
PHYSICAL REVIEW B 66, 094501 ~2002!
Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors
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We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced
by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large-
N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin
spectrum. Our results apply to phases with and without long-range spin-density-wave order, and to the mag-
netic quantum critical point separating these phases. We discuss the relationship of our results to a number of
recent neutron-scattering measurements on the cuprate superconductors in the presence of an applied field. We
compute the pinning of static charge order by the vortex cores in the ‘‘spin-gap’’ phase where the spin order
remains dynamically fluctuating, and argue that these results apply to recent scanning-tunneling-microscopy
~STM! measurements. We show that, with a single typical set of values for the coupling constants, our model
describes the field dependence of the elastic-neutron-scattering intensities, the absence of satellite Bragg peaks
associated with the vortex lattice in existing neutron-scattering observations, and the spatial extent of charge
order in STM observations. We mention implications of our theory for NMR experiments. We also present a
theoretical discussion of more exotic states that can be built out of the spin- and charge-order parameters,
including spin nematics and phases with ‘‘exciton fractionalization.’’

DOI: 10.1103/PhysRevB.66.094501 PACS number~s!: 74.72.2h, 74.25.Dw, 71.27.1a, 75.10.Jm
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I. INTRODUCTION

The determination of the ground state of the cuprate
perconductors as a function of the hole density has been
of the central problems in condensed matter physics in
last decade. At zero hole density, it is well established t
the ground state is a Mott insulator with long-range magn
Néel order. At moderate hole density, it is also widely a
cepted that the ground state is ad-wave superconductor, a
of whose important qualitative properties are identical th
of the standard BCS-BdG theory. At issue are the grou
states which interpolate between these well understood
its, and the manner in which they influence the anomal
properties at temperatures~T! aboveTc ~the critical tempera-
ture for the onset of superconductivity!.

While a plethora of interesting proposals for these int
mediate states have been made, we will focus here on~in our
view! the simplest possibility: the order parameters char
terizing the intermediate ground states are simply those
spin- and charge-density waves~SDW and CDW!, and su-
perconductivity~SC! itself. Apart from a small range at ver
low doping, which shall not be of interest in this paper, w
know from neutron-scattering experiments that there is SD
order collinearly polarized at the wave vectors

K sx5S 2p

a D S 1

2
2q,

1

2D , K sy5S 2p

a D S 1

2
,
1

2
2q D ,

~1.1!

wherea is square lattice spacing and the wave vector s
from two sublattice order 0,q,1/2 is a function of the
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doping concentration. In particular, strong motivation for o
study here was provided by the remarkable experiment
Wakimotoet al.1,2 They showed that the onset of superco
ductivity in La22dSrdCuO4 occurs first atd50.055 ~in a
first-order insulator-to-superconductor transition! into a state
which also has long-range spin-density-wave order atT50
with a wave vector of the form~1.1!, i.e., asd is moved
away from the insulator atd50, the first conducting state i
a SC1SDW state. As the ground state for large enoughd is
an SC state, it follows that there must be at least one qu
tum phase transition between the SC1SDW and SC states
and we will work with the simplest possibility that there
one direct transition at some criticald5dc. Wakimotoet al.
also showed that such a transition associated with the v
ishing of the SDW moment occurred fordc'0.14~see Fig. 1
in Ref. 2!. We shall assume that the SC1SDW to SC quan-
tum phase transition is second-order: direct evidence
critical magnetic fluctuations in La22dSrdCuO4 for d'0.14
was provided in the neutron-scattering experiments of Aep
et al.3

We will also discuss the appearance of local and lo
range CDW order in the above phases. It is important to n
that, throughout this paper, we use the term ‘‘charge-den
wave’’ ~or ‘‘charge order’’! in its most general sense: suc
order implies that there is a periodic spatial modulation in
observables which are invariant under spin rotations
time reversal, such as the electron kinetic energy, the
change energy, or even the electron pairing amplitude.
modulation in the site charge density may well be unobse
ably small because of screening by the long-range Coulo
interactions.
©2002 The American Physical Society01-1
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We note that the doping dependence of the magnetic o
in the cuprates can be quite complex, varies significan
between different compounds, and is influenced by the
gree of disorder: the magnetic order may well be spin-gla
like at the lowest energy scales at somed. The SDW order is
also enhanced in the vicinity of special commensurate va
of the doping such asd51/8 ~see, e.g., Fig. 1 in Ref. 2!,
along with a suppression of SC order. In general, we do
wish to enter into most of these complexities here, althou
we will mention ~in Sec. I A! how our theory could be ex
tended to explain the commensuration effects—some o
relevant issues will be discussed in Sec. VII. Our prima
assumption is that the low-energy collective excitations
be described using the theory of the vicinity of a quant
critical point between the SC1SDW and the SC phases; ev
dence supporting this assumption was also reviewed in
4. This critical point is present either as a function ofd in the
material under consideration, or in a generalized param
space but quite close to the physical axis.

It is also important not to confuse this magnetic quant
critical point, with other proposals for quantum critic
points near optimal doping that have appeared in the re
literature.5,6 These latter critical points are neard'0.19, and
are probably not associated with long-range spin-den
wave order at a wave vector of the form~1.1!. This paper
will discuss magnetic transitions at smaller doping.

Upon accepting the existence of a second order quan
critical point atT50 between the SC1SDW and SC phases
a powerful theoretical tool for the analysis of experime
becomes available.7 The structure of the critical theory, an
its associated classification of eigenperturbations, allow
systematic and controlled theory of the spin excitations in
SC and SDW phases on either side of the critical point. S
an approach was recently exploited to study the influenc
nonmagnetic Zn and Li impurities in the SC phase.8 In this
paper we will use the same tools to study the influence o
applied magnetic field, oriented perpendicular to the Cu2

layers, on both the SC and the SC1SDW phases. An outline
of our results has already appeared in previo
communications:9–11 here we will present the full numerica
solution of the our self-consistent equations for the dyna
spin spectrum in an applied field, along with a number
results. Measurements of the spin and charge correlation
the presence of such an applied magnetic field have appe
recently in a number of illuminating neutron-scattering,12–14

NMR,15–17 and STM experiments,18 and we will compare
their results with our prior predictions.

A. Order parameters and field theory

The field theory for a SC to SC1SDW transition in zero
applied magnetic field can be expressed entirely in term
the SDW order parameter which we will introduce in th
subsection; the quantum fluctuations of the SC order can
safely neglected, a point we will discuss further in Sec. V
Consideration of the applied magnetic field will appear in
following subsection.
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We introduced above the wave vectors of the SDW ord
ing K sx and K sy ; almost all of our analysis will apply for
general values ofq, but the valueq51/8 is of particular
interest above a doping of about 1/8. To obtain an or
parameter for such a SDW, we write the spin opera
Sa(r ,t), a5x,y,z, at the lattice siter as

Sa~r ,t!5Re@eiKsx•rFxa~r ,t!1eiKsy•rFya~r ,t!#,
~1.2!

where Fx,ya are the required order parameters. Except
the case of two sublattice order withq50 ~which we ex-
clude for now!, the fieldsFx,ya are complex. These field
can describe a wide variety of SDW configurations, but
now list the two important limiting cases.

~i! Collinearly polarized SDW’s, for which

Fya~r ,t!5eiu(r ,t)na~r ,t!, ~1.3!

wherena is a real vector andu is also real~and similarly for
Fxa). Parametrized in this manner, and forna

25const~sum-
mation over the repeated indexa is implied here and hence
forth!, the order parameterFya belongs to the space (S2
3S1)/Z2, whereSn is then-dimensional surface of a spher
in n11 dimensions, andZp is the discrete cyclic group ofp
elements. TheZ2 quotient is necessary because a shiftu
→u1p is equivalent to a rotation which sendsna→2na .

~ii ! Circular spiral SDW’s, for which

Fya~r ,t!5n1a~r ,t!1 in2a~r ,t!, ~1.4!

where n1,2a are two real vectors obeyingn1a
2 5n2a

2 and
n1an2a50 ~and similarly forFxa). Now for n1a

2 5const, the
order parameterFya belongs to the space SO(3)>S3 /Z2
~see e.g., Sec. 13.3.2 in Ref. 7!.

The experimental evidence19,20 supports the conclusion
the SDW ordering in the cuprates in collinear, but the pres
formalism allows a common treatment of both the colline
and spiral cases. This complex-vector formulation of t
SDW order allows treatment of the SDW quantum transit
by a straightforward generalization of the real-vector the
used for the Ne´el state in the insulator; related points ha
been made by Castro Neto and Hone21 and Zaanen.22 The
same approach was also used by Zacharet al.23 to treat the
onset of SDW order at finite temperatures, as we will in
cate below.

Along with the SDW order, CDW order may also appe
We parameterize the charge density modulation by

dr~r ,t!5Re@eiKcx•rfx~r ,t!1eiKcy•rfy~r ,t!#, ~1.5!

whereK cx,y are the CDW ordering wave vectors andfx,y
the corresponding complex order parameters. The quan
numbers of the observabledr are identical to those ofSa

2 ,
and so by squaring Eq.~1.2! we see that associated with th
SDW is a CDW with23 K cx52K sx , K cy52K sy ~modulo re-
ciprocal lattice vectors!
1-2
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fx~r ,t!}Fxa
2 ~r ,t! and fy~r ,t!}Fya

2 ~r ,t!. ~1.6!

Note that this CDW is absent for the case of a circular sp
SDW ~in which caseFx,ya

2 50) but is necessarily present fo
a collinear SDW. In principle, in a state with condensates
both Fxa and Fya , a CDW can also be present at wa
vector K sx1K sy ; we will not consider this possibility here
as it does not seem to be experimentally relevant. As
emphasized in the third paragraph of Sec. I, we are using
term CDW here in its broadest sense: there is a modulatio
the wave vectorK c in all observables which are invarian
under spin rotations and time reversal. The precise natur
the CDW order may be determined from an analysis of
STM spectrum–this has been discussed recently in R
24,25.

The order parametersFx,ya , fx,y allow a rich variety of
phases and phase transitions in the presence of backgr
SC order. These will be discussed in some detail in Sec.
Central to a description of these phases is an understan
of the symmetries respected by any effective action for
order parameters. We describe these below and then focu
a particular phase transition of physical interest.

An obvious symmetry is that under spin rotations; this
described by the group SU~2!, and the fieldsFx,ya transform
asS51 vectors labeled by the indexa. In addition, there is
an independentsliding symmetry

Fx,ya→eiux,yFx,ya ~1.7!

associated with the translational symmetry of the underly
lattice model: translatingr to r1(ma,0) (m integer! in Eq.
~1.2! leads to Eq.~1.7! with ux5mp(122q) anduy5mp @
q was defined in Eq.~1.1!#. For q irrational, we see that al
real values ofux,y can be generated with the different choic
for m, and hence the sliding symmetry is U(1)3U(1). For
rational q, with 1/22q5p8/p, and p8, p relatively prime
integers, only integer multiples ofux,y52p/p are allowed in
Eq. ~1.7!; in this case the sliding symmetry is reduced
Zp3Zp . The difference between U~1! and Zp will not be
material to any of our results forp.2. In a similar manner,
we can also determine the action of other elements of
square lattice space group onFx,ya and we mention two
important cases: under a spatial inversion we haveFx,ya

→Fx,ya* , and under the interchange ofx andy axes, we have
Fxa↔Fya .

We now apply these symmetries to determine the effec
action of a physically relevant transition discussed earlie
the introduction~and in the phase diagrams of Sec. II!: that
between the SC1SDW and SC phases. This transition
driven by the condensation ofFx,ya ; if the SDW order is
collinear, it will drive a concomitant CDW order, as di
cussed above. Supplementing the symmetries by a renor
ization group ~RG! procedure which selects terms wi
smaller powers ofFx,ya and fewer spatial and temporal gr
dients, we obtain10,11,23,26the effective action
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SF5E d2rdt[ u]tFxau21v1
2u]xFxau21v2

2u]yFxau2

1u]tFyau21v2
2u]xFyau21v1

2u]yFyau21s~ uFxau2

1uFyau2!1
u1

2
~ uFxau41uFyau4!1

u2

2
~ uFxa

2 u2

1uFya
2 u2!1w1uFxau2uFyau21w2uFxaFyau2

1w3uFxa* Fyau2]. ~1.8!

Note that first-order temporal gradient terms such
Fxa* ]tFxa are forbidden by spatial inversion symmetry.26 In
principle, first-order spatial gradient terms such
iFxa* ]xFxa are permitted by all symmetries; such terms le
to a shift in the wave vector at which SDW fluctuations a
largest, and we assume that they have already been abso
by our choice ofK sx . Herev1 andv2 are velocities, which
are expected to be of order the spin-wave velocityv of the
Néel state in the undoped insulator. The parameters tunes
the system from the SC phase (s.sc) to the SC1SDW
phase (s,sc), wheres5sc is the nonuniversal location o
the quantum critical point between these phases; experim
tally, s can be varied by changing the doping concentrati
The action also contains a number of quartic nonlinearit
the RG analysis shows that these are strongly relevant
turbations about the Gaussian theory, and will play a cru
role in our analysis below. The couplingu2 selects between
the collinear and spiral SDW states: foru2.0, the circular
spiral state~which hasFxa

2 50) is selected, whileu2,0
prefers a collinear SDW. The couplingsw1,2,3 lead to corre-
lations between the orders atK sx and K sy—if these are at-
tractive, thes,sc phase will have simultaneous orderings
both wave vectors, and spatial pattern will have a check
board structure.

We have also neglected the couplings to the low ene
nodal quasiparticles, which are additional excitations of
SC phase carrying spin; their effects are suppressed by
constraints of momentum conservation, as they can damp
F quanta effectively only ifK sx,y equal the separation be
tween any two nodal points. The case where this nes
condition is satisfied has been considered earlier,26 but we
will not enter into it here for simplicity: essentially all of ou
results here on the phase diagram in an applied magn
field apply also to the case where the nesting condition
obeyed. For completeness, in Appendix A we also discuss
role of spin symmetry breaking Dzyaloshinskii-Moriya inte
action present in La22dSrdCuO4.27 We show that it helps
stabilize collinear SDW order in a certain direction; howev
its effect is very small and will be neglected in the rest of th
paper.

For the particular rational valueq51/8, the U(1)
3U(1) sliding symmetry is reduced to a discreteZ83Z8
symmetry under whichux,y in Eq. ~1.7! are only allowed to
be multiples ofp/4. This reduced symmetry allows add
tional terms in Eq.~1.8! whose structure has been discuss
earlier.11,23 Such terms help choose between site- and bo
centered density waves,11 and could also lead to the enhanc
1-3
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ment of the moment observed by Wakimotoet al.2 near d
51/8. However, these terms are very high order~eighth! in
the F fields, and consequently they have a negligible eff
on the issues we are interested in here: so we will not c
sider them further.

