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Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors
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We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced
by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large-
N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin
spectrum. Our results apply to phases with and without long-range spin-density-wave order, and to the mag-
netic quantum critical point separating these phases. We discuss the relationship of our results to a number of
recent neutron-scattering measurements on the cuprate superconductors in the presence of an applied field. We
compute the pinning of static charge order by the vortex cores in the “spin-gap” phase where the spin order
remains dynamically fluctuating, and argue that these results apply to recent scanning-tunneling-microscopy
(STM) measurements. We show that, with a single typical set of values for the coupling constants, our model
describes the field dependence of the elastic-neutron-scattering intensities, the absence of satellite Bragg peaks
associated with the vortex lattice in existing neutron-scattering observations, and the spatial extent of charge
order in STM observations. We mention implications of our theory for NMR experiments. We also present a
theoretical discussion of more exotic states that can be built out of the spin- and charge-order parameters,
including spin nematics and phases with “exciton fractionalization.”
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[. INTRODUCTION doping concentration. In particular, strong motivation for our
study here was provided by the remarkable experiments of
The determination of the ground state of the cuprate suwakimotoet al>? They showed that the onset of supercon-
perconductors as a function of the hole density has been onfuctivity in La,_ ;SrsCuQ, occurs first atéd=0.055 (in a
of the central problems in condensed matter physics in théirst-order insulator-to-superconductor transijiamto a state
last decade. At zero hole density, it is well established thayhich also has long-range spin-density-wave ordeF a0
th,e ground state is a Mott insulator with long-range magnetiGyith a wave vector of the forng1.1), i.e., asé is moved
Neel order. At moderate hole density, it is also widely ac-away from the insulator ai=0, the first conducting state is
cepted that the ground state islavave superconductor, all 5 s+ SDW state. As the ground state for large enowg
of whose important qualitative properties are identical thosgyn sC state, it follows that there must be at least one quan-
of the standard BCS-BdG theory. At issue are the groundym phase transition between the SSDW and SC states,
states which interpolate between these well understood limand we will work with the simplest possibility that there is
its, and the manner in which they influence the anomalougne direct transition at some criticak 8.. Wakimotoet al.
properties at temperatur€E) aboveT, (the critical tempera- 150 showed that such a transition associated with the van-
ture for the onset of superconductivity ishing of the SDW moment occurred fég~0.14(see Fig. 1
While a plethora of interesting proposals for these inter, Ref. 2. We shall assume that the $SGDW to SC quan-
mediate states have been made, we will focus her@noour  ym phase transition is second-order: direct evidence for
view) the simplest possibility: the order parameters characgyitical magnetic fluctuations in La ;Sr;CuQ, for 5~0.14

terizing the intermediate ground states are simply those Qfas provided in the neutron-scattering experiments of Aeppli
spin- and charge-density wavéSDW and CDW, and su- ¢ g3

perconductivity(SC) itself. Apart from a small range atvery e will also discuss the appearance of local and long-
low doping, which shall not be of interest in this paper, Werange CDW order in the above phases. It is important to note
know from neutron-scattering experiments that there is SDWp ¢ throughout this paper, we use the term “charge-density

order collinearly polarized at the wave vectors wave” (or “charge order’) in its most general sense: such
order implies that there is a periodic spatial modulation in all
observables which are invariant under spin rotations and
27\ (1 1 27\ (1 1 . o
o=|=l5-05]. Ke=[—=]l5.5-7] time reversal, such as the electron kinetic energy, the ex-
aj\2 2 aj\2'2 change energy, or even the electron pairing amplitude. The

modulation in the site charge density may well be unobserv-
wherea is square lattice spacing and the wave vector shifiably small because of screening by the long-range Coulomb
from two sublattice order @ 9<1/2 is a function of the interactions.
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We note that the doping dependence of the magnetic order We introduced above the wave vectors of the SDW order-
in the cuprates can be quite complex, varies significantlyng K, and K, ; almost all of our analysis will apply for
between different compounds, and is influenced by the degeneral values o, but the valued=1/8 is of particular
gree of disorder: the magnetic order may well be spin-glassinterest above a doping of about 1/8. To obtain an order
like at the lowest energy scales at sotheThe SDW orderis  parameter for such a SDW, we write the spin operator
also enhanced in the vicinity of special commensurate valueS.(",7), a=X,y,z, at the lattice site as
of the doping such a$=1/8 (see, e.g., Fig. 1 in Ref.)2
along with a suppression of SC order. In general, we do not S,(r,7)= Re[eiKSX"d)Xa(r,r)+e‘st"d>ya(r,r)],
wish to enter into most of these complexities here, although (1.2
we will mention (in Sec. | A how our theory could be ex-
tended to explain the commensuration effects—some othevhere ®, ,, are the required order parameters. Except for
relevant issues will be discussed in Sec. VII. Our primarythe case of two sublattice order with=0 (which we ex-
assumption is that the low-energy collective excitations carflude for now, the fields®, ,, are complex. These fields
be described using the theory of the vicinity of a quantumcan describe a wide variety of SDW configurations, but we
critical point between the SESDW and the SC phases; evi- NoW list the two important limiting cases.
dence supporting this assumption was also reviewed in Ref, (i) Collinearly polarized SDW's, for which
4. This critical point is present either as a functionsah the
material under consideration, or in a generalized parameter <I>ya(r,r)=e“‘7(r'7)na(r,r), (1.3
space but quite close to the physical axis.

It is also important not to confuse this magnetic quantumwheren,, is areal vector andf is also realand similarly for
critical point, with other proposals for quantum critical ®,,). Parametrized in this manner, and foir= const(sum-
points near optimal doping that have appeared in the recemhation over the repeated indexis implied here and hence-
literature>® These latter critical points are ned#0.19, and  forth), the order parameteb,, belongs to the spaceSg
are probably not associated with long-range spin-density<S;)/Z,, whereS, is then-dimensional surface of a sphere
wave order at a wave vector of the forfh.1). This paper in n+1 dimensions, and, is the discrete cyclic group qf
will discuss magnetic transitions at smaller doping. elements. TheZ, quotient is necessary because a shift

Upon accepting the existence of a second order quantum> ¢+ 7 is equivalent to a rotation which sendg— —n,,.
critical point atT=0 between the SESDW and SC phases, (i) Circular spiral SDW's, for which
a powerful theoretical tool for the analysis of experiments
pecomes_availablé.‘l’h_e s;ructure pf the criticalltheory, and Dy o(1,7) =Ny (1, 7) FiN (1, 7), (1.4
its associated classification of eigenperturbations, allows a
systematic and controlled theory of the spin excitations in theyhere Ny, are two real vectors obeyingnia: nga and
SC and SDW phases on either side of the critical point. Such, n, =0 (and similarly ford,,). Now forn? = const, the
an approach was recently exploited to study the influence ofrder parameterb,,, belongs to the space SOEB;/Z,
nonmagnetic Zn and Li impurities in the SC phéde. this (see e.g., Sec. 13.3.2 in Ref. 7
paper we will use the same tools to study the influence of an The experimental evident&® supports the conclusion
applied magnetic field, oriented perpendicular to the €uOthe SDW ordering in the cuprates in collinear, but the present
layers, on both the SC and the $SDW phases. An outline formalism allows a common treatment of both the collinear
of our results has already appeared in previousand spiral cases. This complex-vector formulation of the
communication€ here we will present the full numerical SDW order allows treatment of the SDW quantum transition
solution of the our self-consistent equations for the dynamidy a straightforward generalization of the real-vector theory
Spin Spectrum in an app“ed field, a|ong with a number ofused for the Nel state in the insulator; related points have
results. Measurements of the spin and charge correlations Pgen made by Castro Neto and Héhend gganeﬁ? The
the presence of such an applied magnetic field have appear88Me approach was also used by Zaaaal™ to treat the
recently in a number of illuminating neutron-scatterfigt ~ onset of SDW order at finite temperatures, as we will indi-

NMR,>"17 and STM experiment® and we will compare ~Cate below.
their results with our prior predictions. Along with the SDW order, CDW order may also appear.

We parameterize the charge density modulation by

A. Order parameters and field theory Sp(r, )= Re[eiKCX"¢X(r,T)+eiKcy'r¢y(r,7)], (1.5
The field theory for a SC to SESDW transition in zero

applied magnetic field can be expressed entirely in terms ofvhereK., , are the CDW ordering wave vectors adg ,
the SDW order parameter which we will introduce in this the corresponding complex order parameters. The quantum
subsection; the quantum fluctuations of the SC order can beumbers of the observabkp are identical to those of;,,
safely neglected, a point we will discuss further in Sec. VIl.and so by squaring Eq1.2) we see that associated with the
Consideration of the applied magnetic field will appear in theSDW is a CDW with® K ., = 2K g, Key=2Ks, (modulo re-
following subsection. ciprocal lattice vectons
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r,7)oed? (r, and r,7r)ocd2 (r,7). (1.6
Ol D= Dl 7) Py 1) Dy(r7). (1.6 &p:Jdzrdr[Ia,®xd|2+vilaxd>m|2+v§|ﬂy‘bmlz

Note that this CDW is absent for the case of a circular spiral + |<9T<I>ya|2+v§|<?x<1>ya|2+v§|<9yq>ya|2+ S(| Dyql?
SDW (in which casefb)z(’ya=0) but is necessarily present for u u

a collinear SDW. In principle, in a state with condensates of +|Dy,|?) + ?1(|<I>xa|4+ [Py, + 72(|‘D>2<a|2

both ®,, and ®,,, a CDW can also be present at wave

vector Kg,+Ksy; we will not conS|_der this possibility here +|<D§a|2)+W1|(Dm|2|‘Dya|2+W2|q’m¢ya|2

as it does not seem to be experimentally relevant. As was

emphasized in the third paragraph of Sec. |, we are using the +w;|DF Dyl (1.8

term CDW here in its broadest sense: there is a modulation at
the wave vectoK, in all observables which are invariant Note that first-order temporal gradient terms such as

under spin rotations and time reversal. The precise nature @h* , ®,, are forbidden by spatial inversion symmetfyin
. . Xa™~ T a
the CDW order may be determined from an analysis of theyinciple, first-order spatial gradient terms such as

STM spectrum—this has been discussed recently in R6f$q’§aﬁx¢m are permitted by all symmetries; such terms lead
24,25. ) _ to a shift in the wave vector at which SDW fluctuations are
The order parameterd, ., ¢« allow a rich variety of  |3rgest, and we assume that they have already been absorbed
phases and phase transitions in the presence of backgroupg our choice oK. Herev; andv, are velocities, which
SC order. These will be discussed in some detail in Sec. Viagre expected to be of order the spin-wave velogitgf the
Central to a description of these phases is an understandingeel state in the undoped insulator. The paramstéines
of the symmetries respected by any effective action for thehe system from the SC phaseXs.) to the SG-SDW
order parameters. We describe these below and then focus phase §<s.), wheres=s, is the nonuniversal location of
a particular phase transition of physical interest. the quantum critical point between these phases; experimen-
An obvious symmetry is that under spin rotations; this istally, s can be varied by changing the doping concentration.
described by the group $B), and the fieldsb, ,, transform  The action also contains a number of quartic nonlinearities:
asS=1 vectors labeled by the index. In addition, there is the RG analysis shows that these are strongly relevant per-
an independersliding symmetry turbations about the Gaussian theory, and will play a crucial
role in our analysis below. The coupling selects between
the collinear and spiral SDW states: fay>0, the circular
CI)xny—>ei0x,y<I)xvya (1.7)  spiral state(which has®2,=0) is selected, whileu,<0
prefers a collinear SDW. The couplings , ; lead to corre-

) ) ) _lations between the orders Kt, and Ks—if these are at-
associated with the translational symmetry of the underlyingractive, thes<s, phase will have simultaneous orderings at
lattice model: translating to r+(ma,0) (minteged in EG.  poth wave vectors, and spatial pattern will have a checker-
(1.2) leads to Eq(1.7) with 6,=mm(1—29) andd,=m=m [  poard structure.
¢ was defined in Eq(1.1)]. For & irrational, we see thatall  \we have also neglected the couplings to the low energy
real values ob) , can be generated with the different choicesnodal quasiparticles, which are additional excitations of the
for m, and hence the sliding symmetry is UGAW(1). For  SC phase carrying spin; their effects are suppressed by the
rational 9, with 1/2—9=p’/p, andp’, p relatively prime  constraints of momentum conservation, as they can damp the
integers, only integer multiples @ ,=2/p are allowed in ¢ quanta effectively only i, equal the separation be-
Eq. (1.7); in this case the sliding symmetry is reduced totween any two nodal points. The case where this nesting
Z,XZ,. The difference between () andZ, will not be  condition is satisfied has been considered edfiént we
material to any of our results fgr>>2. In a similar manner, will not enter into it here for simplicity: essentially all of our
we can also determine the action of other elements of theesults here on the phase diagram in an applied magnetic
square lattice space group @b, ,, and we mention two field apply also to the case where the nesting condition is
important cases: under a spatial inversion we hdvg,  obeyed. For completeness, in Appendix A we also discuss the
—®3,,, and under the interchangeandy axes, we have  role of spin symmetry breaking Dzyaloshinskii-Moriya inter-
Dy Py, . action present in La ;Sr;Cu0,.2” We show that it helps

We now apply these symmetries to determine the effectivetabilize collinear SDW order in a certain direction; however,
action of a physically relevant transition discussed earlier irits effect is very small and will be neglected in the rest of this
the introduction(and in the phase diagrams of Seg: that  paper.
between the SE€SDW and SC phases. This transition is  For the particular rational valuey=1/8, the U(1)
driven by the condensation @b, ,,; if the SDW order is X U(1) sliding symmetry is reduced to a discrelgxZg
collinear, it will drive a concomitant CDW order, as dis- symmetry under whicl®, , in Eq. (1.7) are only allowed to
cussed above. Supplementing the symmetries by a renormdle multiples of w/4. This reduced symmetry allows addi-
ization group (RG) procedure which selects terms with tional terms in Eq(1.8) whose structure has been discussed
smaller powers ofd, ., and fewer spatial and temporal gra- earlier'>?® Such terms help choose between site- and bond-
dients, we obtait? 1% 26the effective action centered density wavéSand could also lead to the enhance-
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ment of the moment observed by Wakimatbal? near & To complete the description of the model studied in this
=1/8. However, these terms are very high or¢eghth in paper, we now need to couple the SC and SDW order param-
the @ fields, and consequently they have a negligible effecteters together. The simplest term allowed by symmetry is a
on the issues we are interested in here: so we will not coneonnection between the local modulus of the order param-
sider them further. eters

It is useful to compare our treatment here of the SC
+SDW to SC transition with others in the literature. It is
essential for our purposes that the spin/charge ordering is S‘MZKJ d2rd 7l (r)|°[| Pyo(r, 1) [2+ [ Dy o1, 7)[2].
taking place in a background of SC order, as that gaps out the (1.10

fermionic excitations except possibly at special points in theFOr x>0, we can induce a competition between the SC and

Brilloui . Theoried?° which [ DW/CDW or- . .
rifioun zone eorie€*which consider SOW/C or SDW orders, in that the SDW order will be enhanced where

der in a Fermi liquid have additional damping terms in their,[h SC order i 4 and vi The mi .
effective action which change the universality class of the € order IS suppressed and vice versa. 1he microscopic

transition, change the dynamic exponentzte2, and do not origAiIr;hof thr(]aScoupli.ﬂgg isthdiscgssed in AplpendbixtC. h
obey strong hyperscaling properties as the quartic couplingg ough o4, WIll be the primary coupling between the

are marginallyirrelevantin this case. We have also taken a DWand SC orders, an additional allowed term W.'” be im-
genuinely two-dimensional view on the SDW/CDW portant for some purposésTo understand this, notice that

(“stripe” ) fluctuations in our approach. An alternative all terms inSg, and S, are invariant under the sliding sym-

approacf’ assumes there are intermediate scales on whic etry (1.7). Th's means_that, W'th _the present terms, the
the physics of the one-dimensional electron gas applies, a-DW OVd?r is free to slide arbltrar_ny With respect to. any
though a crossover to similar two-dimensional physics ocvortex lattice that may be prgsent in the SC orderTh|§
curs on large enough scaf¥s. clearly cannot be true, as lattice scale effects should_ pin the
two modulations with respect to each other. The simplest

additional coupling which will provide this pinning can be
deduced by noticing that there should be a coupling between

An applied magnetic field has a Zeeman coupling to thehe charge modulation in E@1.5) and the local modulus of
spin of the electrons, and this is present for any direction othe superconducting order; this is induced by the térm

the applied field. However, the Zeeman splitting of the mag-

B. Influence of an applied magnetic field

netic levels has only a minor effect, and can be safely ne- -~ = 2 Ko p a2

glected compared to the much stronger effects rseas, S'at__gzr: del P(r)|"Refeex "Dy (r,7)

that we consider below. We discuss the influence of the Zee- _

man term in Appendix B, and will not consider it further in +e'Kcv'r®§a(r,T)]. (1.1
this paper.

