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The low-energy theory af-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of
phase coherence in a two-dimensiodalave superconductor dt=0 is derived from first principles. The
theory has the form of2+1) dimensional quantum electrodynamics (QfDand is proposed as an effective
description of theT=0 superconductor-insulator transition and of the pseudogap phase in underdoped cu-
prates. The coupling constafftharge”) in this theory is proportional to the dual order parameter ofXlve
model, which is assumed to describe fluctuations of the phase of the superconducting order parameter. Finite-
ness of the charge is then tantamount to the appearance of infinitely large vortex loops, i.e., to the loss of phase
coherence in the system. The principal result is that the destruction of the superconducting phase coherence in
the d-wave superconductors typically, and immediately, leads to the appearance of antiferromagnetism. This
transition can be understood in terms of the spontaneous breaking of an approximate “chigé?’) Sym-
metry, which may be discerned at low enough energies in the staddeade superconductor. The mechanism
of this spontaneous symmetry breaking is formally analogous to the dynamical mass generation,im4RED
the “mass” here being proportional to staggered magnetization. Other phases with broken chiral symmetry
include the translationally invariantd+ip” and “ d+is” insulators, and the one-dimensional charge-density
and spin-density waves, which are all insulating descendants aftfee/e superconductor. All the insulating
states have neutral spin-1/2 excitations that one can identify in the superconductor confined by the logarithmic
potential. Electron repulsion is in this formalism represented by a particular quartic perturbation to the QED
action, which breaks the chiral symmetry and selects the antiferromagnet as the preferred broken symmetry
state. | formulate the mean-field theory of the antiferromagnetic instability in presence of a short-range repul-
sive interaction, and find the staggered magnetization to be significantly enhanced deeper inside the insulating
state. The theory offers an explanation for the roundadave-like dispersion seen in angle-resolved photo-
emission spectroscopy experiments on the insulatingC@@,Cl, [F. Ronninget al, Science282 2067
(1998]. Relations to other theoretical approaches to the Rigproblem are discussed.
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[. INTRODUCTION prove to be nonuniversal. Arguably, the physics of the under-
doped regime may be the main mystery of high-temperature
Soon after the original discovery, it became well appreci-superconductivity.
ated that the high-temperatuiteigh-T.) superconductors are In a remarkable contrast to the uncertainties inherent to
all quasi-two-dimensional insulating antiferromagnets thathe insulating phase, the superconducting phase of most
become superconducting with the introduction of holes. Thdligh-T. materials is well established to hastavave symme-
nature of the relationship between antiferromagnetism andfy of the order parametér} typically with well-defined,
high-temperature superconductivity has been the central idong-lived quasiparticle excitatioris: This simplicity sug-

sue in the field. Following the time honored strategy of un-9€Sts that amvertedapproach to the higfiz problem may

derstanding first the non-superconducting state, most of the¢ More natural:if there exists a-wave state in the phase

approaches to the higFe problem focused on finding the iagram, whabther states can in principle be inferred from

mechanism by which doping an antiferromagnet would pro_it? The purpose of this paper is to establish the theoretical

b . e } . framework for answering this question, answer it, and show
duce a superconductoiThe essential difficulty in pursuing how this may help explain some salient features of the cu-

this gtr_ategy seems o be that the Mott insulator is 'Fself.%rate phase diagram and the angle-resolved photoemission
npntrlwal strongly correlateq state, har_der to descr|be.| pectroscopyARPES experiments in the insulating stat&.
S|mple' terms than the metallic Fermi liquid, which played its Loosely speaking, there are two ways to destroy a super-
role in the' BCS t'heor.y of the low-temperature conqycting statet1) by driving the amplitude of the order
superconductivity. The situation becomes only worse away parameter to zero, which is what is well described by the
from half-filling, where the ground state of even the 5imp|e$tweak-coupling BCS theory at finite temperat@rér ex-
models becomes more ambiguous. Experimentally, the cuample. Ford-wave superconductors this process presumably
prates seem to loose their antiferromagnetic ordering withis relevant at large dopings, where weak-coupling treatments
doping before they become superconducting, and many cawf the Hubbard and related models can be trusted, and disor-
didates for the intermediate “pseudogap phase” have beeder should eventually forc&, to vanish'® (2) Even if the
discussed in literature. The nature of the nonsuperconductingmplitude of the order parameter is large and finite, super-
state that is supposed to be unstable to superconductivityonductivity will be lost with the destruction of phase
with doping is at this point, however, far from clear and mayorder'*'? There is evidence that this is what actually occurs
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in underdoped cuprates, where the superconducting transi- T
tion temperatureT,) is much lower that the pseudogap tem-

peratureT*. Since underdoped cuprates are strongly two di-
mensional, at finite temperatures the loss of phase order may

be expected to proceed via the Kosterlitz-Thouless transition,

and indeed, there are distinct experimental signatures of the
fluctuating vortices abovd .. The following question

then naturally arises: What is the nature of e O phase

that derives from a two-dimensionéD) d-wave supercon- S'Z‘f’
ductor when the phase coherence is lost, but the order pa- <
rameter amplitude is still finite? The central thesis of this ?
work is that the phase incoheredtwave superconductor S:i-’

(dSQ is nothing but the insulatingtypically incommensu-
rate spin-density-wavgSDW), i.e., weak antiferromagnet.
Short account of this result appeared earlier in Ref. 15.

FIG. 1. A schematic phase diagram of cuprate superconductors

| show that the minimal continuum theory of the low- . - )
ener uasiparticle excitations near the four nodes of thi mS of the low-energy chiral symmetries &) (full symme-
9y d P ‘tary) andU,(1) (broken symmetry Besides chiral symmetries, the

d-wave order parameter coupled to fluctuating vortex loops

o - . . d-wave superconductqdSQ also has full spin rotational symme-
atT—O. is provided by (2-1)-dimensional quantum electro- try, and the spin-density wavéSDW) has superconducting (1)
dynamics (QED):

and spin rotational symmetry around one of the axes. Near and left
of the underdoped transition point the system is proposed to be an

N _ ) 1 . extremely weak SDW, which becomes reinforced by the electron
S:f d?rdr| W,y,(d,+ia,) ¥+ —2(V><a)2 : repulsion, and which continuously evolves into a stronger antifer-
2|(®)| romagnet near half-filling.

tum fluctuating dSC is thus &t=0 inherently unstable to-
wherev=0 (imaginary time 1, 2 (spac¢, and the sum over \ards SDW ordering once the phase coherence is lost.
repeated indices is assumed. TFaur-componentDirac The dSG-SDW quantum phase transition is an example
fields W;, i=1,2 represent the sharp, electrically neutralpf spontaneous breaking of continuous global symmetry in
spin-1/2 excitations one can define in the superconductingq_ (1), which for a lack of better name | will call “chiral”
state(and hence may call “spinong;” which are minimally  throughout the paper. Chiral symmetry breaking is a well-
coupled to a massless gauge fialdThe gauge field derives studied field-theoretic phenomenon, believed to be inextrica-
from the fluctuating topological defectgortex loop$ in the  bly linked to confinement in QEP*® Massless QEB for
phase of the superconducting order parameter, which hawngle species of Dirac fermions has the continuous U(2)
been integrated out in deriving the theddy. The complex =U(1)XSU,(2) symmetry, with the generatolsys,ys,
number(®) is proportional to the the disordédual ordey  and yss=ivy3ys, respectively. In the action in Eql), the
parametel® and represents the state of vortex loop®) U(1) factor represents the residual spin rotational symmetry
#0 signals the appearance of infinitely large loops in thdeft by the choice of representation, as will be explained in
system and the loss of phase coherence, which iSTth@ detall later. It is the additional SI(2) symmetry per Dirac
analog of the Kosterlitz-Thouless transitibhin the super- component in QEBRthat will be of central interest here. The

conducting state, on the other hand, all loops are of finitdermion mass ternm¥, ¥ breaks the SL(2) symmetry for
size,(®)=0, and the gauge field, in the simplest approXi-each Dirac field to (1), and the twobroken generators
mation, may be considered effectively decoupled from thggtate between different insulating states. Chiral @)
spinons: quasiparticle excitations are then sharp, since all tr@ymmetry arises as an approximate symmetry of the dSC
short-range interactions that have not been explicitly Writterbmy at low energies, and will be manifestly broken, for ex-

in Eq. (1), if weak enough, are strongly irrelevant. When ample, by higher-order derivatives omitted in Ed). It
(®)#0 the situation becomes radically different, as theshould not be confused with the spin rotational symmetry,
gauge field mediates a long-range interaction betweepich is, of course, also and exactly present in the dSC.
spinons. In reality the theory is also strongly anisotropic, buiyjgher-order derivatives and the electron interaction terms
for simp'licity. Fhis possibly important feature has been ne-requce the SL(2) to its U.(1) subgroup, which is related to
glected in writing Eq(1). QED; has also been recently con- the spatial translations of the original electrons. The identifi-
sidered by Franz and Tasovic® as an effective description cation of the approximate chiral symmetry in the dSC is
of the pseudogap state. They argued that the presence of thgsential for establishing the connection between the antifer-
massless gauge field may explain the broad features seen dmagnetic and the superconducting phases advocated in this
ARPES measurements in the normal seféHere | show  paper, and represents one of the central results. The idealized
that atT=0 as soon agd) becomes finite there is a dynami- cyprate phase diagram may be understood in terms of the
cal generation of the mass termmW¥;¥; in Eq. (1), which  chiral symmetries of different states as depicted in Fig. 1.
can be identified as the staggered potential “felt” by the Assuming the scale for the SDW transitidgp(X) in an
original electrons, i.e., with the SDW order parameter. Quananisotropic quasi-two-dimensional high-temperature super-
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conductor to be set by the magnitude of the staggered magery existence of an ordinary antiferromagnet at, and pre-
netization aff =0,%! the present work suggests that near andsumably near, half-filling may therefore be taken as evi-
left of the superconductor-insulator transition one should exdence in favor of the type of theory presented in this paper.
pectTgpy to be considerably lower than the superconducting  The physical picture of the antiferromagnet8DW) in-
T.(x) near and right of the critical pointTgpw(X,—6)  Sulator as a phase-disorderéavave superconductor is fur-
<T(x,+ ), wherex, is the critical doping for the dSC- ther supported by the ARPES data on insulating@#,Cl,
SDW transition, andd<1 (see Fig. 1 This is because gen- and SsCuO,Cl,.#° These experiments show two unexpected
eralized QER with N fermion species has a critical point at features of the insulating statet) although the ARPES spec-
N=N.,~3, above which there is no dynamical masstral function is broad, one can nevertheless identify a rem-
generatiorf? QED; in Eq. (1) hasN=2 components, which hant of the Fermi surfac€?) the dispersion at such an ap-
together with some numerical factors gives very weak SDWProximate “Fermi surface” has d-wave form, except that it
order near the superconducting phase. The pseudogap ph;;;@:omes rounded and without the characteristic cusp at low
in cuprates al =0 is therefore proposed here to be actua”yenergies. The “relativistic” dispersion for broad quasiparticle
an extremely fragile SDW, likely to be easily destroyed bye€xcitations that QERimplies in the insulating state, when
disorder, for example. As half-filling is approached and themeasured from the lowest energy given by the dynamically
vortex loop condensati@b) increases, the repulsion between generated chiral mass, provides a very good fit to the data
electrons also becomes important. Short-range repulsion €€ Fig. 3. The present theory implies that the rounding of
represented in QEPby a particular quartic term, which if the dispersion is controlled by the size of the sublattice mag-
weak is irrelevant in the superconducting state, but whicH€tization, and therefore should decrease with doping, as one
also manifestly breaks the chiral symmetry of the low-energy@Pproaches the superconducting state. It would be desirable
theory. | show that the effect of such a term is first to breakiO test this prediction in future experiments.