It is useful to compare our treatment here of the
1SDW to SC transition with others in the literature. It
essential for our purposes that the spin/charge orderin
taking place in a background of SC order, as that gaps ou
fermionic excitations except possibly at special points in
Brillouin zone. Theories28,29 which consider SDW/CDW or-
der in a Fermi liquid have additional damping terms in th
effective action which change the universality class of
transition, change the dynamic exponent toz52, and do not
obey strong hyperscaling properties as the quartic coupl
are marginallyirrelevant in this case. We have also taken
genuinely two-dimensional view on the SDW/CDW
~‘‘stripe’’ ! fluctuations in our approach. An alternativ
approach30 assumes there are intermediate scales on w
the physics of the one-dimensional electron gas applies
though a crossover to similar two-dimensional physics
curs on large enough scales.31

B. Influence of an applied magnetic field

An applied magnetic field has a Zeeman coupling to
spin of the electrons, and this is present for any direction
the applied field. However, the Zeeman splitting of the m
netic levels has only a minor effect, and can be safely
glected compared to the much stronger effects nears5sc
that we consider below. We discuss the influence of the Z
man term in Appendix B, and will not consider it further
this paper.

The dominant effect of the field is via its coupling to th
orbital motion of the electrons, which is sensitive only to t
component of the field orthogonal to the layers. The rea
for this strong effect is simple: there is SC order in the orb
wave function of the electrons, and the diamagnetic susc
tibility of the SC state to the applied field is infinite. How
ever, as the SC order is noncritical across the transitio
s5sc , it is mainly a quiescent spectator and its response
justifiably be treated in a static, mean-field theory. Con
quently, we model the complex SC order parameterc(r ) in
the familiar Abrikosov theory with the free energyper layer
~we use units with\5kB51 throughout!

F5E d2r F2auc~r !u21
b

2
uc~r !u41

1

2m*

3US 1

i
“ r2

e*

c
ADc~r !U2G . ~1.9!

Note that unlikeFx,ya , c is not a fluctuating variable, an
described completely by its mean value~which will be r
dependent!. We will work entirely in the limit of extreme
type-II superconductivity~with Ginzburg-Landau paramete
kGL5`); so there is no screening of the magnetic field
the Meissner currents, and“ r3A5Hẑ, the applied, space
independent magnetic field.
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To complete the description of the model studied in t
paper, we now need to couple the SC and SDW order par
eters together. The simplest term allowed by symmetry
connection between the local modulus of the order para
eters

SFc5kE d2rdtuc~r !u2@ uFxa~r ,t!u21uFya~r ,t!u2#.

~1.10!

For k.0, we can induce a competition between the SC a
SDW orders, in that the SDW order will be enhanced wh
the SC order is suppressed and vice versa. The microsc
origin of the couplingk is discussed in Appendix C.

Although SFc will be the primary coupling between th
SDW and SC orders, an additional allowed term will be im
portant for some purposes.11 To understand this, notice tha
all terms inSF andSFc are invariant under the sliding sym
metry ~1.7!. This means that, with the present terms, t
CDW order is free to slide arbitrarily with respect to an
vortex lattice that may be present in the SC orderc. This
clearly cannot be true, as lattice scale effects should pin
two modulations with respect to each other. The simpl
additional coupling which will provide this pinning can b
deduced by noticing that there should be a coupling betw
the charge modulation in Eq.~1.5! and the local modulus o
the superconducting order; this is induced by the term11

S̃lat52 z̃(
r
E dtuc~r !u2Re@eiKcx•rFxa

2 ~r ,t!

1eiKcy•rFya
2 ~r ,t!#. ~1.11!

Notice that we are now performing a discrete summat
over the lattice sitesr , rather than integrating over a spati
continuum: this is a direct consequence of the rapidly os
lating factorseiKcx•r andeiKcy•r which do not have a smooth
continuum limit. Indeed, in regions wherec(r ) is smoothly
varying, these rapidly oscillating factor will cause the su
mation overr to vanish. So the expression~1.11! is appre-
ciable only over regions wherec(r ) is rapidly varying, and
this happens only in the cores of the vortices. As the cen
of the vortices are identified by the zeros ofc(r ), and we are
mainly interested in scales larger than vortex core size,
can replace Eq.~1.11! by the following expression, which is
more amenable to an analysis in the continuum theory:11

Slat52z (
rv ,c(rv)50

E dtRe$eiÃ@Fxa
2 ~r v ,t!1Fya

2 ~r v ,t!#%.

~1.12!

Here the summation is over all pointsr v at which c(r v)
50 ~these are the centers of the vortices!, andÃ is a phase
which depends upon the microscopic structure of the vor
core on the lattice scale. The actionSlat is not invariant under
the sliding symmetry, and so will pin the CDW order.

We are now in a position to succinctly state the fie
theoretic problem which will be addressed in this paper.
are interested in the partition function for SDW/CDW flu
tuations defined by
1-4
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Z@c~r !#5E DFxa~r ,t!DFya~r ,t!

3expS 2
F
T

2SF2SFc2SlatD , ~1.13!

accompanied by the solution of

d ln Z@c~r !#

dc~r !
50 ~1.14!

which minimizes2 ln Z@c(r )# to determine the optimum
c(r ). Note the highly asymmetrical treatment of the SD
and SC orders: we include full quantum-mechanical fluct
tions of the former, while the latter is static and nonfluctu
ing. This asymmetry is essentially imposed on us by
perspective of magnetic quantum criticality, and the fact t
we are developing a theory of the SC1SDW to SC transi-
tion. This asymmetry should also be contrasted with the s
metric treatment of SC and SDW quantum fluctuations
other approaches.32

C. Physical discussion

The primary purpose of this paper is to determine
phase diagram and low-energy spectrum of SDW and C
fluctuations ofZ as a function of the applied fieldH. A
summary of our results has already appeared9–11and detailed
numerical solutions appear in the body of the paper; here
expand on the central physical idea to provide an intuit
understanding of our results to readers who do not wish
study the details in the remainder of the paper. We will i
tially ignore the pinning described bySlat , but will discuss
its consequences in Sec. I C 1.

Let us begin in the SC phase withs.sc and consider the
Fxa fluctuations in a simple Gaussian theory~the consider-
ations of this subsection apply equally toFya , which we
will not mention further!. Assumec(r ) has been determine
by the minimization ofF, and so takes the standard form
an Abrikosov flux lattice. The Gaussian fluctuations ofFxa
are described by the effective action

SG5E d2rdt@ u]tFxau21v1
2u]xFxau2

1v2
2u]yFxau21V~r !uFxau2#. ~1.15!

To leading order, the effective potentialV(r ) is given byV
5V0, where

V0~r !5s1kuc~r !u2. ~1.16!

A sketch of the spatial structure ofV0(r ) is shown in Fig. 1:
becausec(r ) vanishes at the centers of the vortices,V0(r )
has well-developed minima at each such point. Indeed, th
can even be regions in each vortex core whereV0(r ),0, and
Arovas et al.33 and Bruuset al.34 argued that superconduc
tivity would ‘‘rotate’’ or transform intostatic Néel order in
such a region. In our treatment ofdynamicSDW,9,35 we see
that the structure of the magnetism is determined by the
lution of the Schro¨dinger equation36
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2]x

22v2
2]y

21V~r !#J0~r !5D2J0~r !, ~1.17!

whereJ0(r ) is the lowest eigenmode of Eq.~1.17!, the ei-
genvalueD2 is required to be positive for the stability of th
Gaussian theorySG . The energyD is the spin-gap, and
J0(r ) then specifies the envelope of the lowest energy SD
fluctuations; in other wordsJ0(r ) is the wave function of a
S51 exciton associated with dynamic SDW fluctuation
Note thatD2 can be positive even if there are regions whe
V(r ),0. A sketch of the spatial form ofJ0(r ) is shown in
Fig. 1 for a particular small value ofD2 and V(r )5V0(r ).
Observe thatJ0(r ) is peaked at the vortex centers, but d
cays rapidly outside the vortex cores over a SDW locali
tion lengthl;v1,2/AV12D2, whereV1 is the value ofV0(r )
outside the vortex cores~see Fig. 1!.

Remaining within the Gaussian theory specified by E
~1.15! and~1.16!, we now consider the consequences of ra
ing the value ofH in the hope of reaching the SC1SDW
phase. With increasingH, the vortex cores will approach
each other, and we expect that the value ofD2 will decrease.
Indeed, the picture of Fig. 1 holds all the way up to the po
D50; beyond this field the Gaussian theory becomes
stable and this signals the onset of the SC1SDW phase
driven by the condensation ofFxa . Note that the localiza-
tion lengthl;v1,2/AV12D2 of the SDW order peaked in th
vortex cores remainsfinite all the way up to the critical point.
This localization lengthl must be clearly distinguished from
the spin correlation lengthjs : the latter is associated with
correlations between different vortices, and arises beca
there is an exponentially small coupling between magnet
in neighboring cores. Thus this simple Gaussian the
yields a picture of dynamic magnetism appearing first in
vortex cores, with possible weak correlations between ne
boring cores. Such a viewpoint was also discussed by L
et al.12 who proposed ‘‘spins in the vortices’’ but noted th
the large value ofjs implied coupling between nearby vort
ces. Following our work,9 Hu and Zhang37 also presented a
picture of dynamic SDW fluctuations similar to the on
above.

FIG. 1. A sketch of the potentialV0(r ) ~thick full line! in the
presence of a vortex lattice. Also shown is the exciton wave fu
tion J0(r ) which solves Eq.~1.17! for V(r )5V0(r ) with eigen-
value D2. Note that there is no drastic change in this picture
D2↘0: the peaks inJ0(r ) remain exponentially localized within
each vortex core, on a length scale much smaller than the vo
lattice spacing. We argue in the text that strong interaction cor
tions toV0(r ) invalidate this form forJ0(r ) and the correct struc-
ture is shown in Fig. 2.
1-5
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YING ZHANG, EUGENE DEMLER, AND SUBIR SACHDEV PHYSICAL REVIEW B66, 094501 ~2002!
We now argue that corrections beyond the Gauss
theory approximation invalidate the above picture whenD
becomes small.9 Indeed, the picture of nearly independe
localized magnetic excitations in each vortex core holds o
then D is of order the spin exchange energyJ; such high
energy magnetic excitations are expected to strongly dam
by the fermionic quasiparticles. Also, the validity of th
present continuum model is questionable at scales as sho
vortex core size and at energies of orderJ: a full solution of
the BCS theory of the underlying electrons is surely need
and subsidiary order parameters may well develop within
vortex cores. However, asD is lowered, we will now argue
that the physics is actually dominated by the large reg
outside the vortex cores, where the present continuum
proach can be used without fear, and the subtle issues o
short-distance physics within the core can be sidestep
The central weakness in the analysis of the previous p
graph is that it does not account for the repulsive interacti
u1,2 between the bosonicFxa exciton modes that are con
densing. As has been discussed in different contexts l
ago,38,39 such interactions are crucial in determining t
structure of the lowest-energy state in which condensa
occurs. In particular, it is well known that the effect of inte
actions is to delocalize the lowest-energy states: bosons
tially prefer to occupy strongly localized, low-energy stat
but then their repulsive interaction with subsequent bos
drives the energy of such states up. Bray and Moore39 pre-
sented an argument demonstrating that in the vicinity of
condensation, the localization length must diverge as
approached the bottom of the band of states of interac
bosons in the presence of an external potential. To apply t
argument in the present context, we need to replace
~1.16! by

V~r !5V0~r !1
~4u112u2!

3
^uFxa~r ,t!u2&SG

5s1kuc~r !u21
~4u112u2!

3
^uFxa~r ,t!u2&SG

;

~1.18!

the additional terms arise from a Hartree-Fock decoupling
the quartic interaction terms inSF , and the expectation val
ues have to be evaluated self-consistently under the Gau
action in Eq.~1.15! which itself depends uponV(r ). Note
that the perspective of magnetic criticality requires that
account for theu1,2 interactions, as these are strongly re
evant perturbations about the Gaussian theory; so we are
to Eq.~1.18! also by a naive application of the RG approac
We will present detailed numerical solutions of equatio
closely related to Eq.~1.18! in the body of the paper. An
adaption of the argument of Bray and Moore39 to Eq. ~1.18!
was given in Ref. 9, and we will not repeat it here: the m
result is that the length scalel characterizing the lowest
energy stateJ0(r ) cannot remain finite asD↘0. Instead the
states around neighboring vortex cores overlap strongly,
J0(r ) is characterized by the vortex spacing itself. A ske
of the actual structure ofJ0(r ) is shown in Fig. 2. The spin
correlation lengthjs does not have a direct connection wi
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the spatial form ofJ0(r ) itself, but is instead related to a
integral over a band of states which solve Eq.~1.17! at finite
momentum, as we shall discuss in Sec. I C 1 and later in
paper.

It is worth noting here that the passage from Eq.~1.16! to
~1.18! in zero field is precisely that needed to reproduce
known properties of magnetic quantum critical points
other situations. In one dimension, Eq.~1.16! would imply
that there is no barrier to magnetic long-range order, wh
Eq. ~1.18! correctly implies that the presence of the Halda
gap, and reproduces its magnitude in the semiclassical lim7

At finite temperature, Eq.~1.18! yields the correct crossover
in the magnetic correlation length in the vicinity of the sp
ordering transition in two dimensions. Although we will no
present detailed solutions on this case here, Eq.~1.18! is also
expected to provide a reasonable description of the magn
crossovers at finite temperatures in the vicinity of the
1SDW to SC transition in the presence of a magnetic fie

With the knowledge of the spatial structure of the excit
wave functionJ0(r ) in Fig. 2, the origin of our main results9

can be easily understood. As the vortex cores occupy on
small fraction of the system volume, the magnitude of t
energyD2 is influenced mainly by the structure ofc(r ) in
the remaining space. Here, the predominant consequenc
the magnetic field is the presence of a superflow with vel
ity vs52dF/dA circulating around each vortex core. Focu
ing on the region around a single vortex at the originr
5(0,0), the superflow obeysuvsu;1/r in the wide region
j0,r ,Lv wherej051/A2m* a is the vortex core size,Lv
;(e* H/c)21/2; so the average superflow kinetic energy i

^vs
2&}

E
j0

Lvd2r

r 2

E
j0

Lv
d2r

}
H

Hc2
0

lnS Hc2
0

H D , ~1.19!

whereHc2
0 is the upper critical field for the destruction of th

Meissner state at the coupling constant corresponding to
point M in Fig. 3 below. This kinetic energy is a scalar wi
the same quantum numbers and symmetry properties asucu2:
hence, via the coupling inSFc in Eq. ~1.10!, the value of Eq.

FIG. 2. A sketch of the potentialV0(r ) ~thick full line! in the
presence of a vortex lattice along with the true form of the exci
wave functionJ0(r ) which solves Eq.~1.17! with the full potential
V(r ) in Eq. ~1.18!. The spatial structure ofJ0(r ) as D2↘0 is
characterized by the vortex lattice spacing.
1-6
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COMPETING ORDERS IN A MAGNETIC FIELD: SPIN . . . PHYSICAL REVIEW B66, 094501 ~2002!
~1.19! feeds into all the effective coupling constants inSF in
Eq. ~1.8!. The most important modification is that the tunin
parameters gets replaced by

seff~H !5s2C H

Hc2
0

lnS Hc2
0

H D , ~1.20!

whereC is a constant of order unity. The implication of E
~1.20! is that we may as well replaceV(r ) in Eqs.~1.15! and
~1.18! by

V~r !'seff~H ! ~1.21!

to obtain a first estimate of the consequence of the magn
field in the vicinity of the SC1SDW to SC transition. TheH
dependence in Eqs.~1.20! and ~1.21! is sufficient to deter-
mine our main results:9 the smallH portion of the phase
diagram in Fig. 3, the intensity of the elastic scattering Bra
peak in the SC1SDW phase, and the energy of the lowe
energy SDW fluctuation in the SC phase. In particular
follows directly from Eq.~1.20! that the smallH portion of
the AM phase boundary in Fig. 3 between the SC and
1SDW phases behaves as

H;
2~s2sc!

k ln@1/~s2sc!#
. ~1.22!