The dominant effect of the field is via its coupling to the Nofice that we are now performing a discrete summation
orbital motion of the electrons, which is sensitive only to the©Ver the lattice sites, rather than integrating over a spatial
component of the field orthogonal to the layers. The reasofiontinuum: this is a direct consequence of the rapidly oscil-
for this strong effect is simple: there is SC order in the orbitallating factorse'™e<" ande™ev" which do not have a smooth
wave function of the electrons, and the diamagnetic suscegontinuum limit. Indeed, in regions wherg(r) is smoothly
tibility of the SC state to the applied field is infinite. How- varying, these rapidly oscillating factor will cause the sum-
ever, as the SC order is noncritical across the transition dpation overr to vanish. So the expressid.1]) is appre-
s=s,, it is mainly a quiescent spectator and its response cafiable only over regions wherg(r) is rapidly varying, and
justifiably be treated in a static, mean-field theory. Consethis happens only in the cores of the vortices. As the centers
quently, we model the complex SC order parametgr) i~ Of the vortices are _|dent|f|ed by the zerosyfr), and we are
the familiar Abrikosov theory with the free energer layer ~ Mainly interested in scales larger than vortex core size, we

(we use units withi=kg=1 throughout can replace Eq1.11) by the following expression, which is
more amenable to an analysis in the continuum thébry:
F= f d’r

a4 5 )+

2m* Sa=—1{ %) . drRe{e'"[®Z (1, , 1)+ D2 (r,, 7]}
ry ()=
1 * 2 (1.12
x i—V,—?A)w(r) ' @9 Here the summation is over all points at which ¢(r,)

) ] ) ) =0 (these are the centers of the vorticendw is a phase
Note that unliked, ., ¢ is not a fluctuating variable, and \hich depends upon the microscopic structure of the vortex
described completely by its mean valGehich will be r  ¢ore on the lattice scale. The actiS, is not invariant under
dependent We will work entirely in the limit of extreme ihe sliding symmetry, and so will pin the CDW order.
type-Il superconductivitywith Ginzburg-Landau parameter  \ve are now in a position to succinctly state the field-
xeL=%>); So there is no screening of the magnetic field bytheoretic problem which will be addressed in this paper. We
the Meissner currents, arM, X A=Hz, the applied, space- are interested in the partition function for SDW/CDW fluc-
independent magnetic field. tuations defined by
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Zlp(r)]= f DD, (1, ) DDy (1, 7) (Energy)?

jL‘
Xex;{ - ?_S(I)_Sq)w_swt y (113)

accompanied by the solution of N = i el

SIn Z[¢(r)] 0 U\Vortex cores/U "

9 () 0 (1.19

) L i i FIG. 1. A sketch of the potentialy(r) (thick full line) in the
which minimizes —In Z[ (r)] to determine the optimum presence of a vortex lattice. Also shown is the exciton wave func-
#(r). Note the highly asymmetrical treatment of the SDWtion =,(r) which solves Eq(1.17 for V(r)=V,(r) with eigen-
and SC orders: we include full guantum-mechanical fluctuavalue A2. Note that there is no drastic change in this picture as
tions of the former, while the latter is static and nonfluctuat-A2\,0: the peaks ifE(r) remain exponentially localized within
ing. This asymmetry is essentially imposed on us by thesach vortex core, on a length scale much smaller than the vortex
perspective of magnetic quantum criticality, and the fact thatattice spacing. We argue in the text that strong interaction correc-
we are developing a theory of the $GDW to SC transi- tions toVy(r) invalidate this form for=q(r) and the correct struc-
tion. This asymmetry should also be contrasted with the symture is shown in Fig. 2.
metric treatment of SC and SDW quantum fluctuations in

other approaches. [—0idi—v3a5+ V() ]Eo(N=A%E(r), (1.17)

C. Physical discussion where E(r) is the lowest eigenmode of E(L.17), the ei-

The primary purpose of this paper is to determine th@envalueAz is required to be pOSitive for the Stablllty of the
phase diagram and low-energy spectrum of SDW and CDWzaussian theorySg. The energyA is the spin-gap, and
fluctuations of 2 as a function of the applied fielth. A Eo(r) then specifies the envelope of the lowest energy SDW
summary of our results has already appe#r€dind detailed ~ fluctuations; in other word& y(r) is the wave function of a
numerical solutions appear in the body of the paper; here w&=1 exciton associated with dynamic SDW fluctuations.
expand on the central physical idea to provide an intuitiveNote thatA? can be positive even if there are regions where
understanding of our results to readers who do not wish t3/(r)<0. A sketch of the spatial form dE(r) is shown in
study the details in the remainder of the paper. We will ini-Fig. 1 for a particular small value af? and V(r)=Vy(r).
tially ignore the pinning described b, but will discuss Observe thaE (r) is peaked at the vortex centers, but de-
its consequences in Sec. | C 1. cays rapidly outside the vortex cores over a SDW localiza-

Let us begin in the SC phase wish> s, and consider the tion lengthl ~vl,2/\/V1—A2, whereV, is the value ofVy(r)
®,, fluctuations in a simple Gaussian thedtlie consider- outside the vortex coresee Fig. 1
ations of this subsection apply equally d,,, which we Remaining within the Gaussian theory specified by Egs.
will not mention furthey. Assumey(r) has been determined (1.19 and(1.16, we now consider the consequences of rais-
by the minimization ofF, and so takes the standard form in ing the value ofH in the hope of reaching the SCSDW
an Abrikosov flux lattice. The Gaussian fluctuationsdaf, ~ phase. With increasing, the vortex cores will approach
are described by the effective action each other, and we expect that the valué\éfwill decrease.
Indeed, the picture of Fig. 1 holds all the way up to the point
A=0; beyond this field the Gaussian theory becomes un-
stable and this signals the onset of the 1S€DW phase
5 5 5 driven by the condensation db,,. Note that the localiza-

+ 03| Ay D] “H W) [Py ] (119 ton lengthl ~v1‘2/\/V1—A2 of the SDW order peaked in the
vortex cores remairfinite all the way up to the critical point.
This localization length must be clearly distinguished from
the spin correlation lengtls: the latter is associated with

Vo(r) =s+ k| ()2 (1.1  correlations between different vortices, and arises because

there is an exponentially small coupling between magnetism

A sketch of the spatial structure ®§(r) is shown in Fig. 1: in neighboring cores. Thus this simple Gaussian theory
because/(r) vanishes at the centers of the vortic®%(r) yields a picture of dynamic magnetism appearing first in the
has well-developed minima at each such point. Indeed, thereortex cores, with possible weak correlations between neigh-
can even be regions in each vortex core whgy@) <0, and  boring cores. Such a viewpoint was also discussed by Lake
Arovas et al®® and Bruuset al3* argued that superconduc- et al!? who proposed “spins in the vortices” but noted that
tivity would “rotate” or transform intostatic Neel order in  the large value of, implied coupling between nearby vorti-
such a region. In our treatment dfnamicSDW?>*°*we see  ces. Following our worR,Hu and Zhang/ also presented a
that the structure of the magnetism is determined by the sicture of dynamic SDW fluctuations similar to the one
lution of the Schrdinger equatiof? above.

So= [ @Praet]. 0, 7+ b

To leading order, the effective potenti(r) is given byV
=Y, where
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We now argue that corrections beyond the Gaussian (Entfrgy)2
theory approximation invalidate the above picture when ’
becomes smafl.Indeed, the picture of nearly independent, v,

localized magnetic excitations in each vortex core holds only
then A is of order the spin exchange enerdysuch high
energy magnetic excitations are expected to strongly damped >
by the fermionic quasiparticles. Also, the validity of the u\ /U G

present continuum model is questionable at scales as short as Vortex cores

vortex core size and at energies of ordea full solution of

the BCS theory of the underlying electrons is surely needed, FIG. 2. A sketch of the potentialy(r) (thick full line) in the

and subsidiary order parameters may well develop within thé@resence qf aﬁvortex Igttice along with the t.rue form of the gxciton
vortex cores. However, as is lowered, we will now argue wave.functlon:O(r) which sol_ves Eq(1.17) with the full gotentl_al
that the physics is actually dominated by the large regiont(r) in Ed. (1.18. The spatial structure oEq(r) as A*\0 is
outside the vortex cores, where the present continuum a5 'aracterized by the vortex lattice spacing.

proach can be used without fear, and the subtle issues of the

short-distance physics within the core can be sidesteppeghe spatial form ofZ,(r) itself, but is instead related to an
The central weakness in the analysis of the previous parantegral over a band of states which solve Figl7) at finite
graph is that it does not account for the repulsive interactiongnhomentum, as we shall discuss in Sec. | C 1 and later in the
u; , between the bosonid,, exciton modes that are con- paper.

densing. As has been discussed in different contexts long |t is worth noting here that the passage from Eq16) to
ago?®* such interactions are crucial in determining the(1.18 in zero field is precisely that needed to reproduce the
structure of the lowest-energy state in which condensatiokRnown properties of magnetic quantum critical points in
occurs. In particular, it is well known that the effect of inter- other situations. In one dimension, Ed.16 would imply
actions is to delocalize the lowest-energy states: bosons inihat there is no barrier to magnetic long-range order, while
tially prefer to occupy strongly localized, low-energy states,Eq. (1.18 correctly implies that the presence of the Haldane
but then their repulsive interaction with subsequent bosongap, and reproduces its magnitude in the semiclassicallimit.
drives the energy of such states up. Bray and MSopee- At finite temperature, Eq1.18) yields the correct crossovers
sented an argument demonstrating that in the vicinity of thén the magnetic correlation length in the vicinity of the spin
condensation, the localization length must diverge as ongrdering transition in two dimensions. Although we will not
approached the bottom of the band of states of interactingresent detailed solutions on this case here(E48 is also
bosons in the presence of an external potential. To apply the#xpected to provide a reasonable description of the magnetic
argument in the present context, we need to replace Egrossovers at finite temperatures in the vicinity of the SC

(1.16 by +SDW to SC transition in the presence of a magnetic field.
(4u,+2u,) With the knowledge of the spatial structure of the exciton
U+ 2u, s A T .
W(r) = V(1) + <|q>><a(f17)|2>s wave functlpmo(r) in Fig. 2, the origin of our main resufts
3 G can be easily understood. As the vortex cores occupy only a

small fraction of the system volume, the magnitude of the
Uz) ® 2y . energyA? is influenced mainly by the structure gf(r) in
<| Xa(riT)| >SG’ . .
the remaining space. Here, the predominant consequence of
(1.18 the magnetic field is the presence of a superflow with veloc-
ity vs= — 6F1 6A circulating around each vortex core. Focus-
the additional terms arise from a Hartree-Fock decoupling ofng on the region around a single vortex at the origin

(4uy+2

=s+ k()P + ——

the quartic interaction terms ifi;, , and the expectation val- =(0,0), the superflow obeyks/|~1/r in the wide region
ues have to be evaluated self-consistently under the Gaussigg<r <L, where &,=1/\2m* « is the vortex core sizd.,,
action in Eq.(1.19 which itself depends upo(r). Note  ~(e*H/c) Y2 so the average superflow kinetic energy is

that the perspective of magnetic criticality requires that we
account for theu, , interactions, as these are strongly rel-

evant perturbations about the Gaussian theory; so we are led L,d?r

to Eq.(1.18 also by a naive application of the RG approach. f > 1O

We will present detailed numerical solutions of equations <V2>oc f I uiln(_d) (1.19
closely related to Eq(1.18 in the body of the paper. An s L 22 H /)’ '
adaption of the argument of Bray and Modteo Eq.(1.189 & dr

was given in Ref. 9, and we will not repeat it here: the main

result is that the length scalecharacterizing the lowest-

energy staté& 4(r) cannot remain finite a4\ 0. Instead the whereHS2 is the upper critical field for the destruction of the
states around neighboring vortex cores overlap strongly, anlieissner state at the coupling constant corresponding to the
Eo(r) is characterized by the vortex spacing itself. A sketchpoint M in Fig. 3 below. This kinetic energy is a scalar with
of the actual structure d€ o(r) is shown in Fig. 2. The spin the same quantum numbers and symmetry propertibg|&s
correlation lengthés does not have a direct connection with hence, via the coupling ify, in Eq. (1.10, the value of Eq.
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A c, , no orbital diamagnetism, only the Zeeman coupling is opera-
y (Chglr‘;;m:‘r' o) tive, and the phase boundary approacHes0 with infinite

slope. Evidently, Zeeman effects are much weaker and can
be justifiably neglected.

We conclude this subsection by a brief discussion of ear-
lier works*2=3440-5%n vortex magnetism, and the change in
perspective that has been offered here by our analysis. It was
proposed in by Sachd®and Nagaosa and L&&hat vortex
cores in the underdoped cuprates should have spin gap cor-
relations characteristic of Mott insulators. Zhahgnd Aro-
vas et al®® described vortex core correlations in terms of

FIG. 3. Zero temperature phase diagram as a function of thetatic Neel order, and estimated that the field-induced mo-
couplings and the magnetic fielt in an extreme type-Il supercon- ment would be proportional tél [in our phase diagram in
ductor described by Eq1.13. The theory is accurate in the region Fig. 3, vortices with static moments are only present in the
of smallH, and only qualitatively correct elsewhdd is measured SC+ SDW phase, and as we will review below in Sec. V D,
in units described in Eq(3.2)]. The phases without SC order are the average moment increaseg Bisin(1/H) for small H].
likely to be insulators, and the “normal” phase is expected to haveQyr discussion here also uses the SDW order parameter, but
residual CDW order, which is initially induced by the pinning terms 5||ows it to fluctuate dynamically into a spin gap state, and
in Sige as discussed in Sec. | C 1. The positions of the phase boundsy jnterpolates between these earlier works. A separate de-
aries are summarized in Sec. lll. The p&th denotes the location scription of vortex cores in terms of “staggered flux”

of the original neutron-scattering measurements of Legl@l.(Ref. correlation4° has also been proposed. One of our central
12), and the pathP, the subsequent neutron scattering measure-

ments of Khaykoviclet al. (Ref. 13 and Lakeet al. (Ref. 14, The points here is that while the vortex core correlations may

STM measurements of Hoffmaet al. (Ref. 18 are also along well be quite Comp_II(_:atec{they gre _dependent on lattice
path P,. scale effects, and difficult to distinguish from each other as

the short-distance “order” fluctuates dynamicallyhese is-
sues can be sidestepped: a reliable continuum theory can be
developed by considering first the dominant effects arising
from the interplay between superconductivity and magnetism
in the superflow region outside the vortex cores. Spin-

( 0 ) density-wave correlations induced in these regions may leak

(1.19 feeds into all the effective coupling constantsSiy in
Eq. (1.8). The most important modification is that the tuning
parametess gets replaced by

Heo (1.20 into the vortex cores, but our treatment is not expected to be
H reliable in the latter region: the nature of the electronic cor-
) . . relations in the vortex cores remains an open question.
Where_C is a constant of order unity. Th_e implication of EQ.  our continuum treatment of dynamic and static spin-
(1.20 is that we may as well repladg(r) in Egs.(1.15 and  gensijty-wave order differs from earlier works in several key
(1.18 by aspects. An important feature of Refs. 33,34 is the static
mean-field treatment of the SDW order in the vortex cores,
V(1) ~Se(H) (.23 which is imposed by their “S()” picture of SC order out-
to obtain a first estimate of the consequence of the magnetiide the cores “rotating” into static antiferromagnetism in
field in the vicinity of the SG- SDW to SC transition. Thei  the cores’® This should be contrasted to our approach, in
dependence in Eq$1.20 and (1.21) is sufficient to deter- Which magnetic quantum criticality implies dynamic mag-
mine our main resuh:%:the smallH portion of the phase netic fluctuations while the SC order can be safely consid-
diagram in Fig. 3, the intensity of the elastic scattering Braggered static. Further, Refs. 33,34 assumed(tfeay equality
peak in the SG SDW phase, and the energy of the lowest-0f the gradient and “mass” terms for the SC and two-
energy SDW fluctuation in the SC phase. In particular, itsublattice SDW order parameters, as naturally suggested by
follows directly from Eq.(1.20 that the smalH portion of ~ the dynamic S(®) symmetry, which requires a symmetry
the AM phase boundary in Fig. 3 between the SC and sdvetween the excited states in the SC and SDW phases. As a