the degeneracy among states with broken chiral symmetry in In the body of the paper I develop the above picture in
favor of the SDW, and then to dramatically increase thedetail. In the next section, | derive the Dirac representation of
SDW order parameter farther from the dSC. The picture imthe Hamiltonian for low-energy nodal quasiparticles, and dis-
plied by the QER is qualitatively in accord with the generic Ccuss the coupling to quantum fluctuating vortex loops in Sec.
phase diagram for the underdoped cuprates, where the antll. A derivation of the dynamics of the gauge field starting
ferromagnetic transition near half-filling raises 6300 K, ~ from theXY model on a lattice is presented in Sec. IV. This

but is typically unobservably low very near the supercon-Section is somewhat technical and may be skipped at first
ducting state. reading. Instead, the reader may consult Appendix B, where

Neutral spinons, which are well-defined quasiparticles in Simpler derivation for finite temperatures is presented. Dy-
the superconducting state, in the insulator become broad eRamical breaking of chiral symmetry and the formation of
citations with the lifetime proportional to the antiferromag- the SDW state is discussed in Sec. V. More general discus-
netic order parameter. AT=0 and at large distances they Sion _of ch_lral symmetry and other ordered states on the chiral
become confined by a logarithmic potential provided by themanifold is provided in Sec. VI. The reduction of chiral sym-
gauge field in the presence of the chiral symmetry breakinghetry by the irrelevant terms is discussed in Sec. VI, and
Due to the weakness of the SDW order very near the supethe mgan-fleld theory of the antn‘erromag.netlf: instability qf
conducting transition, however, spinon confinement is effecQEDs in the presence of electron repulsion is proposed in
tive only at very large distances, or equivalently, at very lowSec. VIIl. Confinement of spinons in the insulator is dis-
temperatures. The weak SDW phase therefore appears effegissed in Sec. IX. The discussion of the ARPES measure-
tively deconfined at intermediate length scales. The fifiite- MenNts is given in Sec. X. A summary of the main results and
pseudogap phase has gap'ess Spinons Strong'y Scattered Cb§CUS§IOI’] Of the rela..tlonS tOlother t.h(.éoretl.cal ap.proaches are
the massless gauge field, in qualitative agreement with th@iven in the concluding section. | finish with a list of open
broad spectral features of the electrons seen in ARBES. problems. Technical details are presented in five appendices.
Near half-filing the SDW order increases and the bound
state of spinons rapidly shrinks, leaving only magnons inthe || pJrRAC THEORY FOR NODAL EXCITATIONS
excitation spectrum.

The confined nature of the standard antiferromagnet close | begin by assuming that the superconducting state, except
to half-filling, if postulated, by itself already points to the from being ad wave, otherwise exhibits the standard BCS
QED; as a viable candidate for the effective theory of underfhenomenology. In particular, | assume that the quasiparti-
doped cuprates. If one views the superconducting state a&des are well-defined, long-lived excitations. Generally, the
being spin-charge separatedine needs a mechanism by quasiparticle action af#0 may then be taken to be
which spinons would eventually become confined in the an-
tiferromagnetic phase. QEprovides such a mechanism au- ) Foe _
tomatically, since the massless gauge field mediates a long- S=T_2 | (ion=&)ch(K 0n)c,(K,wp)
range logarithmic interaction between the spinons that binds kwn
them at all energies. Were the gauge field massive, on the o+ .. .
other hand, the physics would be equivalentZip gauge - EA(k)cZ(k,wn)cia(—k,—wn)+h.c.+0(c4) ,
theory, and the antiferromagnetic state would be deconfined
and quite different from the usual antiferromagffet* The 2
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with the integral over momenta performed ovie<A
<T*. The 4x4 matrices in Eq(4) are M;=io3® o3 and

Mo=—io3®0;. o are the usual Pauli matrices, and the

| ay coordinate system has been rotated as in Fig. 2.
v q, To cast the theory in Dirac form we may invoke the ma-
trix yo=0.®I, wherel is the 2<2 unit matrix. Theny]
""""""""" K e :|®|, and Mi:’)/o’)/i, with Y1= 02803, and Yo= — 02
2 K, ®01. {VprYut=26,,, »,u=0,1,2, so they matrices in-

deed satisfy the Clifford algebra. The quasiparticle act®n
at low energiesbecomes equivalent to the field theory

- [P ! ’
S 1= [ 07 [ o0+ vavit a0 sty 1

i +H(1—2xy)+O(d0" ¥’ B'4), ®)

a

where W/ =W/'"y. Weak quartic interactions, as long as
they are short-ranged, are irrelevant by simple power count-
ing. This simply reflects the severe phase-space restrictions
Jor scattering of the nodal quasiparticles. | will therefore
omit them temporarily, together with the second-order de-
rivative terms, and return to their effects in Sec. VII.

The reader would be correct to note that there is a con-
siderable freedom in selecting the form of the matyix In
fact, any 4x4 matrix that anticommutes witM,; and M,

FIG. 2. The wave vectork;, i=1,2, andq. The dashed line
stands for the putative Fermi surface. The SDW ordering wav

vectors areQ, = 2K .

whereA(IZ) has the usuad-wave symmetry, and two spatial
dimensions(2D) are assumecdt andc' are the electron op-

eratorso =+ labels thez projection of electron spin, andl,  anq squares to the unit matrix would yield an equally valid
are the fermionic Matsubaza frequencies. Units are chosen §§jr4¢ representation. It is shown later that this freedom will
thath=c=e=1. The O(c") term stands for all possible ¢qrrespond to different “directions” in the space of ordered
short-range interactions between quasiparticles. states with broken chiral symmetry. The specific choice for
We may represent the quasiparticle Hamiltonian in terms, " made here will be analogous to choosing a direction in
of two four-componentields, real space along which to search for a finite magnetization,
- - - for example, in the more familiar magnetic phase transitions.
W/ (g, 0=l (K o,),c_(—K,— o),
CTF(IZ— Q"i L), C_(— E+ éi — wn))! 3) IIl. COUPLING TO TOPOLOGICAL DEFECTS

. . The goal in this section will be to find the most economi-
where Q;=2K; is the wave vector that connects the nodesca| form of the coupling between nodal excitations in the
‘iV'thln th? dlagorlal pa:|n=1,2, as in Fig. 2. For spinor 1, §sC and the fluctuations of the phase of the superconducting
k=K,+q, with |g|<|K4|, and analogously for the second order parameter. The working assumption is that the ampli-
pair. The construction of the four-component field is nottude fluctuations are frozen well below the pseudogap tem-
unique. The choice in Ed3) differs from the one made in peratureT*, so it is only the phase degree of freedom that
the Ref. 7 for example. | postpone the discussion of the alremains active at low energies. With this in mind | write
ternative construction used there for Appendix D. Using the . )
construction in the Eq.3), and by observing that; UA_WA(F, 7)=|v,| [T (] 7)
=—&-q, and Ag= —Ag,@i, for E%Ki, and then by lin-
earizing the spectrum a&=uv 0+ 0(qg?) and Ag=v,0y
+0(g?), one arrives at the low-energy action

where ¢, represents the reguldtspin-wave”) part of the
order parameter phase, agd is the singular contribution
due to topological defects. At=0 these would be the vor-
s tex loops’ or the more familiar vortices and antivortices at
s[qf']:f dsz dT\Ifi’f[(;TJrMlvfgx+szAay]qfi T+#0. At this point it is tempting to transform both spin-up
0 and spin-down fermionic operators by absorbing a half of the
4) total superconducting phase into each. In the presence of
topological defects, however, this would lead to multivalued
with 8= 1/T. The continuous Dirac ﬁel&,f(;’ 7) is defined fermionic fields and would not be a local change of variables
: in the partition function. This problem may be circumvented
by allowing only vortices of double vorticifyfor example,
4% o which then leads to th&, gauge theory representation of the
V(r)=T> —qeiwn7+iq'r\1fi’(a’wn)’ (5)  Problem, and a possibility of spin-charge separation in the
o J (2m)? pseudogap regim®. It is the single vortices, however, that

+(1—=2xy)+ 0P Tow’ W'4),

as
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first become relevant at thé#0 Kosterlitz-Thouless of ¢, to be (¢,/2)+ x, and of ¢z to be (¢,/2)— x. One
transition?® and they should be included in the description ofdeals with this gauge freedom, as usual, by eventually intro-
the T=0 transition as well. | will therefore utilize the idea of ducing the gauge-fixing term fa, that allows one to freely
Franz and Temnovig?”?® who suggested dividing a given sum over all regular internal gauggs Similarly, the divi-
vortex configuration into two groupsandB, and transform- ~ sion of the singular part of the superconducting phase into
ing the electron operators with spin up and spin down differthat which comes from the defects in grodiand the defects

ently. We write in group B is equally arbitrary. Just as one effectively sums
over all regular internal gauges by the introduction of the
) é (F - ) gauge-fixing term, we will sum over aﬁing_u_lar internal
da(r,7)= r2’ + poa(r,7), (8) gauges by averaging over all possible divisions of defects

into two groups. This is explained in the next section, and in
the Appendix B. As a by-product, the averagings over regular
and singular internal gauges will ensure that up and down
spinons are treated equally in QEDpreserving the symme-
try of the original electronic actiofR).