Note that this phase boundary approaches thes5sc , H50
quantum critical point withvanishing slope. This implies that
a relatively smallH for s.sc will successfully move the
system close the AM phase boundary, and so produce
energy spin excitations. This should be contrasted to the
respondingH-dependent phase boundary of the SDW ph
in insulators which is discussed in Appendix B; here, there

FIG. 3. Zero temperature phase diagram as a function of
couplings and the magnetic fieldH in an extreme type-II supercon
ductor described by Eq.~1.13!. The theory is accurate in the regio
of smallH, and only qualitatively correct elsewhere@H is measured
in units described in Eq.~3.2!#. The phases without SC order a
likely to be insulators, and the ‘‘normal’’ phase is expected to ha
residual CDW order, which is initially induced by the pinning term
in Slat as discussed in Sec. I C 1. The positions of the phase bo
aries are summarized in Sec. III. The pathP1 denotes the location
of the original neutron-scattering measurements of Lakeet al. ~Ref.
12!, and the pathP2 the subsequent neutron scattering measu
ments of Khaykovichet al. ~Ref. 13! and Lakeet al. ~Ref. 14!. The
STM measurements of Hoffmanet al. ~Ref. 18! are also along
pathP1.
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no orbital diamagnetism, only the Zeeman coupling is ope
tive, and the phase boundary approachesH50 with infinite
slope. Evidently, Zeeman effects are much weaker and
be justifiably neglected.

We conclude this subsection by a brief discussion of e
lier works32–34,40–50on vortex magnetism, and the change
perspective that has been offered here by our analysis. It
proposed in by Sachdev40 and Nagaosa and Lee41 that vortex
cores in the underdoped cuprates should have spin gap
relations characteristic of Mott insulators. Zhang32 and Aro-
vas et al.33 described vortex core correlations in terms
static Néel order, and estimated that the field-induced m
ment would be proportional toH @in our phase diagram in
Fig. 3, vortices with static moments are only present in
SC1SDW phase, and as we will review below in Sec. V
the average moment increases as9 H ln(1/H) for small H#.
Our discussion here also uses the SDW order parameter
allows it to fluctuate dynamically into a spin gap state, a
so interpolates between these earlier works. A separate
scription of vortex cores in terms of ‘‘staggered flux
correlations49,50 has also been proposed. One of our cen
points here is that while the vortex core correlations m
well be quite complicated~they are dependent on lattic
scale effects, and difficult to distinguish from each other
the short-distance ‘‘order’’ fluctuates dynamically!, these is-
sues can be sidestepped: a reliable continuum theory ca
developed by considering first the dominant effects aris
from the interplay between superconductivity and magnet
in the superflow region outside the vortex cores. Sp
density-wave correlations induced in these regions may l
into the vortex cores, but our treatment is not expected to
reliable in the latter region: the nature of the electronic c
relations in the vortex cores remains an open question.

Our continuum treatment of dynamic and static sp
density-wave order differs from earlier works in several k
aspects. An important feature of Refs. 33,34 is the st
mean-field treatment of the SDW order in the vortex cor
which is imposed by their ‘‘SO~5!’’ picture of SC order out-
side the cores ‘‘rotating’’ into static antiferromagnetism
the cores.36 This should be contrasted to our approach,
which magnetic quantum criticality implies dynamic ma
netic fluctuations while the SC order can be safely cons
ered static. Further, Refs. 33,34 assumed the~near! equality
of the gradient and ‘‘mass’’ terms for the SC and tw
sublattice SDW order parameters, as naturally suggeste
the dynamic SO~5! symmetry, which requires a symmetr
between the excited states in the SC and SDW phases.
result they found static two-sublattice magnetization induc
by the vortex core, over a scale which was of order
vortex core sizej0 and in a regime where superconductivi
was essentially completely suppressed. This assumption
relaxed in a recent paper,37 where following our work,9 the
possibility of a generalized dynamic SDW in regions larg
than the nonsuperconducting core, and coexisting with w
established superconductivity, was appreciated. Hu
Zhang37 also suggested that a small proximity-type coupli
between the magnetic domains centered on the neighbo
vortices may be sufficient to stabilize static long-range m
netic order in a SC1SDW phase, in which enhancement
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YING ZHANG, EUGENE DEMLER, AND SUBIR SACHDEV PHYSICAL REVIEW B66, 094501 ~2002!
the SDW in the vortex cores was the dominant effect. As
have reviewed at length above, the strongly relevant exc
self-interactions lead to a different description of the S
1SDW phase;9 in the SC phase, as one approaches the
1SDW phase, the SDW order is induced over large len
scales outside the vortex core, and the influence of the su
flow is paramount. Only in the regime where magnetic fie
is small and the system is well within the SC phase~and far
from the SC to SC1SDW boundary!, can we speak in term
of localized bound state pulled below the continuum. Ho
ever, this limit is of little experimental interest, since it co
responds to high energy magnetic excitons~which, as dis-
cussed above, are probably strongly overdamped by o
excitations associated with the vortex cores! with a vanish-
ingly small intensity.

1. Pinning of charge order in the SC phase.

Our physical discussion has so far neglected the influe
of the pinning potential inSlat in Eq. ~1.12!. We will continue
to neglect this term in most of this paper, apart from com
tations in Sec. IV E whose content we briefly describe he
This analysis is motivated by the STM experiments of Ho
manet al.18

The SC phase of Fig. 3 preserves spin rotation invarian
and so haŝFxa&50 and, by Eq.~1.2!, ^Sa&50 @if we were
to account for the small Zeeman term~Appendix B!, the
analogous statement holds for the spin density in the p
perpendicular to the magnetic field#. In the absence ofSlat ,
all the remaining terms in the partition functionZ in Eq.
~1.13! are invariant under the sliding symmetryFxa

→eiuFxa , and so we also havêFxa
2 &50 and, by Eqs.

~1.5!,~1.6!, ^dr&50 in the SC phase. Now if we include th
effect of Slat perturbatively~which is all we shall do here!,
the pinning of the dynamic fluctuations by the vortex co
leads to static CDW order witĥFxa

2 &Þ0 and ^dr&Þ0,
while the continued preservation of spin rotation invarian
implies that we still havêFxa&50 and^Sa&50. ~Of course
in the other SC1SDW phase, spin rotation symmetry is br
ken, and sô Fxa&Þ0 and^Sa&Þ0, along with static CDW
order.!

The nucleation ofstatic CDW order, but withdynamic
SDW order, in the SC phase by the vortices was first p
dicted in Refs. 10,51, where a connection was also m
with lattice scale studies of bond-centered charge order
relations in superconductors with preserved spin rota
invariance.26 These latter works found a significant dopin
range over which the charge order had a period pinne
four lattice spacings, which is the period observed in
STM experiments of Hoffmanet al.18 ~the same period also
appeared in density matrix renormalization group studies
White and Scalapino52!. Here we are interested in the spat
extent of theenvelopeof the period four charge order. Fo
lowing Ref. 11, here we will compute this envelope usi
our present models for dynamic SDW/CDW fluctuations
the SC phase, and the pinning of a static CDW bySlat .

After this paper was originally released, we learned of
microscopic model of Chen and Ting53 for the STM experi-
ments, which follows the earlier work of Ref. 48. The
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model has static order forboth the SDW and CDW, and thus
would apply only in the SC1SDW phase of our phase dia
gram in Fig. 3. It appears unlikely to us that the sligh
overdoped BSCCO sample used by Hoffmanet al.18 is in the
SC1SDW phase.

The simple model of the field-induced dynamic SD
fluctuations we have described in this section can be rea
extended to compute the static CDW order induced byz in
the SC phase. Indeed, the upshot of our preceeding dis
sion of the extended structure ofJ0(r ) is that we can use the
Gaussian theorySG in Eq. ~1.15! with V(r ) given by the
constant value in Eq.~1.21!: computing^Fxa

2 & in the theory
SG1Slat for this value ofV(r ) and to first order inz, we
find11

^Fxa
2 ~r ,t!&5(

rv
S 3

8p3/2@seff~H !#1/4v5/2D
3ze2 iÃ

e22ur2rvuAseff(H)/v

ur2r vu3/2
, ~1.23!

where ur2r vu[v$@(x2xv)/v1#21@(y2yv)/v2#2%1/2 and v
5(v1v2)1/2; the result~1.23! holds for largeur2r vu, and the
divergence at smallur2r vu it cutoff by lattice scale effects
Note that the static CDW order decays exponentially arou
each vortex core over a length scalejc5v/@2Aseff(H)#
which has been increased by the influence of the fie
induced superflow@by the decrease ofseff(H) in Eq. ~1.20!#.
Note also that this length scale isnot related to any localiza-
tion scale associated with the SDW stateJ0(r ); indeed, we
have argued above that the latter state is extended. In
present simple Gaussian calculation, we used the very sim
constant potential given in Eq.~1.21! in the Schro¨dinger
equation for the exciton, Eq.~1.17!; all eigenstates of such a
equation are extended plane-wave states. Instead, the e
nential decay in Eq.~1.23! arises from the integral over a
the oscillating~but extended! excited states of Eq.~1.17!.
The body of the paper will show that the same feature a
holds when the full form ofV(r ) is used, and not just the
crude approximation in Eq.~1.21! ~see Figs. 15 and 16!.

It is useful to make an analogy between the above re
and the phenomenon of Friedel oscillations in a Fermi liqu
A Fermi liquid state has no static SDW or CDW order, b
there are enhanced fluctuations of these orders at 2kF , the
wave vector which spans extremal points of the Fermi s
face. In the presence of an external impurity, static CD
oscillations at 2kF are induced, while full spin-rotation in
variance is preserved. The amplitude of these oscillati
decay with a power-law because the Fermi liquid has gap
spectrum of SDW/CDW excitations.

In the present situation, the physics of the doped M
insulator induces a preference for excitonic SDW fluctu
tions at the wave vectorsK sx,y and for CDW fluctuations at
the wave vectorsK cx,y52K sx,y . The SC phase has a sp
gap D at these wave vectors, and so such spin correlati
decay exponentially on the scalejs5v/D ~as we have noted
this is not a localization scale of the spin exciton stat
which are all extended!. The vortex core pins the phase th
1-8
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COMPETING ORDERS IN A MAGNETIC FIELD: SPIN . . . PHYSICAL REVIEW B66, 094501 ~2002!
dynamic SDW fluctuations which reside above this spin g
and the resulting ‘‘Friedel oscillations of the spin gap’’ a
manifested by static CDW oscillations at the wave vect
K cx,y whose envelope decays exponentially over a len
scalejc5js/2. These may therefore be viewed as the Frie
oscillations associated with the excitonic bound states
are present below the particle-hole continuum of thed-wave
superconductor. In a weak-coupling BCS/RPA theory o
can also expect additional Friedel oscillations associa
with the continuum of particle-hole excitations, whose wa
vector is determined by the quasiparticle dispersion. Suc
picture may be appropriate in the strongly overdoped limi
zero magnetic field, with pinning provided by impuritie
However, as one lowers the doping in the SC phase~to ap-
proach the boundary to the SC1SDW phase!, an excitonic
bound state appears, and we have focused on its phy
here; the wave vector of this exciton is determined by stro
coupling effects in the doped Mott insulator. The strength
this exciton could also be enhanced relative to the parti
hole continuum in the vicinity of vortices in an applied ma
netic field—this effect requires explicit consideration of t
fermionic quasiparticles, and so is beyond the scope of
theories considered here.

The outline of the remainder of this paper is as follow
We will begin in Sec. II by a discussion of the phase diagr
of the spin and charge-density-wave order parameters in
magnetic field. More complex phases and phase diagram
also possible, associated the composites and ‘‘fractions
these order parameters, but we will postpone their discus
until Sec. VI. We will turn to the influence of the magnet
field in Sec. III: here we will restrict our attention to th
quantum transition described bySF , but most of the zero-
field transitions discussed in Sec. VI have a related respo
to an applied magnetic field. Sec. III contains a descript
of the phase diagram in the magnetic field, while the sub
quent sections describe the dynamic and static propertie
the two phases on either side of the critical point in so
detail: Sec. IV describes the SC phase, while Sec. V
scribes the SC1SDW phase. Section VII reviews earlier th
oretical and experimental work on the interplay of magn
tism and superconductivity, and discuss its relationship
our treatment here. We conclude in Sec. VIII by consider
implications of our results for recent experiments; read
not interested in theoretical details may skip ahead to S
VIII now. A number of technical and numerical details a
pear in the appendixes.

II. PHASE DIAGRAM IN ZERO MAGNETIC FIELD

We orient ourselves by discussing the phase diagram
models with various types of spin- and charge-density-w
order. We will restrict our attention in this section to ze
external field, assume that a background SC order is alw
present in all the phases. As we have argued above,
implies that we need not consider the SC order param
explicitly, and its influence only serves to renormalize va
ous couplings in the effective actions. A somewhat differ
viewpoint, with a more explicit role for the SC order, h
been taken recently by Lee.54
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Here, we consider phases that are characterized simpl
the condensates of one or more of the order parametersFx,ya
andfx,y , introduced in Sec. I A. More complex phases a
sociated with composites or ‘‘fractions’’ of these fields a
also possible and these will be considered later in Sec.
However, the remainder of the paper will only deal with t
influence of the magnetic field on phases and phase bo
aries associated with the order parametersFx,ya and fx,y ;
the more complex cases have similar properties which ca
described in an analogous manner.

To characterize the simple phases we need an effec
action Sf for the fx,y , while that for Fx,ya is SF in Eq.
~1.8!; the former can be written down using a reasoning sim
lar to that for Eq.~1.8!, and we obtain

Sf5E d2rdtF u]tfxu21 ṽ1
2u]xfxu21 ṽ2

2u]yfxu21u]tfyu2

1 ṽ1
2u]xfyu21 ṽ2

2u]yfyu21 s̃~ ufxu21ufyu2!1
ũ1

2
~ ufxu4

1ufyu4!1w̃1ufxu2ufyu2G . ~2.1!

The correspondence~1.6! implies that forK cx52K sx and
K cy52K sy the SDW and CDW order parameters are coup
by

SFf52lE d2rdt@fx* Fxa
2 1fy* Fya

2 1c.c.#; ~2.2!

without loss of generality, we can assume that the coup
l.0. At the mean-field level, the properties of the quantu
modelSF1Sf1SFf are essentially identical to the classic
models considered by Zacharet al.23 for spin and charge-
ordering transitions at nonzero temperature; so we can
rectly borrow their results, and a characteristic mean-fi
phase diagram is shown in Fig. 4.