H
Se(H)=s—C—5-In
HcZ

+SDW phases behaves as result they found static two-sublattice magnetization induced
by the vortex core, over a scale which was of order the
2(s—s¢) vortex core siz&, and in a regime where superconductivity
- m (122 was essentially completely suppressed. This assumption was

relaxed in a recent papérwhere following our work the

Note that this phase boundary approachessths., H=0 possibility of a generalized dynamic SDW in regions larger
quantum critical point witlvanishing slopeThis implies that  than the nonsuperconducting core, and coexisting with well-
a relatively smallH for s>s; will successfully move the established superconductivity, was appreciated. Hu and
system close the AM phase boundary, and so produce lowhang’ also suggested that a small proximity-type coupling
energy spin excitations. This should be contrasted to the cobetween the magnetic domains centered on the neighboring
respondingH-dependent phase boundary of the SDW phase&ortices may be sufficient to stabilize static long-range mag-
in insulators which is discussed in Appendix B; here, there isietic order in a S& SDW phase, in which enhancement of
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the SDW in the vortex cores was the dominant effect. As wanodel has static order fdroththe SDW and CDW, and thus
have reviewed at length above, the strongly relevant excitomwould apply only in the S& SDW phase of our phase dia-
self-interactions lead to a different description of the SCgram in Fig. 3. It appears unlikely to us that the slightly
+SDW phasé;in the SC phase, as one approaches the S@verdoped BSCCO sample used by Hoffnedral % is in the
+SDW phase, the SDW order is induced over large lengtfSC+ SDW phase.
scales outside the vortex core, and the influence of the super- The simple model of the field-induced dynamic SDW
flow is paramount. Only in the regime where magnetic fieldfluctuations we have described in this section can be readily
is small and the system is well within the SC phésed far ~ extended to compute the static CDW order induced; by
from the SC to SG& SDW boundary, can we speak in terms the SC phase. Indeed, the upshot of our preceeding discus-
of localized bound state pulled below the continuum. How-sion of the extended structure 8f(r) is that we can use the
ever, this limit is of little experimental interest, since it cor- Gaussian theorySs in Eq. (1.15 with V(r) given by the
responds to high energy magnetic excitdndich, as dis- constant value in Eq1.21): computing(®Z,) in the theory
cussed above, are probably strongly overdamped by oth&fg+ S, for this value ofV(r) and to first order inf, we
excitations associated with the vortex coresth a vanish-  find!
ingly small intensity.
3
1. Pinning of charge order in the SC phase. (r 7)) = E 8773/2[59 (H)]1/4 5/2

Our physical discussion has so far neglected the influence ol | STl
of the pinning potential itf,,; in Eq.(1.12). We will continue xge““’e vl (1.29
to neglect this term in most of this paper, apart from compu- Ir—r, |32 ' ‘
tations in Sec. IV E whose content we briefly describe here.
This analy3|s is motivated by the STM experiments of Hoff-where |r—r |=v{[ (x—x,)/v1 1>+ [(y—V,)/v,]3}*? and v
manet al® =(vqv,) Y% the result(1.23 holds for largdr—r,|, and the
The SC phase of Fig. 3 preserves spin rotation invariancelivergence at smalr —r,| it cutoff by lattice scale effects.
and so hagd,,)=0 and, by Eq(1.2), (S,)=0 [if we were  Note that the static CDW order decays exponentially around
to account for the small Zeeman terAppendix B, the  each vortex core over a length scafe=uv/[2\/se(H)]
analogous statement holds for the spin density in the plan@hich has been increased by the influence of the field-
perpendicular to the magnetic figldn the absence oS, induced superfloiby the decrease af,s(H) in Eq. (1.20].
all the remaining terms in the partition functiofi in Eq.  Note also that this length scalerist related to any localiza-
(1.13 are invariant under the sliding symmetr$,, tion scale associated with the SDW st&g(r); indeed, we
—€'®,,, and so we also havédZ,)=0 and, by Egs. have argued above that the latter state is extended. In the
(1.5),(1.6), (6p)=0 in the SC phase. Now if we include the present simple Gaussian calculation, we used the very simple
effect of S5 perturbatively(which is all we shall do heje  constant potential given in Eq1.21) in the Schradinger
the pinning of the dynamic fluctuations by the vortex coresequation for the exciton, Eq1.17); all eigenstates of such an
leads to static CDW order witf®2 )#0 and(8p)#0, equation are extended plane-wave states. Instead, the expo-
while the continued preservation of spin rotation invariancenential decay in Eq(1.23 arises from the integral over all
implies that we still havé®,,)=0 and(S,)=0. (Of course  the oscillating(but extendefl excited states of Eq(1.17).
in the other SG SDW phase, spin rotation symmetry is bro- The body of the paper will show that the same feature also
ken, and sd®,,)#0 and(S,)#0, along with static CDW holds when the full form of\(r) is used, and not just the
order) crude approximation in Eq1.21) (see Figs. 15 and 16
The nucleation ofstatic CDW order, but withdynamic It is useful to make an analogy between the above result
SDW order, in the SC phase by the vortices was first preand the phenomenon of Friedel oscillations in a Fermi liquid.
dicted in Refs. 10,51, where a connection was also mad& Fermi liquid state has no static SDW or CDW order, but
with lattice scale studies of bond-centered charge order cothere are enhanced fluctuations of these orderskat zhe
relations in superconductors with preserved spin rotationwave vector which spans extremal points of the Fermi sur-
invariance?® These latter works found a significant doping face. In the presence of an external impurity, static CDW
range over which the charge order had a period pinned aiscillations at Rg are induced, while full spin-rotation in-
four lattice spacings, which is the period observed in thevariance is preserved. The amplitude of these oscillations
STM experiments of Hoffmaet al'® (the same period also decay with a power-law because the Fermi liquid has gapless
appeared in density matrix renormalization group studies bgpectrum of SDW/CDW excitations.
White and Scalapird). Here we are interested in the spatial  In the present situation, the physics of the doped Mott
extent of theenvelopeof the period four charge order. Fol- insulator induces a preference for excitonic SDW fluctua-
lowing Ref. 11, here we will compute this envelope usingtions at the wave vectois, , and for CDW fluctuations at
our present models for dynamic SDW/CDW fluctuations inthe wave vectorK, ,=2Ks,,. The SC phase has a spin
the SC phase, and the pinning of a static CDWdy. gap A at these wave vectors, and so such spin correlations
After this paper was originally released, we learned of thedecay exponentially on the scale=v/A (as we have noted,
microscopic model of Chen and Titigfor the STM experi-  this is not a localization scale of the spin exciton states,
ments, which follows the earlier work of Ref. 48. Their which are all extended The vortex core pins the phase the
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dynamic SDW fluctuations which reside above this spin gap,
and the resulting “Friedel oscillations of the spin gap” are
manifested by static CDW oscillations at the wave vectors

Kcxy Whose envelope decays exponentially over a length «<®>=0
scale§C &2, These may therefore be viewed as the Friedel
oscillations associated with the excitonic bound states that <¢p>=0

are present below the particle-hole continuum ofdheave
superconductor. In a weak-coupling BCS/RPA theory one |
can also expect additional Friedel oscillations associated
with the continuum of particle-hole excitations, whose wave ”
vector is determined by the quasiparticle dispersion. Such a
picture may be appropriate in the strongly overdoped limit in “l
zero magnetic field, with pinning provided by impurities. <®>=0
However, as one lowers the doping in the SC phasep- <®>+0 <0>#0
proach the boundary to the SGGDW phasg an excitonic
bound state appears, and we have focused on its physics <¢>#0
here; the wave vector of this exciton is determined by strong-
coupling effects in the doped Mott insulator. The strength of FIG. 4. Mean-field, zero-temperature phase diagram of the zero
this exciton could also be enhanced relative to the particlemagnetic field model Sp+S,+Sys defined in  Egs.
hole continuum in the vicinity of vortices in an applied mag- (1.8),(2.1),(2.2), with u,<0.
netic field—this effect requires explicit consideration of the
fermionic quasiparticles, and so is beyond the scope of the Here, we consider phases that are characterized simply by
theories considered here. the condensates of one or more of the order paramétgys

The outline of the remainder of this paper is as follows.and ¢, ,, introduced in Sec. | A. More complex phases as-
We will begin in Sec. Il by a discussion of the phase diagransociated with composites or “fractions” of these fields are
of the spin and charge-density-wave order parameters in zedso possible and these will be considered later in Sec. VI.
magnetic field. More complex phases and phase diagrams arowever, the remainder of the paper will only deal with the
also possible, associated the composites and “fractions” oinfluence of the magnetic field on phases and phase bound-
these order parameters, but we will postpone their discussioaries associated with the order parametets,, and ¢, , ;
until Sec. VI. We will turn to the influence of the magnetic the more complex cases have similar properties which can be
field in Sec. Ill: here we will restrict our attention to the described in an analogous manner.
guantum transition described &, , but most of the zero- To characterize the simple phases we need an effective
field transitions discussed in Sec. VI have a related responstion S,, for the ¢, ,, while that for ®, . is S¢ in Eq.
to an applied magnetic field. Sec. Ill contains a description(1.8); the former can be written down using a reasoning simi-
of the phase diagram in the magnetic field, while the subsear to that for Eq.(1.8), and we obtain
guent sections describe the dynamic and static properties of
the two phases on either side of the critical point in some
detail: Sec. IV describes the SC phase, while Sec. V deS;= fdzrdT|:|aT¢X|2+Ul|a Dl 2+ 03| 0yl 2+ 19,
scribes the S€ SDW phase. Section VII reviews earlier the-
oretical and experimental work on the interplay of magne- _ _ g U,
tism and superconductivity, and discuss its relationship to  +v7|dxy|?+ 03| dydyl?+S(| byl + | byl?) + 7(|¢X|4
our treatment here. We conclude in Sec. VIII by considering
implications of our results for recent experiments; readers
not interested in theoretical details may skip ahead to Sec.  +|¢,|*)+Wy|$,|% &|?|.
VIII now. A number of technical and numerical details ap-
pear in the appendixes.

I
I
\

(2.1

The correspondencél.6) implies that forK.,=2K, and
K¢y=2Ks, the SDW and CDW order parameters are coupled

Il. PHASE DIAGRAM IN ZERO MAGNETIC FIELD by

We orient ourselves by discussing the phase diagrams of 5 .o ‘o
models with various types of spin- and charge-density-wave Spp= _)\f drdr ¢} D+ by Py, tec] (2.2
order. We will restrict our attention in this section to zero
external field, assume that a background SC order is alwaywithout loss of generality, we can assume that the coupling
present in all the phases. As we have argued above, this>0. At the mean-field level, the properties of the quantum
implies that we need not consider the SC order parametenodelSy+S,+ So, are essentially identical to the classical
explicitly, and its influence only serves to renormalize vari-models c0n3|dered by Zachat al?® for spin and charge-
ous couplings in the effective actions. A somewhat differentordering transitions at nonzero temperature; so we can di-
viewpoint, with a more explicit role for the SC order, has rectly borrow their results, and a characteristic mean-field
been taken recently by Lé&é. phase diagram is shown in Fig. 4.
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Next, we discuss the critical properties of the various 1
second-order quantum transitions in Fig. 4. Near the transi- S(p:J d’rd T[E[(ﬁf%)2+ vA(V,0,)?
tion between phase Il (SESDW) and the symmetric phase
| (SO, the primary order parameters abg ,,. We can in- N B
tegrate out the noncriticap, , fields and this merely renor- st lp(n)Fleal+ 5 (9a)7 23
malizes the couplings i8¢, . So the theoryS, is the critical
theory for this transition aH=0. This is a model of some where the indexx=1---N, and the fieldp(r,7) is real. We
complexity, and the universal critical properties of relatedhave rescaled spatial co-ordinates to make the velogitigs
simpler models are the focus of some debate in thequal to the common value. For completeness, we have
literature®>—>° these earlier results are briefly reviewed in @lso included the coupling to the SC ordgmwhich derives
Appendix D. These previous studies correspond to the cadéom Eg. (1.10. An analysis of the properties of the theory
where®,,, and ®,,, are decoupledv(;=w,=w;=0), and FIT+S,, defme_d in Eqs(1.9) and (.2.3), in nonzero field
weakly first-order transitions are obtained in some cases. Wehall occupy us in most of the remainder of the paper. Recall
will address the generalization of these previous analyses 9SO that theN=12 case of this theory also describes a par-
the case of nonzerw, , 5 in future work. Here, we will be ticular case of the | to Il transition discussed earlier.
satisfied by considering the simplest, and most symmetric,
case of a second-order transition: for the special values Ill. PHASE DIAGRAM IN A MAGNETIC FIELD
=v,, Uj=W;, U,=W,=W3=0 the modelS; has {12

. : X . We now embark on a presentation of the main new results
symmetry, and its properties are identical to that of the ( of this paper: a description of the phase diagram and the

:12)—corr_1ponentp4 theory S, to be described shortly be- dynamic spin spectra oFIT+S,, defined in Eqs(1.9) and

low. The influence of on other second-order or weakly (5 3 55 5 function of the applied field. As discussed near
first-order transitions should be very similar, with the gq (2.3) this theory describes the response of a number of
changes only modifying the numerical values of certaingpecific phase boundaries of states with SDW/CDW order to
asymptotic critical parameters. Part of our reason for nogp applied magnetic field; the number of components pf
expending much effort on this point is that these asymptotigakes the valuetN=3,12 depending upon the transition of
critical are not particularly relevant for the experimental situ-interest, but we expect similar results for all valuesNof
ation in H#0 anyway: after including the small effects of =3. Actually, closely related analyses can be applied to most
Siat IN Eq. (1.12), the “sliding” symmetry of Sq disappears, of the phases to be discussed in Sec. VI. The basic effect,
and the asymptotic critical properties of the 86DW to SC  that all couplings associated with the non-superconducting
transition inH+#0 become identical to theN(=3) compo- order parameter acquirethin(1/H) depends, is very robust
nent ¢* theory S,,. We will discuss theH+#0 properties of and leads to analogous phase diagrams in almost all cases.
S, at some length in this paper, and we expect that closely The theory#/T+S, has a rather number of coupling con-
related results apply to the generaliz8g and t0Sy+ Sy stants, and it is useful to use our freedom to rescale lengths,

Near the transition between phases Il and | in Fig. 4, thdimes, and field scales to obtain an irreducible set of param-
roles of ®, ,, and ¢, , are reversed. Now we can integrate eters whose values control the structure of our results. First,
ya ) )

out the noncriticatb, ., , this renormalizes the couplings in &S iS conventional in the standard Ginzburg-Landau theory of
’ superconductivity, we introduce the superconducting coher-

Sy, and the renormalized, is the critical theory for this i 0
ence length¢, and the field scalesl, andH,:

transition atH=0. At nonzeroH, a model closely related to
the one discussed above applies. We will not explicitly

present the results for this model here, as most physical prop- fom [ 1
erties are essentially identical to thosef+ S+ Sq - 0 om* o
4ma’

The remaining second order quantum transition in Fig. 4
is that between phases Il and lll. Both these phases have
(¢xy)#0, and the charge order can be viewed as a noncriti- H
Cc

cal spectator to the transition. For specificity, let us assume B’

that (¢,) is real and positive, whilg¢,)=0; other cases

lead to similar final results. Now replagfg , by their expec- om* ac

tation values inSy+Sp in EQs. (1.8),(2.2), and examine ngz , (3.0
fluctuations ofd, ,, at the Gaussian level: those of[Rg,, | e

have an energy lower than all other components. Close to

phase boundary between Il and Il we can therefore assuns we noted earlieH 2, is the value of the upper critical field
that the critical theory involves only ¢,(r,r)  atthe point M in Fig. 3, anti®,= 2«kH,, wherex is usual
=Rdg ®,,(r,7)], and all other components only renormalize the Ginzburg Landau parameter. We will also see below in
the couplings in its effective action. In this manner, we canSec. 1V B that the couplinge acquires a shift renormaliza-
conclude that the Il to lll phase transition is described by thetion due to its coupling tap, fluctuations: we assume that
familiar (N=3)-componente* field theory, with effective renormalization has already been performed in the defini-
action tions(3.1). We now use the length,, the velocityv, and the
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parameters in Eq3.1) to set various length, time, tempera-  The technical tool we shall use in our analysis of B3
ture, field, and coupling constant scales; we define the diis the largeN expansion. This approathis known to yield
mensionless parameters an accurate description of the vicinity of spin ordering quan-
tum critical points in two dimensions, and we expect the
&oT same to hold here in the presence of a nontérDetails of
v the approach will emerge in the following sections: here we
summarize the maitN=oo results for the positions of the

€o

\ﬁ B phase boundaries appearing in Fig. 3.
_dl! Pa=
o

~ r ~ UT ~
r=— T=—, T=

vé€uPa, The tetracritical poinM where all four phases meet is at
H=1, s—s.=«.
The line BM represents the upper-critical field for the

TR
Hg'

_ & ~ & - Ea vanishing of superconductivity in the presence of SDW or-
=S, U=—U, K=——«K. (3.2  der;itis at
v v vpB
2
It is evident from the above that we are measuring length He1o o L(s—sc). (3.7
scales in units of, and energy scales in units of . 4uY  4uY

Collecting all the transformations, let us restate the prob- The line CM. the boundary for SDW order in the insul
lem we are going to solve; we drop all the tildes, and it is e line CM, the boundary for order in the insula-

henceforth assumed that all parameters have been modifid@: IS ats—Sc=x«. — .
as in Eq.(3.2. The partition function in Eq(1.13 is now The line DM, the upper-critical field for superconductivity
in the absence of SDW order is at

simplified to
F Nk [N Y2 Nu
Z[w(r)]=fD¢a<r,r>exp(—?—s¢), (3.3 H=lt gy || g2 <7575 ~a5 GI
whereS,, is as in Eq.(2.3) but withv=1, while F is now Experimentally, the most important and accessible phase
given by boundary is AM, the line representing onset of SDW order in
the SC phase. The position of this line cannot be determined
1 . analytically: we will present detailed numerical results and
_ 200 120 T4 _ 2
]:_YJ d’r| —lyl*+ 2“0| IV —iA)Y] } 34 an expansion in the vicinity oM; for small H its location
behaves as
The dimensionless constalitis given by
) 5 H 2(s—s¢) 3.9
Hcéod kIn[1/(s—sg)]’ '

, (3.9
Am as may be readily deduced from H@.20, and was quoted

whered is the interlayer spacinghis factor ofd is needed to ~ already in Eq(1.22.

makeY dimensionless, and arises becaiBes the free en- Our numerical as well as analytical studies will be divided

ergy per laye;, in determiningY , a useful unit of conversion into two parts, one for “SC” region of Fig. 3 in Sec. IV, and

is 1 (T)?=0.0624 meV A 3. The vector potentiah in Eq.  the other for “SC+ SDW” region in Sec. V.