and similarly forB. ¢4, is the piece of the singular part of
the phase that comes from the defects grouped.itOne
may then make écal change of variables by introducing a

new Dirac field¥ as The crucial observation about the actitt0) is that the
R . R coupling of spinons to phase fluctuations is furnishedviy
W(r,r)=U(r,n¥'(r,7), (9) U fields that play quite different roles in the problem. The

. i : i : . ) total superconducting phase determines the Volovik figld
where U=diagle '?+,e'%e,e"'?2'%8}. Since any given ;.4 couF::)Ies to the cf?a?ge current, in the same way asu?IJwe true
vortex defect is either in grou or B, and therefore associ-  gjectromagnetic field would: , will therefore inevitably be-
ated with either up or down spin by the transformati®n comemassiveonce the high-energy spinons in Eg0) begin
circling around it with the transformed fermion would yield {5 pe integrated out. Its fluctuations therefore may provide
either 2 or zero of the accumulated phase change. Compogply a short-range interaction between spinons. The gauge
nents of the new fieldV are therefore single-valued func- fig|g a,, on the other hand, enters E{L0) in a gauge-
tions. _ _ o invariant way, and therefore is protected from acquiring a
The gauge-transformed action for the Dirac fieldis  mass from spinons. Both gauge fields, however, depend on
then the fluctuating positions of the topological defects, and ac-
L quire their dynamics not only from the spinons, but from the
SVv']—-9¥,av] defects as well. To determine their dynamics one therefore
s needs to integrate the defect degrees of freedom o, If
:f dZFJ d7¥ [ yo(d,+iag) would stay massless even after this integration is performed,
0 it would mediate a long-range interaction between the nodal
excitations, which, unlike the short-range quartic terms in
Eqg. (6), would not be made irrelevant by the phase space
+(1-2,x-y) +iv,d,, (10 restri_ction.s. This, hpwever, depends on the precise ayay
acquires its dynamics from the fluctuating vortex loops, to
with  a,=d,(da—¢s)/2, v,=3d,(dat+Pe)/2, and  which I turn next.
3,=(V(1© o)W ,vpV{(0301) W ,vpW (030 1) Wy).
Since the vectod, is built out only of the products of the IV. DYNAMICS OF THE GAUGE FIELDS
creation and the annihilation operators with same spin, it also
represents thghysicalcharge current carried by the quasi-
particles. On the other hand, since the regular part of th
phaseg, was in Eq.(8) divided equally between spin up and

+ y0(dxtia,) + 72|UA|((9y+ iay)]\lfl

The zero-temperature partition function for the coupled
system ofd-wave quasiparticles and superconducting phase
fluctuations is therefore

spin down, the Dirac fieldV is invariant under a regular .- - - -

gauge transformation. Components Wf therefore create Z:J D[V ,a,v]e” (V2T Sumlaeh), 1D
electrically neutral excitations with spin 1/2, which may R ..
therefore be referred to apinons with S ¥,a,v] defined by the Eq(10), and withSy;)[a,v]

The action(10) has two rather different gauge symme- to be derived by integrating out the phase fluctuations. For
tries, and it may be worthwhile pausing a little to reflect onsimplicity, I will assume that these may be described the
them. First, the physical electromagnetic gauge ﬂAllg (2+ 1)-dimens'ionaIXY model. The bare StiﬁnES.S for the
would enter the actior(10) by the replacement,—v,  Phase fluctuations will be assumed to be provided by the
+A,, and couple to the charge current. Under a regulahigh-energy modes that have been integrated out in arriving
gauge transformatiord,—A,+d,y, the Volovik field®  at the low-energy theory. Our goal will be then to rewrite the
v,—v,—d,x, while the gauge field, and ¥ remain the partition functhn for tbeXY model as the functional integral
same. The actiori10) is therefore gauge invariant, in the over the fieldsa andv. In particular, we want to integrate
standard sense. But it also has an additional internal gaugever the topological defects implicit in thé¢Y model.
symmetry, under the transformatioa,—a,+d,x, v, | first discretize the space and the imaginary time in writ-
—v,, Y—e 'X¥. This reflects the freedom of choice in ing the partition function of th&X'Y model. This is done to
Eq. (8); one could have equally well chosen the regular parfacilitate a more rigorous treatment of the topological de-
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fects, and it will prove possible to return to the continuumthe charge currend in the Eq.(10), which only leads to
description we employed until now. On a lattice, in the stan-additional irrelevant interaction between spinons. The inte-

dard lattice gauge-theory notatidn

f (H d¢.)exp(r< >

LL=XY. T

COS(¢i+;,,—¢i)) :
12

where the index labels the sites of a (21)-dimensional

lattice, andx is the lattice unit vector in th& direction, for
example. For simplicity, full isotropy in th&Y model is
assumed. Using the Villain approximatiSrand then inte-
grating over the phases leads to

® 1 .. - -
sz ds, ex _RE (VX$§)2+i2mY, ni-si>,
— n ] 1

(13

where ﬁi=
variable, satisfying the constraift-n=0 (indicated with

the prime on the sumV andV x should be understood as

(ni ;,Nj x,N; ) is an integer vortex-loop vector

gration overv; in the last equation then gives

Zo=| da 3

mp Mg

1 . . -
exp[—Ei (@[vxm,ﬁmmuz

(16)

+i5i-[v*><<rﬁ,i—rﬁs,i>]) :

Integrating overéi in Eq. (16) would give back the current
representation of th&XY model, Eq.(13). Alternatively, we

can introduce the real variablds, ; and® _ ; and write

® L 1
Zuy= fﬁwd[a,cbf,m 2, exr{ 2 (8—K

Ia.lg

V9><‘f)+,i)2

+i5i.(v*xcﬁ_,oﬂzﬂrki.qzkﬁrB,i.qu,i)”,

(17)

the lattice gradient and the curl, respectively. Summing over
n; forcess; to take integer values, and the above expressmN"here‘b+ _i=®,=®g;. The summations over the aux-

becomes the standard current representation of Xhie
model’

Next, | imagine dividing a given conflguratlon of vortex (D ,—P

loops mto two arb|trary groups, and write = nA,+nB i
with V- m, V r\3 i=0. We will want to sum over all inte-

iliary link variablesI’ ap force R andCDB and thereforeb
and ®_ to be integers. To preserve the gauge invariance
et Vuxis ¢)_|M—><I>_,ﬂ i) of the
last expression we must impose Iy ;=V- Iz ;=0.32%We
may next add a small chemical potential for the link vari-

gernAI and nB i, In order to average over all possible divi- abIeSIA,B to the action in Eq.17) as the termeI(IA’i
sions of vortices into two groups. Introducmg the lattice ver- 4 |2 2.1)- Up to the Villain approximation, the last expression

sion of the fleldsaI and vI as B+b 27rnA,, B b
—anB,I, WherebI an andBI Vxu, | write3

Z,~ j das 503 ep-3

NaNB

2
[ZK (Vxs)
+i27S;- (Na+Ng,) +iti- (Bj+b—2mny )

+IFI(§I_6I_2WﬁBI) . (14)

The summations oveﬁA, and ﬁB, then enforce the con-
straintss, t, —mAI, ands, mB, , WheremA, ande,

are new integers. Performmg the Gaussian integrals swer
yields

zo= | dde) 3

mp Mg

exp( - {2K5?
+ivi [VX(Myi+mg)]

+iéi~[v*x(n1,i—rﬁs,i>]}). (15)

is then equal to

=lim
X—0

d[aCDA: B]f d[ 0a,08]

1 . . - - -
Xex[{_Ei (W(VX(I)_P’i)Z"‘iai'(VX(D_’i)

1
- ZCOS( Opi—Onisi=27Pp;5)
1
_ZCOE{GBJ_GB,H;_ZW@B,L;) , (18

where | introduced two sets of “dual” angle, ; and g ; to
ensure the gauge invariance, and imposed the “frozen” limit
x—0. The integration ovea; in the Eq.(18) together with

the frozen limit ultimately set®, ;=0g;, so the last equa-

tion becomes another representation of the frozen lattice su-

perconductoFLS), which is well known to be dual to the
XY model in three dimensioré:®®
In principle, one would like to integrate out all the fields

other thana in the Eq. (18), to be left with the effective
actionSU(l)[ﬁ] for a only. The result would be an interacting

This can be further Slmpllfled by nOtICIng that the action |Stheory fora which can be expanded in powers a)f for

quadratic in the Volovik field/, which can also be mtegrated example

out. In doing so | will neglect the additional coupling ofto

Instead of doing this, | will approximate the
Su(l)[a] with the effective Gaussian action far that repro-
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duces the gauge-field propagator in the full the@®. This  where | allowed, in general, for some momentum depen-
approximation may be understood as the self-consisterdencethe termO(g?)]. The O(g?) term should be expected

mean field theory foa, with the effect of integration over all t0 appear in a more sophisticated approximation for the
other fields in Eq(18) lumped into the form of the propaga- gauge-field dynamics than provided by the E20). To the
tor. lowest order, the integration over all other fields in EtB)

In this approximation the problem of dynamics of the effectively yields theMaxwell termfor the gauge fielda,
gauge fielda reduces to the computation of the two-point With the stiffness inversely proportional 0 the expectation
correlation function for from the representation of théY value of thedual loop condens'atlcétb)~(e > that reflects_
model in Eq.(18). | therefore introduce the source term into e Phase of th&Y model. This is the main result of this

: e o > section. When the dSC is phase coherent and the vortex
the last expression by adding;j;- (VXa) to the exponent. . - .
Then loops are finite in sizg,®)=0, anda is infinitely stiff, and
in a first approximation may be considered decoupled from
.. .. 92 spinons. When vortex loops blow u@p)+#0, phase coher-
((VXa); (VX&) ) =————InZylj=6. (19  ence is lost, and the spinons are minimally coupled to a
Jinolju massless gauge field. This is in agreement with the physical
It is convenient then to integrate ovarin the Z,, first. One ~ arguments advanced in Ref. 18. o
finds At high temperature one can neglect the fluctuations in
the imaginary time direction and deal with the purely 2D
<(V3<§)i V(V*Xgl)j ) problem of point vortices and antivortices. This simplifies
’ ' the analysis in that no gauge invariance needs to be ensured
_ in the Eq.(17), so no dual angles are requir&f® One then
=i, 5,,,Ml|m7<cos( 0= 03— 27P; ,))rLs, ends up with the thermodynamic vortex fugacity playing the
X0 role of the dual condensafeand with the simpler sine-
(20) Gordon theory instead of the FLS. For an alternative deriva-
tion of the gauge-field dynamics at#0 and in continuum
MRat is in full accord with the conclusions of this section |

