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QED3 theory of underdoped high-temperature superconductors
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The low-energy theory ofd-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of
phase coherence in a two-dimensionald-wave superconductor atT50 is derived from first principles. The
theory has the form of~211! dimensional quantum electrodynamics (QED3), and is proposed as an effective
description of theT50 superconductor-insulator transition and of the pseudogap phase in underdoped cu-
prates. The coupling constant~‘‘charge’’! in this theory is proportional to the dual order parameter of theXY
model, which is assumed to describe fluctuations of the phase of the superconducting order parameter. Finite-
ness of the charge is then tantamount to the appearance of infinitely large vortex loops, i.e., to the loss of phase
coherence in the system. The principal result is that the destruction of the superconducting phase coherence in
the d-wave superconductors typically, and immediately, leads to the appearance of antiferromagnetism. This
transition can be understood in terms of the spontaneous breaking of an approximate ‘‘chiral’’ SUc(2) sym-
metry, which may be discerned at low enough energies in the standardd-wave superconductor. The mechanism
of this spontaneous symmetry breaking is formally analogous to the dynamical mass generation in QED3, with
the ‘‘mass’’ here being proportional to staggered magnetization. Other phases with broken chiral symmetry
include the translationally invariant ‘‘d1 ip ’’ and ‘‘ d1 is’’ insulators, and the one-dimensional charge-density
and spin-density waves, which are all insulating descendants of thed-wave superconductor. All the insulating
states have neutral spin-1/2 excitations that one can identify in the superconductor confined by the logarithmic
potential. Electron repulsion is in this formalism represented by a particular quartic perturbation to the QED3

action, which breaks the chiral symmetry and selects the antiferromagnet as the preferred broken symmetry
state. I formulate the mean-field theory of the antiferromagnetic instability in presence of a short-range repul-
sive interaction, and find the staggered magnetization to be significantly enhanced deeper inside the insulating
state. The theory offers an explanation for the roundedd-wave-like dispersion seen in angle-resolved photo-
emission spectroscopy experiments on the insulating Ca2CuO2Cl2 @F. Ronninget al., Science282, 2067
~1998!#. Relations to other theoretical approaches to the high-Tc problem are discussed.

DOI: 10.1103/PhysRevB.66.094504 PACS number~s!: 74.20.Mn, 74.25.Jb, 74.40.1k
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I. INTRODUCTION

Soon after the original discovery, it became well appre
ated that the high-temperature~high-Tc) superconductors ar
all quasi-two-dimensional insulating antiferromagnets t
become superconducting with the introduction of holes. T
nature of the relationship between antiferromagnetism
high-temperature superconductivity has been the centra
sue in the field. Following the time honored strategy of u
derstanding first the non-superconducting state, most of
approaches to the high-Tc problem focused on finding th
mechanism by which doping an antiferromagnet would p
duce a superconductor.1 The essential difficulty in pursuing
this strategy seems to be that the Mott insulator is itse
nontrivial strongly correlated state, harder to describe
simple terms than the metallic Fermi liquid, which played
role in the BCS theory of the low-temperatu
superconductivity.2 The situation becomes only worse aw
from half-filling, where the ground state of even the simpl
models becomes more ambiguous. Experimentally, the
prates seem to loose their antiferromagnetic ordering w
doping before they become superconducting, and many
didates for the intermediate ‘‘pseudogap phase’’ have b
discussed in literature. The nature of the nonsuperconduc
state that is supposed to be unstable to superconduct
with doping is at this point, however, far from clear and m
0163-1829/2002/66~9!/094504~19!/$20.00 66 0945
i-

t
e
d

is-
-
he

-

a
n

t
u-
h
n-
n

ng
ity

prove to be nonuniversal. Arguably, the physics of the und
doped regime may be the main mystery of high-tempera
superconductivity.

In a remarkable contrast to the uncertainties inheren
the insulating phase, the superconducting phase of m
high-Tc materials is well established to haved-wave symme-
try of the order parameter,3,4 typically with well-defined,
long-lived quasiparticle excitations.5,6 This simplicity sug-
gests that aninvertedapproach to the high-Tc problem may
be more natural:7 if there exists ad-wave state in the phas
diagram, whatother states can in principle be inferred from
it? The purpose of this paper is to establish the theoret
framework for answering this question, answer it, and sh
how this may help explain some salient features of the
prate phase diagram and the angle-resolved photoemis
spectroscopy~ARPES! experiments in the insulating state.8,9

Loosely speaking, there are two ways to destroy a su
conducting state:~1! by driving the amplitude of the orde
parameter to zero, which is what is well described by
weak-coupling BCS theory at finite temperature,2 for ex-
ample. Ford-wave superconductors this process presuma
is relevant at large dopings, where weak-coupling treatme
of the Hubbard and related models can be trusted, and d
der should eventually forceTc to vanish.10 ~2! Even if the
amplitude of the order parameter is large and finite, sup
conductivity will be lost with the destruction of phas
order.11,12 There is evidence that this is what actually occu
©2002 The American Physical Society04-1
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in underdoped cuprates, where the superconducting tra
tion temperature (Tc) is much lower that the pseudogap tem
peratureT* . Since underdoped cuprates are strongly two
mensional, at finite temperatures the loss of phase order
be expected to proceed via the Kosterlitz-Thouless transit
and indeed, there are distinct experimental signatures of
fluctuating vortices aboveTc .13,14 The following question
then naturally arises: What is the nature of theT50 phase
that derives from a two-dimensional~2D! d-wave supercon-
ductor when the phase coherence is lost, but the order
rameter amplitude is still finite? The central thesis of t
work is that the phase incoherentd-wave superconducto
~dSC! is nothing but the insulating~typically incommensu-
rate! spin-density-wave~SDW!, i.e., weak antiferromagnet
Short account of this result appeared earlier in Ref. 15.

I show that the minimal continuum theory of the low
energy quasiparticle excitations near the four nodes of
d-wave order parameter coupled to fluctuating vortex loo
at T50 is provided by (211)-dimensional quantum electro
dynamics (QED3):

S5E d2rW dtF C̄ ign~]n1 ian!C i1
1

2u^F&u2
~¹W 3aW !2G ,

~1!

wheren50 ~imaginary time! 1, 2 ~space!, and the sum over
repeated indices is assumed. Thefour-componentDirac
fields C i , i 51,2 represent the sharp, electrically neut
spin-1/2 excitations one can define in the superconduc
state~and hence may call ‘‘spinons’’!, which are minimally
coupled to a massless gauge fieldaW . The gauge field derives
from the fluctuating topological defects~vortex loops! in the
phase of the superconducting order parameter, which h
been integrated out in deriving the theory~1!. The complex
number^F& is proportional to the the disorder~dual order!
parameter16 and represents the state of vortex loops:^F&
Þ0 signals the appearance of infinitely large loops in
system and the loss of phase coherence, which is theT50
analog of the Kosterlitz-Thouless transition.17 In the super-
conducting state, on the other hand, all loops are of fin
size, ^F&50, and the gauge field, in the simplest appro
mation, may be considered effectively decoupled from
spinons: quasiparticle excitations are then sharp, since al
short-range interactions that have not been explicitly writ
in Eq. ~1!, if weak enough, are strongly irrelevant. Whe
^F&Þ0 the situation becomes radically different, as t
gauge field mediates a long-range interaction betw
spinons. In reality the theory is also strongly anisotropic,
for simplicity this possibly important feature has been n
glected in writing Eq.~1!. QED3 has also been recently con
sidered by Franz and Tesˇanović18 as an effective description
of the pseudogap state. They argued that the presence o
massless gauge field may explain the broad features se
ARPES measurements in the normal state.6,19 Here I show
that atT50 as soon aŝF& becomes finite there is a dynam
cal generation of the mass term;mC̄ iC i in Eq. ~1!, which
can be identified as the staggered potential ‘‘felt’’ by t
original electrons, i.e., with the SDW order parameter. Qu
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tum fluctuating dSC is thus atT50 inherently unstable to-
wards SDW ordering once the phase coherence is lost.

The dSC→SDW quantum phase transition is an examp
of spontaneous breaking of continuous global symmetry
Eq. ~1!, which for a lack of better name I will call ‘‘chiral’’
throughout the paper. Chiral symmetry breaking is a we
studied field-theoretic phenomenon, believed to be inextr
bly linked to confinement in QED3.20 Massless QED3 for
single species of Dirac fermions has the continuous U
5U(1)3SUc(2) symmetry, with the generatorsI ,g3 ,g5,
and g355 ig3g5, respectively. In the action in Eq.~1!, the
U~1! factor represents the residual spin rotational symme
left by the choice of representation, as will be explained
detail later. It is the additional SUc(2) symmetry per Dirac
component in QED3 that will be of central interest here. Th
fermion mass termmC̄ iC̄ breaks the SUc(2) symmetry for
each Dirac field to Uc(1), and the twobroken generators
rotate between different insulating states. Chiral SUc(2)
symmetry arises as an approximate symmetry of the d
only at low energies, and will be manifestly broken, for e
ample, by higher-order derivatives omitted in Eq.~1!. It
should not be confused with the spin rotational symme
which is, of course, also and exactly present in the dS
Higher-order derivatives and the electron interaction ter
reduce the SUc(2) to its Uc(1) subgroup, which is related to
the spatial translations of the original electrons. The iden
cation of the approximate chiral symmetry in the dSC
essential for establishing the connection between the ant
romagnetic and the superconducting phases advocated in
paper, and represents one of the central results. The idea
cuprate phase diagram may be understood in terms of
chiral symmetries of different states as depicted in Fig. 1

Assuming the scale for the SDW transitionTSDW(x) in an
anisotropic quasi-two-dimensional high-temperature sup

FIG. 1. A schematic phase diagram of cuprate superconduc
in terms of the low-energy chiral symmetries SUc(2) ~full symme-
try! andUc(1) ~broken symmetry!. Besides chiral symmetries, th
d-wave superconductor~dSC! also has full spin rotational symme
try, and the spin-density wave~SDW! has superconducting U~1!
and spin rotational symmetry around one of the axes. Near and
of the underdoped transition point the system is proposed to b
extremely weak SDW, which becomes reinforced by the elect
repulsion, and which continuously evolves into a stronger anti
romagnet near half-filling.
4-2
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QED3 THEORY OF UNDERDOPED HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 66, 094504 ~2002!
conductor to be set by the magnitude of the staggered m
netization atT50,21 the present work suggests that near a
left of the superconductor-insulator transition one should
pectTSDW to be considerably lower than the superconduct
Tc(x) near and right of the critical point:TSDW(xu2d)
!Tc(xu1d), wherexu is the critical doping for the dSC
SDW transition, andd!1 ~see Fig. 1!. This is because gen
eralized QED3 with N fermion species has a critical point
N5Nc'3, above which there is no dynamical ma
generation.20 QED3 in Eq. ~1! hasN52 components, which
together with some numerical factors gives very weak SD
order near the superconducting phase. The pseudogap p
in cuprates atT50 is therefore proposed here to be actua
an extremely fragile SDW, likely to be easily destroyed
disorder, for example. As half-filling is approached and
vortex loop condensatêF& increases, the repulsion betwee
electrons also becomes important. Short-range repulsio
represented in QED3 by a particular quartic term, which i
weak is irrelevant in the superconducting state, but wh
also manifestly breaks the chiral symmetry of the low-ene
theory. I show that the effect of such a term is first to bre
the degeneracy among states with broken chiral symmetr
favor of the SDW, and then to dramatically increase
SDW order parameter farther from the dSC. The picture
plied by the QED3 is qualitatively in accord with the generi
phase diagram for the underdoped cuprates, where the
ferromagnetic transition near half-filling raises to;300 K,
but is typically unobservably low very near the superco
ducting state.