(3.4) now satisfies

IV. PHYSICAL PROPERTIES OF THE SC PHASE

Vi X A=Hz. (3.6 This section will describe an analysis of E&.3) in the

regime where spin rotation invariance is preserved with
é_(pa>=0. As we discussed earlier at the end of Sec. | C, upon
including the effect of the lattice pinning ter(d.12) in a
nonzeroH, this phase does have static CDW order with
(¢xy)#0, while preserving spin rotation invariance: this
will be discussed in Sec. IV E.

An important property of the continuum theo($.3) is
that all dependence on the short distance cutoff can be r
moved by a single “mass renormalization:” this amounts to
measuring the tuning parametgiin terms of its deviation
from s=s, the critical point between the SCSDW and SC
phases atH=0. Consequently all physical properties are
functions only of the dimensionless parametersx, Y,

H/HY,, ands—s,. We will present numerical results for the A. Large N saddle point equations
frequency and spatial dependence of various observables be- The index « in S, in Eq. (2.3 extends overa
low as a function oH/H?, ands—s for the simple set of =1,... N, and depending upon the transition in Fig. 4 we

valuesu=k=Y=1; we do not expect any qualitative are interested in, we have eithbr=3 or N=12. For both
changes for other values of these last three parameters. Alseases, it is known that an accurate description of the physical
it will occasionally be convenient to exchange the parameteproperties is described by the largé expansion, whose
s—s; for A, the value of the spin gap in tlee>s. SC phase implementation we shall now describe.

atH=0. First, we introduce an auxiliary field
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W(r,7)=s+ | ¢H(r)|2+2U(Pi(r,7')- (4.1 B. Renormalization of parameters

. . . " It is first useful to obtain the complete solution of Egs.
We will often place a subscrigl on various quantitiesas (4.5 and(4.7) atH=0. Lets=s, be the point where mag-

for ¢ above to emphasize that they are being evaluated at Fetic order appear&o that(p,)#0 for s<s), wheré® v

nonzeroH. Let us also denote =0. Then Eq(4.5) tells us that
s'=s+ «|yy(r)|2. (4.2 2k 1
+ + .
Now we add an innocuous term &, whose only effect is 0=sc-+ klthocl” ZNUJ f w2+ k2’ 4.8
to multiply the partition function by a constant after a func-
tional integration oveM(r,7): where o is ther independent value of(r) at s=s, and
H=0, while Eq.(4.7) gives
2 o 1 2 2
S¢—>S¢—f d rJ'O dT%(V—ZUq)a—S’) 1+ g2 NKJ J’ d’k 1 _0. (49
o 472 a)2+ K2 .
2 T 1 2 2
:f d rfo dr 5(37%) + E(Vr%) It is useful to normalize things so thaf.=1 ats=s;, H

=0 andT=0. This is achieved if we renormalize to re-
move the offending term in Eq4.9). We make the shift in
(4.3 Eq. (1.9 [before the rescalings in Eq3.2)]

1V2+1V 24 lV’
gu’ 2/l s

After integrating oute,(a=1---N), we have N d%k 1
g g outpq(a ) a—a+ KB f (4.10
N 417° wz—i-vzk2
— 2 2
_f DV(r)eX[{— ETr In(=d;=Vr+V) Then, after Eq(3.2), Eq. (4.7) is modified to
1 1 Nx dod?k 1
Sl Ry 1) (4.4 f fof X =
4u” " 8u | Lray| T2 Gutren | 5 g
Now by takingN— o while keepingNu constant, we obtain
the saddle point equation in whidhis a function ofr but +| gy (N]2=(V,—iA)2} hy(r)=0, (4.11)
independent ofr:
while Eq. (4.9) simply becomes
Va(n=s+«|gn(N]?+2NuTY, Gy(r,ro,). (4.5
Wp lr//OC: 1 (412
where thee,, propagatoiGy(r,r’, wy) is given by Now move tos>s,, where we have a spin gap
Gu(r, I’ o) =(r|lwf=Vi+ V(D] '), (4.6 Ag=1Vo>0. 4.13

with , a Matsubara frequency. In this case, the laxge- Subtracting Eq(4.8) from Eq. (4.5 we get
expansion is equivalent to a self-consistent one-loop calcula-
tion. 5 ) NuA,
The saddle point equation for superconducting order pa- Ag=s—sct (||~ 1)~ om (4.14
rameter follows from Eq(1.14): it is just the conventional
Ginzburg-Landau equation with one additional term from thewhere Eq.(4.11) yields

¢,y coupling
2 NKAO
|¢O| =1+ m (4.15
1+WTE Gi(r.r @) + [N [P= (Y =1A)2 | gy(r)
Inserting Eq.(4.15 back into Eq.(4.14) we obtain
=0. 4.7
Nu K?
So the two unknown function¥y(r) and iy (r) are to be Aot 5| 1= 25y |Ro=SSe- (4.19

determined simultaneously by the solution of E@s5) and

(4.7). As stated above, the expressions in these equatioriset us now use the above equations to simplify the equations
depend upon the short distance cutoff, but we show in Sedor H#0 andT+#0. The new form will be independent of
IV B that this can easily be removed by a simple shift oflattice cutoff.

parameters. From Egs.(4.5),(4.8),(4.16) we obtain
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T Gy(r.r,o,) ] -\
" 0.12
! (4.1 o0 ] \ §-5,=0.2
0.08 e

where | |? is given in Eq.(4.15. Using Egs.(4.17) and

Va(r) = A5+ & | (1) |>— ol 21+ 2Nu

do d%k 1
27 4772 w2+k2+A§

(4.11) we obtain 0.04-
K2 ooo-
[(1— 4U—Y)[|¢H(r)|2—|¢o|2] ' 004 006 008 010 012
H
+ ﬁ[VH(r)—AS]—(Vr—iA)Z Yu(r)=0. FIG. 5. The lowest eigenvalue of E(L.17), E4(0) vs H for s

—s.=0.2. The linear continuation of the line to sol&(0)=0
(4.18 gives us the criticaH for this s, which is about 0.117 with an
uncertainty of==0.002.

The expressiong4.17),(4.18 are the main equations we

shall solve for the unknowngy(r) and¢y(r) in this paper. K? K
It can be checked that & =0, T=0, these equations are H=1- 20y Taoy (7S~ W)
solved byVHzAS and ¢y = . We describe the numerical
solution of these equations fdi#+#0 in Appendix E and _1_K_2+L @ Vot
present the results in the following subsection. A useful step TR auY T auy\2mVHTK
in this numerical solution is the following parametrization of e
the Green’s functiorG(r,r’, ;) in Eq. (4.6) Nk | [ N?u? Nu
=1+ By 16772—K+s—sC “ -l (4.22
d?k E* (NE u(r’
Gu(r.r' o) =2 — M which is the result quoted in E¢3.8). Similarly, it is easy to
w J1z4m®  wptEL(K) see that the phase boundary CM issats,= «.
(4.19 It remains to determine the location of the phase boundary

_ ) i AM, which is also physically the most interesting one. We
where= ,(r) are the complete set of eigenfunctions of the yetermined this boundary by a full numerical solution of

analog of the Schitinger equatior{1.17) Egs.(4.17 and(4.18 for a range of parameters. Stability of
the SC phase requires that all the eigenvalﬁé(sk) of Eq.
[— V2 Va(N]IE (N =EZ(K)Ek(r). (420  (1.17 remain positive. The lowest of these eigenvalues is

E(0) and we followed its behavior as a functibh a typical

Herek is a “Bloch” momentum which extends over the first result is shown in Fig. 5. We expeEy(0) to vanish linearly
Brillouin zone of the vortex latticey is a “band” index, and in the deviation from the critical field, as the critical theory is
E,(k) are the corresponding energy eigenvalues. All of ourexpected to be in the universality class of the ordina(g)O

numerical analysis was performed for the valuesk=Y ¢* field theory, and the latter has critical exponent=1 in
=1 andN=3. the largeN limit. So we can determine the critical field by a

linear extrapolation, and this is also shown in Fig. 5. Com-
_ bining the results of such calculations at a range of values of
C. Phase boundaries s, we obtain our numerical result for the location of the AM

Equations(4.17) and (4.18 can be readily solved to ob- Poundary shown in Fig. 6. _
tain the locations of the CM and DM phase boundaries in SOme further analytic results on the location of the AM
Fig. 3. On DM, the superconducting phase paramgte(r) phase boundary can be obtained in the vicinity of the multi-

vanishes and all parameters becomiadependent; thus Eq. Critical point M. It can be shown that the deviation of the
(4.17 becomes phase boundary from M is linear in the larbelimit, i.e., it

isatH=1—p(x—s+s.), whereg is a numerical constant.
NU NU We describe these results in Appendix F, including the deter-
_A2_ 2, R mination of o. The results obtained in this manner are con-
Vi= A0 k|l Jr27'r(\/V_H Bo)=s—s.m« 277\/V_H’ sistent with our complete numerical analysis described
(4.2)  above, and this is a strong check on our numerical analysis.
Finally, we recall our resul3.9) for the behavior of AM
where we used Eq$4.15 and(4.14). Then from Eq.(4.18 at smallH and s—s;. Here there is a crucial logarithm
we have which follows from Eq.(1.20, and whose physical origin
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1.2 oint f
H p
M
0.4
0.8
0] .
Intensit
SC+SDW 2
0.4 —
+a :g SC 0.2 "o
30
g *k m 20
0 Asdsep
-0.5 0 05 g-g, 1 s
0.0 0
FIG. 6. Numerical results for the phase boundary AM in Fig. 3 o 1 2 " 3 4
for u=k=Y=1. Also shown is a portion of the phase boundary
BM whose position is known analytically from E¢B.7). Different FIG. 8. Density plot of Iny,, in Eq. (4.24 in the SC phase for
aspects of the physical properties are described in the remainder gfomenta along the arrow in Fig. 7. The plot is fr s,=0.1 and
the paper at the points labeled a—I. H=0.01 (point f in Fig. 6). In this, and all subsequent plots of

Imy, , the delta function peaks i#.24 have been broadened into
was discussed in Sec. | C. The signal of this logarithm aré.orentzians with energy width 0.01 for display purposes only.
clearly visible in the phase boundary in Fig. 6.

whereV is the volume of the system, tipeintegration is over
D. Dynamic spin susceptibility the first Brillouin zone of the reciprocal vortex lattic&
extends over the reciprocal lattice vectors of the vortex lat-

In this section we describe the evolution of the dynamicjj.o g2 are the eigenvalues of E&.20 (see also Ap-
spin fluctuation spectrum in the SC phase of Fig. 3. This is u(P) g ®-20 ( b

e , " f . endix B, and the parameters,s(p) are defined in Eq.
clearly specified by the Green’s functi@y(r,r’,»,) in Eq. (E2). We present results for I[m(#(Gk )] below.
(4.6) which we computed above in determining the phase oL

., It is clear from Eq.(4.24) that in the present larg®l
boundary. More specifically, we see from E@.2) that the imation. th t ist tirelv of sh
observed dynamic spin susceptibilipfq, w) is given by approximation, the spectrum gf, consists entirely of sharp

delta functions. These specify the dispersiorsefl “exci-
tons” which describe the SDW fluctuations, and are con-
X(Q, )% x(q+ Kgy, @) + x (4= Ksy, @) nected with the zero field “resonance” peak discussed early
on in Sec. |. The excitons scatter off the vortex lattice, and

+ + + - . i i ) '

Xo(AF Ky @) F X (A= Ksy,0) (4.23 our results describe the evolution of the resulting spectrum as
where y. . the dynamic susceptibility for the fielg , is  ON€ MOVeS towards the onset of SDW order by increasing the
given é();" y P y o applied magnetic field. We show the structure of

Im[ x,(k,w)] by broadening the delta functions into sharp
1 Lorentzians, and displaying the results in density plots. The
Xo(K,w)= _f d2rd?r’ ek =G, (rr', ) momentumk in these plots varies along the direction of the
\ reciprocal lattice shown in Fig. 7. The results for a smaller

2
C .
:E dzp 5(p+G_k)|2f‘Lp)|2, point e
wG J1Bz E#(p)—w
0.81
(4.29
¢ @ / Intensity
50+
041 \/ 40
30
20
10
0.0 , N , 0
° 0 1 2 Kk 3 4

FIG. 7. Reciprocal lattice of the vortex lattice. The density plots  FIG. 9. As in Fig. 8 but for largeH =0.035, which brings the
in Figs. 8, 9, 10, and 11 hawevarying along the arrow shown, with system very close to the AM phase boundary to thetSDW
numerical values as shown. phase(point e in Fig. 6).
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point m

Intensity
5+

4

3
2
1

0.0 - 0
0 1 2 4, 8 4 FIG. 12. Spatial dependence of the modulus of the supercon-
ducting order parametdy(r)|? plotted on the rectangular half
FIG. 10. As in Fig. 8 but with larges—s.: H=0.1 ands—s; unit cell of the vortex lattice indicated by Fig. 13. This result is for
=0.9 (pointmin Fig. 6). s—s.=0.5 andH =0.1 (point k in Fig. 6).

value of s—s; are shown in Figs. 8 and 9, and those forexciton scattering off a periodic potential as in Fig. 12. As

larger value ofs—s, are in Figs. 10 and 11. Note that for H—0, the behavior crosses over to that expected when the

very smallH, there is less dispersion for the lowest mode:vortex cores are essentially decoupled, and the lowest mode

this is an indication that this excitation is centered on thds associated with a state localized around each vortex core:

vortex core, and there is weaker coupling between neighboin this limit, we expect’ the intensity~H.

ing vortices. As the field is increased, this coupling increases,

and the dispersion looks closer to that of a nearly free par- E. Pinning of charge order

ticle, with weak reflections at the Brillouin zone boundaries . . . . o

of the vortex lattice. Also, the energy of the minimum exci- This s.ectlon will consider the consequences of the pinning

tation decreases with increasing field, until it vanishes at th&€'™M Sia in Eq. (1.12). We argued at the end of Sec. | C that

AM phase boundary to the SESDW phase. th_ls term pins the charge ordgr, and leads to a stgtlc CDW
We also show in Figs. 12 and 13 the spatial structure ofVith (¢x,y)#0 [recall Eq.(1.5] in the SC phase, while pre-

the modulus of the superconducting order parametef€'Ving spin rotation invariance witfib, ,,)=0. We have

|44(r)|2. The Brillouin zone boundary reflections above recently proposéd this as an explanation for the CDW ob-
arise from the scattering of the exciton off the potential cre-S€rved around the vortex in the STM measurements of Hoff-

ated by| (). manet al® Section | C, also gave an initial estimdte Eq.
Finally, for experimental comparisons, it is useful to plot (1-23] of the spatial structure of this pinned CDW: here we
the intensity of the lowest exciton mode as a function of theVill obtain a more precise result, using the full solution of
applied field. From Eq(4.24 we see that this intensity is the SDW fluctuations in the presence of the vortex lattice.
|coo(0)|2. We show a plot of this quantity in Fig. 14. Observe USing the relationshif1.6) between the CDW and SDW
that except for very small values ®f, the intensity is of orders in the vicinity of the SC to SESDW transition, we

order unity, which is the behavior expected for an extende§Onclude that to first order ig

— (byy(n)yLe ' ™O(r) (4.29
4.01 with
/ QN=T> X Gi(r.r, ), (4.26
D / Intensity “n To
./.. 5+
2.0 4
3
2
1
A
0.0 : : : y 0 y
0 1 2 3
k ” >
FIG. 11. As in Fig. 10 but with a largd = 0.8, which brings the
system very close to the AM phase boundary to thetSDW FIG. 13. Half unit cell of the triangular vortex lattice in real
phase(point | in Fig. 6). space.
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0.8 “ Saeasoan
"o g e
3 ] hh E(n hh \ ):(d
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FIG. 14. Intensity of the lowest exciton mode in the SC phase 0 1 X 2

|coo(0)|? as a function oH for two values ofs—s;.
FIG. 16. As in Fig. 15 but fos—s.=0.5. The field takes the

valuesH=0.1 (squares, poink in Fig. 6) and H=0.4 (triangles,
pointj in Fig. 6); the latter field is close to the AM phase boundary
in Fig. 6. Now both points have extended spin exciton stéted at
pointj is essentially a plane wayewhile the charge order is expo-
nentially localized.

wherer, extends over the vortex lattice sites; cleaflyr)
has the full periodicity of the vortex lattice.
We used our numerical solution of Eq4.17) and(4.18
to compute the functio(r), which is proportional to the
amplitude of the static CDW induced by the vortex lattice in
the spin gap phase. We show our results(ir) in Figs. 15 and 16 for a representative set of values in the SC phase.
Also shown in the same figures, for orientation, is the form