FIG. 4. Mean-field, zero-temperature phase diagram of the z
magnetic field model SF1Sf1SFf defined in Eqs.
~1.8!,~2.1!,~2.2!, with u2,0.
1-9
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YING ZHANG, EUGENE DEMLER, AND SUBIR SACHDEV PHYSICAL REVIEW B66, 094501 ~2002!
Next, we discuss the critical properties of the vario
second-order quantum transitions in Fig. 4. Near the tra
tion between phase II (SC1SDW) and the symmetric phas
I ~SC!, the primary order parameters areFx,ya . We can in-
tegrate out the noncriticalfx,y fields and this merely renor
malizes the couplings inSF . So the theorySF is the critical
theory for this transition atH50. This is a model of some
complexity, and the universal critical properties of relat
simpler models are the focus of some debate in
literature,55–59 these earlier results are briefly reviewed
Appendix D. These previous studies correspond to the c
whereFxa and Fya are decoupled (w15w25w350), and
weakly first-order transitions are obtained in some cases.
will address the generalization of these previous analyse
the case of nonzerow1,2,3 in future work. Here, we will be
satisfied by considering the simplest, and most symme
case of a second-order transition: for the special valuesv1

5v2 , u15w1 , u25w25w350 the modelSF has O~12!
symmetry, and its properties are identical to that of theN
512)-componentw4 theory Sw to be described shortly be
low. The influence ofH on other second-order or weak
first-order transitions should be very similar, with th
changes only modifying the numerical values of cert
asymptotic critical parameters. Part of our reason for
expending much effort on this point is that these asympt
critical are not particularly relevant for the experimental si
ation in HÞ0 anyway: after including the small effects o
Slat in Eq. ~1.12!, the ‘‘sliding’’ symmetry ofSF disappears,
and the asymptotic critical properties of the SC1SDW to SC
transition inHÞ0 become identical to the (N53) compo-
nentw4 theorySw . We will discuss theHÞ0 properties of
Sw at some length in this paper, and we expect that clos
related results apply to the generalizedSF and toSF1Slat .

Near the transition between phases III and I in Fig. 4,
roles ofFx,ya andfx,y are reversed. Now we can integra
out the noncriticalFx,ya , this renormalizes the couplings i
Sf , and the renormalizedSF is the critical theory for this
transition atH50. At nonzeroH, a model closely related to
the one discussed above applies. We will not explic
present the results for this model here, as most physical p
erties are essentially identical to those ofSF1Sc1SFc .

The remaining second order quantum transition in Fig
is that between phases II and III. Both these phases h
^fx,y&Þ0, and the charge order can be viewed as a nonc
cal spectator to the transition. For specificity, let us assu
that ^fx& is real and positive, whilêfy&50; other cases
lead to similar final results. Now replacefx,y by their expec-
tation values inSF1SFf in Eqs. ~1.8!,~2.2!, and examine
fluctuations ofFx,ya at the Gaussian level: those of Re@Fxa#
have an energy lower than all other components. Clos
phase boundary between II and III we can therefore ass
that the critical theory involves only wa(r ,t)
[Re@Fxa(r ,t)#, and all other components only renormali
the couplings in its effective action. In this manner, we c
conclude that the II to III phase transition is described by
familiar (N53)-componentw4 field theory, with effective
action
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Sw5E d2rdtH 1

2
@~]twa!21v2~“ rwa!2

1@s1kuc~r !u2#wa
2 #1

u

2
~wa

2 !2J , ~2.3!

where the indexa51•••N, and the fieldwa(r ,t) is real. We
have rescaled spatial co-ordinates to make the velocitiesv1,2
equal to the common valuev. For completeness, we hav
also included the coupling to the SC orderc which derives
from Eq. ~1.10!. An analysis of the properties of the theo
F/T1Sw , defined in Eqs.~1.9! and ~2.3!, in nonzero field
shall occupy us in most of the remainder of the paper. Re
also that theN512 case of this theory also describes a p
ticular case of the I to II transition discussed earlier.

III. PHASE DIAGRAM IN A MAGNETIC FIELD

We now embark on a presentation of the main new res
of this paper: a description of the phase diagram and
dynamic spin spectra ofF/T1Sw , defined in Eqs.~1.9! and
~2.3!, as a function of the applied fieldH. As discussed nea
Eq. ~2.3!, this theory describes the response of a numbe
specific phase boundaries of states with SDW/CDW orde
an applied magnetic field; the number of components ofwa
takes the valuesN53,12 depending upon the transition o
interest, but we expect similar results for all values ofN
>3. Actually, closely related analyses can be applied to m
of the phases to be discussed in Sec. VI. The basic eff
that all couplings associated with the non-superconduc
order parameter acquire aH ln(1/H) depends, is very robus
and leads to analogous phase diagrams in almost all cas

The theoryF/T1Sw has a rather number of coupling con
stants, and it is useful to use our freedom to rescale leng
times, and field scales to obtain an irreducible set of para
eters whose values control the structure of our results. F
as is conventional in the standard Ginzburg-Landau theor
superconductivity, we introduce the superconducting coh
ence lengthj0 and the field scalesHc andHc2

0 :

j05A 1

2m* a
,

Hc5A4pa2

b
,

Hc2
0 5

2m* ac

e*
, ~3.1!

as we noted earlier,Hc2
0 is the value of the upper critical field

at the point M in Fig. 3, andHc2
0 5A2kHc , wherek is usual

the Ginzburg Landau parameter. We will also see below
Sec. IV B that the couplinga acquires a shift renormaliza
tion due to its coupling towa fluctuations: we assume tha
renormalization has already been performed in the defi
tions~3.1!. We now use the lengthj0, the velocityv, and the
1-10
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parameters in Eq.~3.1! to set various length, time, temper
ture, field, and coupling constant scales; we define the
mensionless parameters

r̃5
r

j0
, t̃5

vt

j0
, T̃5

j0T

v
,

H̃5
H

Hc2
0

, c̃5Ab

a
c, w̃a5Avj0wa ,

s̃5
j0

2

v2
s, ũ5

j0

v3
u, k̃5

j0
2a

v2b
k. ~3.2!

It is evident from the above that we are measuring len
scales in units ofj0 and energy scales in units ofv/j0.

Collecting all the transformations, let us restate the pr
lem we are going to solve; we drop all the tildes, and it
henceforth assumed that all parameters have been mod
as in Eq.~3.2!. The partition function in Eq.~1.13! is now
simplified to

Z@c~r !#5E Dwa~r ,t!expS 2
F
T

2SwD , ~3.3!

whereSw is as in Eq.~2.3! but with v51, while F is now
given by

F5YE d2r F2ucu21
1

2
ucu41u~“ r2 iA!cu2G . ~3.4!

The dimensionless constantY is given by

Y5
Hc

2j0
3d

4pv
, ~3.5!

whered is the interlayer spacing~this factor ofd is needed to
makeY dimensionless, and arises becauseF is the free en-
ergy per layer!; in determiningY, a useful unit of conversion
is 1 (T)250.0624 meV Å23. The vector potentialA in Eq.
~3.4! now satisfies

“ r3A5Hẑ. ~3.6!

An important property of the continuum theory~3.3! is
that all dependence on the short distance cutoff can be
moved by a single ‘‘mass renormalization:’’ this amounts
measuring the tuning parameters in terms of its deviation
from s5sc , the critical point between the SC1SDW and SC
phases atH50. Consequently all physical properties a
functions only of the dimensionless parametersu, k, Y,
H/Hc2

0 , ands2sc . We will present numerical results for th
frequency and spatial dependence of various observable
low as a function ofH/Hc2

0 ands2sc for the simple set of
values u5k5Y51; we do not expect any qualitativ
changes for other values of these last three parameters.
it will occasionally be convenient to exchange the parame
s2sc for D, the value of the spin gap in thes.sc SC phase
at H50.
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The technical tool we shall use in our analysis of Eq.~3.3!
is the largeN expansion. This approach35 is known to yield
an accurate description of the vicinity of spin ordering qua
tum critical points in two dimensions, and we expect t
same to hold here in the presence of a nonzeroH. Details of
the approach will emerge in the following sections: here
summarize the mainN5` results for the positions of the
phase boundaries appearing in Fig. 3.

The tetracritical pointM where all four phases meet is a
H51, s2sc5k.

The line BM represents the upper-critical field for th
vanishing of superconductivity in the presence of SDW
der; it is at

H512
k2

4uY
1

k

4uY
~s2sc!. ~3.7!

The line CM, the boundary for SDW order in the insul
tor, is ats2sc5k.

The line DM, the upper-critical field for superconductivit
in the absence of SDW order is at

H511
Nk

8pY F S N2u2

16p2
2k1s2scD 1/2

2
Nu

4pG . ~3.8!

Experimentally, the most important and accessible ph
boundary is AM, the line representing onset of SDW order
the SC phase. The position of this line cannot be determi
analytically: we will present detailed numerical results a
an expansion in the vicinity ofM; for small H its location
behaves as

H;
2~s2sc!

k ln@1/~s2sc!#
, ~3.9!

as may be readily deduced from Eq.~1.20!, and was quoted
already in Eq.~1.22!.

Our numerical as well as analytical studies will be divid
into two parts, one for ‘‘SC’’ region of Fig. 3 in Sec. IV, an
the other for ‘‘SC1SDW’’ region in Sec. V.

IV. PHYSICAL PROPERTIES OF THE SC PHASE

This section will describe an analysis of Eq.~3.3! in the
regime where spin rotation invariance is preserved w
^wa&50. As we discussed earlier at the end of Sec. I C, up
including the effect of the lattice pinning term~1.12! in a
nonzeroH, this phase does have static CDW order w
^fx,y&Þ0, while preserving spin rotation invariance: th
will be discussed in Sec. IV E.

A. Large N saddle point equations

The index a in Sw in Eq. ~2.3! extends overa
51, . . . ,N, and depending upon the transition in Fig. 4 w
are interested in, we have eitherN53 or N512. For both
cases, it is known that an accurate description of the phys
properties is described by the largeN expansion, whose
implementation we shall now describe.

First, we introduce an auxiliary field
1-11
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V~r ,t!5s1kucH~r !u212uwa
2~r ,t!. ~4.1!

We will often place a subscriptH on various quantities~as
for c above! to emphasize that they are being evaluated a
nonzeroH. Let us also denote

s85s1kucH~r !u2. ~4.2!

Now we add an innocuous term toSw , whose only effect is
to multiply the partition function by a constant after a fun
tional integration overV(r ,t):

Sw→Sw2E d2r E
0

1/T

dt
1

8u
~V22uwa

22s8!2

5E d2r E
0

1/T

dtF1

2
~]twa!21

1

2
~“ rwa!2

2
1

8u
V 21

1

2
Vwa

21
1

4u
Vs8G . ~4.3!

After integrating outwa(a51•••N), we have

Z5E DV~r !expF2
N

2
Tr ln~2]t

22“ r
21V!

2
1

4u
Vs81

1

8u
V2G . ~4.4!

Now by takingN→` while keepingNu constant, we obtain
the saddle point equation in whichV is a function ofr but
independent oft:

VH~r !5s1kucH~r !u212NuT(
vn

GH~r ,r ,vn!. ~4.5!

where thewa propagatorGH(r ,r 8,vn) is given by

GH~r ,r 8,vn!5^r u@vn
22“ r

21VH~r !#21ur 8&, ~4.6!

with vn a Matsubara frequency. In this case, the largeN
expansion is equivalent to a self-consistent one-loop calc
tion.

The saddle point equation for superconducting order
rameter follows from Eq.~1.14!: it is just the conventiona
Ginzburg-Landau equation with one additional term from
w,c coupling

F211
Nk

2Y
T(

vn

GH~r ,r ,vn!1ucH~r !u22~“ r2 iA!2GcH~r !

50. ~4.7!

So the two unknown functionsVH(r ) and cH(r ) are to be
determined simultaneously by the solution of Eqs.~4.5! and
~4.7!. As stated above, the expressions in these equat
depend upon the short distance cutoff, but we show in S
IV B that this can easily be removed by a simple shift
parameters.
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B. Renormalization of parameters

It is first useful to obtain the complete solution of Eq
~4.5! and ~4.7! at H50. Let s5sc be the point where mag
netic order appears~so that^wa&Þ0 for s,sc), where35 V
50. Then Eq.~4.5! tells us that

05sc1kuc0cu212NuE dv

2pE d2k

4p2

1

v21k2
, ~4.8!

wherec0c is the r independent value ofc(r ) at s5sc and
H50, while Eq.~4.7! gives

211uc0cu21
Nk

2YE dv

2pE d2k

4p2

1

v21k2
50. ~4.9!

It is useful to normalize things so thatc0c51 at s5sc , H
50 andT50. This is achieved if we renormalizea to re-
move the offending term in Eq.~4.9!. We make the shift in
Eq. ~1.9! @before the rescalings in Eq.~3.2!#

a→a1
Nkb

2a E dv

2pE d2k

4p2

1

v21v2k2
. ~4.10!

Then, after Eq.~3.2!, Eq. ~4.7! is modified to

H 211
Nk

2Y FT(
vn

GH~r ,r ,vn!2E dvd2k

8p3

1

v21k2G
1ucH~r !u22~“ r2 iA!2J cH~r !50, ~4.11!

while Eq. ~4.9! simply becomes

c0c51. ~4.12!

Now move tos.sc , where we have a spin gap

D0[AV0.0. ~4.13!

Subtracting Eq.~4.8! from Eq. ~4.5! we get

D0
25s2sc1k~ uc0u221!2

NuD0

2p
, ~4.14!

where Eq.~4.11! yields

uc0u2511
NkD0

8pY
. ~4.15!

Inserting Eq.~4.15! back into Eq.~4.14! we obtain

D0
21

Nu

2p S 12
k2

4uY DD05s2sc . ~4.16!

Let us now use the above equations to simplify the equati
for HÞ0 andTÞ0. The new form will be independent o
lattice cutoff.

From Eqs.~4.5!,~4.8!,~4.16! we obtain
1-12
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VH~r !5D0
21k@ ucH~r !u22uc0u2#12NuFT(

vn

GH~r ,r ,vn!

2E dv

2p

d2k

4p2

1

v21k21D0
2G , ~4.17!

where uc0u2 is given in Eq.~4.15!. Using Eqs.~4.17! and
~4.11! we obtain

F S 12
k2

4uY D @ ucH~r !u22uc0u2#

1
k

4uY
@VH~r !2D0

2#2~“ r2 iA!2GcH~r !50.

~4.18!

The expressions~4.17!,~4.18! are the main equations w
shall solve for the unknownsVH(r ) andcH(r ) in this paper.
It can be checked that atH50, T50, these equations ar
solved byVH5D0

2 andcH5c0. We describe the numerica
solution of these equations forHÞ0 in Appendix E and
present the results in the following subsection. A useful s
in this numerical solution is the following parametrization
the Green’s functionGH(r ,r 8,vn) in Eq. ~4.6!

GH~r ,r 8,vn!5(
m

E
1BZ

d2k

4p2

Jmk* ~r !Jmk~r 8!

vn
21Em

2 ~k!
,

~4.19!

whereJmk(r ) are the complete set of eigenfunctions of t
analog of the Schro¨dinger equation~1.17!

@2¹ r
21VH~r !#Jmk~r !5Em

2 ~k!Jmk~r !. ~4.20!

Herek is a ‘‘Bloch’’ momentum which extends over the firs
Brillouin zone of the vortex lattice,m is a ‘‘band’’ index, and
Em(k) are the corresponding energy eigenvalues. All of o
numerical analysis was performed for the valuesu5k5Y
51 andN53.