Neutral spinons, which are well-defined quasiparticles
the superconducting state, in the insulator become broad
citations with the lifetime proportional to the antiferroma
netic order parameter. AtT50 and at large distances the
become confined by a logarithmic potential provided by
gauge field in the presence of the chiral symmetry break
Due to the weakness of the SDW order very near the su
conducting transition, however, spinon confinement is eff
tive only at very large distances, or equivalently, at very l
temperatures. The weak SDW phase therefore appears e
tively deconfined at intermediate length scales. The finitT
pseudogap phase has gapless spinons strongly scatter
the massless gauge field, in qualitative agreement with
broad spectral features of the electrons seen in ARPE18

Near half-filling the SDW order increases and the bou
state of spinons rapidly shrinks, leaving only magnons in
excitation spectrum.

The confined nature of the standard antiferromagnet c
to half-filling, if postulated, by itself already points to th
QED3 as a viable candidate for the effective theory of und
doped cuprates. If one views the superconducting stat
being spin-charge separated,7 one needs a mechanism b
which spinons would eventually become confined in the
tiferromagnetic phase. QED3 provides such a mechanism a
tomatically, since the massless gauge field mediates a l
range logarithmic interaction between the spinons that bi
them at all energies. Were the gauge field massive, on
other hand, the physics would be equivalent toZ2 gauge
theory, and the antiferromagnetic state would be deconfi
and quite different from the usual antiferromagnet.22–24 The
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very existence of an ordinary antiferromagnet at, and p
sumably near, half-filling25 may therefore be taken as ev
dence in favor of the type of theory presented in this pap

The physical picture of the antiferromagnetic~SDW! in-
sulator as a phase-disorderedd-wave superconductor is fur
ther supported by the ARPES data on insulating Ca2CuO2Cl2
and Sr2CuO2Cl2.8,9 These experiments show two unexpect
features of the insulating state:~1! although the ARPES spec
tral function is broad, one can nevertheless identify a re
nant of the Fermi surface;~2! the dispersion at such an ap
proximate ‘‘Fermi surface’’ has ad-wave form, except that it
becomes rounded and without the characteristic cusp at
energies. The ‘‘relativistic’’ dispersion for broad quasipartic
excitations that QED3 implies in the insulating state, whe
measured from the lowest energy given by the dynamic
generated chiral mass, provides a very good fit to the d
~see Fig. 5!. The present theory implies that the rounding
the dispersion is controlled by the size of the sublattice m
netization, and therefore should decrease with doping, as
approaches the superconducting state. It would be desir
to test this prediction in future experiments.

In the body of the paper I develop the above picture
detail. In the next section, I derive the Dirac representation
the Hamiltonian for low-energy nodal quasiparticles, and d
cuss the coupling to quantum fluctuating vortex loops in S
III. A derivation of the dynamics of the gauge field startin
from theXY model on a lattice is presented in Sec. IV. Th
section is somewhat technical and may be skipped at
reading. Instead, the reader may consult Appendix B, wh
a simpler derivation for finite temperatures is presented. D
namical breaking of chiral symmetry and the formation
the SDW state is discussed in Sec. V. More general disc
sion of chiral symmetry and other ordered states on the ch
manifold is provided in Sec. VI. The reduction of chiral sym
metry by the irrelevant terms is discussed in Sec. VII, a
the mean-field theory of the antiferromagnetic instability
QED3 in the presence of electron repulsion is proposed
Sec. VIII. Confinement of spinons in the insulator is d
cussed in Sec. IX. The discussion of the ARPES meas
ments is given in Sec. X. A summary of the main results a
discussion of the relations to other theoretical approaches
given in the concluding section. I finish with a list of ope
problems. Technical details are presented in five append

II. DIRAC THEORY FOR NODAL EXCITATIONS

I begin by assuming that the superconducting state, ex
from being ad wave, otherwise exhibits the standard BC
phenomenology. In particular, I assume that the quasipa
cles are well-defined, long-lived excitations. Generally, t
quasiparticle action atTÞ0 may then be taken to be

S5T (
kW ,s,vn

F ~ ivn2jkW !cs
†~kW ,vn!cs~kW ,vn!

2
s

2
D~kW !cs

†~kW ,vn!c2s
† ~2kW ,2vn!1h.c.1O~c4!G ,

~2!
4-3
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whereD(kW ) has the usuald-wave symmetry, and two spatia
dimensions~2D! are assumed.c andc† are the electron op
erators,s56 labels thez projection of electron spin, andvn
are the fermionic Matsubara frequencies. Units are chose
that h5c5e51. The O(c4) term stands for all possible
short-range interactions between quasiparticles.

We may represent the quasiparticle Hamiltonian in ter
of two four-componentfields,

C i8
†~qW ,vn!5„c1

† ~kW ,vn!,c2~2kW ,2vn!,

c1
† ~kW2QW i ,vn!,c2~2kW1QW i ,2vn!…, ~3!

whereQW i52KW i is the wave vector that connects the nod
within the diagonal pairi 51,2, as in Fig. 2. For spinor 1
kW5KW 11qW , with uqW u!uKW 1u, and analogously for the secon
pair. The construction of the four-component field is n
unique. The choice in Eq.~3! differs from the one made in
the Ref. 7 for example. I postpone the discussion of the
ternative construction used there for Appendix D. Using
construction in the Eq.~3!, and by observing thatjkW

52jkW2QW i
, and DkW52DkW2QW i

, for kW'KW i , and then by lin-

earizing the spectrum asjkW5v fqx1O(q2) and DkW5vDqy
1O(q2), one arrives at the low-energy action

S@C8#5E d2rWE
0

b

dtC18
† @]t1M1v f]x1M2vD]y#C18

1~1→2,x↔y!1O~]C8†]C8,C84!, ~4!

with b51/T. The continuous Dirac fieldC i8(rW,t) is defined
as

C i8~rW,t!5T(
vn

E d2qW

~2p!2
eivnt1 iqW •rWC i8~qW ,vn!, ~5!

FIG. 2. The wave vectorsKW i , i 51,2, andqW . The dashed line
stands for the putative Fermi surface. The SDW ordering w

vectors areQW i52KW i .
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with the integral over momenta performed overuqW u,L
,T* . The 434 matrices in Eq.~4! are M15 is3^ s3 and
M252 is3^ s1 . sW are the usual Pauli matrices, and th
coordinate system has been rotated as in Fig. 2.

To cast the theory in Dirac form we may invoke the m
trix g05s1^ I , where I is the 232 unit matrix. Theng0

2

5I ^ I , and Mi5g0g i , with g15s2^ s3, and g252s2
^ s1 . $gn ,gm%52dnm , n,m50,1,2, so theg matrices in-
deed satisfy the Clifford algebra. The quasiparticle action~2!
at low energiesbecomes equivalent to the field theory

S@C8#5E d2rWE
0

b

dt C̄18@g0]t1g1v f]x1g2vD]y#C18

1~1→2,x↔y!1O~]C̄8]C8,C84!, ~6!

where C̄ i85C i8
†g0. Weak quartic interactions, as long a

they are short-ranged, are irrelevant by simple power cou
ing. This simply reflects the severe phase-space restrict
for scattering of the nodal quasiparticles. I will therefo
omit them temporarily, together with the second-order d
rivative terms, and return to their effects in Sec. VII.

The reader would be correct to note that there is a c
siderable freedom in selecting the form of the matrixg0. In
fact, any 434 matrix that anticommutes withM1 and M2
and squares to the unit matrix would yield an equally va
Dirac representation. It is shown later that this freedom w
correspond to different ‘‘directions’’ in the space of order
states with broken chiral symmetry. The specific choice
g0 made here will be analogous to choosing a direction
real space along which to search for a finite magnetizat
for example, in the more familiar magnetic phase transitio

III. COUPLING TO TOPOLOGICAL DEFECTS

The goal in this section will be to find the most econom
cal form of the coupling between nodal excitations in t
dSC and the fluctuations of the phase of the superconduc
order parameter. The working assumption is that the am
tude fluctuations are frozen well below the pseudogap te
peratureT* , so it is only the phase degree of freedom th
remains active at low energies. With this in mind I write

vD→vD~rW,t!5uvDuei [fs(r
W,t)1fr (r

W,t)] , ~7!

where f r represents the regular~‘‘spin-wave’’! part of the
order parameter phase, andfs is the singular contribution
due to topological defects. AtT50 these would be the vor
tex loops17 or the more familiar vortices and antivortices
TÞ0. At this point it is tempting to transform both spin-u
and spin-down fermionic operators by absorbing a half of
total superconducting phase into each. In the presenc
topological defects, however, this would lead to multivalu
fermionic fields and would not be a local change of variab
in the partition function. This problem may be circumvent
by allowing only vortices of double vorticity7 for example,
which then leads to theZ2 gauge theory representation of th
problem, and a possibility of spin-charge separation in
pseudogap regime.24 It is the single vortices, however, tha

e

4-4
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QED3 THEORY OF UNDERDOPED HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 66, 094504 ~2002!
first become relevant at theTÞ0 Kosterlitz-Thouless
transition,26 and they should be included in the description
theT50 transition as well. I will therefore utilize the idea o
Franz and Tesˇanović,27,28 who suggested dividing a give
vortex configuration into two groupsA andB, and transform-
ing the electron operators with spin up and spin down diff
ently. We write

fA~rW,t!5
f r~rW,t!

2
1fsA~rW,t!, ~8!

and similarly forB. fsA is the piece of the singular part o
the phase that comes from the defects grouped inA. One
may then make alocal change of variables by introducing
new Dirac fieldC as

C~rW,t!5U~rW,t!C8~rW,t!, ~9!

where U5diag$e2 ifA,eifB,e2 ifA,eifB%. Since any given
vortex defect is either in groupA or B, and therefore associ
ated with either up or down spin by the transformation~9!,
circling around it with the transformed fermion would yie
either 2p or zero of the accumulated phase change. Com
nents of the new fieldC are therefore single-valued func
tions.

The gauge-transformed action for the Dirac fieldC is
then

S@C8#→S@C,aW ,vW #

5E d2rWE
0

b

dtC̄1@g0~]t1 ia0!