0.2 — ; . .
EA‘ s o4 of Ego(r), the lowest-energy eigenfunction of the dynamic
% FEA A,ff SDW equation(1.17) which appears in the Green’s function
\\q ‘\A\ /jl I\ XX\ /f D// (4.19. For very small field, botl§)(r) and=Z.(r) are local-
1 \ A F / \ 4 a / ized around the vortex centers, with the localization length of
“\ &A gdf / . \ ’&h f/ / ) the former being about half that of the latter. However, for
} \ P j fs \ N [ / larger fields, the exciton wave functidBg(r) gets delocal-
0.1 _\_ | Prease / / \ \ [l / / ized, while the CDW orderemains localizedThis localiza-
\\\ J// \\\ \ /]/ tion arises from the summation over all the states in Eq.
L\ 1] \h = 1] (4.19 and is in keeping with the discussion at the end
T J70 VAN =00 J/
\ N\ h / \ \\ J://‘/ / of Sec. IC 1.
b \‘Rq 7 1 ‘A\q Py
Lo a4 N/
VG et 7 3 “‘i"ifffffif“‘ i V. PHYSICAL PROPERTIES OF THE SC +SDW PHASE
h S aB .f . N
0 , mammne? : "Stmammermamamanne? , We now turn to the analysis of the partition functith3)
0 1 X 2 in the phase with broken spin rotation invariance &gg)

FIG. 15. Plots of the functior filed bol3 in E =0. This phase is reached when the low8st1l exciton
(4.26 r.eprésen?ir?gothe :tatLij(r:]CCIgW(;)rdfalr zinr?g(;nb; S1hlt: vo?t'ices mode in Sec. IV.Z (1), reaches zero enerdfo(0) =0]
aléng with the lowest SDW eigenfunctidBo(r) of the dynamic 'and then condenses. The presence of the condensate leads to
spin fluctuations above the spin ge(pper?osymbol)s at s—s Ipng-raqge SDW order. We will adapt our Iargbcgmputa—

¢ tion to include such a condensate in the following subsec-

=0.2. The spatial coordinate is along the line connecting two . d then d ibe th il fth d
nearest-neighbor vortices and its scale has been chosen so that lttH%n’ and then escribe t e spatla structure of the condensate
and the dynamic spin excitations.

vortex lattice spacing is unitysee Fig. 13 The field takes the
valuesH=0.02 (squares, poinh in Fig. 6) andH=0.1 (triangles,
pointgin Fig. 6); the latter field is close to the AM phase boundary A. Large-N saddle point equations

in Fig. 6. N hat th i i jn Il . . .
In Fig. 6. Note thatthe spin exciton state at pais well extended The analysis here is parallel to that in Sec. IVA. We

through the lattice, while the charge order remains localized around - . . .
the vortices. For poinh the localization length of the spin exciton introduce the auxiliary field(r, ) defined in Eq(4.1) and

state is about twice that of the charge order. These results are coW”te the action in the form similar to E¢4.3). However, “?
sistent with the discussion in Sec. | C 1. As was also noted belovcCoOUNt for the condensate, we have to select a particular

Eqg. (1.23, the continuum expressiof.26) actually has a diver- orientation i_n spin Space, and treat the Cor_responding spin
gence forr equal to any, : our numerical computation uses a finite COmponent in a selective manner. So we write
momentum cutoffA, and this rounds out the divergence at dis-

tancedr—r,|<A~%; we have verified this by numerical computa- cpa:(\/ﬂn,wl,wz, C O TTN- 1) (5.0
tions at differentA.. In the same units as those foin the figure, we
usedA ~36 above. and integrate out onlyr,, 5, ... ,my_1 tO Obtain
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Vu(r)=s—sc+ l | (r)|2— 1]+ 2Nund(r)

N—1 2 2
Z=jDV(r,7-)Dn(r,r)ex - Trin(—92—=V;7+V)

dewd’k 1
N +2Nu Tz GH(r,r,wn)—f—sﬁ .
—Vz— —Vs - —(a n)?— (V,n)z— SV’ on 87 ™tk
5.
(5.2 57
From Egs.(5.7) and (5.6) we have
wheres’ was defined in Eqi4.2). Now we takeN— oo while
keepingNu fixed, and ignoring the difference betwelrand K2 ’ K
N—1. This leads to saddle point equations for the time- ~ a0y | P =10+ o V() —s+sc
independent fieldVy(r) and the SDW condensatey(r);
these equations replace E(.5), but contain additional Lo B
terms due to the spontaneous spin polarization ~ (Vi =i1A)%g(r)=0. 58

The final set of equations for the properties of the SC
Vu(r)=s+ k| (1) |2+ 2NuTY, Gu(r,r,0,) +2Nuni(r) +SDW phase are Eq$5.7), (5.4), and(5.98); these are to be
“n solved for the unknown¥®y(r), ¢¥y(r), andny(r). We de-

(5.3 scribe the numerical solution in Appendix G.
and
C. Phase boundaries
[—V,2+VH(r)]nH(r)=0, (5.9 We have already determined the positions of several

phase boundaries in Fig. 3 in Sec. IV C, and it remains only
where Gy is given by Eq.(4.6). Comparing Eqs(5.4) and to determine BM. First notice that at the transition into a
(4.6) it is easy to see that the spectrum@®f,, as defined in nonsuperconducting phase, the order paramgte) van-
Eqg. (4.19 has one mode witky(k)—0 ask—0; thisis, of  ishes, and thu3),(r) and {y(r) are spatially uniform. So
course, the Goldstone spin wave mode associated with tHeom Eq. (5.4 we have)V,=0. Plugging this into Eq(5.6)
spontaneous SDW condensate. we obtain the position of the phase boundary BM specified

The equation which determined the superconducting orden Eq. (3.7).

parameten/,(r) was Eq.(4.7), and this is now replaced by

D. SDW order parameter

[ 1+ N_ The presence of a static spin condensate implies that the
2Y dynamic spin susceptibility contains sharp Bragg peaks at
zero frequency and at wave vectors separated from the SDW
2_(V. —iA)2 - ordering wave vectors by the reciprocal lattice vectors of the
FlmOF =V, =in) } #r(r)=0. 6.9 vortex lattice as suggested by Zhdhgnd discussed by us in
Ref. 9; these are in addition to the dynamic spectra specified
in Eqg. (4.24). This means that the dynamic structure factor
S,(k,w) [which is related to the susceptibility,(k,w) in

Now we proceed as in Sec. IV B to remove all depen- Eq (4.24 by the usual fluctuation-dissipation theorghas
dence of Eqs(5.3), (5.4), and (5.5 on the short-distance the contributions

cutoff. First consider the case whéih=0, H=0, ands

=s., where Eqs(4.8) and (4.9) hold. Now after we shift ) )

parameter in as in Eq.(4.10), the Ginzburg-Landau equa- Sy(k,w)=(2m) 5(“’)§ fel*(2m)?8(k=G), (5.9
tion (5.5 is modified to

TZ Gy(r,r,o, )+2NunH(r)

B. Renormalization of parameters

where G extends over the reciprocal lattice vectors of the
vortex lattice, and
TE Gy(r,r,o,)+2Nuré(r)

—ﬂ d’re " ny(r), (5.10
+ g (r))?

-1+ N«
2Y
Sl

2+ k? where the spatial integral is ovéfthe unit cell of the vortex

lattice with areaA;,. Note that, by Eq(4.23, the physical

d(r)=0. (5.6) momentum_ is related t& in Eq. (5.9 by shifts from the

SDW ordering wave vectors, and K,
Figures 17 and 18 show plots of the Bragg scattering in-

Next, subtracting Eqi4.8) from Eq.(5.3) while noticing that  tensity|fs|?, for the two smallest values & and two values
Yo is already renormalized to unity, we have of s—s., as a function oH. As argued in Ref. 9, the corre-

_(Vr_iA)z
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FIG. 17. Bragg scattering intensitys|? as a function oH at
s—s.=0. Shown are the values &=0 (squaresand atG=G; X
(triangles, which is the smallest nonzero reciprocal lattice vector of
the vortex lattice. Note that the intensities @t= G, have been
magnified by a factor of 150 to make them visible on this plot. The
intensities are zero & =0, becauss=s; is the quantum critical ] ]
point in zero field. The line shows 0.83n(3.61H), which is the FIG. 19. Spatial form of the SDW order parametg(r) in the
best fit to the functional form in E¢5.1). SC+ SDW phase at—s.=—0.3, H=0.35(pointb in Fig. 6) over

vortex lattice shown in Fig. 13. Notice that the vertical scale ex-

spondencél.20) implies that the scattering intensity at zero tends over arather short range, and the modulation (n) is quite
wave vector,|f0|2 should increase with as small relative to the uniform component.

<|f0|2>ocH In(1H). (5.11) SC+ SDW phase. The spatial form of the modulus of the
superconducting order parameter for the first set of param-

The fits to this functional form in Fig. 17 show that this eters is shown in Fig. 21. This last figure is the analog of Fig.
works quite well. Notice also that the intensity at the first12 which was for the SC phase.

nonzero reciprocal lattice vect@; is quite small, and that it
decreasewvith increasingH. This suggests that observation
of this satellite peak is best performed at as small a field as o .
possible—of courseH should be large enough so the| is Finally, we fo_IIow _the presentation in Sec. IV D and dis-
large enough to be outside the resolution window of the peakUss the dynamic spin spectrum in the-S8DW phase. The
at G=0. It is interesting to observe here that we can viewOnzerow spectral densities presented here appear along
the Bragg peak a6, as arising from condensation at the With thew=0 contrlbutlo_ns__ln Eq(5.9). We will restrict our
nonzerok minimum in Fig. 9 of the dispersion of the exciton atténtion to the susceptibility transverse to the ordering di-
in the SC phase. rection: this is given by the fluctuations of the last-1

For completeness, we also show the real space form of thgomponents in Eq(5.1), which are in turn related to the
condensaten,(r) in Figs. 19 and 20 for two points in the Green’s functionG,, in Egs. (5.3 and(5.9. So the trans-

verse dynamic spin susceptibility is given by a formula

E. Dynamic spin susceptibility

1.2
2
1 f0| » nH(r)
0.8
0.6 0.17 3
| 5
0.4 - -
. %N '
-
0.16 s
0.2 , :
-, 200|fG1|
0 R
0 0.1 0.2 0.3 0.4 H 05

0.15
FIG. 18. As in Fig. 18 but fos—s,=—0.3, showing|fg|? at
G=0 (squaresand atG=G; (diamond$. Unlike Fig. 18, the in-
tensity |fo|? is nonzero even at zero field. The intensitiesGat
=G, have now been magnified by a factor of 200. The line is 0.3 FIG. 20. As in Fig. 19; in the S€SDW phase at—s.=0.5,
+0.98H In(2.12H), which is the best fit to the functional form in H=0.45 (point i in Fig. 6 over a single vortex lattice unit cell
Eqg.(5.1) shown in Fig. 13.
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point ¢

2.0+

Intensity
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0.0

0 1 2 Kk 3 4

FIG. 21. Spatial dependence of the modulus of the supercon- FlG' .23' .AS in Fig. 22 but for the values=s, and H=0.3
ducting order parametgwjy(r)|? plotted on the rectangular half (point ¢ in Fig. 6.

unit cell of the vortex lattice indicated by Fig. 13. As in Fig. 19, this . .

result is fors=s; andH=0.35(point b in Fig. 6. A. Phases with nematic order
In Sec. |A we argued that a generalized non-two-

analogous to Eq4.24). As before, we present the results by sublattice spin density wave qrder may be as_solc':lat.ed with a
broadening the delta functions to sharp Lorentzians. chgrge den§|ty Wave. AF‘Other Interesting POSS'b"'W s that O.f

spin nematic order, which has been previously discussed in

2202Lg rze;rsultsdfgg ';he spec_tral ?enis|t|esefare SZ?_'WH LE l:'gSRefs. 60—-63. If the CDW order parameter may be under-
» 25, 24, an or a series of Vvaluesels, andHinne — g554 a5 a spin zero combination of tw®, operators

SCJFSDW phase. Note f'.rSt that there is always _a_gaples op(r,7)~S%(r,7)], then the spin nematic order parameter
spin-wave mode. In addition there are features arising fro (r,7) corresponds to their spin two combination
scattering off the vortex lattice: these are strongest in the*®#*"’

vicinity of the quantum critical poinA at zero field.

- dwo
Qui(r, 1) ~Su(r,IS5(r, )= 2282, m). (6.0

VI. OTHER PHASES IN ZERO MAGNETIC FIELD . _ . .
We pause briefly to also mention here an “Ising nematic”
The next two sections involve a slight detour from the order which has also been considered recefitiyhis order
main flow of the paper. This section we will examine phasegesides in real space associated with the lattice, and is dis-
and phase transitions associated with composites or “fractinct from the spin-space nematic order we are considering
tions” of the primary order parametess, ,, and¢, ,. This  here. Order parameters with the Ising nematic order are
is done mainly for completeness. Readers not interested ifb,,|*—|®,,|* and|$,|*—|¢,|%, and these clearly measure
this detour may skip ahead to next section without loss of spontaneous choice between thandy directions of the
continuity. lattice. Our effective actions fob, ,, and ¢, , are rich
enough to also allow such orders.

point d .
point a
0.8
0 Intensity
5. Intensity
4 5+
0.4+ 4
3
5 3
| 2
i
0.0 4 ° 0
0 1 2 3
k 4
FIG. 22. As in Fig. 8, but for the transverse susceptibility in the
SC+ SDW phase. The parameter values ares. and H=0.05 FIG. 24. As in Fig. 22 but for the values—s.=—0.3 andH

(pointd in Fig. 6). =0.35(point a in Fig. 6.
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FIG. 25. As in Fig. 22 but for the values—s.=0.5 andH
=0.45 (point i in Fig. 6.

Returning to our discussion of spin nematic order in Eq.

PHYSICAL REVIEW B56, 094501 (2002

<Q>=0
<p>=0
t I
Al
T <Q>#%0
1 <Q>#0 <¢>=0
<p>#0
111

FIG. 26. Mean-field zero-temperature phase diagram of the
modeIS¢+8Q0+ SQO'q, in zero magnetic field for the casg<O0.

1. Uniform spin nematic

To write the effective action for the uniform spin nematic

(6.1), we see that spin nematic order parameters that ar@q,; we can give essentially the same arguments as in de-

consistent with the SDW order in E¢L.2) may be at wave
vectors (0,0) andK,

Qaﬁ(r ' T) = QOaﬁ(r! T)

+RE Qyap(r, 7)EKH +Qyp(r, 7)oy,
6.2

It is natural to callQo,s a uniform spin nematic order pa-
rameter, andQ, ,,z @ spin nematic density wau@&NDW).
Both order parameters are symmeti@; ;= Q;z,), but the
uniform spin nemati®g,; must be real, and the spin nem-
atic density waveQ, ,,z may be complex. The uniform spin
nematic couples to the SDW order parameters,, as

SQO’(I): _)\12 J d2r dTQOaﬁ

=X,y

X

2
(I)i-raq)iﬁ_'—q)iaq)i-rﬂ_§5aﬁ|q)i6|2>' (63)

The spin nematic density wav@,,4(r,7) couples tod,,
via

T 1 2
QXD[B CI)XQCI)X,B—§5aB(I)X5 +CC
(6.9

SQx*(Dx: _)\2j dzrdT

with a similar coupling betweeQ, . 4(r,7) and®, .

riving the Landau free energy for the classical nemases,
e.g., Ref. 64

(9,Q048)(7:Qopa) +05(VQoap)(VQoga)

SQO: f dzl’d 7|
1 1
+ EA QOa,BQOﬁa+ §B QOaBQO,ByQOya

1 1
+ ch(QOaBQOBa)2+ ZCZQOaﬁQOByQ07§Q05a :

(6.5

By an appropriate spin rotation, the uniform spin nematic
order parameter may always be brought into the diagonal
form (this follows from the fact that it is a real and symmet-
ric matrix)

1
—§(q+77) 0 0
B= 1 6.6
0 0 q

When{q)+#0 but(7)=0 we have a uniaxial spin nematic,
and when both expectation values are finite we have a biaxial
spin nematic.

The effective action for the spin nematic order parameters L€t us start by considering the interplay of the uniform
may be written from the analysis of the symmetries of Eq.SPin hematic with the collinear SD\Wor simplicity we only
(6.2. The interplay of the spin nematic and spin densityconsider one of the SDW orders, sdy,). A schematic
wave orders may produce an extremely rich phase diagranf?€@n-field phase diagram®&=0 for Sg, + So, + Sq 0 With
We will not attempt to explore its full richness, but restrict BA;<0 andu,<0 is shown in Fig. 26. Thick lines corre-
ourselves to the discussion of some simple illustrative exspond to the first-order transitions, and thin lines correspond
amples. It is also worth pointing out that the appearance ofo the second order transitions. Phag8C) has no magnetic

the spin nematic ordeeither uniform or SNDW does not

order of any kind; phase Il (SESDW) has commensurate

give rise to the additional Bragg peak at zero energy, buSDW order, which is accompanied by a uniaxial spin nem-
produces a difference in the scattering cross sections for difatic order; phase IIISC+UN) has a uniaxial spin nematic

ferent neutron polarizations.

order. ForBA;>0 andu,<0 the phase diagram qualita-
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order vs the SDW order is similar to the case of uniform spin
nematic(Figs. 26 and 2y with the main difference that the
phase boundary between | and Ill is now second order.

