctuati
of the Q field correspond to boson diffusion form50, simi-
larly to the fermionic case. We show that the diffusion te
s

arises even in the absence of a small parameter 1/EFt.
Expansion to quadratic order indQ leads to a term

1

2
Mn1n2~q!dQ

aa8,AA8

n1n2 ~2q!dQ
a8a,A8A

n2n1 ~q!, ~B1!
6-10
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where

Mn1n2~q!5
1

v0
2E ddp

~2p!d
G~p,n1!G~p1q,n2!. ~B2!

The first term on the right-hand side comes from the trQ2 in
the action, and the second term has its origin in the tr ln•).
Mn1n2(q) is selected to be diagonal in and independent
replica a,a8 and real-imaginaryA,A8 indices. The Green’s
function

G~p,n1!5
1

i en2E~p!1
i

2t
sgn~en!

. ~B3!

For sgnn1sgnn2.0, the real part of the integral vanishes f
q→0, so that Re@Mn1n2(q)#51/v0, and we are left with a
massive longitudinal mode.

Let us turn to the interesting case sgnn1sgnn2,0. For
simplicity, we neglect thei en1,2

terms in the denominato
~these terms can be handled alternatively by shifting theQ
field!. Expanding the integral in Eq.~B2! in powers ofq,

E ddp

~2p!d
G0~p,n1!G0~p1q,n2!

5E ddp

~2p!d
G1~p!G2~p!

1
1

2

q2

m

3E ddp

~2p!d FG1
2 ~p!G2~p!1

4E~p!

d
G1

3 ~p!G2~p!G ,
~B4!

where G6(p)5@2E(p)6 i /2t#21. The integrals over mo-
menta can be transformed into integrals over energye using
the density of statesn(e)5(1/2)@Sd /(2p)d#(2m)d/2ed/221.
Define

I a,b,c5E
0

V

den~e!ea@G1~e!#b@G2~e!#c, ~B5!

so

E ddp

~2p!d
G0~p,n1!G0~p1q,n2!

5I 0,1,11
1

2

q2

m F I 0,2,11
4

d
I 1,3,1G ~B6!

~a finite upper frequency cutoffV is needed depending o
d,a,b,c). It is also convenient to rescale the energies, de
ing y52te, so we can write
09450
f

-

I a,b,c5
1

2

Sd

~2p!d
~2m!d/2~2t!2d/22a1b1c

3E
0

2tV

dy
yd/2211a

~2y1 i !b~2y2 i !c

5Ad~2t!2a1b1cE
0

2tV

dy
yd/2211a

~2y1 i !b~2y2 i !c
,

~B7!

with Ad5(1/2)@Sd /(2p)d#(2m)d/2(2t)2d/2.
One can check that oncet is fixed by the saddle point Eq

~7!, which can be cast as

ImI 0,1,052ImI 0,0,15
1

2tv0
, ~B8!

then it follows trivially that

I 0,1,15
1

v0
, ~B9!

so that the leading order term inM'(q) is of orderq2, which
allows us to define the diffusion constant

D5
1

4m F I 0,2,11
4

d
I 1,3,1G . ~B10!

The last step remaining is to show thatD is purely real. After
simple manipulations, one can show that

ImD5
1

4m

Sd

~2p!d
~2m!d/2~2t!2d/213

3E
0

2tV

dyF S 8

d
21D y221G yd/221

~y211!3
. ~B11!

It is trivial to show by integration by parts@splitting the
integrands intof (y)5y/(y211)3 andg(y)5ya# that the in-
tegral in Eq.~B11! scales as (tV)d/224. Thus the cutoff can
be safely taken to infinite ford,8, and ImD50.

Notice the difference between the fermionic and boso
cases. In the fermionic case one can also interchange
mentump integrals for energye integrals, using the density
of states at the Fermi levelEF . The integrals are cutoff by
the bottom of the band,2EF away from the zero energy
states. In the bosonic case, one starts from the bottom o
band, and needs to include an energy dependent densi
statesn(e); the cutoffV is introduced only for convergence
andV→` is possible ford,8. In contrast to the fermionic
case, whereEF is finite, in the bosonic case for a perfe
parabolic spectrumV→`. The small parameter for the
Fermi case is (EFt)21, whereas for the Bose case it
(Vt)21→0.
6-11
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APPENDIX C: PARAMETRIZATION OF THE SADDLE
AND RELATION TO THE FERMIONIC s MODEL

As we previously mentioned, we can easily obtain the R
equations for the conductance and interaction couplings
determining a correspondence with the fermionic mod
Here we show how this is achieved.

Let us first look at the Finkelstein type terms in the effe
tive action for theQ fields. TheQ matrices are parametrize
as in in Eq.~10!, repeated here for convenience,

Q5
mv0

2 S i ~11qqT!1/2 q

qT 2 i ~11qTq!1/2D . ~C1!

The quantities that appear in the Finkelstein type terms
the bosonic problem are

e1 i (p/4)LQe2 i (p/4)L

5
mv0

2 S i ~11qqT!1/2 iq

2 i ~qT! 2 i ~11qTq!1/2D , ~C2!

mv0

2
i S @12q~2qT!#1/2 q

~2qT! 2@12~2qT!q#1/2D . ~C3!

Direct comparison with the fermionic saddle point
rty

.V.

. B

e

r.,

y,

09450
y
l.

-

r

QF5
mv0

2 S ~12qqT!1/2 q

qT 2~12qTq!1/2D ~C4!

shows that the terms in the Finkelstein type action
bosons, upon parametrization in terms ofq,qT, are the same
as the ones for fermions upon the identificationq→q and
qT→2qT. The extra factor ofi in Eq. ~C3!, once squared
~because the Finkelstein terms are quadratic inQ), makes the
sign of the interaction term for bosons and fermions
same.

For discussing the diffusive termD*ddxtr(¹Q)2, notice
that by rewriting

Q5
mv0

2
i S @12q~2qT!#1/2 2 iq

i ~2qT! 2@12~2qT!q#1/2D
~C5!

we again identify it with the fermionic saddle pointQF , but
now the off-diagonal elements have extra factorsi ,2 i .
These factors will cancel each other in the expansion of
quadratic inQ diffusive term, and hence can be dropped, a
once again the fermionic saddle expansion can be used.
overall factor ofi has the effect of changingD→2D.

In summary, all the RG equations for the dirty interacti
boson problem can obtained from those of the~interacting!
fermionic orthogonal ensemble upon replacingg→2g ~or
D→2D).
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