1g1v f~]x1 iax!1g2uvDu~]y1 iay!#C1

1~1→2 ,x↔y!1 ivmJm , ~10!

with an5]n(fA2fB)/2, vn5]n(fA1fB)/2, and
Jn5„C i

†(I ^ s3)C i ,vFC1
†(s3^ I )C1 ,vFC2

†(s3^ I )C2….
Since the vectorJn is built out only of the products of the
creation and the annihilation operators with same spin, it a
represents thephysicalcharge current carried by the quas
particles. On the other hand, since the regular part of
phasef r was in Eq.~8! divided equally between spin up an
spin down, the Dirac fieldC is invariant under a regula
gauge transformation. Components ofC therefore create
electrically neutral excitations with spin 1/2,7 which may
therefore be referred to asspinons.

The action~10! has two rather different gauge symm
tries, and it may be worthwhile pausing a little to reflect
them. First, the physical electromagnetic gauge fieldAm
would enter the action~10! by the replacementvm→vm
1Am , and couple to the charge current. Under a regu
gauge transformationAm→Am1]mx, the Volovik field29

vm→vm2]mx, while the gauge fieldam and C remain the
same. The action~10! is therefore gauge invariant, in th
standard sense. But it also has an additional internal ga
symmetry, under the transformationam→am1]mx, vm
→vm , C→e2 ixC. This reflects the freedom of choice i
Eq. ~8!; one could have equally well chosen the regular p
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of fA to be (f r /2)1x, and of fB to be (f r /2)2x. One
deals with this gauge freedom, as usual, by eventually in
ducing the gauge-fixing term foram that allows one to freely
sum over all regular internal gaugesx. Similarly, the divi-
sion of the singular part of the superconducting phase
that which comes from the defects in groupA and the defects
in groupB is equally arbitrary. Just as one effectively sum
over all regular internal gauges by the introduction of th
gauge-fixing term, we will sum over allsingular internal
gauges by averaging over all possible divisions of defe
into two groups. This is explained in the next section, and
the Appendix B. As a by-product, the averagings over regu
and singular internal gauges will ensure that up and do
spinons are treated equally in QED3, preserving the symme
try of the original electronic action~2!.

The crucial observation about the action~10! is that the
coupling of spinons to phase fluctuations is furnished bytwo
U~1! fields that play quite different roles in the problem. Th
total superconducting phase determines the Volovik fieldvn
and couples to the charge current, in the same way as the
electromagnetic field would.vn will therefore inevitably be-
comemassiveonce the high-energy spinons in Eq.~10! begin
to be integrated out. Its fluctuations therefore may prov
only a short-range interaction between spinons. The ga
field an , on the other hand, enters Eq.~10! in a gauge-
invariant way, and therefore is protected from acquiring
mass from spinons. Both gauge fields, however, depend
the fluctuating positions of the topological defects, and
quire their dynamics not only from the spinons, but from t
defects as well. To determine their dynamics one theref
needs to integrate the defect degrees of freedom out. Ifam
would stay massless even after this integration is perform
it would mediate a long-range interaction between the no
excitations, which, unlike the short-range quartic terms
Eq. ~6!, would not be made irrelevant by the phase spa
restrictions. This, however, depends on the precise wayam
acquires its dynamics from the fluctuating vortex loops,
which I turn next.

IV. DYNAMICS OF THE GAUGE FIELDS

The zero-temperature partition function for the coupl
system ofd-wave quasiparticles and superconducting ph
fluctuations is therefore

Z5E D@C,aW ,vW #e2(S[C,aW ,vW ] 1SU(1)[a
W ,vW ]) , ~11!

with S@C,aW ,vW # defined by the Eq.~10!, and withSU(1)@aW ,vW #
to be derived by integrating out the phase fluctuations.
simplicity, I will assume that these may be described
(211)-dimensionalXY model. The bare stiffness for th
phase fluctuations will be assumed to be provided by
high-energy modes that have been integrated out in arriv
at the low-energy theory. Our goal will be then to rewrite t
partition function for theXY model as the functional integra
over the fieldsaW and vW . In particular, we want to integrate
over the topological defects implicit in theXY model.

I first discretize the space and the imaginary time in w
ing the partition function of theXY model. This is done to
facilitate a more rigorous treatment of the topological d
4-5
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fects, and it will prove possible to return to the continuu
description we employed until now. On a lattice, in the sta
dard lattice gauge-theory notation17

Zxy5E
0

2pS)
i

df i DexpS K (
i ,m̂5 x̂,ŷ,t̂

cos~f i 1m̂2f i !D ,

~12!

where the indexi labels the sites of a (211)-dimensional
lattice, andx̂ is the lattice unit vector in thex direction, for
example. For simplicity, full isotropy in theXY model is
assumed. Using the Villain approximation30 and then inte-
grating over the phases leads to

Z5E
2`

`

dsW (
nW

8expS 2
1

2K (
i

~¹W 3sWi !
21 i2p(

i
nW i•sW i D ,

~13!

where nW i5(ni ,t ,ni ,x ,ni ,y) is an integer vortex-loop vecto
variable, satisfying the constraint¹W •nWi50 ~indicated with
the prime on the sum!. ¹W and¹W 3 should be understood a
the lattice gradient and the curl, respectively. Summing o
nW i forcessW i to take integer values, and the above express
becomes the standard current representation of theXY
model.17

Next, I imagine dividing a given configuration of vorte
loops into two arbitrary groups, and writenW i5nW A,i1nW B,i ,
with ¹W •nWA,i5¹W •nWB,i50. We will want to sum over all inte-
ger nW A,i andnW B,i , in order to average over all possible div
sions of vortices into two groups. Introducing the lattice v
sion of the fieldsaW i and vW i as BW i1bW i52pnW A,i , BW i2bW i

52pnW B,i , wherebW i5¹W 3aWi andBW i5¹W 3vWi , I write31

Zxy5E
2`

`

d@aW ,vW , tW,sW,rW# ( 8
nW A ,nW B

exp2(
i

F 1

2K
~¹W 3sWi !

2

1 i2psW i•~nW A,i1nW B,i !1 i tW i•~BW i1bW i22pnW A,i !

1 irW i~BW i2bW i22pnW Bi
!G . ~14!

The summations overnW A,i and nW B,i then enforce the con
straintssW i2 tW i5mW A,i , andsW i2rW i5mW B,i , wheremW A,i andmW B,i

are new integers. Performing the Gaussian integrals ovesW i ,
yields

Zxy5E
2`

`

d@aW ,vW # ( 8
mW A ,mW B

expS 2(
i

$2KvW i
2

1 ivW i•@¹W 3~mWA,i1mW B,i !#

1 iaW i•@¹W 3~mWA,i2mW B,i !#% D . ~15!

This can be further simplified by noticing that the action
quadratic in the Volovik fieldvW , which can also be integrate
out. In doing so I will neglect the additional coupling ofvW to
09450
-
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the charge currentJW in the Eq. ~10!, which only leads to
additional irrelevant interaction between spinons. The in
gration overvW i in the last equation then gives

Zxy5E
2`

`

daW ( 8
mW A ,mW B

expF2(
i

S 1

8K
@¹W 3~mWA,i1mW B,i !#

2

1 iaW i•@¹W 3~mWA,i2mW B,i !# D G . ~16!

Integrating overaW i in Eq. ~16! would give back the curren
representation of theXY model, Eq.~13!. Alternatively, we
can introduce the real variablesFW 1,i andFW 2,i and write

Zxy5E
2`

`

d@aW ,FW 2 ,FW 1# (
lWA , lWB

8expF2(
i

S 1

8K
~¹W 3FW1,i !

2

1 iaW i•~¹W 3FW2,i !1 i2p~ lWA,i•FW A,i1 lWB,i•FW B,i ! D G ,
~17!

whereFW 1,2,i5FW A,i6FW B,i . The summations over the aux
iliary link variableslWA,B forceFW A andFW B and thereforeFW 1

and FW 2 to be integers. To preserve the gauge invarian
(F1,i ,m→F1,i ,m1¹mx i , F2,i ,m→F2,i ,m1¹mf i) of the
last expression we must impose¹W • lWA,i5¹W • lWB,i50.32,33 We
may next add a small chemical potential for the link va
ables lWA,B to the action in Eq.~17! as the termx( i( lWA,i

2

1 lWB,i
2 ). Up to the Villain approximation, the last expressio

is then equal to

Zxy5 lim
x→0

E
2`

`

d@aW ,FW A ,FW B#E
0

2p

d@uA ,uB#

3expF2(
i

S 1

8K
~¹W 3FW1,i !

21 iaW i•~¹W 3FW2,i !

2
1

2x
cos~uA,i2uA,i 1 n̂22pFA,i ,n̂ !

2
1

2x
cos~uB,i2uB,i 1 n̂22pFB,i ,n̂ ! D G , ~18!

where I introduced two sets of ‘‘dual’’ anglesuA,i anduB,i to
ensure the gauge invariance, and imposed the ‘‘frozen’’ lim
x→0. The integration overaW i in the Eq.~18! together with
the frozen limit ultimately setsuA,i[uB,i , so the last equa-
tion becomes another representation of the frozen lattice
perconductor~FLS!, which is well known to be dual to the
XY model in three dimensions.34,35

In principle, one would like to integrate out all the field
other thanaW in the Eq. ~18!, to be left with the effective
actionSU(1)@aW # for aW only. The result would be an interactin
theory for aW , which can be expanded in powers ofaW , for
example. Instead of doing this, I will approximate th
SU(1)@aW # with the effective Gaussian action foraW , that repro-
4-6
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duces the gauge-field propagator in the full theory~18!. This
approximation may be understood as the self-consis
mean field theory foraW , with the effect of integration over al
other fields in Eq.~18! lumped into the form of the propaga
tor.

In this approximation the problem of dynamics of th
gauge fieldaW reduces to the computation of the two-poi
correlation function foraW from the representation of theXY
model in Eq.~18!. I therefore introduce the source term in
the last expression by addingi ( i jW i•(¹W 3aWi) to the exponent.
Then

^~¹W 3aW ! i ,n~¹W 3aW ! j ,m&5
]2

] j i ,n] j j ,m
ln Zxyu jW[0W . ~19!

It is convenient then to integrate overaW in the Zxy first. One
finds

^~¹W 3aW ! i ,n~¹W 3aW ! j ,m&

5d i , jdn,m lim
x→0

p2

x
^cos~u i2u i 1 n̂22pF i ,n!&FLS,

~20!

where the last average is to be taken over the configurat
of the FLS:

Zxy5 lim
x→0

E d@FW ,u#expF2(
i ,n̂

S 1

2K
~¹W 3FW !2

2
1

x
~cos~u i2u i 1 n̂22pF i ,n̂ ! ! D G . ~21!

It is well established that the lattice superconductor a
small but finite ‘‘temperature’’x has a phase transition asK is
varied in the same universality class as in the frozen li
x50.17,34,36We may therefore relax the constraintx→0 with
impunity and assumex to be finite. The average that appea
on the right-hand side of the Eq.~20! can then be computed
for example, by using the mean-field approximation to
FLS action~21! ~see Appendix A!. This yields

1

x
^cos~u i2u i 1 n̂22pF i ,n!&FLS}u^exp~ iu i !&u2. ~22!

This result is quite general, and it simply expresses the
that in the ordered phase of the theory~21! the dual angles
become correlated, while at the same time the gauge
becomes massive via Meissner effect. The gauge-field fl
tuations can then be neglected, which makes the requ
average finite when the dual anglesu order, i.e., in thedis-
orderedphase of the originalXY model.