B. Exciton fractionalization

Before concluding the section on the phases in zero field
we would like to point out another interesting possibility for
the system described by the generalization§of Consider
this model in the regime where the spiral fluctuations are
strongly suppressed, so we need to consider the collinear
SDW order only; this happens in E¢L.8) for u,<0 and
with |u,| large. For simplicity we restrict our discussion to a

FIG. 27. Mean-field zero-temperature phase diagram of thespw at wave vectOKSy, q)ya_ As discussed in Sec. | A, the
model Sy + Sq,+ So, ¢ IN zero magnetic field for the case>0.  collinear SDW can be written in the forifi.3), which we

reproduce here for completeness:
tively remains the same, however, phase Il has a finite ex-
pectation value of botly and » in Eqg. (6.6), so it has an cpya(r,T):e“’(m)na(r,q-)_ (6.9

SDW order accompanied by the biaxial spin nematic order. A )
schematic phase diagram in the case-0 is shown in Fig. We also noted below Ed1.3) that such a separation of the

27. Phase Il may now be a circular spiral SDW&), an  Physical order parameteb,, into the phase) and the real
elliptic spiral SDW(lIb), and a collinear SDWlIc). vector n, has an implicit ambiguity as we can simulta-
neously change the sign of both without alteribg, . For-

mally this means that, for incommensurd€g,, the order

For th metedy,, be € S))/Z;. n
or the spin nematic density wave the third order terméo rateK ., = 2p'/(pa), where p’, re relatively

are prohibited by symmetry: they carry oscillating factors rime integers, higher order terms not contained in Ec®
e* o', and_ vanish after integrating over space in the Ior]gf)but mentione(’Jl below )timply 6 prefers a discrete set of
wavelength limit. Hence, values®** and the space is restricted t8,(< Z,)/Z,. Also,
if full SU(2) spin rotation symmetry is absent, and the spins
(0,Q80p)(9,Qupa) +05(VQLp)(VQyus,)  have an easy-plane restriction, then the figt factor
changes td;.
1. 1. 1. The Z, quotient in the order parameter space can be ex-
+ EA QIQBQXﬁaJrZCl(QIaBQXBa)ZJr ZCZQIaﬁ plicitly implemented as an Ising gauge symmetry, and it puts
important constraints on the effective low energy theory. The
lattice model consistent with such symmetry has the form

2. Spin nematic density wave

So,= f d2rd7

1.
X Qe QysQusa+ 7C3Q%apQupyQursQusa| (6.7
and there is a similar actiofl, . 8':% ‘]Sa”n‘“nj”‘Jr(iEj) Joijco86-6), (6.10
The order parameter for the spin nematic density wave . . . . . . .
can be conveniently written using five complex numkfses wherei andj are sites on the space-imaginary time lattice,
also Ref. 65 the sum ove(ij) extends over nearest neighbor links of this
' lattice, J° and J¢ are couplings imposing the propagation of
" SDW and CDW order, respectivelyy,,=n,(r;,7), 6
_ Do Uya Uya =0(r;i,7), andoj;= =1 is an Ising gauge field that lives on
NE] the links of the lattice. One can easily see that the lattice
action (6.10 is invariant under th&, gauge transformation

_ _ Y
QXa,B_ s \/§ e Y (6.8 Ni,—0iNjy,
2‘ﬂxl
¢X4 ¢X5 \/§ 0i_)0i+ g(l_al)a

with normalization conditior®,_; . d¢y.?=1. This rep-

resentation makes obvious the connection between the order
parameter for the spin nematic density wave and condensates. —_ 4 1
of spin-2 particles, for which Ciobanet al*® argued that Models of the kind(6.10 have been discussed earlier in
there exist three distinct phasgwmot related to~each other by various context€¢7-"Lit was pointed out, for example, that
spin rotationg, depending on the parametes, C,, and  another term allowed by symmetry is a Maxwell term for the

C,. The phase diagrams of the spin nematic density wavéattice gauge field

G'ij—>0'i0'ij(7'j (61],)
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S,=—KX |11 oy, (6.12 ____T ______ Lo L T__
o R
where the sum ori] extends over the plaquettes of a (2 ""T ------ b b T"
+1)-dimensional lattice. Such a term may be generated by | {1 1 1~
integrating out the high energy degrees of freedom or may be l l l l
present due to certain frustrating terms in the original micro-
scopic Hamiltoniaf®~"* This term has a striking effect on T -T ------ b b T_ B

the properties of the modéb.10: it gives rise a phase in
which the excitond,,, fractionalizes, and fluctuations of, "= =-=7~"=-="==-===-==-==--°
are separated from the fluctuations éf Loosely speaking, l l l l
the SDW and the CDW fluctuations get decoupled.

It is useful to discuss the consequence of the confinement- FIG. 28. A schematic picture of the non-two-sublattice collinear

deconfinement in the symmetric phase in which global Sym_SDW order and gssociated CDW as a periodic array of antiphase
main walls in Nel order at ¢r/a,w/a). Arrows show the change

metries are preserved: the models of this paper are invaria
P pap of sign of the Nel order across a hole rich domain wall. The fields

under SW2) spin rotations, and the sliding (L) symmetry n;, and ¢; are space independent in the above configuration.
[for commensurate values &, the U1) symmetry is re-

duced to a discret&, “clock” symmetry, but essentially h implicitl d ab hat th .
unchanged considerations apply neverthéfeds The im- .. We have implicitly assumed above that the exciton frac-
tt|onaI|zat|on transition occurs in a background of SC order.

mediate manifestation of the confinement-deconfineme o SR . o ;
nHowever, a similar transition is also possible within a Fermi

transition in such a symmetric phas_e i_s the change ir.‘ .thﬁquid. We believe that such a quantum critical point is a
degeneracy of the lowest-energy excitations. In the confinin romising candidate for describing the finite temperature

phase their degeneracy is 6: this six-fold degenerate excit crossovers in the normal state of the cuprates. Ordinary

tion correspo_nds to the quanta of the exciton fidlg, , SDW/CDW transitions in a Fermi liqufdl have the unsatis-
which have six real components. In contrast, in the decon; ; : : i X
o o : factory (in our view) feature of flowing to a free field fixed
fining phase we have separate excitations with degeneracies:

of 3 and 2, corresponding to quantamf, and 8, , respec- point because they are in their upper-critical dimensions. In
H 1

tivelv. This mav be understood by noting that the unbrokencontrast, the exciton fractionalization transition may well re-
Y. y y g tha . main strongly coupled even in the presence of Fermi surface.
symmetry ground state of the modé|+S, is a singlet

. Corresponding speculations of fractionalization influencing
?_rqund ;tatetor:‘the SO|(3<)SO(2) trotofrs;,hwrt\ere mt(tjhelcon- finite temperature quantum criticality were also made by
ining phase the angular momenta of the Wo rotdisle)  7,5penet al.”? Again, their and our proposals should be dis-
:(Lso(g),l_so(z)) are bound by the Constralntl+|2

: L ) .. tinguished from those associated with electron fractionaliza-
=even, but this constraint is not present in the deconfinin

Yion made in, e.g., Ref. 73.
phase. Hence, in the confining phase the lowest excitation » €9

has (;=*1Jl,=1), which gives the degeneracy of 6. In the
deconfining phase we can have excitatiohs=(=1,,=0)
and (,=0J,=1), and these have degeneracies 3 and 2, re- An alternative picture of fractionalization, and of the vari-
spectively. We point out that the exact degeneracy;ef ous order parameters above, may be given in the language of
+1 states requires the absence of the Berry’s phase for tibe topological defects of the SDW phase; the condensation
the SO(2) rotor, and comes from the inversion symmetry obf distinct defects in the SDW state distinguishes the new
the system, as was noted below Et.8). It is not related to  phases that appear. To simplify the presentation of this sub-
the possible particle-hole symmetry of the underlying micro-section we will describe the case of an easy plane antiferro-
scopic model. magnet, in which the vector®;,=¢'%n;, may only be in
It is worth emphasizing that thexcitonfractionalization the x-y plane, but will also state the results for systems with
discussed above has a very different physical interpretatiofull SU(2) spin rotation symmetry. A related discussion of
from that of electronfractionalization discussed in “RVB” defects in SDW states also appears in Ref. 74.
theories of doped Mott insulatof&:in the latter there are ~ We start by giving a simple carto&n’>">of the non-two-
elementaryS=1/2 spinons which do not appear in our frac- sublattice SDW orde®,= const and the associated CDW
tionalized states above. Instead our exciton fractionalizatiomn Fig. 28. Hole rich stripegindicated by the dashed lines
is within the sector of spin and charge density waves, and thact as antiphase domain walls for the hole poor antiferromag-
collective spin excitations only have integer spin. netic domains. The N order shown by arrows changes sign
Zaanenet al.”? have recently discussed fractionalization when crossing such domain wallhe Neel order should not
in a microscopic picture of spin and charge order in “fluctu- be confused with the vectar,, which appears in the defini-
ating stripe” states: the physical content of their analysis igion ®;,=¢€'%n;,, ; the former oscillates as shown in Fig. 28,
quite similar to that of our discussion above. However theirwhile n;,, is constant in this configuration.
proposed effect action does not include the CDW phase field Schematic pictures of the topological defects of the col-
0, , and we believe this is essential for a complete descriptiofinear SDW state are shown on Figs. 29—-31 with crosses
of stripe physics. indicating the locations of the centers of defetise also

C. Topological defects
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FIG. 31. Elementary topological excitation of the collinear
FIG. 29. Elementary topological excitation of the collinear SDW phase: a meron af,,. Such an object is stable only in sys-
SDW phase: a composite of 1/2 vortex énand 7 disclination in ~ tems with an easy-plane symmetry. Far away from the vortex core
ni,. Both €% andn, change sign when going around this topo- n;, winds in the plane similar to a usual vortex. Closer to the vortex
logical defect, but the physical order parzatmeqb};raizei %n;, is center it may acquire an out of plane component. Systems with full
single valued. SU(2) spin rotation symmetry only have pointlike, instanton defects
in spacetime: hedgehogs.

Ref. 72. These defects can also be formally classified by
computing the homotopy groups; for systems with an easy#; sector[see Fig. 31; this is the defect (0]J1ontinuing in
plane spin symmetry the relevant homotopy gréujs this manner, we see that all defects are labetag/Z,m,/2)
m[(S$1XS)/Z,]=2X%Z, while for full SU(2) spin symme- with my, m, integers such thah; + m; is even. These labels
try it is m,[(S,XS,)/Z,]=Z. These mathematical state- lie on the analog of a FCC lattice in two dimensions; this is
ments actually obscure some of the physical content, as wikquivalent to a square lattice after a rotation by 45°, and
become clear from our discussion below. hence the homotopy groupZs< Z. This mathematical state-
We first discuss the physical content of the defect classiment hides the fact that there is a fundamental physical dif-
fication for the easy-plane case. Consider the most elemeifierence between the#(1/2,=1/2) and the (1,0(0,1) de-
tary topological defect: this is a composite of a 1/2 vortex forfects, which we have discussed above.
the phased; and aw disclination(i.e., 1/2 a meronfor the Next we turn to the case with full @) symmetry. Now
vectorn;, (see Fig. 29 this defect is also a central actor in the 1/2 meron inn;, is actually equivalent to the-1/2
the discussion of Zaanest al.”> When circling around such meron (they are both better called disclinations, and so
a defect botre'? and ni, change sign, however, the physical there is no distinction between (1/2,1/2) and (3/2/2);
order paramete®; ,=e'%n;, is uniquely defined. Given the moreover, the (0,1) defect is topologically trivial. Conse-
circulations in6; andn; ,, we label this defect (1/2,1/2). quently the spacetime line defects can simply be labeled
Actually, we can make four such elementary defects bym;/2, wherem, is an integer representing the phase winding
changing the signs of the circulation éf and 7 disclination ~ of 6;, and hence the homotopy group4s However, there
and taking all of such combinations: we label these as continues to be a fundamental physical distinction between
(+£1/2,+21/2) in an obvious manner. Pairs of such elemen-the cases witim; odd and even. Fom,; odd, there must be
tary defects may be combined to give a full vortex far  a correspondingr disclination inn;, , while for m; even the
which is trivial in then;, sector[see Fig. 30; this is the n;, configuration can be constant. The @WJcase also has
defect (1,0) and a meron for the;,, that it is trivial in the  point defects in spacetime, the “hedgehogs,” which prolifer-
ate at spin disordering transitions.
The various phases discussed above can be easily under-
T T T T stood using the picture of topological defect condensation in
T ___________ a phase with conventional SDW orddthe SC+SDW
- phase.
l l l When the elementary 1/2 vortex-disclination compos-
[ ites condense we have a conventioqalfractionalized dis-
l - ordered phaséhe SC phase
T T When vortices and meror(er hedgehogscondense, but
l v 1/2 vortex4r disclination composites remain gapful excita-
-------- tions, we find exciton fractionalization as discussed above.
l l l The uncondensed 1/2 vortex-disclination composites cor-
NN e .. respond to the finite energy “vison& of the fractionalized
T T phase of theZ, gauge theory.
T T T When only the merongor hedgehogscondense we find
the CDW phase with no spin order.
FIG. 30. Elementary topological excitation of the collinear ~When only theg vortices condense we get the spin nem-
SDW phase: a vortex id; . The circulation ofé is equal to 2. atic phase with no CDW order.
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VII. EARLIER WORK ON SC AND SDW ORDERS at the two neighboring SDW ordering wave vectorstat in

As we noted earlier, this section is a detour from the mainEq' (1.9). . . . . .
o : Another perspective on this quantum critical point, which
flow of arguments in this paper. For completeness, we review

earlier theoretical and experimental work on the interplay ofas useful in our analysis, was provided by Zhang' (S0

: - . . heory®2 This theory goes beyond the picture of competing
magnetism and superconductivity, and discuss connections @é: and SDW orders in the ground state and adopts a stronger

our treatment here. Less specialized readers may skip aheg sumption of a microscopic dynamic symmetry between

to the conclusions if they wish. them; this has been supported by anaffti¢’ and
Early neutron-scattering measureméhtS of the evolu- 1\, 1ei@9s1dies of a number of models. The generator of

tion of the magnetic order in La ;(Sr,Ba);,CuQ, with 5  he enlarged S() symmetry is ther excitation, aS=1
observed spectra which were interpréfeds evidence for collective mode with charge 2 and momentum, €).%4%°A
the proximity of a quantum critical point at which the SDW gharp distinction between the models with and withouthe
order vanished, and which obeyed strong hyperscaling propsxcitation is possible in the weak interaction limit of a gen-
erties. It was proposét®>**that such a quantum critical eralized BCS-RPA theory, where by going to the normal state
point (with dynamic exponentz=1) controlled physical one can check for the existence of a sharp collective mode
properties over a range of doping concentrations. Furthefith the quantum numbers of the particle’’® However, a
support for such a proposal appeared in the NMR expericlear distinction is absent in the physically relevant strong
ments of Imai and collaboratc?t’swhich displayed Cross- Coup”ng regime_ For examp|e, in the SC phase Charge is
overs characteristic of the vicinity of a magnetic quantumonly conserved modulo 2, and this charge 2 particle is in fact
critical point, with the critical point at a doping concentration jndistinguishable from the neutr&=1 exciton in earlier
0=6.~0.12; similar evidence was presented recently bytheories® of the SDW ordering transitiofsee also Ref. 101
Fujiyamaet al®* (for a review of the NMR data in this con- This exciton is smoothly connected to tBe= 1 excitation in
text, see Ref. # The concentratiod.=0.12 is well within 3 paramagnetic Mott insulat&? and an interpretation of its
the superconducting phase, and so the magnetic transitiofesonance peak” as a generator of &GDrotations does not
takes place within a background of superconducting ordemold. In zero applied magnetic field, it is possible to formu-
i.e., there is a second order transition between a phase Wilite a theory of the excitoh®®and the associated SDW fluc-
coexisting SC and SDW ordéthe SC+ SDW phasgand an  tuations, without any explicit reference to the SC order; the
ordinary superconductdthe SC phaseAs we noted in Sec. SC correlations only serve to modify various couplings in the
I, the neutron-scattering measurements of Aegplal® at  effective action for the SDW order. What we abstract from
6=0.14 provided rather direct evidence for such a magnetighe analysis of Zharfgis the idea that the strength of the SC
quantum critical point. Additional evidence for microscopic order itself should be viewed as a parameter which tunes the
coexistence of SC and SDW orders has appeared in a numbgystem across the magnetic quantum critical point: this em-
of recent experiments:*320.83-87 phasizes a local competition between the SC and SDW or-
[For completeness, we also note here the additionajers.
phases present at very loswhich werenot the subject of We also mention that these §&) models naturally de-
study in this paper: in La ;Sr,CuQ,, the three-dimensional, scribe a competition between the SC and the two sublattice
two-sublattice, insulating N state is present fof<0.02,  SDW (Neel) phases. Non-two-sublattice SDW can then ap-
and is followed by an insulating SDW state with its wave pear as a result of the competition between phase separation
vector polarized along the diagonal ¢11) directionst?As  and long range Coulomb interactié?1%* across a first-
noted in Sec. |, ab=0.055 there is a first-order insulator-to- order transition from the SC to the SDW phase. In this paper
superconductor transition to the $GDW phasé;”> which  we will describe effective models for the non two-sublattice
has the SDW oriented along the (1,0), (0,1) directions; weSDW directly, across a second-order transition from the SC
discussed the properties of this $SDW phase in this pa- to SC+ SDW state.
per)] The precise nature of the interplay of SC and SDW orders
A significant implication of the existence of a magnetic in the cuprates at nonzero temperatures in three-dimensional
critical point ats= &, is that remnants of the magnetic exci- models been a controversial subjéttis paper dealt with
tations should be visible in the SC phasedatd,. . As origi-  two-dimensional quantum models B0, and so the issues
nally discussed in Ref. 35, for such critical points there is an this paragraph are only peripherally related to our main
sharp, gappe®=1 collective mode(a spin exciton which  discussion Following earlier general analys&8, Zhang?
would appear as a “resonance” in the neutron-scatteringointed out four generic possibilities for the phase diagram,
cross section. This resonance should appear at the SDW guroposed the appearance of exact(®Gsymmetry in the
dering wave vector iril.1), and recent evidence for gapped, classical theory of a finite temperature bicritical poftttis
low energy spin excitations at such a wave vector is in Refssymmetry is actually only present in the equal-time
88,89. Strong resonant scattering is also seen at the Necorrelators®®), and suggested that this is the situation most
order wave vector £,7) in the SC phas&°1~*3this re- likely realized for the cuprates. In the presence of such a
mains at relatively high energies and may be viewed as &icritical point, there is a first-order transition between the
remnant of commensurate correlations at short lengtl8C and SG SDW phases at low temperatures, and the en-
scalest? Batistaet al® have argued that the strong gappedergy of the excitor(or 7 particle remains relatively large in
response at#, ) is due to the superposition of the responsethe SC phase. The possibility of a critical point that is best
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described as corresponding to the regime exactly on the bocases described by the familiar(Z symmetric ¢* field