C. Phase boundaries

Equations~4.17! and ~4.18! can be readily solved to ob
tain the locations of the CM and DM phase boundaries
Fig. 3. On DM, the superconducting phase parametercH(r )
vanishes and all parameters becomer independent; thus Eq
~4.17! becomes

VH5D0
22kuc0u21

Nu

2p
~AVH2D0!5s2sc2k2

Nu

2p
AVH,

~4.21!

where we used Eqs.~4.15! and~4.14!. Then from Eq.~4.18!
we have
09450
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r

n

H512
k2

4uY
1

k

4uY
~s2sc2VH!

512
k2

4uY
1

k

4uY S Nu

2p
AVH1k D

511
Nk

8pY F S N2u2

16p2
2k1s2scD 1/2

2
Nu

4pG , ~4.22!

which is the result quoted in Eq.~3.8!. Similarly, it is easy to
see that the phase boundary CM is ats2sc5k.

It remains to determine the location of the phase bound
AM, which is also physically the most interesting one. W
determined this boundary by a full numerical solution
Eqs.~4.17! and~4.18! for a range of parameters. Stability o
the SC phase requires that all the eigenvaluesEm

2 (k) of Eq.
~1.17! remain positive. The lowest of these eigenvalues
E0(0) and we followed its behavior as a functionH: a typical
result is shown in Fig. 5. We expectE0(0) to vanish linearly
in the deviation from the critical field, as the critical theory
expected to be in the universality class of the ordinary O~3!
w4 field theory, and the latter has critical exponentzn51 in
the largeN limit. So we can determine the critical field by
linear extrapolation, and this is also shown in Fig. 5. Co
bining the results of such calculations at a range of value
s, we obtain our numerical result for the location of the A
boundary shown in Fig. 6.

Some further analytic results on the location of the A
phase boundary can be obtained in the vicinity of the mu
critical point M. It can be shown that the deviation of th
phase boundary from M is linear in the largeN limit, i.e., it
is at H512%(k2s1sc), where% is a numerical constant
We describe these results in Appendix F, including the de
mination of%. The results obtained in this manner are co
sistent with our complete numerical analysis describ
above, and this is a strong check on our numerical analy

Finally, we recall our result~3.9! for the behavior of AM
at small H and s2sc . Here there is a crucial logarithm
which follows from Eq.~1.20!, and whose physical origin

FIG. 5. The lowest eigenvalue of Eq.~1.17!, E0(0) vs H for s
2sc50.2. The linear continuation of the line to solveE0(0)50
gives us the criticalH for this s , which is about 0.117 with an
uncertainty of60.002.
1-13
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was discussed in Sec. I C. The signal of this logarithm
clearly visible in the phase boundary in Fig. 6.

D. Dynamic spin susceptibility

In this section we describe the evolution of the dynam
spin fluctuation spectrum in the SC phase of Fig. 3. This
clearly specified by the Green’s functionGH(r ,r 8,vn) in Eq.
~4.6! which we computed above in determining the pha
boundary. More specifically, we see from Eq.~1.2! that the
observed dynamic spin susceptibilityx(q,v) is given by

x~q,v!}xw~q1K sx ,v!1xw~q2K sx ,v!

1xw~q1K sy ,v!1xw~q2K sy ,v!, ~4.23!

where xw , the dynamic susceptibility for the fieldwa , is
given by

xw~k,v!5
1

VE d2rd2r 8eik•(r2r8)GH~r ,r 8,v!

5(
m,G

E
1BZ

d2p d~p1G2k!
ucmG~p!u2

Em
2 ~p!2v2

,

~4.24!

FIG. 7. Reciprocal lattice of the vortex lattice. The density plo
in Figs. 8, 9, 10, and 11 havek varying along the arrow shown, with
numerical values as shown.

FIG. 6. Numerical results for the phase boundary AM in Fig
for u5k5Y51. Also shown is a portion of the phase bounda
BM whose position is known analytically from Eq.~3.7!. Different
aspects of the physical properties are described in the remaind
the paper at the points labeled a–l.
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whereV is the volume of the system, thep integration is over
the first Brillouin zone of the reciprocal vortex lattice,G
extends over the reciprocal lattice vectors of the vortex
tice, Em

2 (p) are the eigenvalues of Eq.~4.20! ~see also Ap-
pendix E!, and the parameterscmG(p) are defined in Eq.
~E2!. We present results for Im@xw(k,v)# below.

It is clear from Eq.~4.24! that in the present largeN
approximation, the spectrum ofxw consists entirely of sharp
delta functions. These specify the dispersion ofS51 ‘‘exci-
tons’’ which describe the SDW fluctuations, and are co
nected with the zero field ‘‘resonance’’ peak discussed ea
on in Sec. I. The excitons scatter off the vortex lattice, a
our results describe the evolution of the resulting spectrum
one moves towards the onset of SDW order by increasing
applied magnetic field. We show the structure
Im@xw(k,v)# by broadening the delta functions into sha
Lorentzians, and displaying the results in density plots. T
momentumk in these plots varies along the direction of th
reciprocal lattice shown in Fig. 7. The results for a smal

FIG. 8. Density plot of Imxw in Eq. ~4.24! in the SC phase for
momenta along the arrow in Fig. 7. The plot is fors2sc50.1 and
H50.01 ~point f in Fig. 6!. In this, and all subsequent plots o
Imxw , the delta function peaks in~4.24! have been broadened int
Lorentzians with energy width 0.01 for display purposes only.

FIG. 9. As in Fig. 8 but for largerH50.035, which brings the
system very close to the AM phase boundary to the SC1SDW
phase~point e in Fig. 6!.

of
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value of s2sc are shown in Figs. 8 and 9, and those f
larger value ofs2sc are in Figs. 10 and 11. Note that fo
very smallH, there is less dispersion for the lowest mod
this is an indication that this excitation is centered on
vortex core, and there is weaker coupling between neigh
ing vortices. As the field is increased, this coupling increas
and the dispersion looks closer to that of a nearly free p
ticle, with weak reflections at the Brillouin zone boundari
of the vortex lattice. Also, the energy of the minimum ex
tation decreases with increasing field, until it vanishes at
AM phase boundary to the SC1SDW phase.

We also show in Figs. 12 and 13 the spatial structure
the modulus of the superconducting order parame
ucH(r )u2. The Brillouin zone boundary reflections abov
arise from the scattering of the exciton off the potential c
ated byucH(r )u2.

Finally, for experimental comparisons, it is useful to p
the intensity of the lowest exciton mode as a function of
applied field. From Eq.~4.24! we see that this intensity i
uc00(0)u2. We show a plot of this quantity in Fig. 14. Observ
that except for very small values ofH, the intensity is of
order unity, which is the behavior expected for an extend

FIG. 10. As in Fig. 8 but with largers2sc : H50.1 ands2sc

50.9 ~point m in Fig. 6!.

FIG. 11. As in Fig. 10 but with a largeH50.8, which brings the
system very close to the AM phase boundary to the SC1SDW
phase~point l in Fig. 6!.
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exciton scattering off a periodic potential as in Fig. 12.
H→0, the behavior crosses over to that expected when
vortex cores are essentially decoupled, and the lowest m
is associated with a state localized around each vortex c
in this limit, we expect37 the intensity;H.

E. Pinning of charge order

This section will consider the consequences of the pinn
termSlat in Eq. ~1.12!. We argued at the end of Sec. I C th
this term pins the charge order, and leads to a static C
with ^fx,y&Þ0 @recall Eq.~1.5!# in the SC phase, while pre
serving spin rotation invariance witĥFx,ya&50. We have
recently proposed11 this as an explanation for the CDW ob
served around the vortex in the STM measurements of H
manet al.18 Section I C, also gave an initial estimate@in Eq.
~1.23!# of the spatial structure of this pinned CDW: here w
will obtain a more precise result, using the full solution
the SDW fluctuations in the presence of the vortex latti
Using the relationship~1.6! between the CDW and SDW
orders in the vicinity of the SC to SC1SDW transition, we
conclude that to first order inz

^fx,y~r !&}ze2 iÃV~r ! ~4.25!

with

V~r ![T(
vn

(
rv

GH
2 ~r ,r v ,vn!, ~4.26!

FIG. 12. Spatial dependence of the modulus of the superc
ducting order parameterucH(r )u2 plotted on the rectangular hal
unit cell of the vortex lattice indicated by Fig. 13. This result is f
s2sc50.5 andH50.1 ~point k in Fig. 6!.

FIG. 13. Half unit cell of the triangular vortex lattice in rea
space.
1-15
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wherer v extends over the vortex lattice sites; clearlyV(r )
has the full periodicity of the vortex lattice.

We used our numerical solution of Eqs.~4.17! and~4.18!
to compute the functionV(r ), which is proportional to the
amplitude of the static CDW induced by the vortex lattice
the spin gap phase. We show our results forV(r ) in Figs. 15

FIG. 14. Intensity of the lowest exciton mode in the SC pha
uc00(0)u2 as a function ofH for two values ofs2sc .

FIG. 15. Plots of the functionV(r ) ~filled symbols! in Eq.
~4.26! representing the static CDW order pinned by the vortic
along with the lowest SDW eigenfunctionJ00(r ) of the dynamic
spin fluctuations above the spin gap~open symbols!, at s2sc

50.2. The spatial coordinatex is along the line connecting two
nearest-neighbor vortices and its scale has been chosen so th
vortex lattice spacing is unity~see Fig. 13!. The field takes the
valuesH50.02 ~squares, pointh in Fig. 6! andH50.1 ~triangles,
point g in Fig. 6!; the latter field is close to the AM phase bounda
in Fig. 6. Note that the spin exciton state at pointg is well extended
through the lattice, while the charge order remains localized aro
the vortices. For pointh the localization length of the spin excito
state is about twice that of the charge order. These results are
sistent with the discussion in Sec. I C 1. As was also noted be
Eq. ~1.23!, the continuum expression~4.26! actually has a diver-
gence forr equal to anyr v : our numerical computation uses a fini
momentum cutoffL, and this rounds out the divergence at d
tancesur2r vu&L21; we have verified this by numerical comput
tions at differentL. In the same units as those forx in the figure, we
usedL'36 above.
09450
and 16 for a representative set of values in the SC ph
Also shown in the same figures, for orientation, is the fo
of J00(r ), the lowest-energy eigenfunction of the dynam
SDW equation~1.17! which appears in the Green’s functio
~4.19!. For very small field, bothV(r ) andJ00(r ) are local-
ized around the vortex centers, with the localization length
the former being about half that of the latter. However,
larger fields, the exciton wave functionJ00(r ) gets delocal-
ized, while the CDW orderremains localized. This localiza-
tion arises from the summation over all the states in E
~4.19! and is in keeping with the discussion at the e
of Sec. I C 1.

V. PHYSICAL PROPERTIES OF THE SC¿SDW PHASE

We now turn to the analysis of the partition function~3.3!
in the phase with broken spin rotation invariance and^wa&
50. This phase is reached when the lowestS51 exciton
mode in Sec. IV,J00(r ), reaches zero energy@E0(0)50#
and then condenses. The presence of the condensate lea
long-range SDW order. We will adapt our largeN computa-
tion to include such a condensate in the following subs
tion, and then describe the spatial structure of the conden
and the dynamic spin excitations.

A. Large-N saddle point equations

The analysis here is parallel to that in Sec. IV A. W
introduce the auxiliary fieldV(r ,t) defined in Eq.~4.1! and
write the action in the form similar to Eq.~4.3!. However, to
account for the condensate, we have to select a partic
orientation in spin space, and treat the corresponding s
component in a selective manner. So we write

wa5~ANn,p1 ,p2 , . . . ,pN21!, ~5.1!

and integrate out onlyp1 ,p2 , . . . ,pN21 to obtain

e

,

the

d

n-
w

FIG. 16. As in Fig. 15 but fors2sc50.5. The field takes the
valuesH50.1 ~squares, pointk in Fig. 6! and H50.4 ~triangles,
point j in Fig. 6!; the latter field is close to the AM phase bounda
in Fig. 6. Now both points have extended spin exciton states~that at
point j is essentially a plane wave!, while the charge order is expo
nentially localized.
1-16
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Z5E DV~r ,t!Dn~r ,t!expF2
N21

2
Tr ln~2]t

22“ r
21V!

1
1

8u
V22

1

4u
Vs82

N

2
~]tn!22

N

2
~“ rn!22

N

2
Vn2G ,

~5.2!

wheres8 was defined in Eq.~4.2!. Now we takeN→` while
keepingNu fixed, and ignoring the difference betweenN and
N21. This leads to saddle point equations for the tim
independent fieldVH(r ) and the SDW condensatenH(r );
these equations replace Eq.~4.5!, but contain additional
terms due to the spontaneous spin polarization

VH~r !5s1kucH~r !u212NuT(
vn

GH~r ,r ,vn!12NunH
2 ~r !

~5.3!

and

@2“ r
21VH~r !#nH~r !50, ~5.4!

whereGH is given by Eq.~4.6!. Comparing Eqs.~5.4! and
~4.6! it is easy to see that the spectrum ofGH , as defined in
Eq. ~4.19! has one mode withE0(k)→0 ask→0; this is, of
course, the Goldstone spin wave mode associated with
spontaneous SDW condensate.

The equation which determined the superconducting o
parametercH(r ) was Eq.~4.7!, and this is now replaced b

H 211
Nk

2Y FT(
vn

GH~r ,r ,vn!12NunH
2 ~r !G

1ucH~r !u22~“ r2 iA!2J cH~r !50. ~5.5!

B. Renormalization of parameters

Now we proceed as in Sec. IV B to remove all depe
dence of Eqs.~5.3!, ~5.4!, and ~5.5! on the short-distance
cutoff. First consider the case whenT50, H50, and s
5sc , where Eqs.~4.8! and ~4.9! hold. Now after we shift
parametera in as in Eq.~4.10!, the Ginzburg-Landau equa
tion ~5.5! is modified to

H 211
Nk

2Y FT(
vn

GH~r ,r ,vn!12NunH
2 ~r !

2E dv

2pE d2k

4p2

1

v21k2G1ucH~r !u2

2~“ r2 iA!2J cH~r !50. ~5.6!

Next, subtracting Eq.~4.8! from Eq.~5.3! while noticing that
c0c is already renormalized to unity, we have
09450
-

he

er

-

VH~r !5s2sc1k@ ucH~r !u221#12NunH
2 ~r !

12NuFT(
vn

GH~r ,r ,vn!2E dvd2k

8p3

1

v21k2G .

~5.7!

From Eqs.~5.7! and ~5.6! we have

F S 12
k2

4uY D @ ucH~r !u221#1
k

4uY
@VH~r !2s1sc#

2~“ r2 iA!2GcH~r !50. ~5.8!

The final set of equations for the properties of the S
1SDW phase are Eqs.~5.7!, ~5.4!, and~5.8!; these are to be
solved for the unknownsVH(r ), cH(r ), andnH(r ). We de-
scribe the numerical solution in Appendix G.