Returning to the continuum notation, and switching to t
Fourier space, the gauge-invariant expression for the co
lation function~19! at low momenta is therefore

^~¹W 3aW !n~¹W 3aW !m&}@ u^F&u21O~q2!#~dmn2q̂mq̂n!,
~23!
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where I allowed, in general, for some momentum dep
dence@the termO(q2)]. TheO(q2) term should be expecte
to appear in a more sophisticated approximation for
gauge-field dynamics than provided by the Eq.~20!. To the
lowest order, the integration over all other fields in Eq.~18!

effectively yields theMaxwell term for the gauge fieldaW ,
with the stiffness inversely proportional to the expectati
value of thedual loop condensatêF&;^eiu& that reflects
the phase of theXY model. This is the main result of thi
section. When the dSC is phase coherent and the vo
loops are finite in size,̂F&50, andaW is infinitely stiff, and
in a first approximation may be considered decoupled fr
spinons. When vortex loops blow up,^F&Þ0, phase coher-
ence is lost, and the spinons are minimally coupled to
massless gauge field. This is in agreement with the phys
arguments advanced in Ref. 18.

At high temperature one can neglect the fluctuations
the imaginary time direction and deal with the purely 2
problem of point vortices and antivortices. This simplifi
the analysis in that no gauge invariance needs to be ens
in the Eq.~17!, so no dual angles are required.32,33 One then
ends up with the thermodynamic vortex fugacity playing t
role of the dual condensate15 and with the simpler sine-
Gordon theory instead of the FLS. For an alternative deri
tion of the gauge-field dynamics atTÞ0 and in continuum
that is in full accord with the conclusions of this section
direct the reader to the Appendix B.

There is, however, an additional subtlety in going fro
the lattice to the continuum theory that is worth registerin
The partition function for theXY model in the Eq.~17! has
symmetry underai ,m→ai ,m12pni ,m , with ni ,m integer, that
is lost when a small chemical potential term@in passing to
the Eq.~18!# is added. This implies that the summation ov
the integer vortex variables in Eq.~17! must yield acompact

term for aW , which may be approximated with the Maxwe
term, Eq.~23!, in continuum. Possible effects of compactne
of aW on the picture developed in this paper are discusse
Sec. XII.

V. DYNAMICAL BREAKING OF CHIRAL SYMMETRY

The effectiveT50 low-energy theory for the interactin
system ofd-wave quasiparticles and fluctuating vortex loop
after the integration over vortex loops is therefore

S@C#5E d2rW dtH C̄1@g0~]t1 ia0!1g1v f~]x1 iax!

1g2uvDu~]y1 iay!#C11~1→2,x↔y!

1
1

2u^F&u2
@c2~¹W 3aW !t

21~¹W 3aW !rW
2
#J , ~24!

where I omitted the higher derivative terms, and the ter
quartic inC. This is the standard QED3, with two important
caveats:~1! the coordinatesx and y are exchanged for the
second Dirac field,~2! there is an inherent anisotropy in th
model, v fÞvDÞc, wherec is a characteristic velocity for
4-7
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the phase fluctuations.37 First, let us consider the simple
isotropic limit of the theory,v f5vD5c. There are sixteen
838 matrices then that either commute or anticommute w
the three 838 g matrices that appear in Eq.~24!:
diag$g0 ,g0%, diag$g1 ,g2%, diag$g2 ,g1%. First, there are
eight block-diagonal Hermitean matrices

I ^ I 4 , s3^ I 4 , I ^ g35, s3^ g35 ~25!

that commute, and

I ^ g3 , s3^ g3 , I ^ g5 , s3^ g5 ~26!

that anticommute with theg matrices. Here,g35s2^ s2 ,
g55s3^ I , g355 ig3g5, andI 45I ^ I . Next, there are eigh
more block-off-diagonal Hermitean matrices

s1^
i

A2
~g22g1!g3 , s2^

i

A2
~g22g1!g3 ,

s1^
i

A2
~g22g1!g5 , s2^

i

A2
~g22g1!g5 ~27!

that commute, and

s1^
1

A2
~g12g2!, s2^

1

A2
~g12g2!,

s1^
i

A2
g0~g11g2!, s2^

i

A2
g0~g11g2! ~28!

that anticommute with theg matrices. I call these sixtee
generatorsGi , i 51, . . .,16, in the above order. The isotro
pic QED3 in the Eq.~24! is invariant under a global unitar
transformation

C→UC, ~29!

where

U5expS i(
i 51

16

u iGi D . ~30!

This follows immediately by observing that all the gene
tors commute with the 838 matrices
diag$g0 ,g0%diag$g1 ,g2% and diag$g0 ,g0%diag$g2 ,g1% by
construction. The unitary transformations in relation~29! can
be shown to form the Lie group U(4). Following the stan-
dard terminology in the field theory literature, I will refer t
this symmetry of QED3 as ‘‘chiral.’’

As a first step towards understanding of the meaning
the chiral symmetry in the present context, it will prove us
ful to consider how it may be broken. QED3 is well known to
have the chiral symmetry spontaneously broken20 by the dy-
namical generation of the mass term in the action~24!:

mE d2rW dt(
i 51

2

C̄ iC i , ~31!
09450
h

-

f
-

with m}u^F&u2, i.e., proportional to the effective charge o
QED3. Containing just a singleg matrix, the mass term in
the Eq.~31! breaks all theanticommutinggenerators,Gi with
i 55,6,7,8,13,14,15,16. The chiral symmetry is reduced fr
U(4) to U(2)3U(2), with eight generators preserved. Th
fermion mass is generated dynamically due to the coup
to the gauge field. To see this, neglect the wave-funct
renormalization and the vertex corrections~which can be ra-
tionalized in the limit of a large number of Dirac fieldsN),
and write the self-energy as

S~q!5u^F&u2gnE d3pW

~2p!3

Dnm~pW 2qW !S~p!

p21S2~p!
gm , ~32!

where qW 5(v,qx ,qy). The gauge-field propagator in th
transverse~Landau! gauge is

Dnm~pW !5~dnm2 p̂np̂m!/@p21P~p!#, ~33!

whereP(p) is the self-consistently computed polarizatio
At p!S(0)5m, assuming a finite massm gives

P~p!5
Nu^F&u2

6p

p2

m
1O~p4!. ~34!

For the polarization at all momenta see Appendix C. Eq
tion ~32! was analyzed in Ref. 20~see also Appendices C an
E!, and there is a solution with finitem for the number of
Dirac fields N,Nc532/p253.24. Full numerical solution
that includes the wave-function renormalization and ver
corrections confirms thatNc'3,38 almost independently o
the choice of vertex. Lattice simulations give 3,Nc,4,39 or
at leastNc.2.40 It therefore seems reasonable to conclu
that for N52 the chiral symmetry in the isotropic QED3
becomes spontaneously broken when the vortex loops
bind and^F&Þ0.

Since the matrixg0 commutes with the electron-spino
transformation in the Eq.~9!, it is easy to rewrite the mas
term in QED3 in terms of the original electron operators:

m(
i 51

2

C̄ iC i→mT (
kW'KW 1 ,vn

$@c1
† ~kW ,vn!c1~kW2QW 1 ,vn!

2c2
† ~2kW1QW 1 ,vn!c2~2kW ,vn!#

1@c1
† ~kW2QW 1 ,vn!c1~kW ,vn!2c2

† ~2kW ,vn!

3c2~2kW1QW 1 ,vn!#%1~1→2!. ~35!

The reader will recognize this as the low-energy part of
staggeredpotential along the spinz axis

mE d2rW dt (
s56,i 51,2

cos~QW i•rW !scs
†~rW,t!cs~rW,t!, ~36!

so the mass in QED3 is nothing but the spontaneously ge
erated SDW order parameter. The periodicity of the SDW
set by the vectorsQW i , and thus tied to the Fermi surface. Th
4-8
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SDW order is established as soon as the phase coheren
lost, and the chargêF&Þ0. In the large-N approximation20

one finds that

m'16u^F&u2exp@22p/A~Nc /N21!#. ~37!

SinceNc'3, for N52 one finds thatm;1022u^F&u2. This
extreme ‘‘lightness’’ of fermions in QED3 derives from the
fact that the mass comes solely from the interaction with
soft gauge field.

Breaking of chiral symmetry in QED3 also implies that
the energies of spinons have become complex and finit
the phase incoherent state with^F&Þ0. In the simplest ap-
proximation the electron propagator may be computed a
product of the spinon and the gauge-field factors, so a sp
‘‘gap’’ should imply a charge gap as well, i.e., the syste
becomes an insulator.41 In Sec. IX I discuss how spinon
should actually be confined in the insulating state. Stagge
magnetization, charge gap, and the spinon confinement w
taken together imply that the state with broken chiral sy
metry is nothing but the standard, albeit a weak, SDW
seems natural to assume then that this state is continuo
connected to the antiferromagnet near half-filling in cupra
This expectation is further corroborated by considering
effect of Coulomb interactions, which is done in Sec. VII

It has been already mentioned that we have some free
in choosing the representation of theg matrices. In particu-
lar, it was the specific choice ofg0 that led to the cos-SDW
order parameter displayed in Eqs.~35! and ~36!. In the next
section I discuss how ‘‘rotating’’ the cos-SDW by the brok
chiral generators leads to a different insulating states.

VI. MORE ON CHIRAL SYMMETRY:
THE SPACE OF INSULATORS

In discussing the pattern of chiral symmetry breaking
QED3 one needs to distinguish at least two different cas
The isotropic theory (vD5v f) has the full U(4) symmetry in
its massless phase, so the mass term breaks eight of its
teen generators. In cuprates,42 however, v f /vD;10, and
even withm50 the symmetry is only U(2)3U(2), gener-
ated by the block-diagonalGi i 51, . . . ,8. Howsuch a large
anisotropy affects the value ofNc is a nontrivial problem,
and is addressed in a separate publication.43 Here I will con-
sider only the effect of anisotropy on chiral symmetry, a
assume it is reduced to U(2)3U(2). It suffices then to look
at each Dirac component in QED3 separately, i.e., conside
just the 434 representation of theg matrices, as defined
right below Eq.~5!.