2

where the last average is to be taken over the configuratio

of the FLS: direct the reader to the Appendix B.
) 1 . . There is, however, an additional subtlety in going from
Z,y=lim J d[@,a]exr{ —2 (R(VXCD)Z the lattice to the continuum theory that is worth registering.
x—0 iv The partition function for theXY model in the Eq(17) has

symmetry undeg; ,—a; ,+2mn; ,, with n; , integer, that

] (21)  is lost when a small chemical potential tefin passing to
the Eq.(18)] is added. This implies that the summation over
the integer vortex variables in E(L7) must yield acompact

It is well established that the lattice superconductor at §erm for a, which may be approximated with the Maxwell
smalldbut firr:ite “temperature$<| has Ia phase trar;]sitifon Ks'sl term, Eq.(23), in continuum. Possible effects of compactness
varied in the same universality class as in the frozen limit_. - : S . .
x=0 1733\e may therefore relax the constraint-0 with of a on the picture developed in this paper are discussed in
. . L Sec. XIl.
impunity and assume to be finite. The average that appears
on the right-hand side of the ER0) can then be computed,
for example, by using the mean-field approximation to the V- DYNAMICAL BREAKING OF CHIRAL SYMMETRY
FLS action(21) (see Appendix A This yields

1
-—;moi&—ﬁH;—Zw¢Lwﬁ

The effectiveT=0 low-energy theory for the interacting
1 system ofd-wave quasiparticles and fluctuating vortex loops,
;<Cog( 0i— 05— 27D ) e s |[(expli6;))]%. (22 after the integration over vortex loops is therefore

This result is quite general, and it simply expresses the fact
that in the ordered phase of the theg®l) the dual angles
become correlated, while at the same time the gauge field
becomes massive via Meissner effect. The gauge-field fluc- +yalval(dy+iay) ]+ (1—=2x<y)
tuations can then be neglected, which makes the requisite

average finite when the dual anglésorder, i.e., in thedis- n
orderedphase of the originaKY model. 21(d)|?

Returning to the continuum notation, and switching to the
Fourier space, the gauge-invariant expression for the correvhere | omitted the higher derivative terms, and the terms

S[‘l’]:f d2FdT| W[ yo(@,+ia0) + y1v5(dy+iay)

[cA(VXa)2+(Vxa)iy, (24)

lation function(19) at low momenta is therefore quartic inW. This is the standard QEDwith two important
L . caveats:(1) the coordinatex andy are exchanged for the
((Vxa),(VXa),)=[[(P)*+0(a)](8,,~0,d.), second Dirac field(2) there is an inherent anisotropy in the

(23 model,v¢#v,#C, wherec is a characteristic velocity for
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the phase fluctuatior¥. First, let us consider the simpler with me|(®)|?, i.e., proportional to the effective charge of
isotropic limit of the theoryp;=v,=c. There are sixteen QED;. Containing just a singlesr matrix, the mass term in
8X 8 matrices then that either commute or anticommute withthe Eq.(31) breaks all theinticommutinggeneratorsG; with

the three &8 vy matrices that appear in Eq24): i=5,6,7,8,13,14,15,16. The chiral symmetry is reduced from
diad{ vo,vo}, diad y1,y,}, diady,,y,}. First, there are U(4) to U(2)XU(2), with eight generators preserved. The
eight block-diagonal Hermitean matrices fermion mass is generated dynamically due to the coupling
to the gauge field. To see this, neglect the wave-function
@1y, 03®14, 1®@y35, 03Q7Y3s5 (25  renormalization and the vertex correctigmehich can be ra-

tionalized in the limit of a large number of Dirac fieldl§),

that commute, and and write the self-energy as

l®y3, 03Qy3, |®ys, 0305 (26) - - -
d*p D, (P—d(p)

(2m)®  p*+323(p)

that anticommute with thes matrices. Herey;=0,® o, E(Q)=|<‘D>|27Vf Yo (32
y5=03®|, yas=iv3vs, andl,=1®1. Next, there are eight

more block-off-diagonal Hermitean matrices where ﬁZ(M,QX,Qy)- The gauge-field propagator in the

i i transversdlLanday gauge is
010 —=(v2= v ¥z, 020 —=(v2=v1) 73, - .-
V2 V2 D,,(P)=(8,,~ PP )P*+1(p)], (33

i i whereIl(p) is the self-consistently computed polarization.
o1® E(yz— Y1) V5, 02® E(yz— v0ys (27) At p<X(0)=m, assuming a finite mass gives

that commute, and _ N(®)? p? .
[(p)=—g "~ ~+0(p". (34
1 1 o .
019 —=(y1—7v2), 020 —=(y1—v2), For the polarization at_all momenta see Appendm C. Equa-
V2 V2 tion (32) was analyzed in Ref. 2(ee also Appendices C and

E), and there is a solution with finite for the number of
i i Dirac fields N<N.=32/?=3.24. Full numerical solution

o119 EYO( Y1t y2), 020 E?’o( Y1+ v2) (28  that includes the wave-function renormalization and vertex
corrections confirms thatl.~3,% almost independently of

. . . . - o : - 39
that anticommute with they matrices. | call these sixteen the choice of vertex. Lattice simulations givecBl.<4,” or

generators3;, i=1, . ..,16, in the above order. The isotro- at leastN,>2.% It therefore seems reasonable to conclude

pic QED; in the Eq.(24) is invariant under a global unitary that for N=2 the chiral symmetry in the isotropic Q5D

transformation becomes spontaneously broken when the vortex loops un-
bind and(®)+#0.

VU, (29 Since the matrixy, commutes with the electron-spinon

transformation in the Eq.9), it is easy to rewrite the mass

where term in QED; in terms of the original electron operators:

16 )
U=eXP('§1 HiGi)- B0 m3 w-mT 3 (el Koge. (K=Qrp)
= k=K, 0p

This follows immediately by observing that all the genera- e = .
_C—(_k+Qlywn)C—(_kywn)]

tors commute with the 88 matrices

diag| vo.vo}diag{ y1,v2} and diagyo,yo}diag{y,.v1} by PR B ootk
construction. The unitary transformations in relati@f) can et (k=Qu,on)C.(k wn) = CZ (=K wn)

be shown to form the Lie group (4). Following the stan- « —k+0 +(1—2 35
dard terminology in the field theory literature, | will refer to e Qun ]} +( ) 39

this symmetry of QER as “chiral.” The reader will recognize this as the low-energy part of the

As a first step towards understanding of the meaning oktaggeredpotential along the spim axis
the chiral symmetry in the present context, it will prove use-
ful to consider how it may be broken. QE» well known to R L R R
have the chiral symmetry spontaneously bréRéay the dy- mf d’rdr X cogQ;-r)och(r, e, (r,7), (36
namical generation of the mass term in the acti@®: omrimLe
so the mass in QEDIis nothing but the spontaneously gen-
erated SDW order parameter. The periodicity of the SDW is

2
mf d?rdr>, W, (31) - _ _
i=1 set by the vector®;, and thus tied to the Fermi surface. The
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SDW order is established as soon as the phase coherencedisce “directions” in the space of broken symmetry states, as

lost, and the chargéD)+0. In the largeN approximatio®®  a set of linearly independent matrices that anticommute with

one finds that M, andM,, and square to one. It is easy to show that in the
4X 4 representation there are only four such matrices

m~16/(®)|?exd — 2/ (N./N—1)]. 3 ~ o~~~

(@) exi =2/ V(N )] 37 Y03, Y51 Y172, (38)

SinceN.~3, for N=2 one finds tham~102|(®)|?. This  with yo=17,, and wherey;=—iM, y,=iM,, yz3=o03
extreme “lightness” of fermions in QEPderives from the  ®¢,, andys=0o,®1. In principle, any of these four if used
fact that the mass comes solely from the interaction with thénstead of oury, in the construction of the Dirac theory in
soft gauge field. Eqg. (6) and in the mass term would give a relativistic gap to
Breaking of chiral symmetry in QEDalso implies that Dirac fermions. The last matrix,
the energies of spinons have become complex and finite in
the phase incoherent state wit)+0. In the simplest ap- iy1y,=1®0,, (39
proximation the electron propagator may be computed as a -
product of the spinon and the gauge-field factors, so a spinoowever, being a product of twe matrices does not break
“gap” should imply a charge gap as well, i.e., the systemthe chiral symmetry, and is believed not to be spontaneously
becomes an insulatdt. In Sec. IX| discuss how spinons generated in QER****| therefore focus on the remaining
should actually be confined in the insulating state. Staggeretthree. Choosing one amor{@o,% ,3/5} as theyy matrix in
magnetization, charge gap, and the spinon confinement whehe mass term reduces the $P) subgroup of U(2)
taken together imply that the state with broken chiral sym{=U(1)xSU,(2)], generated by ys,vs,yss, to U(1).
metry is nothing but the standard, albeit a weak, SDW. ItThe two anticommuting generators of the $2) that are
seems natural to assume then that this state is continuoustyoken then rotate the chosen order parameter towards the
connected to the antiferromagnet near half-filling in cupratestwo remaining “directions” in the chiral space. For example,
This expectation is further corroborated by considering thgr our choice ofyo= 70, it is 35 that remains unbroken in

effect of Coulomb interactions, which is done in Sec. VIl the cos-SDW phase, whereas the broken generators rotate the
It has been already mentioned that we have some freedoghs-Spw order parameter as

in choosing the representation of thematrices. In particu-

lar, it was the specific choice of, that led to the cos-SDW e "7y0e 1% =cog26)y,—sin(26)y;, i=3,5. (40)
order parameter displayed in Eq85) and(36). In the next o _ .

section | discuss how “rotating” the cos-SDW by the broken Choosingi =5, for example, for both Dirac fields rotates the

chiral generators leads to a different insulating states. cos-SDW in the Eq(35) into
m| drdr >, cogQ;-r+20)ac(r,r)c,(r, 7).
VI. MORE ON CHIRAL SYMMETRY: < I ' o1 7)ColT,
THE SPACE OF INSULATORS (41)

In discussing the pattern of chiral symmetry breaking inChiral rotations generated bys thus correspond tsliding