der between the bicritical and tetracritical behavior was sugtheory: these have already been described in some detail in
gested in Ref. 107the projected SG) models discussed in earlier work!** This mapping to the simple @) continuum

that paper lead to such fine tuning for the effective thegries field theory occurs when the spin correlation length becomes
Other critical points, including a tricritical one, have beenlarger than the vortex lattice spacings is always the case
suggested recently by Kivelsoet al’®® We have argued close enough to AW and accounts for the fact thaf, pins
here, instead, that many features of the experiments requitge charge order fluctuations and so reduces the order param-
the energy of the exciton to vanish at a quantum critical poin€ter to a real, three-component vector. In principle, the Zee-
describing a second order transition between the SC anid@n coupling to the (3) field theory modes should also be

- i o luded in the asymptotic critical region, but existing
SC+SDW phases; this appears when the finite temperaturt'¢'U¢€0 ! n, )
multi critical point is tetra criticali.e., the four phases SC, work has shown how to do this. We believe that experi-

SDW, SG+SDW, and “normal” all meet at one finite tem- mental discovery of the critical field along the phase bound-

. . ary AM is an exciting possibility for future investigations.
perature pointand has strongly broken equal-time SD Sa/ch a study shouldg bpegin wit% a sample with Stagvalue
symmetry. We also note that Ahardfiyhas recently shown,

b lizati sis of fi . slightly larger thans;; application of a field should then
y an exact renormalization group analysis of fluctuationsy o,y tuning of the system across the quantum critical be-

that the finite temperature multicritical point has a “decou-5vior associated with the AM phase boundary. The precise
pled” structure, which does indeed exhibit tetracritical be-experimental control available over the value tfshould
havior. A finite coexistence region between the superconajiow unprecedented access to an interesting, interacting
ducting and antiferromagnetic phases in the cuprates haguantum critical point in two dimensions. In the following
been also recently discussed by Martinal " subsection we discuss a number of very recent experimental
We have also mentioned the recent study of Kivelsonstudies, and compare them to our results to the extent pos-
et al1® of a variety of finite temperature multicritical phase sible: we also mention proposals for future experiments.
diagrams in three dimensions involving the SC and SDW
order parameters. They pay particular attention to the possi- Implications for experiments
bility of a two-phase coexistence of SC and SDW order pa- 5 far, the most direct connection of our results with ex-
rameters, which should be distinguished from the homogperiments is provided by neutron-scattering measurements of
enous SG SDW phase we have discussed in this paper. Ifhe field dependence of the ordered moment in the SC
the presence of a finite field in the two-phase coexistence. gpyy phase. Two such experiments have been
case, we would expect that the SC component has gerformed®4in different but related compounds, and both
H In(1/H) term in its free energy, while the SDW component show a reasonable fit to the predicted In(1/H) depen-
only has an analytiti correction. Consequently, with in- dence. The experiment of Khaykoviet al’® appears to be
creasingH, the fraction of the SDW component will grow at jn 3 parameter regime similar to that of Fig. 18: there is an
the expense of the SC component witht&in(1/H) depen-  appreciable ordered moment at zero field, and the elastic
dence. ) _scattering intensity roughly doubles in a field about a quarter
We mention that several other proposals for the experinf 1 _,. This is an important consistency check on our entire
mental consequences of the competition between the SC apghproach, as all numerical parameters in our computation
SDW orders in the cuprates may be found in Refs. 111-11%534 physically reasonable values. As is clear from Fig. 18,
and 116. the intensity of the satellite peaks associated with the recip-
rocal lattice vectors of the vortex lattice is quite small for
these parameters: this explains why such a satellite peak was
not seen in the experiments even though they had the requi-
The primary purpose of this paper has been a descriptiosite wave vector resolution. The experiments of Lekal*
of the phase diagram in Fig. 3 and of the static and dynamiare in a regime similar to that of Fig. 17: they had quite a
properties of its low field phases. The point of departure ofsmall moment at zero field, but this grew rapidly with field
our work was the existence of a second-order quantum trarwith a clearH In(1/H) dependence. Again, as Fig. 17 shows,
sition between the SC and SGSDW phases in zero applied the satellite vortex lattice peaks have a very small intensity,
magnetic fieldlour methods can also be extended to weaklyand this is presumably why they were not observed. This
first-order transitions, but we did not discuss this lievee  experimental sample appears to be rather close=ts., and
reviewed in Sec. | the early theoretical proposals and theve hope that a future experiment will move just pgsand
experimental evidence in support of such a transition. In &tudy the transition across the AM phase boundary in Fig. 3.
nonzero field we found that this transition extended into a Our theoretical computations also suggest an approach by
line of second-order transitions indicated by AM in Fig. 3. which the vortex(reciproca) lattice may be detected in the
This transition line approaches the=0 axis with a vanish-  spin fluctuation spectrum. While its influence on the elastic
ing derivative, which implied that relatively small fields Bragg peak¥3*°3'was found to be very small in Figs. 17
could have a significant effect on the low energy spin fluc-and 18, the spectra in Figs. 8—10 and 22 show a more sig-
tuation spectrum: this is our qualitative explanation for thenificant influence in the inelastic neutron-scattering cross
field-induced enhancement of low-energy SDW correlationsection. These plots may be viewed as the “band structure”
observed by Laket al'? Our analysis also showed that the of the exciton moving in the vortex lattice, and the exciton
critical properties of the transition in finite field were in all dispersion shows clear features at the Bragg reflection planes

VIIl. CONCLUSIONS
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in the reciprocal lattice of the vortex lattice. So we predict For the future, our theory suggests that neutron-scattering
that a careful study of thmelasticnheutron-scattering spec- and STM studies of SDW/CDW order should be carried out
trum may more easily yield evidence for the presence of thén systems where a uniform superflow has been induced di-
vortex lattice. rectly by a current source, with no magnetic field penetrating
Next, we turn to the recent STM measurements of Hoff-the sample. This will eliminate the vortex cores, but the su-
man et al*® These authors have observed signals of charggerflow should still enhance the tendency for SDW/CDW
order in the vortex lattice of BSCCO in the electron densityorder. Charge order can be pinned near impurities/defects of
of states at subgap energies. The charge order is at wawarious kinds(e.g., dislocations, grain boundaries, surfaces
vectorsK .,=[7/(2a),0] and K.,=[0,7/(2a)] (period of and so become visible to STM.
four lattice spacings is peaked at the vortex cores, and ex- We briefly comment on the high field phase&&DW and
tends about to a distance which is about a quarter of thénormal”) in Fig. 3, in which superconductivity is destroyed
inter-vortex spacing. These measurements are most likely iy the magnetic field. This regime may be of relevance to the
the SC phase, where the SDW order is dynamically fluctuatexperiments of Boebingegt al!'® Dynamic fluctuations of
ing. The nucleation of charge order by vortices in such ahe superconducting order surely become important as we
phase(but with the spins remaining dynamiwas predicted approach these phases, and so the theory of the present paper
in Refs. 10, 51. Lattice scale theoi®®f charge order in is not complete. Nevertheless, given the nucleation of charge
superconductors with preserved spin rotation invariance alserder near the vortex cores in the SC phés its observa-
found a substantial doping range of bond-centered chargéon in the STM experiment$), it is natural to presume that
order with a period of four lattice spacings, as did densitythis charge order survives into the “normal” phase. The
matrix renormalization group studisThe spatial extent of transport properties of the nonsuperconducting phases re-
the envelope of this charge order in the SC phase has be#nain a very interesting topic for future research, but our
computed in the present paper: the length scale in the obsehaive expectation is that they are insulators.
vations is quite similar to that in our computations in Figs. Another interesting type of experiments on superconduct-
15 and 16. These computations were carried out foséimee  ors in the vortex state has been performed recently by Curro
set of parameteronly the value ofs—s. was changed to et al'® and Mitrovic et al'®*" They measured the local field
tune the doping levelused to obtain general quantitative dependence of th&’O spin-lattice relaxation rate (I{) and
consistency with the neutron-scattering experiments abovepin-echo decay rate (Ilj), this allowed them to deduce the
The data of Hoffmaret al. seems rather similar to the result rates as a function of position in the vortex lattice. Below we
for Q(r) at pointk in Fig. 16, and the location of this point suggest how these experiments can be interpreted in our pic-
in the phase diagram of Fig. 6 is very reasonable, given th#ure of the mixed state of the cuprates. The spin-lattice re-
optimal doping of their sample and of theit value. This laxation rate IT; measures the rate at which nuclear spins
agreement suggests to us that the system studied by Hoffmaie overturned as a result of interaction with electron spins.
et al. has dynamic spin excitons, above a spin gap, whicin the BCS picture of vortices in ad-wave
extend throughout the vortex lattice, as in Figs. 15 and 16superconductof’**1191%this quantity is proportional to
the charge order is then a signal of the pinning of thesé\(0)? and therefore increases dramatically close to the vor-
excitons by terms like those ifi,;. An alternative model, in  tex cores due to suppression in the superconducting gap. On
which the spin order was confined only to the region wherghe other hand, as discussed in detail earlier in this paper, for
charge order has been observed in STM, would have diffithe not too overdoped cuprates, charge density waves are
culty explaining the neutron-scattering experiments: spin oraucleated around the vortex cores, which should lead to a
der so confined should yield easily observable satellite elasuppression in the local quasiparticle density of states, and
tic Bragg peaks at the wave vectors of the reciprocal of thdience 1T,. This effect appears to have been observed in the
vortex lattice. experiments of Ref. 16. Another mechanism for the nuclear
Our computations also offer explanations for other fea-spin relaxation is via the collective excitations of the electron
tures of the STM data which would be difficult to understandsystem. In particular, the excitonic SDW excitations provide
in terms of charge order nucleated independently in each large number of low energg=1 excitations for flipping
vortex core: there is a noticeable correlation between théhe nuclear spins. We suggest that a strong increase in the the
phase and orientation of the charge order between differertigh field part of 1T, (corresponding to the vortex coes
vortices, which extends across the entire experimentalith increasing magnetic field in the experiments of Mitrovic
sample. We believe this correlation is induced by the exet all® reflects the growth of the SDW correlations and the
tended spin exciton states above the spin gap. Our model f@orresponding increase in the excitonic susceptibility. It
the STM experiments can therefore be summarized as folwould be interesting to study this enhancement quantitatively
lows: the superflow in the vortex lattice reduces the energyand compare it with thed In(1/H) behavior observed in
of extended spin exciton states, and the sliding degree afeutron-scattering experiments and derived theoretically in
freedom associated with spin density is then pinned by th¢his work. We mention that the non-two-sublattice SDW
vortex cores; this results in static CDW around each vortexmakes this mechanism more effective for relaxing e
but the SDW order remains dynamic and gapped. A particunuclear spins, in contrast to ther(w) electron magnetism
lar strength of our model is that it consistently explains thewhich leads to a magnetic field on the oxygen sites only
STM and neutron-scattering experiments using the same s#trough the Dzyaloshinskii-Moriya interaction and weak fer-
of parameters. romagnetism. The echo decay rat@lis related to the in-
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homogeneity of the local magnetic fields. The appearance of A

the local SDW order(or sufficiently slow fluctuations SDW order in the

should therefore contribute to the increase if,1/The SDW spin-space plane

enhancement is relatively stronger around the vortex cores, orthogonal to the field Spin singlet
which should give rise to the enhancement if,lin this H

region; this agrees with the experimental observations in Ref. <P>#0 <®>=0
15. The analysis of our paper suggests that the difference in o o7 D)
1/T, will not become very large upon approaching the SC to 0 A

SC+SDW boundary, as the SDW excitations become ex- S 3 >

tended close to this phase boundary. As the magnetic field is
increased, the SDW fluctuations should become more pro- FIG. 32. Phase diagram &, in Eq. (1.8) including the Zeeman
nounced, so we expect thafTt/will increase for all values coupling in Eq.(B1). The point A is the same as the corresponding
of the local field. By contrast, in the BCS theory, one wouldpoint in Fig. 3. The central argument of Appendix B is that it re-
expect that IV, decreases with increasing magnetic field,quires a much larger field fas>s; near A to induce SDW order
since the field becomes more uniform. above, than in Fig. 3.
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APPENDIX A: DZYALOSHINSKII-MORIYA INTERACTION SDW at low temperatures. We note iy is quadratic, so

it will favor the collinear SDW fluctuations even above the

An orthorombic distortion of La sSr;CuQ, results in the .
transition temperature.

Dzyaloshinskii-Moriya(DM) interaction for the Cu spins

e APPENDIX B:
HDM:)\% (—)'d-§XS,5, (A1) ZEEMAN COUPLING TO THE MAGNETIC FIELD

) This appendix briefly discusses the effect of the Zeeman
where the sum oved extends over all the nearest nelghborscoup”ng to the magnetic field on the actisy in Eq. (1.9)
of site i, and d is a unit vector in the direction of the for the SDW fluctuations. We will see that the effects are
orthorombica axis[i.e., a diagonal (1,1) directig?’ In this  weaker than those considered in the body of the paper, espe-
appendix, we study the effect of the DM interaction on thecially near the critical point A as=s, in zero field(see Fig.
non-two-sublattice SDW, and for simplicity we consider a3).