It can be easily shown that any matrix that anticommu
with both M1 andM2 and squares to the unit matrix may b
chosen asg0, and will lead to a representation of theg
matrices such as in the Eq.~6!. The mass term;mC†g0C
in the action would then gap the quasiparticles, in analog
the standard relativistic Dirac equation. The problem of d
ferent chiral orders is therefore nothing else but finding
the ways in whichd-wave quasiparticles can spontaneou
acquire such a ‘‘relativistic mass.’’ It will be useful to intro
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duce ‘‘directions’’ in the space of broken symmetry states,
a set of linearly independent matrices that anticommute w
M1 andM2, and square to one. It is easy to show that in
434 representation there are only four such matrices

g̃0 ,g̃3 ,g̃5 ,i g̃1g̃2 , ~38!

with g̃05g0, and whereg̃152 iM 1 , g̃25 iM 2 , g̃35s3

^ s2, andg̃55s2^ I . In principle, any of these four if used
instead of ourg0 in the construction of the Dirac theory i
Eq. ~6! and in the mass term would give a relativistic gap
Dirac fermions. The last matrix,

i g̃1g̃25I ^ s2 , ~39!

however, being a product of twog̃ matrices does not brea
the chiral symmetry, and is believed not to be spontaneou
generated in QED3.20,44 I therefore focus on the remainin
three. Choosing one among$g̃0 ,g̃3 ,g̃5% as theg0 matrix in
the mass term reduces the SUc(2) subgroup of U(2)
@5U(1)3SUc(2)#, generated by$g3 ,g5 ,g35%, to Uc(1).
The two anticommuting generators of the SUc(2) that are
broken then rotate the chosen order parameter towards
two remaining ‘‘directions’’ in the chiral space. For exampl
for our choice ofg̃05g0, it is g35 that remains unbroken in
the cos-SDW phase, whereas the broken generators rotat
cos-SDW order parameter as

eiug ig̃0e2 iug i5cos~2u!g̃02sin~2u!g̃ i , i 53,5. ~40!

Choosingi 55, for example, for both Dirac fields rotates th
cos-SDW in the Eq.~35! into

mE d2rW dt (
s56,i 51,2

cos~QW i•rW12u!scs
†~rW,t!cs~rW,t!.

~41!

Chiral rotations generated byg5 thus correspond tosliding

modes of the SDW.g3, on the other hand, rotatesg̃0 towards
the direction ofg̃3, which describes an additional particle
particle pairing potential between the neutral spinons, w
the opposite sign for the diagonally opposed nodes. This m
be understood as an additionalp-wave component of pairing
between the spinons, so the state described byg̃3 order pa-
rameter may be called thed1 ip state.45 This state preserve
the superconducting U(1) symmetry and the translational
variance, but breaks the spin-rotational invariance and is
under parity. Sinceg̃3 does notcommute with the electron
spinon transformation~9!, however, thed1 ip state cannot
be simply expressed in terms of electronic operators, a
was proved possible for the SDW states. The relations
between the directions in the order parameter sp

$g̃0 ,g̃3 ,g̃5%, and the chiral generators may be summariz
pictorially as on Fig. 3.

It is instructive to look more closely at the origin of th
U(2) symmetry~per Dirac component! that appears in the
low-energy theory of the dSC. First, the transformations
the U(1) subgroup of U(2)5U(1)3SUc(2) are analogous
to the spin rotations around thez axis. To see this, conside
4-9
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the conserved current that corresponds to the U(1) subgr
Ji ,m5C̄ igmC i , so that the conserved charge is simply thz
component of the total spin of the low-energy quasipartic
one charge per each pair of nodes. Of course, the quas
ticle action~2! has full SO(3) spin symmetry, and this is n
to imply that a part of it is broken in the dSC. It only mea
that in writing the full action~2! in terms of the Dirac fields
~3! only the subgroup of spin rotations around thez axis is
represented by a simple 434 matrices that act onC. The
rest is still present, but not that obvious in our choice of
Dirac fields, which was made to make the chiral symme
manifest.~For a complementary representation that is fu
rotationally symmetric at the expense of chiral symmetry
Appendix D.! The U(1) subsymmetry is thereforealways
present, both in the superconducting and insulating sta
The SUc(2) factor is more interesting. The conserved c
rents~per pair of nodes! in the dSC that correspond to th
symmetry areJi ,m

G 5C̄ igmGC i , where G5g3 ,g5 ,g35. As
we have seen already, theg5 generator simply translates i
the diagonal direction. The corresponding conserved ch
may be written as

Qi
55E drW dtJi ,0

5 5T (
s,vn ,kW'6KW i

6cs
†~kW ,vn!cs~kW ,vn!,

~42!

and may be identified with the quasiparticle moment
alongKW i . More precisely, under the translation of the orig
nal electron operatorscs(kW ,v)→eikW•RW cs(kW ,v), the spinon
field transforms as

C i~rW,t!→ei (KW i•RW )g5C i~rW1RW ,t!, ~43!

wherekW5KW i1qW . The low-energy theory therefore has mo
symmetry than the original action~2!, as the chiral rotation
by g5 and the translations ofC separately are still the sym
metries of the theory~24!, while only when combined as
above do they represent an ordinary translation. Never

FIG. 3. The corners of the triangle represent the three ch
directions in the space of insulating states that descend from
d-wave superconductor. At the side opposite to a particular direc
lies the corresponding unbroken chiral generator, while the rem
ing two broken generators rotate the chosen insulator towards
other directions.
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less, breaking of chiral generatorg5 implies breaking of the
translational symmetry in the theory. The remaining two ge
erators of the chiral SUc(2), g3 andg35, on the other hand
are not related to any spatial symmetry. They should be
derstood as ‘‘internal,’’ and approximate, symmetries of t
dSC that emerge at low energies. They rotate the translat
ally invariantd1 ip state into a SDW, and therefore conne
the two fundamentally different types of insulators.

The reader should also note that in the action~24! the
order parameter can be rotated independently for the first
the second Dirac field. Any linear combination ofg̃0 , g̃3,
and g̃5 is a regular order parameter too. Sinceg̃5 is just a
sin-SDW, the fundamentally different states are just
SDW d1 ip state. This, however, already leads to a varie
of insulating phases. For example, one can choose the
SDW for the first Dirac field (QW 1), while being in thed
1 ip state for the second. This would correspond to a o
dimensional SDW along one of the diagonals.

With the velocity anisotropy neglected QED3 has a larger
U(4) symmetry,with 16 generatorsGi . The mass term now
breaks all eight anticommuting generators, and the ch
manifold of insulating states becomes larger. For instan
rotating the cos-SDW withu5p/4 and the generatorG
5G132G15 leads to a uniform state with an additionals
component of pairing between spinons,d1 is.46 Interest-
ingly, rotating the cos-SDW by block-off-diagonal generato
may also lead tocharge stripes. For example, takingu
5p/4 andG15 rotates the 838 cos-SDW order paramete
I ^ g̃0 into (1/2)s1^ (g11g2). When written in terms of the
electronic operators, this order parameter corresponds to
one-dimensionalcharge density wave with the periodicit
PW b5KW 21KW 1, and with residual pairing correlations in th
orthogonala-axis direction. It has been known that strip
indeed occur in some high-Tc materials.47 Here they emerge
as insulating cousins of thed-wave state in the isotropic limi
of the theory. It is also interesting that stripes seem alway
be accompanied by the residual pairing correlations, so
can think of them as weakly coupled one-dimensional s
tems on the verge of becoming phase coherent.

VII. REDUCTION OF CHIRAL SYMMETRY
BY THE IRRELEVANT TERMS

We saw that the low-energy theory of dSC has chi
U(2) symmetry per Dirac component, which when spon
neously broken leads to emergence of the SDW or thd
1 ip insulators. This enlarged symmetry arises only at l
energies, and the irrelevant terms omitted in the Eq.~6! re-
duce the U(2) to U(1)3Uc(1). In this section I show the
higher-order derivatives and the Hubbard repulsion red
the chiralSUc(2) symmetry to just translations, generated
g5. However, we will also find that if both perturbations a
weak it will actually be the SDW solution that is energe
cally preferred.

Let us first consider the higher derivative terms in the E
~6!. Since j(kW2QW 1)5j(qW 2KW 1), and j(qW 2KW 1)5j(KW 1

2qW ), and analogously forD(kW ), one can write the second
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order derivatives in Eq.~6! as

S152 i E d2rW dtC̄18g5@g1j9~]2!2g2D9~]2!#C18

1~1→2,x↔y!, ~44!

wherej9 andD9 are the functions coming from the expa
sion ofj(kW ) andD(kW ) aroundKW 1(2) , respectively. Their spe
cific forms are model dependent, and will not be of imp
tance here. What is important is thatS1 manifestly breaks the
part of the chiral symmetry generated byg3 andg35, while
preserving only the translational invariance, generated byg5.
One can easily prove that the same holds to all orders in
gradient expansion.

Next, consider the Hubbard-like short-range repuls
term, in the continuum notation,

HU5UE d2xW @n1~xW !1n2~xW !#2, ~45!

with U.0. Retaining again only the excitations near t
four nodes, one can write this as

SU5UE d2rW dtS i (
i 51,2

C̄ i8g5g1C i8D 2

. ~46!

The reader is probably not surprised that it is again onlyg5
that remains the symmetry generator. This is becauseg5 in
our formalism is related to translations, which are always
exact symmetry of the action~2!. So both the higher deriva
tive terms and the quartic repulsion term reduce the ch
SUc(2) subgroup of U(2) to Uc(1), the translations. One
could therefore naively expect that it is thed1 ip state,
which is translationally symmetric, that may be preferred
these perturbations. To decide on this, however, it is
enough just to know the symmetry of the action, since
new termsS1 and SU may turn out to disfavor thed1 ip
state. Assuming that bothj9 and D9 terms are small, one
finds that the contribution to the energy of the SDW~or d
1 ip) state is of second order in theS1. The interaction term,
on the other hand, yields

^SU&052U(
i

^C̄ i8C i8&0
2 , ~47!

with the average taken over the massive QED3 with g0
5s1^ I ~cos-SDW!. The result, of course, is the same f
the sin-SDW, or for any linear combination of the cos-SD
and the sin-SDW. Alternatively, if one assumes thed1 ip
ordering, one finds thatSU gives then apositivecontribution
to its energy, to first order inU. Although SU is only trans-
lationally symmetric, it actuallyinhibits the formation of the
translationally invariant state, and prefers the ordering to
in the ‘‘orthogonal’’ direction, i.e., the SDW.

If both the interaction and the gradient terms are weak
will therefore always be the SDW solution that is energe
cally preferred. This is because both the repulsive and
higher-derivative terms are equally irrelevant by pow
counting~and have the engineering dimension21); the gain
in energy due to SDW is of first order only in U. The grad
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ent terms affect the energy of the SDW only to the ne
order. So at long enough length scales one can alway neg
higher-derivative terms as compared to the repulsive inte
tion, which then serves to select the SDW over thed1 ip
insulator.

VIII. MEAN-FIELD THEORY WITH REPULSIVE
INTERACTION

The message from the preceding section is that the qu
term that represents a short-range repulsion, although i
evant, at low but finite energies is still finite, and it breaks t
chiral symmetry in favor of the SDW state. This is its fir
important role. The second is that once the chiral symme
is dynamically broken by unbinding of vortex loops, th
quartic term affects the size of the order parameter,
therefore sets the scale for the value of the SDW transi
temperature. In this section I formulate the simplest me
field theory of the chiral symmetry breaking in presence
the repulsion term, and demonstrate that it drastically
creases the value of the SDW order parameter atT50.