QEQ_ one peeds to distinguish at least two different casesmodes of the SDWys, on the other hand, rotaté@ towards
The isotropic theoryi, =vy) has the full U(4) symmetry in the direction ofy,, which describes an additional particle-

|tts maSSIGSStphaST’ S0 thegsa; s term bre;aks:—,\llgoht of (|jts SIf)(éwticle pairing potential between the neutral spinons, with
een gir;]era_%rst.h n cuprat g owelvelrJ, v IEJAZ » an the opposite sign for the diagonally opposed nodes. This may
even withm= e symmetry is only U(2yU(2), gener- be understood as an additiormlvave component of pairing

ated by the block-diagon&; i=1, ... ,8. Howsuch a large . L~
anisotropy affects the value & is a nontrivial problem, between the spinans, so th? state gléascpbed/;)wder pa-
and is addressed in a separate publicatfarere | will con- rameter may be c_alled the+ip state. This state preserves
sider only the effect of anisotropy on chiral symmetry, andthe_superconductlng U(1) symmetry anq the_translatlonal In-
assume it is reduced to U(X)U(2). It suffices then to look variance, but brea&s the spin-rotational invariance and is odd
at each Dirac component in QEBeparately, i.e., consider under parity. Sinceyz does notcommute with the electron-
just the 4<4 representation of thes matrices, as defined Spinon transformatiort9), however, thed+ip state cannot
right below Eq.(5). be simply expressed in terms of electronic operators, as it
It can be easily shown that any matrix that anticommutegvas proved possible for the SDW states. The relationship
with bothM; andM, and squares to the unit matrix may be between the directions in the order parameter space
chosen asy,, and will lead to a representation of the  {vy,vs,¥s}, and the chiral generators may be summarized
matrices such as in the E¢6). The mass term-mW¥ Ty ¥ pictorially as on Fig. 3.
in the action would then gap the quasiparticles, in analogy to It is instructive to look more closely at the origin of the
the standard relativistic Dirac equation. The problem of dif-U(2) symmetry(per Dirac componeitthat appears in the
ferent chiral orders is therefore nothing else but finding alllow-energy theory of the dSC. First, the transformations in
the ways in whichd-wave quasiparticles can spontaneouslythe U(1) subgroup of U(25U(1) X SU.(2) are analogous
acquire such a “relativistic mass.” It will be useful to intro- to the spin rotations around ttzeaxis. To see this, consider
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less, breaking of chiral generatgg implies breaking of the
translational symmetry in the theory. The remaining two gen-
erators of the chiral Si42), v53 andyss, on the other hand,
are not related to any spatial symmetry. They should be un-
derstood as “internal,” and approximate, symmetries of the
Y. Y dSC that emerge at low energies. They rotate the translation-
5 35 ally invariantd+ip state into a SDW, and therefore connect
the two fundamentally different types of insulators.
The reader should also note that in the acti@d) the
order parameter can be rotated independently for the first and

Y 'Y3 the second Dirac field. Any linear combination 9f, s,

’Y:,’ and ys is a regular order parameter too. Singeis just a
sin-SDW, the fundamentally different states are just the
FIG. 3. The corners of the triangle represent the three chiraSpw d+ip state. This, however, already leads to a variety
directions in the space of insulating states that descend from thgf insulating phases. For example, one can choose the cos-

d-wave superconductor. At the side opposite to aparticulardirectioréDW for the first Dirac field @ ), while being in thed
. 1 y

lies the corresponding unbroken chiral generator, while the remaln:Hp state for the second. This would correspond to a one-

dimensional SDW along one of the diagonals.

With the velocity anisotropy neglected QEbDas a larger
the coiserved current that corresponds to the U(1) subgrouEngr((ia)k:yg:|m eeitgr%’twgztitgr?\?nnuetir:;otgszeh;rg(taorrr;?s;tsrtmh enocvr\]/ir al
Ji,,="Vi7,Vi, sothat the conserved charge is simply thé manifold of insulating states becomes larger. For instance,
component of the total spin of the low-energy quasiparticlesyotating the cos-SDW withd=7/4 and the generatof
one charge per each pair of nodes. Of course, the quasipatg,,— G, leads to a uniform state with an additiors
tlcl_e action(2) has full _S(_)(3) spin symmetry, and this is not component of pairing between spinors#is.*® Interest-
to imply that a part of it is broken in the dSC. It only means gy rotating the cos-SDW by block-off-diagonal generators
that in writing the full acuon(?) in terms of the Dirac fle[ds may also lead tocharge stripes For example, takingd
(3) only the subgroup of spin rotations around thexis is  — /4 and G5 rotates the &8 cos-SDW order parameter

represented by a simplex44 matrices that act o’. The ~ . . .

rest is still present, but not that obvious in our choice of theI & 7o INtO (1/2)01®(717L 72). When written in terms of the
Dirac fields, which was made to make the chiral symmetryele(:tr(.)nIC operators, this Ord?r parameter correspo_nds_ to the
manifest.(For a complementary representation that is fully(zne-(1|mer13|onabharge depsny waye with the .per|0.d|C|ty
rotationally symmetric at the expense of chiral symmetry sedb= K21 Ky, and with residual pairing correlations in the
Appendix D) The U(1) subsymmetry is therefomdways orthogonala-axis direction. It has been known that stripes
present, both in the superconducting and insulating state¥?deed occur in some highg materials’ _Here they emerge
The SW(2) factor is more interesting. The conserved cur-2S insulating cousins of tliewave state in the isotropic limit
rents (per pair of nodesin the dSC that correspond to this of the theory. !t is also mtere.stlng tha_lt.strlpes seem always to
symmetry are”, =W,y TW,, whereT'=ys, e, vas. AS be accompanied by the residual pairing correlations, so one
we have seen Z\lrread;/ /éh% 1q,enerat0r simpBI;/ '[E’r:alnss'ates i can think of them as weakly coupled one-dimensional sys-

. U . tems on the verge of becoming phase coherent.
the diagonal direction. The corresponding conserved charge Verg g p

may be written as

=2

ing two broken generators rotate the chosen insulator towards twi
other directions.

VIl. REDUCTION OF CHIRAL SYMMETRY
Qf’:f drdrdfe=T >  =cl(Konc,(K oy, BY THE IRRELEVANT TERMS

7 ensle=k We saw that the low-energy theory of dSC has chiral
(42) , ;

U(2) symmetry per Dirac component, which when sponta-
and may be identified with the quasiparticle momentumneously broken leads to emergence of the SDW ordhe
alongK; . More precisely, under the translation of the origi- *+ip insulators. This enlarged symmetry arises only at low

nal electron operators (IZ w)—ekRe (IZ ), the spinon energies, and the irrelevant terms omitted in the By .re-
field transforms as R duce the U(2) to U(1XU(1). In this section | show the

higher-order derivatives and the Hubbard repulsion reduce
the chiralSU,(2) symmetry to just translations, generated by
vs. However, we will also find that if both perturbations are
weak it will actually be the SDW solution that is energeti-

V(1,7 —e & RsY (F+R,7), (43)

wherek=K;+q. The low-energy theory therefore has more v breferrad
symmetry than the original actiof2), as the chiral rotation cally preterred. _ R .

by ys and the translations o separately are still the sym- Let us first Eonilder thg h|qher derlvatlvg teEms in trje Eq.
metries of the theory24), while only when combined as (6)- Since &(k—Q1)=£(q—Ky), and £(q—Ky)=E&(K,
above do they represent an ordinary translation. Neverthe-q), and analogously foA(k), one can write the second-
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order derivatives in Eq6) as ent terms affect the energy of the SDW only to the next
order. So at long enough length scales one can alway neglect
S =—il d?fdsv’ 1 52) = vaA"( 52V hlgher—d_erlvanve terms as compared to the repulsive interac-
* f Tyl 7187(77) = 7 AN tion, which then serves to select the SDW over theip
+(1—2x0y), (44) insulator.
where&” andA” are the functions coming from the expan- VIIl. MEAN-FIELD THEORY WITH REPULSIVE
sion ofg(IZ) andA(IZ) aroundKl(z), respectively. Their spe- INTERACTION

cific forms are model dependent, and will not be of impor- i o )
tance here. What is important is tf&t manifestly breaks the ~ 1he message from the preceding section is that the quartic
part of the chiral symmetry generated by and yss, while term that represents a shor.t—ra.nge_ re_pl_JIS|on, a_lthough irrel-
preserving only the translational invariance, generategihy evant, at low but finite energies is still finite, and it breaks the

One can easily prove that the same holds to all orders in thghiral symmetry in favor of the SDW state. This is its first
gradient expansion. important role. The second is that once the chiral symmetry

Next, consider the Hubbard-like short-range repulsion’S dynamically broken by unbinding of vortex loops, the
term, in the continuum notation, quartic term affects the size of the order parameter, and
therefore sets the scale for the value of the SDW transition
B - - - temperature. In this section | formulate the simplest mean-
HU_UJ d*x[n. (x)+n_()], (49 field theory of the chiral symmetry breaking in presence of
, . ) o the repulsion term, and demonstrate that it drastically in-
with U>0. Retaining again only the excitations near the.reases the value of the SDW order parametét=a0.

four nodes, one can write this as We have seen that unbinding of vortex loops leads to
o 2 weak SDW order, but with the order parameter orders of
suzuf dZFdr(i > v y5y1\1ri'> _ (46)  magnitude smaller than the coupling constéfib)|*. As-
i=12 suming that the dual condensate as a function of doging

should be of the same order of magnitude as the superfluid
density on the other side of the transitidat x=x),
HP(x=))|?~ps(xy+ 8), and that Uemura scaliffy
T.(X)xpsi(X) is obeyed, the identification of the size of the
apPW order parameter with the transition temperature
Tspw(X) suggests thal gpp(X,— 8) <T(X,+ 6). The dif-
ference in the relevant scales for the superconducting and the
DW orderings is in accord with the known phase diagram

The reader is probably not surprised that it is again oy
that remains the symmetry generator. This is becagusi
our formalism is related to translations, which are always th
exact symmetry of the actiof2). So both the higher deriva-
tive terms and the quartic repulsion term reduce the chir
SU,(2) subgroup of U(2) to k1), thetranslations. One
could therefore naively expect that it is tletip state,

which is translationally symmetric, that may be preferred by_S . . o .
these perturbations. To decide on this, however, it is nof? the underdoped regime. Starting from half-filling, with

enough just to know the symmetry of the action, since théncreased doping the an'_tiferromagnetic order is quickly !ost,

new termsS, and S, may turn out to disfavor thel+ip and only at a larger doping does the dSC appear. | attribute
state. Assuming that botl” and A” terms are small, one the absence of the obvious SDW order very near the super-
finds that the contribution to the energy of the sm»'v d conducting phase to the inherent weakness of the spontane-

+ip) state is of second order in tl&. The interaction term, ous chiral symmetry breaklng in dSC. Assuming that .the
on the other hand, yields weak SDW smoothly evolves into the commensurate antifer-

romagnet near half-filling, the obvious problem then be-
comes the following: how should one understand the dra-

(Su)o=—UX (W] W2, (47)  matic increase of spy(X) near half-filling, all the way up to
' ~300 K?
with the average taken over the massive QERith vy, The answer is provided by the observation that although

=0,®| (cos-SDW. The result, of course, is the same for the repulsiorlJ is irrelevant if weak enough, it enhances the
the sin-SDW, or for any linear combination of the cos-SDWSDW order once it becomes spontaneously generated
and the sin-SDW. Alternatively, if one assumes theip through the interaction with the gauge field. To show this |
ordering, one finds tha®, gives then gositivecontribution ~ Wil consider the mean-field theory of QEDwith the addi-

to its energy, to first order i. Although S is only trans- tional Sy quartic term. First, notice that in the Hartree-Fock
lationally symmetric, it actuallynhibits the formation of the ~approximation theS, term gets replaced by the effective
translationally invariant state, and prefers the ordering to bguadratic term

in the “orthogonal” direction, i.e., the SDW.