SDW at one wave vector only. The Hamiltoniéhl) mixes As reviewed in Ref. 121, in systems without an over-
wave vectorsq and Q+q, where Q=(=/a,w/a). In this  damped particle-hole continuum of spin excitati¢as is the
case we need to modify E(L.2) to case here hear the ordering momeiita,), we can deduce
the coupling to the external field using simple gauge invari-
S(r,7) =R eKsx"d (r,7) +e Kt DTN (1, 7)]. ance arguments. In particular, the primary consequence of

(A2) the external field is to rotate the spins uniformly about the
field axis, and this can be accounted for by the following
Straightforward algebra shows that the contribution of thereplacement to all temporal gradient terms
DM interaction to the action is

5T(I)Xa—>57q)a—i6aﬁyHBCD (Bl)

Xy 1

M and similarly for®,,. HereH, is the three vector in spin
2x )’ space representing the external field. The resultiigis
(A3) close;yn;elated to models that have been studied in some
detail"**" in the context of double layer quantum hall sys-
where A (Kg)=2\[CosKs,ay) +cosKsyay)] and the last  (omg From this work, we can deche (zhe phase diag).]/ram
term comes from the fact that spin fluctuatidlg are mas-  sketched in Fig. 32. The most important property of this
sive. We can now integratgl out, and find the anisotropy phase diagram is that zero field phase transitiors=as;
term for the SDW order parameter moves to finite field adH~(s—s.)*” where the exponent

Som+Su= f dzdr‘ MKg)d-[DyxXM* +c.c]+
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zv=1/2 in mean-field theory. Fluctuation corrections will ey . " ®.p LS
slightly increase this value, but the present critical field will \ “)’£+Q -
nevertheless remaiarger than the field in Eq(3.9) associ- o } CIV 4 o
ated with the corrections arising from the superflow. In par- -4t 147 %M ty &
ticular, the phase boundary in Fig. 32 approachesHhke0 (a) S } ’?‘ (b) ? 4 s
line with an infinite slope. Consequently, the Zeeman shift is > -\ : >
subdominant to the stronger effects discussed in the body of pd TOP L O,p TN,
the paper.
APPENDIX C: - s '
MICROSCOPIC THEORY FOR COUPLING ey ©P ©.p e
BETWEEN SC AND SDW ORDER PARAMETERS o + : N @
In this appendix we discuss the microscopic origin of the é“” s =S
effective interactionk between the SC and SDW order pa- © ' t : 1 8
rameters in Eq(1.10. We will argue that repulsive>0 is a i 'p con’ ..o
remarkable property of doped Mott insulators, but weakly - ’ ’ !
interacting electron systems quite possibly have0. FIG. 33. Diagrams that contribute to the effective interaction

We start by co_nS|der|ng w?akly coupledrermi _I'qu'd c_’f between the superconducting and antiferromagnetic orders for
electronsc;,, moving on the sites of a square lattice which  permi jiquids. Solid lines correspond to the quasiparticle propaga-
is close to superconducting and commensurate antiferromagyys, zigzag lines correspond to thlewave superconducting order
netic instabilities parameter and contribute a factds; the wavy line describe the

SDW and a dashed line describes the static disorder potential.
Z= f DciDeedd, _ . ,
zigzag lines correspond to tliewave superconducting order
parameter and contribute a factly; wavy line describe the

_ toa SDW, and dashed line describes the static disorder potential.
stel fo dT(Z Gi d:Ci H[C])’ We have
t Tt 1 d%p
H[C]:E Ekckacko"'Himp_E (AkaTCk1+H'C') (=~ —dpdp+QZ G(wn,p)G(—wy,—p)
ko k B (2’77)2 ®n
AF . B2 X G(wn,p+Q)G(—wy,—p—Q)
_ + + n» n» 1
+ 2)\SC (I)Ek Ck+QagaﬁCkB+2)\AF' (Cl)
1( d?
HereA, = Ay(cosk,—cosky)/2=Ady is the superconducting (b)y= —J' —pzdsz G(wn,p)G(—w,,—Pp)
d-wave order parameter, and we assume a nearest-neighbor BJ (2m) @n
tight binding dispersion of the electrong,= —2t(cosk, X G(wy,p+Q)G(—wy,—p—Q),

+cosk,) —u, Q=(m,7), and everywhere in this section mo-

mentum integrals go over the first Brillouin zori;,, de- 1

scribes the static potential of the impurities which gives rise (C)=NimpV2— > L(w)M(wp) (C5)
to a finite quasiparticle lifetime B

1 with
o= 2wnimpN(0)V2, (C2

2
p
whereN(0) is the density of states on the fermi level and L(wn):J (Zw)zdgG(wn,p)G(— wn,—P)G(wy,p),
is the impurity potential.
Assuming thatA, and ® are small we can integrate out 2
the fermions and obtain M(wn):f

(ZWF;ZG(wn ,P)G(—w,,—p)G(w,,p+Q).
Z=e FF, .

R . It is useful to note that if we define the static spin suscep-
F=FgU[Agl+Fad @]+ k|Ag|?d2. (C3 tibility at momentumQ in the superconducting state

The diagrammatic representations of the terms that contrib- 1 42
ute tox are shown on Fig. 33. Solid lines correspond to the ot J p G G N
quasiparticle propagators B % —(277)2{ sd@n,P)Gsdw,,p+Q)

G(p,wn)=[iw,—€,—i/(27)sgnw)], (C4 +F(wn,p)F(wn,p+Q)}, (C7)
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with the Green’s functions in the superconducting state de-APPENDIX D: RENORMALIZATION GROUP ANALYSIS
fined in the usual mannéf? then OF COMPLEX VECTOR FIELDS

This appendix will briefly review existing theoretical re-
25(Q) sults for the critical properties of field theories which are
K= — X (C8) similar toSg, , but simpler. The analysis of the fufl, theory
&A*aAo £g=0 will be addressed in future work.
The simplification made here is to consider a field theory
with only one complex vector field,, with a=1---m

which agrees with EqgB6) and (B7). the original model has two such fields,, and®, ,. For
In the limit w7>1 the main contribution t& comes from  the case of only one such field, we can always rescaled
the diagram(a) and we find forT—0 y coordinates to make all velocities unity; then dnspace

dimensions we are interested in the field theory with action

1 _ d 2 2 2 ﬂ 4
:_7T<dp>N(O)— E Sc—f d% d 7] |0, D,|°+ |V, P | *+ 5| P[5+ 3 |®,|
>0 (wn+1/27')[,u +(wn+1/27') ]

u
+ 5|22, (0D

1
~— 2—M2|n(,u,7') (Cg)

This theory has upper critical dimenside- 3, and can be
studied in an expansion ie=3—d. Renormalization group
Itis important to note that in deriving the expressi@®) we  equations for the quartic terms were obtainedtpe?) by
relied on the fact that we havedawave superconductor with  joneset al>°~%’
dp+o=—dp and took the average value (a:ff,) on the Fermi
surface to be 1. Hence, such Fermi liquids on the square du; 2 2
lattice have an effective “attraction” between the antiferro- g~ €U~ Kol (m+4)ui+4usu,+4us]
magnetic and superconducting orders, which can be traced
back to the enhancement of the antiferromagnetic suscepti-
bility (C7) in the d-wave superconducting state.
We have so far examined the interplay between SC and
SDW orders near the boundary of their instability to a
weakly interacting Fermi liquid. Now let us turn to the same
interplay, but in the vicinity of a Mott insulator. Strong in-
teractions are required to produce the Mott insulator, and so du,
the perturbative approach of E@1) cannot be directly ap- qr €Y~ Kol MU3+6U,Us]
plied. Instead, we have to turn to alternative strong coupling
approaches, in which the existence of the Mott insulator is
built in at the outset. Such approaches have been discussed
recently, and these are expressed in terms of collective de-
grees of freedom which are natural in the vicinity of of Mott
insulator. Electron spin singlet states, spin one magnons,
Cooper pairs of holes, and fermionic quasiparticles are intro- _ .
ducepd aps individual excitations, ang inte?actions between'here Kq=2 dH/[”d/ZF(‘,j/Z)]' These flow equations al-
them are obtained from the microscopid Hamiltoniarf2123 ways have two unstable fixed points: the Gaussian pgjnt
(phenomenological models of just the bosonic degrees of Uz =0 and the isotropic O() Heisenberg fixed point
freedom have also been considéféd All these papers find

+2K32 (3m+7)ul+22ulu2

+(5m+24)usud+4(m+2)u3|,

—2K§[(m—4)u§'—2(5+3m)u§u1

1
- 5(5m+41)u2u§ : (D2

strong repulsion between magnon and hole pair states, aris- u* = e 1 ——+0(e?),

ing from the constraint on the allowed Hilbert space. The 1 Kgm+4

origin of this repulsion therefore lies in the short distance,

lattice-scale physics of allowed low-energy states near a u; =0. (D3)

Mott insulator, rather than effects near the Fermi surface i
the weak-coupling analysis discussed earlier. The Coop
pair-magnon repulsion immediately implies repulsion be-
tween the superconducting and antiferromagnetic orders, €

since the superconducting and antiferromagnetic phases cor- u* =WBm[3m2—1Zn+ 1447 3mRY¥2)e+O(€),
respond to the condensates of the corresponding particles. As d

an example, see Fig. 2 in Ref. 51: the pairing amplitude is

weak in the region with magnetic order, but rises rapidly v*=iBm[m2+ m—12+3RYJe+0(€?), (D4
once the magnetic order is suppressed. K "

"For sufficiently large or smath there may also be two other
fxed points
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where B '=m®+4m?—24m+144 and R,=m?—24m Nu
+48. The last two fixed points are absent in the caseof do=S—Sc+«| 2 ag—1|+ NLA
. G KAy
=3. We note, however, that fan=2 and in the largam
limit a stable fixed pointthe so-called chiral fixed point, see cot{ E(K)/(2T)] 1
Ref. 57 is possible foru,>0, so it may control the transi- XZ Ea(k) - ="
tion to the spiral order. Whem,<0, the system always kG G V(k+G)?+Ag
flows towards strong coupling,— —«, so we expect the (E5)
transition to collinear order to be weakly first order.
and forG+#0
APPENDIX E: AL ¢ ofc )
NUMERICAL SOLUTION IN THE SC PHASE 6T T INAY S L, HenTHere
We will use the methods and notatipn 'describ.ed in cot E,(k)/(2T)]
Brandt!?* First, assume we know,(r). Write its Fourier +Cuc-g)(K)] E_(K) : (E6)
o

expansion in the form
where the sum ovek is overNy points which average over
_ the first Brillouin zone. Also note thatc,g(k)
VH(r)=§G: dge'®, (ED)  =c,r[R(K)], whereR denotes a rotation byr/3. This
can be used to cut the numberlopoints in 1/6.
The iteration of Eqs(E5) and (E6) will produce the so-

wheredg=d_¢ are both real, an@ are the reciprocal lattice |ution to Eq.(4.17) for a given gy (r). The next step is to
vectors of the triangular vortex lattice. Unlike the conventionsolve Eq.(4.18), given Vy(r) in Eq. (E1). This is done just

followed by Brandt, the sum oveG always includesG as in Brandt. His Eq(9) is replaced by
=0, unless stated otherwise explicitly. In Brandt’s notation,

Eqg. (ED) can be inverted byg=(V4(r)cosG-r)), where K2 K

the angular bracket denotes a séatial average. éecause of tftléver’Z)“’: 211+ 1~ Y | ol 2= 4U_Y(VH_A§) w
symmetry we can work on only half a unit cell of the vortex

lattice, and for simplicity we choose the half unit cell to be K? 2 2

the one plotted in Fig. 13.  Eirryav K O (E7)

To obtain Gy, we want all the eigenvalues and eigen- ) ,
functions of the Schidinger equatiori4.20. As in the usual and & corresponding change to Brandt's Exj). The new

Bloch theory, these are labeled by a wave vektor the first ~ form of Brandt's Eq.(12) is
Brillouin zone, and a band index. The explicit form of

these are

aG::aG
2 K

_ eik.r . ><< _M)lwdz_ 4uyY
Euk(r)= Ny 263 Cuc(k)e™", (E2) (0?)[1—k?(4uY)]

1

(Va—AY) w—wQ2—9>

(E8)
where A, is the area of the unit cell, and thg,g(k) are o )
normalized so that After determiningw from above, we use this result to

obtain newV,(r) by solving Eq.(4.17), and so on. By itera-
tion of Egs.(4.17 and (4.18), we will be able to have the
E |CMG(k)|2: 1. (E3) final solution to both of them.
G Note that in order to get our numerical results, we did use
a finite momentum cutoff. However, the equations have been
If we chooseM values ofG (also as in Brandt thenu=1 designed to be cutoff independent and we did find that the

---M, and thec,g(k) are the orthonormal eigenvalues of Fourier components of(r) and Vy(r) decreases rapidly

the M XM matrix Mg g/ (k) where upon going to higher momenta.
APPENDIX F:
> Mg c'(K)c, (k)= Ei(k)c#G(k), SPIN ORDERING PHASE BOUNDARY NEAR M
GI

Here we discuss the analytical solution of EG17) and

(4.18 in the vicinity of the multi-critical pointM in Fig. 3,
Ma,e1(K)=(k+G)?*5 6 +dg_g - (E4  with the aim of determining the location of the AM phase
boundary in its vicinity. Analytical progress is possible be-

After this diagonalization we obtain the Fourier componentscause the amplitude of the superconducting ofdg(r)|? is
of Eq. (El) as small in this region. Our analysis will show that in this re-
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gion AM behaves asl=1-p(x—s+s.), whereg is a nu-
merical constant. The earlier full numerical solution in Sec. (1— 4u_Y> E aga_g— | ol ao)
IV C led to the estimat@~1.2, and we shall find a consis-
tent result here. K
In addition to Eq.(E1), we use the Fourier expansions + m( EG: dea_g—Afag| —Hap=0. (F7)
TE Gu(rho )_J dwd?k 1 22 QiGT EquationgF3)—(F7) are now simple equations that can be
R 873 w2+ k2+A2 = easily solved to obtain all the Fourier coefficients. The line

(F1) AM corresponds tay=0. Our analytical result of the slope
of AM near M point isp~1.1, which is in acceptable agree-
ment with that obtained from the full numerical solution.

[n(n)[?=2 age'®". (F2)
APPENDIX G:
Note that this notation foag is slightly different from that NUMERICAL SOLUTION IN THE SC +SDW PHASE
above and in Brandt. Here we will describe the solution of Eq%.7), (5.4), and

Then Eq.(4.17) becomes (5.9 for the unknownsVy(r), ¥y (r), andny(r). First, as

Eqg. (5.9 is linear inny(r), it is convenient to rescale

N (r)—ny(r)/v2Nu, (G)

and these equations become

do=A5+ k(ag—| 1ol +2Nuby,
dg=rkag+2Nubs, G#0. (F3)

Second, we can solve E¢.6) by a Feynman graph ex-

pansion indg..o. This yields Vi(r)=s=sc+ [ (r)[2=1]+nf(r)

dwd’k 1
b kadk COtl‘( \/k2+d0/2T) 1 +O(d2 ) +2Nu TE GH(r,r,wn)—J?Tkz ,
= - — wp T
“Jo2m|  2Jk%+d, 2 k3 + A2 670 2
Vdo— 4
= +0(dg,,) atT=0 (F4) [ VZ+Vu(n)Iny(r)=0, G3
2
and o 2 114 _
[(1 4uY)[|wH(r>| 1+ oy DVa(n) = s+s¢]
b= dg (= d2k coth Vk?+ do/2T)
¢ 2Jo (k+G)2-K?|  2Vk®+d, _(Vr_iA)z}‘//H(r):O- (G4
/ 2
_ coth V(k+G)"+do/2T] O(d2.,) We use two-step iteration to self-consistently solve the
2\J(k+G)?+d, 70 equationgG2, G3, G4. The first step consists of solving Eq.
de (G2) and(G3), and the second step is solviiG4).
_ _ For the first step, we use a four-substep iteration. First,
~ 8[| +0(dg0) @t T=0, G#0.  (F§ define and calculate
Now we can solve Eq$F3),(F4),(F5) for thedg in terms of pu(r)=s—sg+ [ |y (r)|?—1]
theag.

Finally, we need to determine theg by solving Eq. dod’k 1
(4.18. This can be done with the realization that for small +2Nu T% Gu(r.rwn) = w2+ k2|
Yy, the functional form of the superconducting order param-
eter can be assumed to be equal to the Abrikosov solution. (GYH
So we assume Second, define and calculate the inverse of operator

A 2
R A=-Vi+ r. G6
ag=— OZG’ G=0, (F6) ¢+ 7u(r) (G6)
Third, calculateny(r) which satisfies
whereaé is given in Eq.(8) of Brandt. Now, it remains to _ -1.3
’ ny(r)=-— ng(r). G
obtain a single additional equation to determae This we H(r) A H(T) @7
determine by multiplying Eq(4.18 by #{,(r) and averaging Last, calculate/,;(r) using
over all space. Using the property of the Abrikosov solution 5
for y(r), we obtain V(1) = au(r) +ni(r). (G9
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Choosing proper initial value fovy(r) and ny(r) and AGG’:GzéG,G""gG—G’v (G12
iterate Eqs(G5), (G6), (G7), (G8) will produce the solution
to both Egs(G2) and(G3).

In practice, the above steps are performed in momentum fo=—2> Agé(rla(r)COS(G' 1)), (G13
space. If we let G’

V()= dgei®T, de=gc+(n{(r)cogG'-1)). (G149
G
Note that in the substepG13 the equation is solved by
' F _QGr another smaller iteration.
np(r) > fee'™", : P :
G The second step is very similar to the case with no mag-

netic order as in Appendix E. EG4) can be solved by a

: two-substep iteration of the following equations:
(1= gee®", (G9) P g€
2

[1+G(r)]w—(1— K—) wz—sz—g},

whereG are the reciprocal lattice vectors of the vortex lattice (- V2+2)p=2 A0

[note thatf s differs slightly fromf in Eq. (5.10 because of (G15
the rescaling Eq(G1)], then Egqs(G5—(G8) become
where
Jo=S—S.t+« 2 aG—l)
G 5 «
L Nu cot{Eg(k)/(2T)] 1 G(”:(l‘ _4uY) Tauy k(D mstsed, (616
NiAy kG0 Ea(k) lk+Gl]’
and
(G10
Nu (0G—wQ’—Q)
=—kKagt+ C,c’|C ’ k dg=Aag" . (Gl7)
Jc Kdg ZNKAU et /.L,Eu(k)#O nG [ w(G +G)( ) <a)2>[1_K2/(4UY)]
cot E . (k)/(2T)] From the iteration results we are able to determifgr),
+Cuir-g)(K)] L , (G1) 4 Wiagr)
E.(k) Nu(r) and gry(r).
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