We have seen that unbinding of vortex loops leads
weak SDW order, but with the order parameter orders
magnitude smaller than the coupling constantu^F&u2. As-
suming that the dual condensate as a function of dopinx
should be of the same order of magnitude as the super
density on the other side of the transition~at x5xu),
u^F(xu2d)&u2;rsf(xu1d), and that Uemura scaling48

Tc(x)}rs f(x) is obeyed, the identification of the size of th
SDW order parameter with the transition temperatu
TSDW(x) suggests thatTSDW(xu2d)!Tc(xu1d). The dif-
ference in the relevant scales for the superconducting and
SDW orderings is in accord with the known phase diagr
in the underdoped regime. Starting from half-filling, wi
increased doping the antiferromagnetic order is quickly lo
and only at a larger doping does the dSC appear. I attrib
the absence of the obvious SDW order very near the su
conducting phase to the inherent weakness of the spont
ous chiral symmetry breaking in dSC. Assuming that t
weak SDW smoothly evolves into the commensurate anti
romagnet near half-filling, the obvious problem then b
comes the following: how should one understand the d
matic increase ofTSDW(x) near half-filling, all the way up to
;300 K?

The answer is provided by the observation that althou
the repulsionU is irrelevant if weak enough, it enhances th
SDW order once it becomes spontaneously genera
through the interaction with the gauge field. To show thi
will consider the mean-field theory of QED3 with the addi-
tional SU quartic term. First, notice that in the Hartree-Fo
approximation theSU term gets replaced by the effectiv
quadratic term

SU→2U^C i8C̄ j8&0E d2rW dt Tr~C̄ i8g5g1g5g1C j8!, ~48!

with the average to be calculated self-consistently within
theory quadratic in fermionic fields. The above term cor
sponds to the decoupling in the exchange~Fock! channel,
4-11
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since the direct~Hartree! term vanishes. Therefore in th
Hartree-Fock approximation, after the electron-spinon tra
formation,

SU→U^C iC̄ i&0E d2rW dt C̄ iC i . ~49!

Assuming a uniformx52U^C iC̄ i&0, and treating the
gauge-field fluctuations in the large-N approximation leads
to two coupled equations forx and for the momentum
dependent fermion self-energy

x5UE d3kW

~2p!3

S~k!

k21S2~k!
, ~50!

S~q!5x1E d3kW

~2p!3

2u^F&u2S~k!

@k21S2~k!#@p21P~p!#
, ~51!

with pW 5kW2qW . When U50 these reduce to the Eq.~32!,
which leads toNc532/p2. When loops are bound and^F&
50, on the other hand,S(q)5x, and the Eq.~50! allows a
nontrivial solution only when the dimensionless couplingg
5UL/(2p)2.1, whereL is the uv cutoff,L,T* . Assum-
ing that long-range SDW order and dSC do not coexis
take thatg,1 in the superconducting phase, so that the qu
tic coupling is there irrelevant. WitĥF&Þ0, however, small
g ceases to be irrelevant, since there is now a small m
scale to effectively cut off its flow. SinceS(q) is quickly
damped forq@u^F&u2, one can take the uv cutoff in th
above equations to beL;u^F&u2. The above equations wer
studied before49,50 in the context of gauged Nambu–Jon
Lasinio model of chiral symmetry breaking in particle phy
ics. Here I solve the equations numerically forN52, as
discussed in Appendix E. The result is presented in Fig
The main point is that as the superconducting phase is m
and more disordered and the dual condensate grows,
presence of a moderate repulsion between electrons incre
the SDW order parameter atT50 by one to two orders o
magnitude. Recalling the above argument that compa
TSDW to the superconductingTc on the other side of the

FIG. 4. The SDW order parameterm in units of u^F&u2 as a
function of dimensionless short-range repulsiong
5Uu^F&u2/(2p)2.
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superconductor-insulator transition, this appears to be
qualitative agreement with the generic behavior observe
underdoped cuprates.

IX. CONFINEMENT OF SPINONS

In the superconducting state, the electrically neutral lo
energy spinons represented by the fermionic fieldC in
QED3 are well-defined excitations. This effective spi
charge separation implicit in the superconducting state
emphasized in Ref. 51, and more recently in Ref. 7. One m
therefore naturally wonder if this form of spin-charge sep
ration will survive once the superconductivity is lost via u
binding of vortex loops. The answer seems to beno. It is
believed that chiral symmetry breaking and confinement
together in QED3.20 The qualitative argument why it shoul
be so is provided by the low-momentum form of the pola
ization tensor in the Eq.~33!:52,53P(q);q2/m for q!m, so
in two dimensions spinons are at large distances bound
logarithmic potential. One may independently arrive at t
same conclusion by analytically continuing the fermi
propagator in the broken symmetry phase to r
frequencies54 to find that its poles lie at complex energie
with both real and imaginary parts proportional to the chi
mass. The chiral symmetry breaking and confinement
spinons seem therefore to go hand in hand in QED3, so the
states with broken chiral symmetry, including most impo
tantly the SDW, should not have well-defined fermionic e
citations even above the mass ‘‘gap.’’

Disappearance of spinons from the spectrum in the in
lating phase, if required, imposes a rather nontrivial co
straint on a candidate theory for underdoped cuprates.
example, one could imagine a completely different mec
nism of chiral symmetry breaking in dSC: even without t
gauge field, simply increasing the quartic couplingU above a
certain value@UcL/(2p)251 in the Hartree-Fock approxi
mation# would open the gap for spinons and lead to SD
order. This would be analogous to the chiral symme
breaking in the Nambu–Jona Lasinio and relat
models.55–58 The crucial difference, however, is that such
mechanism would yield well-defined spinon excitations
energies above the gap, in the insulating state. The integ
of the gapped spinons is assured essentially by the Lan
phase space arguments. Such a ‘‘deconfined’’ antiferrom
net was dubbed AF* and studied in Ref. 24, for examp
From this point of view it becomes a nontrivial problem
understand how spinons could be removed from the sp
trum. In a QED3 this is accomplished via the same nonpe
turbative mechanism that yields chiral symmetry breaki
described by Eq.~32!, for example.

Having said all this, it needs to be realized that in a we
SDW confinement of spinons is effective only over ve
large distances,L@1/m. At intermediate scales, the polariza
tion P(q);q, so the potential between spinons is;1/r , and
at intermediate distances 1/m@L@1/u^F&u2 spinons will ap-
pear effectively deconfined. In this sense it is still meaning
to think about underdoped cuprates as exhibiting an effec
spin-charge separation. Computing the electron spec
function by taking the gauge-field fluctuations into accou
4-12
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in the large-N approximation,18 which suppresses the dy
namical symmetry breaking, for example, gives results
qualitative agreement with the experiment.59 As one contin-
ues to underdope, however, the SDW order parameter gr
and spinons become more strongly confined. In the str
antiferromagnet at half-filling therefore, one may expe
spinons to be confined already at atomic distances.

X. EXPERIMENT

The principal consequence of QED3 theory of underdoped
cuprates is, of course, the antiferromagnetism itself. All
materials that becomed-wave superconductors with dopin
are insulating antiferromagnets in its parent state. Furt
more, the sharp spectral features in the dSC should bec
very broad in the insulator, since there is a soft~propagator
;1/q2) gauge field in the problem. Nevertheless, an insu
tor that derives from a dSC should partially inherit t
d-wave form for its ‘‘gap,’’ except for its finite value in the
nodal directions. This is in very good agreement with t
ARPES measurement on the insulating Ca2CuO2Cl2, and
Sr2CuO2Cl2, in its parent state.8,9 In Fig. 5 I compare the
ARPES data for the gap measured from the top of the lo
Hubbard band in the insulating state with the simplest fu
tional form consistent with the chiral mass: at the remn
Fermi surface v5„$Emax@cos(kx)2cos(ky)#/2%21Emin

2
…

1/2,
where the chiral massm5Emin575 meV is chosen to be th
T50 sublattice magnetization forJ5125 meV. The best fit
is obtained then forEmax5420 meV. The quality of the fit is
actually not very sensitive to some variations inEmin and the
correspondingEmax.

The key prediction of this work is that the above ‘‘gapp
d-wave’’ form of the insulating gap is a generic feature of t
insulating state. Upon underdoping, ARPES should show
standardd-wave gap for sharp quasiparticles in the superc
ducting phase, which should evolve into a gappedd-wave
form for broad ARPES shape in the insulating state, with
gap increasing as one approaches half-filling. The round
of the data at low energies should therefore be intrinsic to
insulating state, and should weaken with doping. Althou
the initial experiment on Ca2CuO2Cl2 ~Ref. 8! only indicated
such rounding, later measurements on Sr2CuO2Cl2 with
higher resolution9 clearly showed the deviation from th
simple d-wave cusp at lowest energy. More rece
measurements60 indicate that the rounding of the data at lo
energies is a robust feature. It would clearly be desirable
perform a systematic study of this effect at variable dopi

It may also be worth mentioning that some signs of
gap rounding in the insulator may be observable alread
the superconducting state. In Bi2212,61 for example, as one
underdopes, thed-wave gap continues to show the cusp
zero energy, but with the slope~velocity vD) decreasing, in
spite of the increase in the overall gap magnitude in
(p,p) direction. It is tempting to interpret this effect as
precursor of the dynamical mass generation. A detailed st
of this effect and of the spectral features in the insulato
deferred to a future work.
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XI. CONCLUSION AND DISCUSSION

In summary, I have shown that the minimal theory th
describes the unbinding of vortex defects in thed-wave su-
perconductor at T50 is the two-component
(211)-dimensional QED, with the vortex condensate pla
ing the role of ‘‘charge.’’ With the loss of phase coherenc
the d-wave superconductor suffers the spontaneous brea
of the low-energy ‘‘chiral’’ symmetry, which results in a
weak SDW order. It was argued that with underdoping t
SDW smoothly evolves into the strong antiferromagnet n
half-filling, with the selection and the increase of the SD
order parameter being provided by the repulsion betw
electrons. I argued that spinons are marginally confined
weak SDW, and may appear effectively deconfined over
termediate length scales in the pseudogap regime. Final
was proposed that the roundedd-wave form of the ‘‘gap’’ in
the insulating Ca2CuO2Cl2 observed by Ronninget al.8,9

may be a consequence of the chiral mass for the approxim
spinon excitations, as implied by QED3.

The present theory is similar in spirit to the approaches
Refs. 7 and 24, in that it attempts to understand the ph
diagram of underdoped high-temperature superconduc
beginning from the superconducting phase. It differs, ho
ever, in its conclusions of the ground state that results fr
unbinding of topological defects in thed-wave state.
Whereas it was argued in Ref. 7 and 24 that the relev
description of this process is provided by the Ising (Z2)
gauge theory, and that the resulting state may show s
charge separation, I argued that unbinding of defects of
vorticity leads to the dynamical symmetry breaking in t
low-energy theory, and the accompanying confinement
spinons in the insulating state. In fact, if onedemandsthat
the insulating state near half-filling is the standard antifer
magnet with spin-1 excitations and confined spinons,
form of a single theory that would be able to describe b
the dSC and the insulator becomes severely restricted. Q3
in this paper is one such theory.