If both the interaction and the gradient terms are weak, it
will therefore always be the SDW solution that is energeti-
cally preferred. This is because both the repulsive and the
higher-derivative terms are equally irrelevant by powerwith the average to be calculated self-consistently within the
counting(and have the engineering dimensierl); the gain  theory quadratic in fermionic fields. The above term corre-
in energy due to SDW is of first order only in U. The gradi- sponds to the decoupling in the exchang®ck channel,

SU—>—U(‘I’{‘I_’]-’>OJ o2r dr Tr(W/ ¥s¥1ysva¥i), (49
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superconductor-insulator transition, this appears to be in
0.2 gualitative agreement with the generic behavior observed in
underdoped cuprates.
0.15
E 0.1 IX. CONFINEMENT OF SPINONS
In the superconducting state, the electrically neutral low-
0.05 energy spinons represented by the fermionic fighdin
QED; are well-defined excitations. This effective spin-
0 Lo .
5 5 2 e charge separation implicit in the supercor)ductmg state was
g emphasized in Ref. 51, and more recently in Ref. 7. One may

therefore naturally wonder if this form of spin-charge sepa-
FIG. 4. The SDW order parameten in units of [(®)|* as @  ration will survive once the superconductivity is lost via un-
function  of  dimensionless  short-range  repulsiong binding of vortex loops. The answer seems tore It is
=U[®)[%/(2m)*. believed that chiral symmetry breaking and confinement go
together in QER.?° The qualitative argument why it should
since the direCt(Hartree term vanishes. Therefore in the be so is provided by the low-momentum form of the p0|ar-
Hartreg-Fock approximation, after the electron-spinon transization tensor in the Eq33):52%211(q) ~g%/m for g<m, so
formation, in two dimensions spinons are at large distances bound by a
logarithmic potential. One may independently arrive at the
_ g | = same conclusion by analytically continuing the fermion
Su—>U<‘I’i‘I'i>of dor d7 Wy (49 propagator in the broken symmetry phase to real
frequencie¥* to find that its poles lie at complex energies
with both real and imaginary parts proportional to the chiral
mass. The chiral symmetry breaking and confinement of
spinons seem therefore to go hand in hand in QE® the
states with broken chiral symmetry, including most impor-
tantly the SDW, should not have well-defined fermionic ex-
citations even above the mass “gap.”
d3k (k) Disappearance of spinons from the spectrum in the insu-
X= f 2m3 Kt 32K (50) lating phase, if required, imposes a rather nontrivial con-
(2m) (k) straint on a candidate theory for underdoped cuprates. For
example, one could imagine a completely different mecha-
d3K 21(D)|22 (k) nism of chiral symmetry breaking in dSC: even without the
372 <2 2 , (51 gauge field, simply increasing the quartic couplingbove a
(2m)° [k*+Z5(k)][p~+1I(p)] certain valug U ,A/(27)?=1 in the Hartree-Fock approxi-
.. mation] would open the gap for spinons and lead to SDW
with p=k—qg. WhenU=0 these reduce to the E§32), order. This would be analogous to the chiral symmetry
which leads toN.=32/m2. When loops are bound af®)  breaking in the Nambu-Jona Lasinio and related
=0, on the other hand,(q) = x, and the Eq(50) allows a  models®®~* The crucial difference, however, is that such a
nontrivial solution only when the dimensionless coupltng mechanism would yield well-defined spinon excitations at
=UA/(2m)%>1, whereA is the uv cutoff, A<T*. Assum-  energies above the gap, in the insulating state. The integrity
ing that long-range SDW order and dSC do not coexist, lof the gapped spinons is assured essentially by the Landau
take thatg<1 in the superconducting phase, so that the quarphase space arguments. Such a “deconfined” antiferromag-
tic coupling is there irrelevant. Wittd ) # 0, however, small net was dubbed AF* and studied in Ref. 24, for example.
g ceases to be irrelevant, since there is now a small madsrom this point of view it becomes a nontrivial problem to
scale to effectively cut off its flow. Sinc&(q) is quickly  understand how spinons could be removed from the spec-
damped forg>|(®)|?, one can take the uv cutoff in the trum. In a QER this is accomplished via the same nonper-
above equations to b&~|(®)|2. The above equations were turbative mechanism that yields chiral symmetry breaking,
studied befor®®° in the context of gauged Nambu—Jona described by Eq(32), for example.
Lasinio model of chiral symmetry breaking in particle phys- Having said all this, it needs to be realized that in a weak
ics. Here | solve the equations numerically fdr=2, as  SDW confinement of spinons is effective only over very
discussed in Appendix E. The result is presented in Fig. 4large distanced,>1/m. At intermediate scales, the polariza-
The main point is that as the superconducting phase is moréon I1(q) ~q, so the potential between spinons+id/r, and
and more disordered and the dual condensate grows, tha intermediate distancesn# L>1/|(®)|? spinons will ap-
presence of a moderate repulsion between electrons increagesar effectively deconfined. In this sense it is still meaningful
the SDW order parameter at=0 by one to two orders of to think about underdoped cuprates as exhibiting an effective
magnitude. Recalling the above argument that comparespin-charge separation. Computing the electron spectral
Tspw to the superconductind@,. on the other side of the function by taking the gauge-field fluctuations into account

Assuming a uniformy=—U(W¥;¥;),, and treating the
gauge-field fluctuations in the lardé-approximation leads
to two coupled equations fox and for the momentum-
dependent fermion self-energy

E(q)=x+f
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in the largeN approximation'® which suppresses the dy-
namical symmetry breaking, for example, gives results in
qualitative agreement with the experiméhAs one contin-

ues to underdope, however, the SDW order parameter grows,
and spinons become more strongly confined. In the strong
antiferromagnet at half-filling therefore, one may expect
spinons to be confined already at atomic distances. 100

300

X. EXPERIMENT 0 0.2 0.4 0.6 0.8 1

cos k x - cos k y

The principal consequence of QEheory of underdoped
cuprates is, of course, the antiferromagnetism itself. All the FIG. 5. ARPES results for GEuO,Cl, (barg and SgCuO,Cl,
materials that becomé-wave superconductors with doping (dots with E=E(k) —E(/2,7/2) in meV. The line is the function
are insulating antiferromagnets in its parent state. Furtheidescribed in the text.
more, the sharp spectral features in the dSC should become XI. CONCLUSION AND DISCUSSION
very broad in the insulator, since there is a dpftopagator
~1/g?) gauge field in the problem. Nevertheless, an insula- In summary, | have shown that the minimal theory that
tor that derives from a dSC should partially inherit the describes the unbinding of vortex defects in theave su-
d-wave form for its “gap,” except for its finite value in the Perconductor —at T=0 is the two-component,
nodal directions. This is in very good agreement with the(2+1)-dimensional QED, with the vortex condensate play-

ARPES measurement on the insulating,CaO,Cl,, and "9 the role of “charge.” With the loss of phase coherencg,
SKLCUO,Cl, in its parent statd? In Fig. 5 | compare the the d-wave superconductor suffers the spontaneous breaking

f the low-energy “chiral” symmetry, which results in a
ARPES data fo_r the 9ap me_asured from the top of the IOWe\E)veak SDW order. It was argued that with underdoping this
Hubbard band in the insulating state with the simplest func- . .
SDW smoothly evolves into the strong antiferromagnet near

tional form consistent with the chiral mass: at the remnant, ¢ fiing with the selection and the increase of the SDW
Fermi surface o=({Ena[coskd—CcoSk)V2}"+Eni)™  order parameter being provided by the repulsion between
where the chiral mass=Er,=75 meV is chosen to be the g|ectrons. | argued that spinons are marginally confined in a
T=0 sublattice magnetization far=125 meV. The best fit weak SDW, and may appear effective|y deconfined over in-
is obtained then foE =420 meV. The quality of the fitis termediate length scales in the pseudogap regime. Finally, it
actually not very sensitive to some variationsig;, and the  was proposed that the rounddeavave form of the “gap” in
correspondinge - the insulating CsCuO,Cl, observed by Ronningt al®®

The key prediction of this work is that the above “gapped may be a consequence of the chiral mass for the approximate
d-wave” form of the insulating gap is a generic feature of thespinon excitations, as implied by QgD
insulating state. Upon underdoping, ARPES should show the The present theory is similar in spirit to the approaches of
standardl-wave gap for sharp quasiparticles in the superconRefs. 7 and 24, in that it attempts to understand the phase
ducting phase, which should evolve into a gappledave  diagram of underdoped high-temperature superconductors
form for broad ARPES shape in the insulating state, with thebeginning from the superconducting phase. It differs, how-
gap increasing as one approaches half-filling. The roundingver, in its conclusions of the ground state that results from
of the data at low energies should therefore be intrinsic to thenbinding of topological defects in thal-wave state.
insulating state, and should weaken with doping. AlthoughWhereas it was argued in Ref. 7 and 24 that the relevant
the initial experiment on GEZUO,Cl, (Ref. 8 only indicated  description of this process is provided by the Ising,)(
such rounding, later measurements onpCsHiO,Cl, with gauge theory, and that the resulting state may show spin-
higher resolutioh clearly showed the deviation from the charge separation, | argued that unbinding of defects of unit
simple d-wave cusp at lowest energy. More recentvorticity leads to the dynamical symmetry breaking in the
measuremeniSindicate that the rounding of the data at low low-energy theory, and the accompanying confinement of
energies is a robust feature. It would clearly be desirable tgpinons in the insulating state. In fact, if odemandshat
perform a systematic study of this effect at variable dopingthe insulating state near half-filling is the standard antiferro-