C. Phase boundaries

We have already determined the positions of seve
phase boundaries in Fig. 3 in Sec. IV C, and it remains o
to determine BM. First notice that at the transition into
nonsuperconducting phase, the order parameterc(r ) van-
ishes, and thusVH(r ) and zH(r ) are spatially uniform. So
from Eq. ~5.4! we haveVH50. Plugging this into Eq.~5.6!
we obtain the position of the phase boundary BM specifi
in Eq. ~3.7!.

D. SDW order parameter

The presence of a static spin condensate implies that
dynamic spin susceptibility contains sharp Bragg peaks
zero frequency and at wave vectors separated from the S
ordering wave vectors by the reciprocal lattice vectors of
vortex lattice as suggested by Zhang32 and discussed by us in
Ref. 9; these are in addition to the dynamic spectra speci
in Eq. ~4.24!. This means that the dynamic structure fac
Sw(k,v) @which is related to the susceptibilityxw(k,v) in
Eq. ~4.24! by the usual fluctuation-dissipation theorem# has
the contributions

Sw~k,v!5~2p!d~v!(
G

u f Gu2~2p!2d~k2G!, ~5.9!

where G extends over the reciprocal lattice vectors of t
vortex lattice, and

f G5
AN

AU
E

U
d2re2 iG•rnH~r !, ~5.10!

where the spatial integral is overU the unit cell of the vortex
lattice with areaAU . Note that, by Eq.~4.23!, the physical
momentum is related tok in Eq. ~5.9! by shifts from the
SDW ordering wave vectorsK sx andK sy .

Figures 17 and 18 show plots of the Bragg scattering
tensityu f Gu2, for the two smallest values ofG and two values
of s2sc , as a function ofH. As argued in Ref. 9, the corre
1-17
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spondence~1.20! implies that the scattering intensity at ze
wave vector,u f 0u2 should increase with as

^u f 0u2&}H ln~1/H !. ~5.11!

The fits to this functional form in Fig. 17 show that th
works quite well. Notice also that the intensity at the fi
nonzero reciprocal lattice vectorG1 is quite small, and that it
decreaseswith increasingH. This suggests that observatio
of this satellite peak is best performed at as small a field
possible—of course,H should be large enough so thatuG1u is
large enough to be outside the resolution window of the p
at G50. It is interesting to observe here that we can vi
the Bragg peak atG1 as arising from condensation at th
nonzerok minimum in Fig. 9 of the dispersion of the excito
in the SC phase.

For completeness, we also show the real space form o
condensatenH(r ) in Figs. 19 and 20 for two points in th

FIG. 17. Bragg scattering intensityu f Gu2 as a function ofH at
s2sc50. Shown are the values atG50 ~squares! and atG5G1

~triangles!, which is the smallest nonzero reciprocal lattice vector
the vortex lattice. Note that the intensities atG5G1 have been
magnified by a factor of 150 to make them visible on this plot. T
intensities are zero atH50, becauses5sc is the quantum critical
point in zero field. The line shows 0.63H ln(3.61/H), which is the
best fit to the functional form in Eq.~5.11!.

FIG. 18. As in Fig. 18 but fors2sc520.3, showingu f Gu2 at
G50 ~squares! and atG5G1 ~diamonds!. Unlike Fig. 18, the in-
tensity u f 0u2 is nonzero even at zero field. The intensities atG
5G1 have now been magnified by a factor of 200. The line is
10.98H ln(2.12/H), which is the best fit to the functional form in
Eq. ~5.11!
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SC1SDW phase. The spatial form of the modulus of t
superconducting order parameter for the first set of par
eters is shown in Fig. 21. This last figure is the analog of F
12 which was for the SC phase.

E. Dynamic spin susceptibility

Finally, we follow the presentation in Sec. IV D and di
cuss the dynamic spin spectrum in the SC1SDW phase. The
nonzerov spectral densities presented here appear al
with thev50 contributions in Eq.~5.9!. We will restrict our
attention to the susceptibility transverse to the ordering
rection: this is given by the fluctuations of the lastN21
components in Eq.~5.1!, which are in turn related to the
Green’s functionGH in Eqs. ~5.3! and ~5.5!. So the trans-
verse dynamic spin susceptibility is given by a formu

f

3

FIG. 19. Spatial form of the SDW order parameternH(r ) in the
SC1SDW phase ats2sc520.3, H50.35 ~point b in Fig. 6! over
vortex lattice shown in Fig. 13. Notice that the vertical scale e
tends over a rather short range, and the modulation innH(r ) is quite
small relative to the uniform component.

FIG. 20. As in Fig. 19; in the SC1SDW phase ats2sc50.5,
H50.45 ~point i in Fig. 6! over a single vortex lattice unit cel
shown in Fig. 13.
1-18
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analogous to Eq.~4.24!. As before, we present the results b
broadening the delta functions to sharp Lorentzians.

Our results for the spectral densities are shown in F
22, 23, 24, and 25 for a series of values ofs2sc andH in the
SC1SDW phase. Note first that there is always a gapl
spin-wave mode. In addition there are features arising fr
scattering off the vortex lattice: these are strongest in
vicinity of the quantum critical pointA at zero field.

VI. OTHER PHASES IN ZERO MAGNETIC FIELD

The next two sections involve a slight detour from t
main flow of the paper. This section we will examine phas
and phase transitions associated with composites or ‘‘f
tions’’ of the primary order parametersFx,ya andfx,y . This
is done mainly for completeness. Readers not intereste
this detour may skip ahead to next section without loss
continuity.

FIG. 21. Spatial dependence of the modulus of the superc
ducting order parameterucH(r )u2 plotted on the rectangular ha
unit cell of the vortex lattice indicated by Fig. 13. As in Fig. 19, th
result is fors5sc andH50.35 ~point b in Fig. 6!.

FIG. 22. As in Fig. 8, but for the transverse susceptibility in t
SC1SDW phase. The parameter values ares5sc and H50.05
~point d in Fig. 6!.
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s.

s
m
e

s
c-

in
f

A. Phases with nematic order

In Sec. I A we argued that a generalized non-tw
sublattice spin density wave order may be associated wi
charge density wave. Another interesting possibility is tha
spin nematic order, which has been previously discusse
Refs. 60–63. If the CDW order parameter may be und
stood as a spin zero combination of twoSa operators
@dr(r ,t);Sa

2(r ,t)#, then the spin nematic order paramet
Qab(r ,t) corresponds to their spin two combination

Qab~r ,t!;Sa~r ,t!Sb~r ,t!2
dab

3
Sa

2~r ,t!. ~6.1!

We pause briefly to also mention here an ‘‘Ising nemat
order which has also been considered recently.30 This order
resides in real space associated with the lattice, and is
tinct from the spin-space nematic order we are conside
here. Order parameters with the Ising nematic order
uFxau22uFyau2 andufxu22ufyu2, and these clearly measur
a spontaneous choice between thex and y directions of the
lattice. Our effective actions forFx,ya and fx,y are rich
enough to also allow such orders.

n-
FIG. 23. As in Fig. 22 but for the valuess5sc and H50.3

~point c in Fig. 6!.

FIG. 24. As in Fig. 22 but for the valuess2sc520.3 andH
50.35 ~point a in Fig. 6!.
1-19
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Returning to our discussion of spin nematic order in E
~6.1!, we see that spin nematic order parameters that
consistent with the SDW order in Eq.~1.2! may be at wave
vectors (0,0) andK cx,y :

Qab~r ,t!5Q0ab~r ,t!

1Re@Qxab~r ,t!eiKcxr1Qyab~r ,t!eiKcyr#.

~6.2!

It is natural to callQ0ab a uniform spin nematic order pa
rameter, andQx,yab a spin nematic density wave~SNDW!.
Both order parameters are symmetric (Qiab5Qiba), but the
uniform spin nematicQ0ab must be real, and the spin nem
atic density waveQx,yab may be complex. The uniform spi
nematic couples to the SDW order parametersFx,ya as

SQ0 ,F52l1 (
i 5x,y

E d2r dt Q0ab

3S F ia
† F ib1F iaF ib

† 2
2

3
dabuF idu2D . ~6.3!

The spin nematic density waveQxab(r ,t) couples toFxa
via

SQx ,Fx
52l2E d2rdtFQxab

† S FxaFxb2
1

3
dabFxd

2 D1c.c.G
~6.4!

with a similar coupling betweenQyab(r ,t) andFya .
The effective action for the spin nematic order parame

may be written from the analysis of the symmetries of E
~6.2!. The interplay of the spin nematic and spin dens
wave orders may produce an extremely rich phase diagr
We will not attempt to explore its full richness, but restri
ourselves to the discussion of some simple illustrative
amples. It is also worth pointing out that the appearance
the spin nematic order~either uniform or SNDW! does not
give rise to the additional Bragg peak at zero energy,
produces a difference in the scattering cross sections for
ferent neutron polarizations.

FIG. 25. As in Fig. 22 but for the valuess2sc50.5 andH
50.45 ~point i in Fig. 6!.
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1. Uniform spin nematic

To write the effective action for the uniform spin nemat
Q0ab we can give essentially the same arguments as in
riving the Landau free energy for the classical nematics~see,
e.g., Ref. 64!

SQ0
5E d2rdtF ~]tQ0ab!~]tQ0ba!1vQ

2 ~¹W Q0ab!~¹W Q0ba!

1
1

2
A Q0abQ0ba1

1

3
B Q0abQ0bgQ0ga

1
1

4
C1~Q0abQ0ba!21

1

4
C2Q0abQ0bgQ0gdQ0daG .

~6.5!

By an appropriate spin rotation, the uniform spin nema
order parameter may always be brought into the diago
form ~this follows from the fact that it is a real and symme
ric matrix!

Q0ab5S 2
1

2
~q1h! 0 0

0 2
1

2
~q2h! 0

0 0 q

D . ~6.6!

When ^q&Þ0 but ^h&50 we have a uniaxial spin nematic
and when both expectation values are finite we have a bia
spin nematic.

Let us start by considering the interplay of the unifor
spin nematic with the collinear SDW~for simplicity we only
consider one of the SDW orders, sayFxa). A schematic
mean-field phase diagram atT50 for SF1SQ0

1SQ0 ,F with

Bl1,0 andu2,0 is shown in Fig. 26. Thick lines corre
spond to the first-order transitions, and thin lines corresp
to the second order transitions. Phase I~SC! has no magnetic
order of any kind; phase II (SC1SDW) has commensurat
SDW order, which is accompanied by a uniaxial spin ne
atic order; phase III~SC1UN! has a uniaxial spin nemati
order. ForBl1.0 and u2,0 the phase diagram qualita

FIG. 26. Mean-field zero-temperature phase diagram of
modelSF1SQ0

1SQ0 ,F in zero magnetic field for the caseu2,0.
1-20
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tively remains the same, however, phase II has a finite
pectation value of bothq and h in Eq. ~6.6!, so it has an
SDW order accompanied by the biaxial spin nematic orde
schematic phase diagram in the caseu2.0 is shown in Fig.
27. Phase II may now be a circular spiral SDW~IIa!, an
elliptic spiral SDW~IIb!, and a collinear SDW~IIc!.

2. Spin nematic density wave

For the spin nematic density wave the third order ter
are prohibited by symmetry: they carry oscillating facto
e6 iKcx,yr, and vanish after integrating over space in the lo
wavelength limit. Hence,

SQx
5E d2rdtF ~]tQxab

† !~]tQxba!1 ṽQ
2 ~¹W Qxab

† !~¹W Qxba!

1
1

2
Ã Qxab

† Qxba1
1

4
C̃1~Qxab

† Qxba!21
1

4
C̃2Qxab

†

3QxbgQxgd
† Qxda1

1

4
C̃3Qxab

† Qxbg
† QxgdQxdaG ~6.7!

and there is a similar actionSQy
.

The order parameter for the spin nematic density w
can be conveniently written using five complex numbers~see
also Ref. 65!

Qxab5S 2
cx1

A3
2cx2 cx3 cx4

cx3 2
cx1

A3
1cx2 cx5

cx4 cx5
2cx1

A3

D ~6.8!

with normalization condition(a51, . . . ,5ucxau251. This rep-
resentation makes obvious the connection between the o
parameter for the spin nematic density wave and condens
of spin-2 particles, for which Ciobanuet al.66 argued that
there exist three distinct phases~not related to each other b
spin rotations!, depending on the parametersC̃1 , C̃2, and
C̃3. The phase diagrams of the spin nematic density w

FIG. 27. Mean-field zero-temperature phase diagram of
modelSF1SQ0

1SQ0 ,F in zero magnetic field for the caseu2.0.
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x-

A

s

g

e

er
tes

e

order vs the SDW order is similar to the case of uniform s
nematic~Figs. 26 and 27! with the main difference that the
phase boundary between I and III is now second order.

B. Exciton fractionalization

Before concluding the section on the phases in zero fi
we would like to point out another interesting possibility f
the system described by the generalizations ofSF . Consider
this model in the regime where the spiral fluctuations
strongly suppressed, so we need to consider the collin
SDW order only; this happens in Eq.~1.8! for u2,0 and
with uu2u large. For simplicity we restrict our discussion to
SDW at wave vectorK sy , Fya . As discussed in Sec. I A, the
collinear SDW can be written in the form~1.3!, which we
reproduce here for completeness:

Fya~r ,t!5eiu(r ,t)na~r ,t!. ~6.9!

We also noted below Eq.~1.3! that such a separation of th
physical order parameterFya into the phaseu and the real
vector na has an implicit ambiguity as we can simulta
neously change the sign of both without alteringFya . For-
mally this means that, for incommensurateK sy , the order
parameterFya belongs to the space (S23S1)/Z2. For com-
mensurateK sy52pp8/(pa), where p8, p are relatively
prime integers, higher order terms not contained in Eq.~1.8!
~but mentioned below it! imply u prefers a discrete set o
values10,11 and the space is restricted to (S23Zp)/Z2. Also,
if full SU ~2! spin rotation symmetry is absent, and the sp
have an easy-plane restriction, then the firstS2 factor
changes toS1.

The Z2 quotient in the order parameter space can be
plicitly implemented as an Ising gauge symmetry, and it p
important constraints on the effective low energy theory. T
lattice model consistent with such symmetry has the form

SI5(̂
i j &

Jss i j nianj a1(̂
i j &

Jcs i j cos~u i2u j !, ~6.10!

where i and j are sites on the space-imaginary time lattic
the sum over̂ i j & extends over nearest neighbor links of th
lattice, Js andJc are couplings imposing the propagation
SDW and CDW order, respectively,nia5na(r i ,t i), u i
5u(r i ,t i), ands i j 561 is an Ising gauge field that lives o
the links of the lattice. One can easily see that the latt
action ~6.10! is invariant under theZ2 gauge transformation

nia→s inia ,

u i→u i1
p

2
~12s i !,

s i j →s is i j s j ~6.11!

for s i561.
Models of the kind~6.10! have been discussed earlier

various contexts.63,67–71It was pointed out, for example, tha
another term allowed by symmetry is a Maxwell term for t
lattice gauge field

e
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Ss52K(
h

F)
h

s i j G , ~6.12!

where the sum onh extends over the plaquettes of a (
11)-dimensional lattice. Such a term may be generated
integrating out the high energy degrees of freedom or may
present due to certain frustrating terms in the original mic
scopic Hamiltonian.69–71 This term has a striking effect o
the properties of the model~6.10!: it gives rise a phase in
which the excitonFya fractionalizes, and fluctuations ofna
are separated from the fluctuations ofu. Loosely speaking,
the SDW and the CDW fluctuations get decoupled.