A variation of QED3 as an effective theory for under
doped cuprates has also been considered before,62–65 as the
theory of low-energy fluctuations around thep-flux phase in
the large-N version of the Heisenberg model. In that a
proach the gauge invariance reflects the local particle num
conservation at half-filling, and the gauge field has no d

FIG. 5. ARPES results for Ca2CuO2Cl2 ~bars! and Sr2CuO2Cl2
~dots! with E5E(k)2E(p/2,p/2) in meV. The line is the function
described in the text.
4-13
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namics on its own. As a result, the gauge field is necessa
compact, and the theory is infinitely strongly coupled. N
much is definitely known about such a lattice gauge the
which greatly diminishes its utility. Nevertheless, it was a
gued that neglecting the instanton configurations would
store the antiferromagnetic order at half-filling, via spon
neous breaking of a different chiral symmetry, which in th
case is actually an enlarged spin rotational symmetry.63,64

While this logic may at first appear close to the one in
present work, there are crucial differences. First, I be
from the superconducting state, away from half-filling, w
the gauge field describing vortex fluctuations. As a result,
gauge field is weakly coupled near the dSC-SDW transiti
Also, the SDW phase that obtained from chiral symme
breaking may be incommensurate, and the approximate
ral symmetry of the low-energy theory is unrelated to s
rotations.

Nevertheless, it may be possible to understand QED3 as a
low-energy description of the microscopict-J model of cu-
prates. Starting from the mean-field slave-boson theory
the t-J model and integrating the constraints of no dou
occupancy, for example, leads to an effective theory of
form quite similar to QED3,66 but with the Volovik fieldvW
only. Including vortices would then be expected to introdu
the gauge fieldaW , as shown in this paper. The point is th
irrespectively from the underlying microscopic model t
theory of the fluctuating dSC should assume the QED3 form.
Values of the parameters, however, may strongly depend
the microscopic physics: the bare stiffnessK in the XY
model for the phase fluctuations@Eq. ~12!#, for example,
should be proportional to dopingx in the doped Mott
insulator.66 Also, the charge of quasiparticles@the coefficient
in the last term in the Eq.~10!# would be expected to chang
from unity to ;x, at small dopings.

There exist further parallels between QED3 and the gauge
theory of thet-J model. One may formulate a representati
of the t-J model with a U~1! gauge field that minimally
couples to spinons and holons. It was argued64 that the effect
of holons would be to screen the temporal component of
gauge field, which then may be shown to halve the criti
number of spinon species for the chiral instability,Nc
→Nc/2. In that way one could avoid the chiral transition
N52 ~assuming thatNc'3), and have a spin liquid as th
ground state in the underdoped regime instead. The taci
sumption, however, is that uncondensed bosons~holons! at
T50 may exist in a compressible state. If the system
comes insulating with the loss of phase coherence, howe
bosons would become incompressible and the above a
ment breaks down. This is indeed the case in QED3: with the
proliferation of vortices the system becomes insulating, a
all the components of the gauge field become massles.
same conclusion would be reached within the gauge the
of the t-J model if one would consider the incompressib
state of slave bosons.67

The present work shares the same philosophy with
recent works,18,45 where the massless U~1! gauge field as an
effective description of unbound vortex loops was also c
sidered. While the authors18 considered the large-N limit of
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QED3, and thus precluded chiral symmetry breaking, m
main point is that atT50 the spontaneous formation of th
chiral condensate is nothing else but the SDW instability
thed-wave superconductor. The results of Ref. 18 may the
fore be understood as applying to the finite-T phase much
below the pseudogap scaleT* in Fig. 1.

The problem of phase disordering of dSC has also b
recently studied by Ye.68 Working in the Anderson gauge in
which fsA5fs , fsB50 in the Eq.~8!, the author concluded

that the gauge fieldaW is always massive when charge flu
tuations are included. It is easy to see that this is a dir

consequence of the gauge choice: in the Anderson gauaW

5vW , and not onlyvW , but aW too is ultimately coupled to the
charge current. In my gauge-invariant approach, on the o

hand,aW is completely decoupled from charge, and coup
only to spin. Inclusion of charge fluctuations therefore do

not makeaW massive, but simply adds an irrelevant quar
coupling to the QED3 Lagrangian.

The intimate relationship betweend-wave superconduc
tivity and antiferromagnetism is also the main theme of
SO(5) theory of Zhang.69 The present work echoes some
that general idea, but is based on entirely different phys
principles. In particular, although there should be a dir
dSC-SDW transition in the phase diagram, this appears
related to the SO(5) symmetry, but comes as a consequ
of the chiral symmetry that emerges at low energies in t
d-wave superconducting state. It is the spontaneous brea
of this hidden approximate symmetry that implies then
breaking of the spin rotational symmetry in the SDW pha

The marginal confinement of spinons we found in t
weak SDW phase is very much in line with the speculatio
of Laughlin70,71on parallels between antiferromagnetism a
confinement in strong interactions. In fact, QED3 shows pre-
cisely how chiral symmetry breaking, i.e., SDW orderin
binds spinons into spin-1 objects. Deconfinement in t
theory seems indeed tantamount to the absence of c
symmetry breaking. In this context, it may be interesting
note that thed1 id state, which would correspond to th
i g̃1g̃2 matrix in Eq.~38!, could lead to deconfined spinon
This state is outside of the chiral manifold, and it is believ
that it is not spontaneously induced in the QED3,20 because
of the Chern-Simons term that becomes generated for
gauge field. With the Chern-Simons term, on the other ha
the gauge-field propagator behaves like;q at low momenta,
and thus spinons may become deconfined.72 Chiral symmetry
breaking in QED3 is therefore nothing by the effective de
scription of the spinon confinement.

It is also interesting to note that were the critical numb
of fermionsNc,2, the result of phase disordering of dS
would be quite different. Instead of symmetry breaking a
confinement one would find a gapless, chirally symme
state, in which spinons would be deconfined. This is ag
because the polarization tensor would then be;q at low
momenta, i.e., the interaction between spinons would
;1/r at large distances. This state would be similar in sp
to the ‘‘nodal liquid,’’7 or analogous to the ‘‘algebraic Ferm
liquids’’ 18,59,73 proposed in literature as candidates for t
4-14
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pseudogap phase. It has been proposed recently thaNc
53/2 exactly,74 although all the actual calculations based
Schwinger-Dyson formalism lead toNc.3. If Nc is indeed
that low, phase disordering of the dSC would first lead to
deconfined pseudogap phase, which only later would t
into the confined SDW phase, presumably due to the re
sive quartic term, which is know to increaseNc .49,50At this
time it is hard to say which one of these two scenarios
realized in cuprates.

The main point made in this paper is that unbinding
vortex loops in ad-wave superconductor atT50 results in
SDW order. It then appears natural to assume that the c
of fluctuating vortices are already in the insulating state. T
speculation is in accord with the recent scanning tunne
microscopy and neutron scattering experiments,75–77 the
SO~5! proposal,69,78 and the mean-field79 and the finite size
QED3 calculations.80 The superconductor-insulator transitio
would then be the result of the decrease of the bare stiffn
K in the XY model with underdoping, sinceK;x in the
doped Mott insulator.66

XII. FURTHER PROBLEMS

I finish with a tentative list of problems opened by th
work.

~1! The role of strong anisotropyv f /vD@1 that exists in
cuprates is unclear. In particular, since anisotropy on the b
level is marginal, it may affect the value ofNc . The prelimi-
nary results, indicate, however, that weak anisotropy is ir
evant, so that one would expectNc to be unaffected by it.43

~2! The nature of the various phase transitions in
theory is also of interest. Whereas one expects that gap
quasiparticles do not change the Kosterlitz-Thouless uni
sality class of the finite temperature superconducting tra
tion, the nature of chiral symmetry breaking at finite te
perature and its possible interplay with the Ne´el transition is
far less clear.81 In particular, in relation to Uemura scaling,48

one would like to understand the quantum superconduc
insulator criticality and how it may be affected by gaple
spinons.

~3! Can long-range SDW and SC order coexist? In
approximation employed in the present work, the gauge fi
aW is considered decoupled from spinons in the dSC ph
This is likely to underestimate the effect ofaW , and a better
approximation for the gauge-field propagator is needed
study its effectinside the dSC. This could be important i
light of recent experimental data77,82 that may be interpreted
as indicating the coexistence of the SDW and SC order
some compounds.83

~4! The present work also points to a new route toward
deconfined phase in two dimensions: loweringNc below two
would allow for an insulating phase with deconfined spino
At present, however, it is not clear how to achieve this with
QED3, unless the Schwinger-Dyson equations systematic
overestimateNc .74

~5! The computation of the electron propagator with
QED3 is an important problem.41 This would be necessar
for a detailed comparison of the theory with the ARPE
measurements.
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~6! As mentioned at the end of Sec. IV, on a lattice, t
gauge fieldaW appears to be compact, in contrast to the Vo
vik field vW . The effect of the compact nature ofaW on chiral
symmetry breaking in QED3 is at present poorly understood
It has been argued that coupling to gapless spinons make
single instanton-antiinstanton pair that derives from co
pactness ofaW bound above the certain number of spin
componentsNinst,

63,84Ninst may be made smaller thanNc for
chiral symmetry breaking by a large anisotropy,73 for ex-
ample. It is unclear, however, whether this conclusion s
vives the effects of screening by other pairs.85 Also, even if
the instantons can be made irrelevant aboveNc , below Nc
one would expect them to become relevant again with
opening of the spinon ‘‘gap.’’ This in turn could have pro
found consequences for the spinon confinement. It wo
obviously be desirable to shed some light on these pres
issues.
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APPENDIX A

I present the self-consistent mean-field theory~20! of the
lattice superconductor34 and use it to approximately comput
the correlator appearing in Eq.~20!. By the Bogoliubov in-
equality,

Zxy>Z0e2^H2H0&0, ~A1!

whereZxy is the partition function in the dual form~21! with
a finite ‘‘inverse temperature’’x, and the average in the ex
ponent is performed over alocal mean-field Hamiltonian

H052h( cosu i1
1

8Kp2 ( ~¹W 3FW !2

1
m2

4Kp2 ( FW 2. ~A2!

The optimal values of the parametersh andm that maximize
the right-hand side in the Bogoliubov inequality are th
determined by the equations

h5
6A

x

I 1~h!

I 0~h!
, ~A3!

m25
Kp2

3

I 1~h!

I 0~h!
h, ~A4!
4-15
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A5expF2
2Kp2

3 E d3kW

~2p!3

1

F~k!1m2G , ~A5!

whereF(k)5(n(eikn21)2, and the integral overkW is taken
over (2p,p). I 0 and I 1 are the Bessel functions. Thes
equations can be solved graphically, and describe a dis
tinuous transition from the phase withh5m50 ~bound vor-
tex loops!, to the condensed phasehÞ0, mÞ0 ~infinitely
large vortex loops!.86

The requisite average in the Eq.~20! is easy to compute in
the mean-field theory that has different sites decoupled:

^cos~u i2u i 1nû2F i ,n!&05u^eiu i&0u2^e2 iF i ,n&0 . ~A6!

Since,^e2 iF i ,n&05A and finite, we conclude that

^cos~u i2u i 1n22pF i ,n!&0}h2, ~A7!

i.e., finite only in the ordered phase of the dual theory~20!,
i.e., in the disordered phase of the originalXY model.