It may also be worth mentioning that some signs of themagnet with spin-1 excitations and confined spinons, the
gap rounding in the insulator may be observable already ifiorm of a single theory that would be able to describe both
the superconducting state. In Bi2242for example, as one the dSC and the insulator becomes severely restricted ;QED
underdopes, the-wave gap continues to show the cusp atin this paper is one such theory.
zero energy, but with the slogeelocity v,) decreasingin A variation of QED, as an effective theory for under-
spite of the increase in the overall gap magnitude in thedoped cuprates has also been considered b&ot2as the
(7r,7r) direction. It is tempting to interpret this effect as a theory of low-energy fluctuations around theflux phase in
precursor of the dynamical mass generation. A detailed studthe largeN version of the Heisenberg model. In that ap-
of this effect and of the spectral features in the insulator igproach the gauge invariance reflects the local particle number
deferred to a future work. conservation at half-filling, and the gauge field has no dy-
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namics on its own. As a result, the gauge field is necessarilpED,, and thus precluded chiral symmetry breaking, my
compact, and the theory is infinitely strongly coupled. Notmain point is that af=0 the spontaneous formation of the
much is definitely known about such a lattice gauge theoryghiral condensate is nothing else but the SDW instability of
which greatly diminishes its utility. Nevertheless, it was ar-thed-wave superconductor. The results of Ref. 18 may there-
gued that neglecting the instanton configurations would refore be understood as applying to the firftephase much
store the antiferromagnetic order at half-filling, via sponta-pelow the pseudogap scalé in Fig. 1.

neous breaking of a different chiral symmetry, which in this The pr0b|em of phase disordering of dSC has also been
case is actually an enlarged spin rotational symnfétfy. recently studied by Y& Working in the Anderson gauge in
While this logic may at first appear close to the one in thewhich ¢ ,= ¢, ¢bsg=0 in the Eq.(8), the author concluded
present work, there are crucial differences. First, | begin[hat the gauge field is always massive when charge fluc-

from the su.percondu_ct_ing state, away frpm half-filling, with tuations are included. It is easy to see that this is a direct
the gauge field describing vortex fluctuations. As a result, the . >
gauge field is weakly coupled near the dSC-SDW transition(.:ogsequence of ﬂle ga“9e choice: in the Anderson gauge
Also, the SDW phase that obtained from chiral symmetry=v. and not onlyv, buta too is ultimately coupled to the
breaking may be incommensurate, and the approximate chfharge current. In my gauge-invariant approach, on the other
ral symmetry of the low-energy theory is unrelated to spinhand,é is completely decoupled from charge, and couples

rotations. only to spin. Inclusion of charge fluctuations therefore does

Nevertheless, it may be possible to understand Q&Da  not makea massive, but simply adds an irrelevant quartic
low-energy d_escrlptlon of the mlc_roscop]d model of cu- coupling to the QEB Lagrangian.
prates. Starting fro.m the mean-fleld slavg-boson theory of The intimate relationship betweahwave superconduc-
the t-J model and integrating the constraints of no doubletjyity and antiferromagnetism is also the main theme of the
occupancy, for example, leads to an effective theory gf theso(5) theory of Zhan§? The present work echoes some of
form quite similar to QER,®® but with the Volovik fieldv that general idea, but is based on entirely different physical
only. Including vortices would then be expected to introduceprinciples. In particular, although there should be a direct
the gauge fielda, as shown in this paper. The point is that dSC-SDW transition in the phase diagram, this appears un-
irrespectively from the underlying microscopic model therelated to the SO(5) symmetry, but comes as a consequence
theory of the fluctuating dSC should assume the QEfpm.  of the chiral symmetry that emerges at low energies in the
Values of the parameters, however, may strongly depend ofrwave superconducting state. It is the spontaneous breaking
the microscopic physics: the bare stiffneiésin the Xy  of this hidden approximate symmetry that implies then the
model for the phase fluctuatiof&€q. (12)], for example, breaking of the spin rotational symmetry in the SDW phase.
should be proportional to doping in the doped Mott The marginal confinement of spinons we found in the
insulator®® Also, the charge of quasiparticlgthe coefficient ~Wweak SDW phase is very much in line with the speculations
in the last term in the Eq_‘]_O)] would be expected to Change of Laughlin7°'710n parallels between antiferromagnetism and
from unity to ~x, at small dopings. confinement in strong interactions. In fact, QE&hows pre-

There exist further parallels between Qf&nd the gauge Cisely how chiral symmetry breaking, i.e., SDW ordering,
theory of thet-J model. One may formulate a representationPinds spinons into spin-1 objects. Deconfinement in this
of the t-J model with a U1) gauge field that minimally theory seems indeed tantamount to the absence of chiral
couples to spinons and holons. It was ardfi¢lat the effect Symmetry breaking. In this context, it may be interesting to
of holons would be to screen the temporal component of th@0te that thed+id state, which would correspond to the
gauge field, which then may be shown to halve the criticai y;y, matrix in Eq.(38), could lead to deconfined spinons.
number of spinon species for the chiral instability,  This state is outside of the chiral manifold, and it is believed
—N./2. In that way one could avoid the chiral transition atthat it is not spontaneously induced in the QE because
N=2 (assuming thaN.~3), and have a spin liquid as the of the Chern-Simons term that becomes generated for the
ground state in the underdoped regime instead. The tacit agauge field. With the Chern-Simons term, on the other hand,
sumption, however, is that uncondensed bodbidéong at  the gauge-field propagator behaves likg at low momenta,
T=0 may exist in a compressible state. If the system beand thus spinons may become deconfiffe@hiral symmetry
comes insulating with the loss of phase coherence, howevebyeaking in QELR is therefore nothing by the effective de-
bosons would become incompressible and the above argseription of the spinon confinement.
ment breaks down. This is indeed the case in QBliith the It is also interesting to note that were the critical number
proliferation of vortices the system becomes insulating, anaf fermionsN.<2, the result of phase disordering of dSC
all the components of the gauge field become massles. Theould be quite different. Instead of symmetry breaking and
same conclusion would be reached within the gauge theorgonfinement one would find a gapless, chirally symmetric
of the t-J model if one would consider the incompressible state, in which spinons would be deconfined. This is again
state of slave bosors. because the polarization tensor would then-bg at low

The present work shares the same philosophy with thenomenta, i.e., the interaction between spinons would be
recent works24°where the massless(l) gauge field as an ~1/r at large distances. This state would be similar in spirit
effective description of unbound vortex loops was also conto the “nodal liquid,”” or analogous to the “algebraic Fermi
sidered. While the authd®considered the largis-limit of  liquids” %73 proposed in literature as candidates for the
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pseudogap phase. It has been proposed recently Npat (6) As mentioned at the end of Sec. IV, on a lattice, the

=3/2 _exactI)Z“ although gll the actual calculatiolns.based ONgauge fielda appears to be compact, in contrast to the Volo-
Schwinger-Dyson formalism lead f.>3. If N is indeed ;i fielq ;. The effect of the compact nature afon chiral

that low, phase disordering of the dSC would first lead to thesymmetry breaking in QERis at present poorly understood.

deconfined pseudogap phase, which only later would tUry has b d that ling t | ; kes th
into the confined SDW phase, presumably due to the repu as been arguea tnat coupling 1o gapiess spinons makes the

. . A . 49,50 , %ingle instanton-antiinstanton pair that derives from com-
sive quartic term, which is know to increakk .">" At this

time it is hard to say which one of these two scenarios idactness ok boysnsﬂ above the certain number of spinon
realized in cuprates componentN;, %" Ni st may be made smaller thawh. for

The main point made in this paper is that unbinding ofChiral symmetry breaking by a large anisotrdpyior ex-

vortex loops in ad-wave superconductor &=0 results in ample. It is unclear, however, whether this conclusion sur-
ves the effects of screening by other pé&it#ilso, even if

SDW order. It then appears natural to assume that the corgé instant b de irrel t ab below N
of fluctuating vortices are already in the insulating state. Thi € instantons can be made irrelevant abbiye be OWNe
ne would expect them to become relevant again with the

speculation is in accord with the recent scanning tunnelin ; £ th i ) > This in t id h
microscopy and neutron scattering experiménts! the pening of the spinon “gap.~ This In turn could have pro-
found consequences for the spinon confinement. It would

SQ(5) proposaf®’®and the mean-field and the finite size . . : ,
QED; calculation€® The superconductor-insulator transition .ObV'OUS|y be desirable to shed some light on these pressing

would then be the result of the decrease of the bare stiffnedg>U€s:
K in the XY model with underdoping, sincK~x in the
doped Mott insulato?® ACKNOWLEDGMENTS
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cuprates is unclear. In particular, since anisotropy on the bar¢as supported by NSERC of Canada and the Research Cor-
level is marginal, it may affect the value bf.. The prelimi-  poration.
nary results, indicate, however, that weak anisotropy is irrel-
evant, so that one would expedt to be unaffected by i3 APPENDIX A
(2) The nature of the various phase transitions in the
theory is also of interest. Whereas one expects that gapless | present the self-consistent mean-field the@§) of the
quasiparticles do not change the Kosterlitz-Thouless univerattice superconductdtand use it to approximately compute
sality class of the finite temperature superconducting transithe correlator appearing in ER0). By the Bogoliubov in-
tion, the nature of chiral symmetry breaking at finite tem-equality,
perature and its possible interplay with théeNgansition is
far less cleaf! In particular, in relation to Uemura scalif, Z,=Ze (H-Holo, (A1)
one would like to understand the quantum superconductor- Y
insulator criticality and how it may be affected by gaplesswherez,, is the partition function in the dual forit21) with
spinons. a finite “inverse temperature¥, and the average in the ex-
(3) Can long-range SDW and SC order coexist? In theponent is performed overlacal mean-field Hamiltonian
approximation employed in the present work, the gauge field

a is considered decoupled from spinons in the dSC phase.