It is useful to discuss the consequence of the confinem
deconfinement in the symmetric phase in which global sy
metries are preserved: the models of this paper are inva
under SU~2! spin rotations, and the sliding U~1! symmetry
@for commensurate values ofK sy , the U~1! symmetry is re-
duced to a discreteZp ‘‘clock’’ symmetry, but essentially
unchanged considerations apply nevertheless10,11#. The im-
mediate manifestation of the confinement-deconfinem
transition in such a symmetric phase is the change in
degeneracy of the lowest-energy excitations. In the confin
phase their degeneracy is 6: this six-fold degenerate ex
tion corresponds to the quanta of the exciton fieldFya ,
which have six real components. In contrast, in the dec
fining phase we have separate excitations with degenera
of 3 and 2, corresponding to quanta ofnia and u i , respec-
tively. This may be understood by noting that the unbrok
symmetry ground state of the modelSI1Ss is a singlet
ground state of the SO(3)3SO(2) rotors, where in the con
fining phase the angular momenta of the two rotors (l 1 ,l 2)
5(LSO(3),LSO(2)) are bound by the constraintl 11 l 2
5even, but this constraint is not present in the deconfin
phase. Hence, in the confining phase the lowest excita
has (l 1561,l 251), which gives the degeneracy of 6. In th
deconfining phase we can have excitations (l 1561,l 250)
and (l 150,l 251), and these have degeneracies 3 and 2,
spectively. We point out that the exact degeneracy ofl 15
61 states requires the absence of the Berry’s phase for
the SO(2) rotor, and comes from the inversion symmetry
the system, as was noted below Eq.~1.8!. It is not related to
the possible particle-hole symmetry of the underlying mic
scopic model.

It is worth emphasizing that theexciton fractionalization
discussed above has a very different physical interpreta
from that of electron fractionalization discussed in ‘‘RVB’’
theories of doped Mott insulators:69 in the latter there are
elementaryS51/2 spinons which do not appear in our fra
tionalized states above. Instead our exciton fractionaliza
is within the sector of spin and charge density waves, and
collective spin excitations only have integer spin.

Zaanenet al.72 have recently discussed fractionalizatio
in a microscopic picture of spin and charge order in ‘‘fluct
ating stripe’’ states: the physical content of their analysis
quite similar to that of our discussion above. However th
proposed effect action does not include the CDW phase fi
u i , and we believe this is essential for a complete descrip
of stripe physics.
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We have implicitly assumed above that the exciton fra
tionalization transition occurs in a background of SC ord
However, a similar transition is also possible within a Fer
liquid. We believe that such a quantum critical point is
promising candidate for describing the finite temperat
crossovers in the normal state of the cuprates. Ordin
SDW/CDW transitions in a Fermi liquid28 have the unsatis-
factory ~in our view! feature of flowing to a free field fixed
point because they are in their upper-critical dimensions
contrast, the exciton fractionalization transition may well r
main strongly coupled even in the presence of Fermi surfa
Corresponding speculations of fractionalization influenc
finite temperature quantum criticality were also made
Zaanenet al.72 Again, their and our proposals should be d
tinguished from those associated with electron fractionali
tion made in, e.g., Ref. 73.

C. Topological defects

An alternative picture of fractionalization, and of the va
ous order parameters above, may be given in the languag
the topological defects of the SDW phase; the condensa
of distinct defects in the SDW state distinguishes the n
phases that appear. To simplify the presentation of this s
section we will describe the case of an easy plane antife
magnet, in which the vectorsF ia5eiu inia may only be in
the x-y plane, but will also state the results for systems w
full SU~2! spin rotation symmetry. A related discussion
defects in SDW states also appears in Ref. 74.

We start by giving a simple cartoon22,72,75of the non-two-
sublattice SDW orderFya5const and the associated CDW
in Fig. 28. Hole rich stripes~indicated by the dashed lines!
act as antiphase domain walls for the hole poor antiferrom
netic domains. The Ne´el order shown by arrows changes sig
when crossing such domain walls~the Néel order should not
be confused with the vectornia which appears in the defini
tion F ia5eiu inia ; the former oscillates as shown in Fig. 2
while nia is constant in this configuration.!.

Schematic pictures of the topological defects of the c
linear SDW state are shown on Figs. 29–31 with cros
indicating the locations of the centers of defects~see also

FIG. 28. A schematic picture of the non-two-sublattice colline
SDW order and associated CDW as a periodic array of antiph
domain walls in Ne´el order at (p/a,p/a). Arrows show the change
of sign of the Ne´el order across a hole rich domain wall. The fiel
nia andu i are space independent in the above configuration.
1-22
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Ref. 72!. These defects can also be formally classified
computing the homotopy groups; for systems with an ea
plane spin symmetry the relevant homotopy group76 is
p1@(S13S1)/Z2#5Z3Z, while for full SU~2! spin symme-
try it is p1@(S23S1)/Z2#5Z. These mathematical state
ments actually obscure some of the physical content, as
become clear from our discussion below.

We first discuss the physical content of the defect cla
fication for the easy-plane case. Consider the most elem
tary topological defect: this is a composite of a 1/2 vortex
the phaseu i and ap disclination~i.e., 1/2 a meron! for the
vectornia ~see Fig. 29!; this defect is also a central actor
the discussion of Zaanenet al.72 When circling around such
a defect botheiu andnia change sign, however, the physic
order parameterF ia5eiu inia is uniquely defined. Given the
circulations inu i and ni ,a , we label this defect (1/2,1/2)
Actually, we can make four such elementary defects
changing the signs of the circulation ofu i andp disclination
and taking all of such combinations: we label these a
(61/2,61/2) in an obvious manner. Pairs of such eleme
tary defects may be combined to give a full vortex foru,
which is trivial in the nia sector @see Fig. 30; this is the
defect (1,0)# and a meron for thenia , that it is trivial in the

FIG. 29. Elementary topological excitation of the colline
SDW phase: a composite of 1/2 vortex inu i andp disclination in
nia . Both eiu i and na change sign when going around this top
logical defect, but the physical order parameterFya i5eiu inia is
single valued.

FIG. 30. Elementary topological excitation of the colline
SDW phase: a vortex inu i . The circulation ofu is equal to 2p.
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u i sector@see Fig. 31; this is the defect (0,1)#. Continuing in
this manner, we see that all defects are labeled (m1/2,m2/2)
with m1 , m2 integers such thatm11m2 is even. These labels
lie on the analog of a FCC lattice in two dimensions; this
equivalent to a square lattice after a rotation by 45°, a
hence the homotopy group isZ3Z. This mathematical state
ment hides the fact that there is a fundamental physical
ference between the (61/2,61/2) and the (1,0),(0,1) de-
fects, which we have discussed above.

Next we turn to the case with full SU~2! symmetry. Now
the 1/2 meron innia is actually equivalent to the21/2
meron ~they are both better calledp disclinations!, and so
there is no distinction between (1/2,1/2) and (1/2,21/2);
moreover, the (0,1) defect is topologically trivial. Cons
quently the spacetime line defects can simply be labe
m1/2, wherem1 is an integer representing the phase windi
of u i , and hence the homotopy group isZ. However, there
continues to be a fundamental physical distinction betw
the cases withm1 odd and even. Form1 odd, there must be
a correspondingp disclination innia , while for m1 even the
nia configuration can be constant. The SU~2! case also has
point defects in spacetime, the ‘‘hedgehogs,’’ which prolife
ate at spin disordering transitions.

The various phases discussed above can be easily un
stood using the picture of topological defect condensation
a phase with conventional SDW order~the SC1SDW
phase!.

When the elementary 1/2 vortex-p disclination compos-
ites condense we have a conventional~unfractionalized! dis-
ordered phase~the SC phase!.

When vortices and merons~or hedgehogs! condense, but
1/2 vortex-p disclination composites remain gapful excit
tions, we find exciton fractionalization as discussed abo
The uncondensed 1/2 vortex-p disclination composites cor
respond to the finite energy ‘‘visons’’69 of the fractionalized
phase of theZ2 gauge theory.

When only the merons~or hedgehogs! condense we find
the CDW phase with no spin order.

When only theu vortices condense we get the spin ne
atic phase with no CDW order.

FIG. 31. Elementary topological excitation of the colline
SDW phase: a meron ofnia . Such an object is stable only in sys
tems with an easy-plane symmetry. Far away from the vortex c
nia winds in the plane similar to a usual vortex. Closer to the vor
center it may acquire an out of plane component. Systems with
SU~2! spin rotation symmetry only have pointlike, instanton defe
in spacetime: hedgehogs.
1-23



ai
ie
o
s

he

ro
l

th
er
-
m
n
b
-

iti
de
w

.

et
ic

m

n

,

ve

-

w
-

tic
i-

s

in

d,
ef
Ne

s
g
ed
se

ch

ng
nger
en

of

n-
ate
ode

ng
is

act

u-
-

the
he
m
C
the
m-
or-

tice
p-

ation

per
ce
SC

ers
onal

s
ain

m,

e
ost
h a
he
en-

est

YING ZHANG, EUGENE DEMLER, AND SUBIR SACHDEV PHYSICAL REVIEW B66, 094501 ~2002!
VII. EARLIER WORK ON SC AND SDW ORDERS

As we noted earlier, this section is a detour from the m
flow of arguments in this paper. For completeness, we rev
earlier theoretical and experimental work on the interplay
magnetism and superconductivity, and discuss connection
our treatment here. Less specialized readers may skip a
to the conclusions if they wish.

Early neutron-scattering measurements77,78 of the evolu-
tion of the magnetic order in La22d(Sr,Ba)dCuO4 with d
observed spectra which were interpreted79 as evidence for
the proximity of a quantum critical point at which the SDW
order vanished, and which obeyed strong hyperscaling p
erties. It was proposed79,80,35 that such a quantum critica
point ~with dynamic exponentz51) controlled physical
properties over a range of doping concentrations. Fur
support for such a proposal appeared in the NMR exp
ments of Imai and collaborators81 which displayed cross
overs characteristic of the vicinity of a magnetic quantu
critical point, with the critical point at a doping concentratio
d5dc'0.12; similar evidence was presented recently
Fujiyamaet al.82 ~for a review of the NMR data in this con
text, see Ref. 4!. The concentrationdc50.12 is well within
the superconducting phase, and so the magnetic trans
takes place within a background of superconducting or
i.e., there is a second order transition between a phase
coexisting SC and SDW order~the SC1SDW phase! and an
ordinary superconductor~the SC phase!. As we noted in Sec
I, the neutron-scattering measurements of Aeppliet al.3 at
d50.14 provided rather direct evidence for such a magn
quantum critical point. Additional evidence for microscop
coexistence of SC and SDW orders has appeared in a nu
of recent experiments.12,13,20,83–87

@For completeness, we also note here the additio
phases present at very lowd which werenot the subject of
study in this paper: in La22dSrdCuO4, the three-dimensional
two-sublattice, insulating Ne´el state is present ford,0.02,
and is followed by an insulating SDW state with its wa
vector polarized along the diagonal (1,61) directions.1,2 As
noted in Sec. I, atd50.055 there is a first-order insulator-to
superconductor transition to the SC1SDW phase,1,2 which
has the SDW oriented along the (1,0), (0,1) directions;
discussed the properties of this SC1SDW phase in this pa
per.#

A significant implication of the existence of a magne
critical point atd5dc is that remnants of the magnetic exc
tations should be visible in the SC phase atd.dc . As origi-
nally discussed in Ref. 35, for such critical points there i
sharp, gappedS51 collective mode~a spin exciton! which
would appear as a ‘‘resonance’’ in the neutron-scatter
cross section. This resonance should appear at the SDW
dering wave vector in~1.1!, and recent evidence for gappe
low energy spin excitations at such a wave vector is in R
88,89. Strong resonant scattering is also seen at the´el
order wave vector (p,p) in the SC phase:88,91–93 this re-
mains at relatively high energies and may be viewed a
remnant of commensurate correlations at short len
scales.10 Batistaet al.90 have argued that the strong gapp
response at (p,p) is due to the superposition of the respon
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at the two neighboring SDW ordering wave vectors at6q in
Eq. ~1.1!.

Another perspective on this quantum critical point, whi
was useful in our analysis, was provided by Zhang’s SO~5!
theory.32 This theory goes beyond the picture of competi
SC and SDW orders in the ground state and adopts a stro
assumption of a microscopic dynamic symmetry betwe
them; this has been supported by analytic94–97 and
numeric98,99studies of a number of models. The generator
the enlarged SO~5! symmetry is thep excitation, aS51
collective mode with charge 2 and momentum (p,p).94,95A
sharp distinction between the models with and without thep
excitation is possible in the weak interaction limit of a ge
eralized BCS-RPA theory, where by going to the normal st
one can check for the existence of a sharp collective m
with the quantum numbers of thep particle.100 However, a
clear distinction is absent in the physically relevant stro
coupling regime. For example, in the SC phase charge
only conserved modulo 2, and this charge 2 particle is in f
indistinguishable from the neutralS51 exciton in earlier
theories35 of the SDW ordering transition~see also Ref. 101!.
This exciton is smoothly connected to theS51 excitation in
a paramagnetic Mott insulator,102 and an interpretation of its
‘‘resonance peak’’ as a generator of SO~5! rotations does not
hold. In zero applied magnetic field, it is possible to form
late a theory of the exciton,8,35 and the associated SDW fluc
tuations, without any explicit reference to the SC order;
SC correlations only serve to modify various couplings in t
effective action for the SDW order. What we abstract fro
the analysis of Zhang32 is the idea that the strength of the S
order itself should be viewed as a parameter which tunes
system across the magnetic quantum critical point: this e
phasizes a local competition between the SC and SDW
ders.

We also mention that these SO~5! models naturally de-
scribe a competition between the SC and the two sublat
SDW ~Néel! phases. Non-two-sublattice SDW can then a
pear as a result of the competition between phase separ
and long range Coulomb interaction,103,104 across a first-
order transition from the SC to the SDW phase. In this pa
we will describe effective models for the non two-sublatti
SDW directly, across a second-order transition from the
to SC1SDW state.