APPENDIX B

Here I provide a different derivation of the dynamics
the gauge fieldaW at TÞ0 starting from the Hamiltonian fo
the Coulomb plasma. Assume a collection ofN1 (N2) vor-
tices ~antivortices! at the positions$rW i%. The Hamiltonian of
the vortex system is

Hv5
1

2 (
i 51

N

qiqjv~rW i2rW j !, ~B1!

where v(rW)'2 lnurWu, at large distances, andN5N11N2,
qi561. The partition function of the vortex systemZv can
then be written as

Zv5 (
NA,B

1,2
50

`
N1!

NA
1!NB

1!

N2!

NA
2!NB

2!

~y/2!N

N1!N2!
E )

i 51

N

drW ie
2Hv /T,

~B2!

where N1(2)5NA
1(2)1NB

1(2) and y is the bare vortex
fugacity. The combinatorial factors serve to ensure that inZv
one sums overall possible divisions of vortices and antivo
tices into groupsA and B, and divides by the number o
combinations. With this symmetrization the symmetry b
tween up and down spin in the original Hamiltonian~2! will
be preserved in the Dirac theory for neutral spinons. T
also guarantees that on average there is an equal numb
vortices~and antivortices! in both groups.

Next, introduce the vorticity densities inZv by inserting
the unity

15E D@rA#dS rA~rW !2(
i 51

NA

qiAd~rW2rW iA!D , ~B3!

and similarly forB. The gauge field then becomes

~¹W 3aW ~rW !!t5p@rA~rW !2rB~rW !#, ~B4!
09450
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in the transverse gauge¹W •aW 50, and the index denotes thet

component.vW is defined the same way except with the pl
sign betweenrA andrB .

By introducing two auxiliary fieldsFA andFB to enforce
the constraints, after the integration over the densities
partition function may be written as

Zv5 (
NA,B

1,2
50

`
~y/2!N

NA
1!NA

2!NB
1!NB

2!
E D@aW ,vW ,F1 ,F2#

3expH 2F 1

2p2T
E drW drW8B~rW !v~rW2rW8!B~rW8!

1
i

2pE drW@B~rW !F1~rW !1b~r !F2~rW !#

2 (
ia,a5A,B

ln E drW exp@ iqiaFa~rW !#G J , ~B5!

where F1,25FA6FB , B(rW)5(¹W 3vW )t , and b(rW)5(¹W

3aW )t . Performing the summations yields

Zv5E D@aW ,vW ,F1 ,F2#expH 2F 1

2p2T
E drW drW8B~rW !v~rW

2rW8!B~rW8!1
i

2pE drW@B~rW !F1~rW !1b~rW !F2~rW !#

2yE drW@cosFA~rW !1cosFB~rW !#G J . ~B6!

Finally, neglecting the coupling to the charge current,
Gaussian integration overvW ~i.e., B) gives

Zv5E D@aW ,F1 ,F2#expF2E drWS T/2~¹F1!2

1
i

p
b~rW !F2~rW !22y cos@F1~rW !#cos@F2~rW !# D G ,

~B7!

where I also have rescaled theF fields by a factor of 2. The
last expression is then analogous to theT50 expression in
the Eq.~18! with x finite and without the dual anglesuA,B .
By introducing a source term in the action,; i * j (r )b(r )/p,
and integrating overb, one readily finds

^@¹W 3aW ~rW !#t@¹W 3aW ~rW8!#t&5^y&d~rW2rW8!, ~B8!

where^y&5yp2^exp(iF1)&, with the average to be taken a
F25aW [0. One recognizeŝy& as the renormalized, or run
ning, fugacity in the Kosterlitz-Thouless scaling, which si
nals the appearance of free vortices.^y& plays the role analo-
gous to the vortex loop condensate in 211 dimensions, in
providing a mass for the fieldF1 in Eq. ~B7!. This implies
the Maxwell term atTÞ0 for thet component of¹W 3aW once
fluctuating vortices are integrated out.
4-16
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APPENDIX C

For completeness, here I outline the derivation of the
sult that chiral symmetry in isotropic massless QED3
spontaneously broken forN,Nc , with Nc finite, at any
value of the coupling constant. Rescaling the mome
p/m→p and self-energiesS(p)/m→m and P(p)/m2

→P(p), after taking the limitq→0 in the Eq.~32! we find

15
u^F&u2

p2m
E

0

L/m

dp
p2S~p!

@p21S2~p!#@p21P~p!#
, ~C1!

where the polarization is now

P~p!5
Nu^F&u2

4pm
f ~p!, ~C2!

with

f ~p!5F21
p224

p
sin21S p

A41p2D G , ~C3!

to the leading order inN.20 We see that the right-hand side
the Eq. ~C1! is a decreasing function ofm, so for mÞ0
solution to exist we just need the right-hand side to
greater than 1 form50. This is satisfied forN,Nc , where

Nc54E
0

`

dp
p2S~p!

@p21S2~p!# f ~p!
. ~C4!

As defined,S(0)51, and one expectsS(p) to vanish at
large momenta. Also,f (p)'pp/2 for p@1, so the integrand
at large argument behaves like;S(p)/p. Nc is therefore
finite, and independent of the coupling constant^F&. Its pre-
cise value in the large-N approximation will depend only on
the functionS(p) at N5Nc , and can be obtained by solvin
the differential equation equivalent to the integral equat
~C1! ~Ref. 20! ~see Appendix E!. This yieldsNc532/p2, not
far from the results of other more elaborate computati
that go beyond the leading order inN.38,39

APPENDIX D

Here I discuss a different representation of the quasip
ticle action, more in line with the previous work.7 This
should serve to underline the difference between the appr
mate chiral SUc(2) symmetry, and the exact spin rotation
SO(3), also present in dSC. It is only the latter that w
appear in the different version of the theory considered h
and in Ref. 7, while the chiral symmetry will remain com
pletely obscured.

I start again from the same quasiparticle action in the
~2!, but now introduce the four-component field as

C1(2)8† ~qW ,vn!5„c1
† ~kW ,vn!,c2~2kW ,2vn!,c2

† ~kW ,vn!,

2c1~2kW ,2vn!…. ~D1!

By linearizing the spectrum and by retaining only the mod
near the four nodes, the continuum theory may again be w
ten as
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S@C8#5E d2rWE
0

b

dt C18
†@]t1M1v f]x1M2vD]y#C18

1~1→2,x↔y!, ~D2!

but this time with a different form of the matricesM1 and
M2 : M152 i I ^ s3 and M25 i I ^ s1. Introducing g05s3
^ s2, for example, the theory becomes

S@C8#5E d2rWE
0

b

dt C̄18@g0]t1g1v f]x1g2vD]y#C18

1~1→2,x↔y!, ~D3!

with g15s3^ s1 and g25s3^ s3. It is interesting to con-
sider the generators of the global U(2)5U(1)3SU(2) sym-
metry per Dirac component present in this representation
the theory. They areI 45I ^ I , g35s1^ I , g552s2^ I , and
g355s3^ I , respectively. One may recognize the U(1) fa
tor as representing now the continuous translations, s
under a translationcs(kW ,v)→eikW•RW cs(kW ,v), the Dirac field
now transforms as

C i8~rW,t!→eiKW i•RW C i8~rW1RW ,t!. ~D4!

The SU(2) operators, on the other hand, are nothing but
spin rotations. In fact, the above U(2) is an exact symmet
of the Hamiltonian~2!, and is present even if all higher orde
derivatives are retained.

Including the coupling to vortex loops via massless gau
field in the above representation of the problem then m
spontaneously induce only thed1 ip insulator. This breaks
two of the above generators, which then simply rotate
spin axis. Translational symetry is, on the other hand, alw
preserved in this formulation, and the SDW remains inv
ible.

APPENDIX E

Here I provide the details behind the numerical soluti
of Eqs. ~50! and ~51!. Since we are interested only in th
qualitative effect of theU term, it will suffice to assume tha
the fermion mass is small,m!u^F&u2, so that one can ne
glect thep2 term compared toP(p) in Eq. ~51!, and take

P~p!5
Nu^F&u2

8
p, ~E1!

appropriate forp@m. This approximation is known to lead
to even quantitatively good result for the mass forN as low
as unity, whenU50.20 Evaluating the angular integrals the
gives

S~q!5x1
8

Np2q
E

0

L

dk
kS~k!@k2~k2q!u~k2q!#

k21S2~k!
.

~E2!

Differentiating twice, one finds that this integral equation
equivalent to the differential equation:20
4-17
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d

dq S q2
d

dq
S~q! D52

8

Np2

q2S~q!

q21S2~q!
, ~E3!

with the boundary condition

LS8~L!1S~L!5x, ~E4!

and with

x5
U

~2p!2E0

L

dq
q2S~q!

q21S2~q!
. ~E5!

Here I takeL5u^F&u2.
n

.

ui

or-
u

L.

,
,

z

re
.

09450
The above equations may now be studies by assuminq
@S(q), which leads to a linear equation that can be exac
solved.87 This yields, for example, the well-known transitio
line in the g-N plane:gc(N)5(1/4)(11A12(Nc /N)2, for
N.Nc , gc<1/4 for N5Nc , with Nc532/p2. To determine
the size ofS(0), however, one needs to solve the full no
linear equation. This may be accomplished, for example,
choosing a value forx, assumingS(L) next, and then iter-
ating back to findS(q) for 0,q,L. The solution is found
by tuningS(L) to achieveS(0) finite. One then compute
the value ofg5UL/(2p)2 from the assumedx and the
found S(q). This procedure leads to Fig. 4.
N.

a,

ho,
s.

ev.

as
1P. W. Anderson,The Theory of Superconductivity in the High-Tc

Cuprates~Princeton University Press, 1997!.
2J. R. Schrieffer,Theory of Superconductivity~W. A. Benjamin,

Inc., New York, 1964!.
3W.N. Hardy, D.A. Bonn, D.C. Morgan, Ruixing Liang, and Kua

Zhang, Phys. Rev. Lett.70, 3999~1993!.
4D.A. Wollman, D.J. Van Harlingen, J. Gianpintzakis, and D.M

Ginsberg, Phys. Rev. Lett.74, 797 ~1995!.
5A. Hosseini, R. Harris, Saeid Kamal, P. Dosanjh, J. Preston, R

ing Liang, W.N. Hardy, and D.A. Bonn, Phys. Rev. B60, 1349
~1999!.

6A. Kaminski, J. Mesot, H. Fretwell, J.C. Campuzano, M.R. N
man, M. Randeria, H. Ding, T. Sato, T. Takahashi, T. Mochik
K. Kadowaki, and H. Hoechst, Phys. Rev. Lett.84, 1788~2000!.

7L. Balents, M.P.A. Fisher, and C. Nayak, Int. J. Mod. Phys. B10,
1033 ~1998!; Phys. Rev. B60, 1654 ~1999!; for a review, see
M.P.A. Fisher, cond-mat/9806164~unpublished!.

8F. Ronning, C. Kim, D.L. Feng, D.S. Marshal, A.G. Loeser, L.
Miller, J.N. Eckstein, I. Bozˇović, and Z.-X. Shen, Science282,
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