XIl. FURTHER PROBLEMS

1 .
This is likely to underestimate the effect af and a better Ho=—h2 cosf;+ 5 2 (VX )2
approximation for the gauge-field propagator is needed to 8Km
study its effectinside the dSC. This could be important in m2
light of recent experimental ddtz®that may be interpreted > @2, (A2)
as indicating the coexistence of the SDW and SC orders in 4K 72

some compounds
(4) The present work also points to a new route towards d he optimal values of the parametérandm that maximize
deconfined phase in two dimensions: lowertigbelow two  the right-hand side in the Bogoliubov inequality are then
would allow for an insulating phase with deconfined spinonsdetermined by the equations
At present, however, it is not clear how to achieve this within
QED;, unless the Schwinger-Dyson equations systematically 6A 1,(h)
overestimateN, .”* =X o)’ (A3)
(5) The computation of the electron propagator within 0
QED; is an important problerft This would be necessary )
for a detailed comparison of the theory with the ARPES 2:K7T 11(h)

—— ——h A4
measurements. 3 o) (A4)
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R 2K7? [ d%k 1
=exg —
3 J (2m)® F(k)+m?

in the transverse gaugé-a=0, and the index denotes the
componentJ is defined the same way except with the plus
sign betweerp, and pg .
whereF (k) =3 ,(e*»—1)2, and the integral ovek is taken By introducing two auxiliary fieldsb, and®g to enforce
over (_ ’7T,7T). |0 and |1 are the Bessel functions. These the _Qonstrainil_s, after the in:tegration over the densities the
equations can be solved graphically, and describe a discoRartition function may be written as
tinuous transition from the phase with=m=0 (bound vor- " N
tex loops, to the condensed phase0, m#0 (infinitely 7 = (y/2) f D[a,s,®, ,®
86 v _ _ 0,94, —]

large vortex loopk NFo—o NAINAINSING!

The requisite average in the H&0) is easy to compute in AB
the mean-field theory that has different sites decoupled: p|

Xexp, —

(CoL 0= 0= @i ))o= (") o|Xe i)y, (A6)

Since,(e”'?i.»)o=A and finite, we conclude that

; (A5)

drdiB(No(F—1")B(F"
zszf (Nu(r—r")B(r")

+ 2|_7J dr[B(r)® . (r)+b(r)®_(r)]

(cog 6;,— 6, ,— 27D ,))oxh?, (A7)
i.e., finite only in the ordered phase of the dual thedgp), - > |ndeexp[iqiaq>a(F)] } (B5)
i.e., in the disordered phase of the origia¥ model. ta,a=AB
where &, _=®,+®g, B(r)=(VXv),, and b(r)=(V
APPENDIX B

><§)T. Performing the summations yields
Here | provide a different derivation of the dynamics of

the gauge fielda at T#0 starting from the Hamiltonian for szf D[5,5,¢+ D _Jexp —
the Coulomb plasma. Assume a collectionNof (N_) vor-

tices (antivortices$ at the positions{ﬂ}. The Hamiltonian of i
the vortex system is —F')B(F')+Ef dr[B(r)® . (r)+b(r®_(r)]
N

1 o
Ho=5 2 ade(fi=r)), BD —yJ’ dF[cos@A(F)+cosq>B(F)]H. (B6)

1 j e .
—— | drdr’'B(r)uv(r
27T (Nt

where v(r)~—Inlr|, at large distances, and=N*+N", . . .
gi==1. The partition function of the vortex systef can Finally, neglecting the coupling to the charge current, the

then be written as Gaussian integration over (i.e., B) gives

S - NT! Nt (y/N jﬁ dFeHuIT zU=JD[é’,q>+,cb]ex;{—de(T/2(Vc1>+)2
YN0 NAING ! NAINg! NFINTE) = ’

(B2) +i;b(F)CD_(F)—ZyCO$¢+(F)]C0$¢—(F)])}-

where N*()=N ) +NE () and y is the bare vortex
fugacity. The combinatorial factors serve to ensure that,in (B7)

one sums oveall possible divisions of vortices and antivor- where | also have rescaled thefields by a factor of 2. The
tices into groupsA and B, and divides by the number of |35t expression is then analogous to e 0 expression in
combinations. With this symmetrization the symmetry be-he Eq.(18) with x finite and without the dual anglet, g .

tween up and down spin in the original Hamiltonigh will By introducing a source term in the actionj [j(r)b(r)/,
be preserved in the Dirac theory for neutral spinons. Thiyng integrating oveb, one readily finds

also guarantees that on average there is an equal number of

vortices(and antivorticesin both groups. ([ﬁx 5( F)]T[ﬁxé(F’)]T>=<y> 5(?— ;,), (B9)
Next, introduce the vorticity densities i, by inserting
the unity where(y)=ym*(exp(®,)), with the average to be taken at

®_=a=0. One recognizeéy) as the renormalized, or run-
- - - ning, fugacity in the Kosterlitz-Thouless scaling, which sig-
1=J Dlpal 5( PA(r)_ZJl qiad(r=ria) [, (B3 nals the appearance of free vorticg) plays the role analo-
gous to the vortex loop condensate if-2 dimensions, in

Na

and similarly forB. The gauge field then becomes providing a mass for the fiel®d , in Eq. (B7). This implies
o R R the Maxwell term afl # 0 for the 7 component ol X a once
(Vxa(r)),=m[pa(r)—pg(r)], (B4) fluctuating vortices are integrated out.
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APPENDIX C - B .
. o S[\If’]=fdrfdr\lf’[&+Mvﬂ+Mu(9]\1/’
For completeness, here | outline the derivation of the re- 0 Le T ATy

sult that chiral symmetry in isotropic massless QED3 is
spontaneously broken foN<N., with N. finite, at any
value of the coupling constant. Rescaling the moment
p/m—p and self-energiess (p)/m—m and II(p)/m?
—1II(p), after taking the limitg— 0 in the Eq.(32) we find

+(1—2x<y), (D2)

But this time with a different form of the matricéd,; and
Ms: Mi=—il®oz and M,=il ® oq. Introducing yo= 03
® o5, for example, the theory becomes

1:|<(I)>|2JA/mdp pZ2(p) 1) Y
Ter 0 [p2+22(p)][p2+1—[(p)]’ S[\I, ]:f d rfo dT‘Pl[’yOaT"' Y1V 0yt YZUAay]\Pl
where the polarization is now +(1—2xey), (D3)
2
II(p)= NI{®)| f(p), (C2 with y;=03® 01 and y,=o3®g3. It is interesting to con-
4mm sider the generators of the global URY(1)X SU(2) sym-
with metry per Dirac component present in this representation of

the theory. They arg,=1®1, y3=01®l, ys=—0,®I, and
p2—4 ( p V35= 03®1, respgctively. One may_recognize the _U(l) fgc-

2+ sin~! 5| | (C3 tor as representing now the continuous translations, since

P N4+ P under a translatior,, (k,w)—e* Rc_(k, ), the Dirac field
to the leading order ilN.2° We see that the right-hand side of now transforms as
the Eq.(C1) is a decreasing function af, so for m#0 o
solution to exist we just need the right-hand side to be W (r,7)—eKiRp/(r+R,7). (D4)
greater than 1 fom=0. This is satisfied foN<N., where

f(p)=

The SU(2) operators, on the other hand, are nothing but the
o pZ%(p) spin rotations In fact, the above U(2) is an exact symmetry
fo p[p2+22(p)]f(p) : (C4 of the Hamiltonian(2), and is present even if all higher order
derivatives are retained.
As defined,X(0)=1, and one expect¥(p) to vanish at Including the coupling to vortex loops via massless gauge
large momenta. Alsd,(p) ~ 7p/2 for p>1, so the integrand field in the above representation of the problem then may
at large argument behaves likeX (p)/p. N, is therefore  spontaneously induce only thetip insulator. This breaks
finite, and independent of the coupling constahb. Its pre-  two of the above generators, which then simply rotate the
cise value in the largél approximation will depend only on Spin axis. Translational symetry is, on the other hand, always
the functionS (p) atN=N,, and can be obtained by solving preserved in this formulation, and the SDW remains invis-
the differential equation equivalent to the integral equationible.
(C1) (Ref. 20 (see Appendix E This yieldsN.=32/72, not
far from the results of other more elaborate computations APPENDIX E
that go beyond the leading order M®3°

N.=4

Here | provide the details behind the numerical solution
APPENDIX D of Egs. (50) and (51). Since we are interested only in the
qualitative effect of theJ term, it will suffice to assume that
Here | discuss a different representation of the quasiparthe fermion mass is smalin<|(®)|?, so that one can ne-
ticle action, more in line with the previous wofkThis  glect thep? term compared tdI(p) in Eq. (51), and take
should serve to underline the difference between the approxi-
mate chiral SI(2) symmetry, and the exact spin rotational N|(D)|?
SO(3), also present in dSC. It is only the latter that will I(p)=—5g—p (ED
appear in the different version of the theory considered here
and in Ref. 7, while the chiral symmetry will remain com- appropriate forpp>m. This approximation is known to lead

pletely obscured. to even quantitatively good result for the mass lfbas low
| start again from the same quasiparticle action in the Egas unity, wherlJ =0.?° Evaluating the angular integrals then
(2), but now introduce the four-component field as gives
q’iIZ)(van):(Ci(k,wn)'c—(_k'_wn)th(kywn), 38 A KS(K)[Kk—(k—q)8(k—0)]
. S(q)=x+— f dk =
—ci(—K,—wp)). (D1) N7qJo k*+2%(k)
(E2)

By linearizing the spectrum and by retaining only the modes
near the four nodes, the continuum theory may again be writbifferentiating twice, one finds that this integral equation is
ten as equivalent to the differential equatich:
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d d 9°2(q)
— | g?2— = E3
dQ(q qu(q)) N2 g2+ 32(q) 3
with the boundary condition
A (A)+2(AN)=y, (E4)
and with
U (2 g°3()
= d . E5S
X <2w>2fo i) (=9

Here | takeA = |[(®)|2.
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The above equations may now be studies by assuiing
>3 (q), which leads to a linear equation that can be exactly
solved®” This yields, for example, the well-known transition
line in the g-N plane:g.(N)=(1/4)(1+ 1— (N./N)?, for
N>N,, g.<1/4 forN=N,, with N.=32/72. To determine
the size of2(0), however, one needs to solve the full non-
linear equation. This may be accomplished, for example, by
choosing a value fog, assuming(A) next, and then iter-
ating back to find®(q) for 0<q<A. The solution is found
by tuning > (A) to achieve (0) finite. One then computes
the value ofg=UA/(27)? from the assumedy and the
found 2 (q). This procedure leads to Fig. 4.
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