The precise nature of the interplay of SC and SDW ord
in the cuprates at nonzero temperatures in three-dimensi
models been a controversial subject~this paper dealt with
two-dimensional quantum models atT50, and so the issue
in this paragraph are only peripherally related to our m
discussion!. Following earlier general analyses,105 Zhang32

pointed out four generic possibilities for the phase diagra
proposed the appearance of exact SO~5! symmetry in the
classical theory of a finite temperature bicritical point~this
symmetry is actually only present in the equal-tim
correlators106!, and suggested that this is the situation m
likely realized for the cuprates. In the presence of suc
bicritical point, there is a first-order transition between t
SC and SC1SDW phases at low temperatures, and the
ergy of the exciton~or p particle! remains relatively large in
the SC phase. The possibility of a critical point that is b
1-24
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described as corresponding to the regime exactly on the
der between the bicritical and tetracritical behavior was s
gested in Ref. 107@the projected SO~5! models discussed in
that paper lead to such fine tuning for the effective theorie#.
Other critical points, including a tricritical one, have be
suggested recently by Kivelsonet al.108 We have argued
here, instead, that many features of the experiments req
the energy of the exciton to vanish at a quantum critical po
describing a second order transition between the SC
SC1SDW phases; this appears when the finite tempera
multi critical point is tetra critical~i.e., the four phases SC
SDW, SC1SDW, and ‘‘normal’’ all meet at one finite tem
perature point! and has strongly broken equal-time SO~5!
symmetry. We also note that Aharony109 has recently shown
by an exact renormalization group analysis of fluctuatio
that the finite temperature multicritical point has a ‘‘deco
pled’’ structure, which does indeed exhibit tetracritical b
havior. A finite coexistence region between the superc
ducting and antiferromagnetic phases in the cuprates
been also recently discussed by Martinet al.110

We have also mentioned the recent study of Kivels
et al.108 of a variety of finite temperature multicritical phas
diagrams in three dimensions involving the SC and SD
order parameters. They pay particular attention to the po
bility of a two-phase coexistence of SC and SDW order
rameters, which should be distinguished from the hom
enous SC1SDW phase we have discussed in this paper
the presence of a finite field in the two-phase coexiste
case, we would expect that the SC component ha
H ln(1/H) term in its free energy, while the SDW compone
only has an analyticH2 correction. Consequently, with in
creasingH, the fraction of the SDW component will grow a
the expense of the SC component with anH ln(1/H) depen-
dence.

We mention that several other proposals for the exp
mental consequences of the competition between the SC
SDW orders in the cuprates may be found in Refs. 111–1
and 116.

VIII. CONCLUSIONS

The primary purpose of this paper has been a descrip
of the phase diagram in Fig. 3 and of the static and dyna
properties of its low field phases. The point of departure
our work was the existence of a second-order quantum t
sition between the SC and SC1SDW phases in zero applie
magnetic field~our methods can also be extended to wea
first-order transitions, but we did not discuss this here!: we
reviewed in Sec. I the early theoretical proposals and
experimental evidence in support of such a transition. I
nonzero field we found that this transition extended into
line of second-order transitions indicated by AM in Fig.
This transition line approaches theH50 axis with a vanish-
ing derivative, which implied that relatively small field
could have a significant effect on the low energy spin flu
tuation spectrum: this is our qualitative explanation for t
field-induced enhancement of low-energy SDW correlatio
observed by Lakeet al.12 Our analysis also showed that th
critical properties of the transition in finite field were in a
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cases described by the familiar O~3! symmetric w4 field
theory: these have already been described in some deta
earlier work.7,35 This mapping to the simple O~3! continuum
field theory occurs when the spin correlation length becom
larger than the vortex lattice spacing~as is always the cas
close enough to AM!, and accounts for the fact thatSlat pins
the charge order fluctuations and so reduces the order pa
eter to a real, three-component vector. In principle, the Z
man coupling to the O~3! field theory modes should also b
included in the asymptotic critical region, but existin
work7,117 has shown how to do this. We believe that expe
mental discovery of the critical field along the phase bou
ary AM is an exciting possibility for future investigations
Such a study should begin with a sample with itss value
slightly larger thansc ; application of a field should then
allow tuning of the system across the quantum critical
havior associated with the AM phase boundary. The prec
experimental control available over the value ofH should
allow unprecedented access to an interesting, interac
quantum critical point in two dimensions. In the followin
subsection we discuss a number of very recent experime
studies, and compare them to our results to the extent
sible: we also mention proposals for future experiments.

Implications for experiments

So far, the most direct connection of our results with e
periments is provided by neutron-scattering measuremen
the field dependence of the ordered moment in the
1SDW phase. Two such experiments have be
performed13,14 in different but related compounds, and bo
show a reasonable fit to the predicted9 H ln(1/H) depen-
dence. The experiment of Khaykovichet al.13 appears to be
in a parameter regime similar to that of Fig. 18: there is
appreciable ordered moment at zero field, and the ela
scattering intensity roughly doubles in a field about a qua
of Hc2. This is an important consistency check on our ent
approach, as all numerical parameters in our computa
had physically reasonable values. As is clear from Fig.
the intensity of the satellite peaks associated with the re
rocal lattice vectors of the vortex lattice is quite small f
these parameters: this explains why such a satellite peak
not seen in the experiments even though they had the re
site wave vector resolution. The experiments of Lakeet al.14

are in a regime similar to that of Fig. 17: they had quite
small moment at zero field, but this grew rapidly with fie
with a clearH ln(1/H) dependence. Again, as Fig. 17 show
the satellite vortex lattice peaks have a very small intens
and this is presumably why they were not observed. T
experimental sample appears to be rather close tos5sc , and
we hope that a future experiment will move just pastsc and
study the transition across the AM phase boundary in Fig

Our theoretical computations also suggest an approac
which the vortex~reciprocal! lattice may be detected in th
spin fluctuation spectrum. While its influence on the elas
Bragg peaks32,33,9,37was found to be very small in Figs. 1
and 18, the spectra in Figs. 8–10 and 22 show a more
nificant influence in the inelastic neutron-scattering cro
section. These plots may be viewed as the ‘‘band structu
of the exciton moving in the vortex lattice, and the excit
dispersion shows clear features at the Bragg reflection pla
1-25
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in the reciprocal lattice of the vortex lattice. So we pred
that a careful study of theinelastic-neutron-scattering spec
trum may more easily yield evidence for the presence of
vortex lattice.

Next, we turn to the recent STM measurements of Ho
man et al.18 These authors have observed signals of cha
order in the vortex lattice of BSCCO in the electron dens
of states at subgap energies. The charge order is at w
vectorsK cx5@p/(2a),0# and K cy5@0,p/(2a)# ~period of
four lattice spacings!, is peaked at the vortex cores, and e
tends about to a distance which is about a quarter of
inter-vortex spacing. These measurements are most like
the SC phase, where the SDW order is dynamically fluctu
ing. The nucleation of charge order by vortices in such
phase~but with the spins remaining dynamic! was predicted
in Refs. 10, 51. Lattice scale theories26 of charge order in
superconductors with preserved spin rotation invariance
found a substantial doping range of bond-centered cha
order with a period of four lattice spacings, as did dens
matrix renormalization group studies.52 The spatial extent of
the envelope of this charge order in the SC phase has
computed in the present paper: the length scale in the ob
vations is quite similar to that in our computations in Fig
15 and 16. These computations were carried out for thesame
set of parameters~only the value ofs2sc was changed to
tune the doping level! used to obtain general quantitativ
consistency with the neutron-scattering experiments ab
The data of Hoffmanet al. seems rather similar to the resu
for V(r ) at pointk in Fig. 16, and the location of this poin
in the phase diagram of Fig. 6 is very reasonable, given
optimal doping of their sample and of theirH value. This
agreement suggests to us that the system studied by Hof
et al. has dynamic spin excitons, above a spin gap, wh
extend throughout the vortex lattice, as in Figs. 15 and
the charge order is then a signal of the pinning of th
excitons by terms like those inSlat . An alternative model, in
which the spin order was confined only to the region wh
charge order has been observed in STM, would have d
culty explaining the neutron-scattering experiments: spin
der so confined should yield easily observable satellite e
tic Bragg peaks at the wave vectors of the reciprocal of
vortex lattice.

Our computations also offer explanations for other fe
tures of the STM data which would be difficult to understa
in terms of charge order nucleated independently in e
vortex core: there is a noticeable correlation between
phase and orientation of the charge order between diffe
vortices, which extends across the entire experime
sample. We believe this correlation is induced by the
tended spin exciton states above the spin gap. Our mode
the STM experiments can therefore be summarized as
lows: the superflow in the vortex lattice reduces the ene
of extended spin exciton states, and the sliding degree
freedom associated with spin density is then pinned by
vortex cores; this results in static CDW around each vort
but the SDW order remains dynamic and gapped. A part
lar strength of our model is that it consistently explains
STM and neutron-scattering experiments using the same
of parameters.
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For the future, our theory suggests that neutron-scatte
and STM studies of SDW/CDW order should be carried o
in systems where a uniform superflow has been induced
rectly by a current source, with no magnetic field penetrat
the sample. This will eliminate the vortex cores, but the
perflow should still enhance the tendency for SDW/CD
order. Charge order can be pinned near impurities/defect
various kinds~e.g., dislocations, grain boundaries, surface!,
and so become visible to STM.

We briefly comment on the high field phases~SDW and
‘‘normal’’ ! in Fig. 3, in which superconductivity is destroye
by the magnetic field. This regime may be of relevance to
experiments of Boebingeret al.118 Dynamic fluctuations of
the superconducting order surely become important as
approach these phases, and so the theory of the present
is not complete. Nevertheless, given the nucleation of cha
order near the vortex cores in the SC phase~and its observa-
tion in the STM experiments18!, it is natural to presume tha
this charge order survives into the ‘‘normal’’ phase. T
transport properties of the nonsuperconducting phases
main a very interesting topic for future research, but o
naive expectation is that they are insulators.

Another interesting type of experiments on supercondu
ors in the vortex state has been performed recently by C
et al.15 and Mitrovićet al.16,17They measured the local fiel
dependence of the17O spin-lattice relaxation rate (1/T1) and
spin-echo decay rate (1/T2), this allowed them to deduce th
rates as a function of position in the vortex lattice. Below w
suggest how these experiments can be interpreted in our
ture of the mixed state of the cuprates. The spin-lattice
laxation rate 1/T1 measures the rate at which nuclear sp
are overturned as a result of interaction with electron sp
In the BCS picture of vortices in a d-wave
superconductor,15,16,119,120 this quantity is proportional to
N(0)2 and therefore increases dramatically close to the v
tex cores due to suppression in the superconducting gap
the other hand, as discussed in detail earlier in this paper
the not too overdoped cuprates, charge density waves
nucleated around the vortex cores, which should lead t
suppression in the local quasiparticle density of states,
hence 1/T1. This effect appears to have been observed in
experiments of Ref. 16. Another mechanism for the nucl
spin relaxation is via the collective excitations of the electr
system. In particular, the excitonic SDW excitations provi
a large number of low energyS51 excitations for flipping
the nuclear spins. We suggest that a strong increase in th
high field part of 1/T1 ~corresponding to the vortex cores!
with increasing magnetic field in the experiments of Mitrov´
et al.16 reflects the growth of the SDW correlations and t
corresponding increase in the excitonic susceptibility.
would be interesting to study this enhancement quantitativ
and compare it with theH ln(1/H) behavior observed in
neutron-scattering experiments and derived theoretically
this work. We mention that the non-two-sublattice SD
makes this mechanism more effective for relaxing the17O
nuclear spins, in contrast to the (p,p) electron magnetism
which leads to a magnetic field on the oxygen sites o
through the Dzyaloshinskii-Moriya interaction and weak fe
romagnetism. The echo decay rate 1/T2 is related to the in-
1-26
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homogeneity of the local magnetic fields. The appearanc
the local SDW order~or sufficiently slow fluctuations!
should therefore contribute to the increase in 1/T2. The SDW
enhancement is relatively stronger around the vortex co
which should give rise to the enhancement in 1/T2 in this
region; this agrees with the experimental observations in R
15. The analysis of our paper suggests that the differenc
1/T2 will not become very large upon approaching the SC
SC1SDW boundary, as the SDW excitations become
tended close to this phase boundary. As the magnetic fie
increased, the SDW fluctuations should become more
nounced, so we expect that 1/T2 will increase for all values
of the local field. By contrast, in the BCS theory, one wou
expect that 1/T2 decreases with increasing magnetic fie
since the field becomes more uniform.
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APPENDIX A: DZYALOSHINSKII-MORIYA INTERACTION

An orthorombic distortion of La22dSrdCuO4 results in the
Dzyaloshinskii-Moriya~DM! interaction for the Cu spins

HDM5l(
i ,d

~2 ! idW •SW i3SW i 1d , ~A1!

where the sum overd extends over all the nearest neighbo
of site i, and dW is a unit vector in the direction of the
orthorombica axis @i.e., a diagonal (1,1) direction#.27 In this
appendix, we study the effect of the DM interaction on t
non-two-sublattice SDW, and for simplicity we consider
SDW at one wave vector only. The Hamiltonian~A1! mixes
wave vectorsq and Q1q, where Q5(p/a,p/a). In this
case we need to modify Eq.~1.2! to

SW ~r ,t!5Re@eiKsx•rFW x~r ,t!1ei (Ksx1Q)•rMW x~r ,t!#.
~A2!

Straightforward algebra shows that the contribution of
DM interaction to the action is

S̃DM1SM5E d2dtH l~K s!dW •@FW x3MW x* 1c.c.#1
uMW u2

2x J ,

~A3!

where l(K s)52l@cos(K sxax)1cos(K syay)# and the last
term comes from the fact that spin fluctuationsMW x are mas-
sive. We can now integrateMW out, and find the anisotropy
term for the SDW order parameter
09450
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SDM52
l2~K s!x

2 E d2dtuFW x3dW u2. ~A4!

From Eq.~A4! we see that the DM interaction favors th
collinear SDW, with direction ofFW perpendicular todW , i.e.,
along the orthorombicb axis ~direction of the SDW ordering
is always in the CuO plane!. We also expect that the aniso
ropy becomes weaker with increasing doping due to a
crease ofl(K s). However, the typical scale for the aniso
ropy is small,27 and so we expect that the quarticu2uFW x

2u2

term in Eq.~1.8! plays a dominant in selecting the colline
SDW at low temperatures. We note thatSDM is quadratic, so
it will favor the collinear SDW fluctuations even above th
transition temperature.

APPENDIX B:
ZEEMAN COUPLING TO THE MAGNETIC FIELD

This appendix briefly discusses the effect of the Zeem
coupling to the magnetic field on the actionSF in Eq. ~1.8!
for the SDW fluctuations. We will see that the effects a
weaker than those considered in the body of the paper, e
cially near the critical point A ats5sc in zero field~see Fig.
3!.

As reviewed in Ref. 121, in systems without an ove
damped particle-hole continuum of spin excitations~as is the
case here hear the ordering momentaK sx,y), we can deduce
the coupling to the external field using simple gauge inva
ance arguments. In particular, the primary consequenc
the external field is to rotate the spins uniformly about t
field axis, and this can be accounted for by the followi
replacement to all temporal gradient terms

]tFxa→]tFa2 i eabgHbFxg , ~B1!

and similarly forFya . HereHa is the three vector in spin
space representing the external field. The resultingSF is
closely related to models that have been studied in so
detail7,117 in the context of double layer quantum hall sy
tems. From this work, we can deduce the phase diag
sketched in Fig. 32. The most important property of th
phase diagram is that zero field phase transition ats5sc
moves to finite field asH;(s2sc)

zn where the exponen

FIG. 32. Phase diagram ofSF in Eq. ~1.8! including the Zeeman
coupling in Eq.~B1!. The point A is the same as the correspondi
point in Fig. 3. The central argument of Appendix B is that it r
quires a much larger field fors.sc near A to induce SDW order
above, than in Fig. 3.
1-27
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zn51/2 in mean-field theory. Fluctuation corrections w
slightly increase this value, but the present critical field w
nevertheless remainlarger than the field in Eq.~3.9! associ-
ated with the corrections arising from the superflow. In p
ticular, the phase boundary in Fig. 32 approaches theH50
line with an infinite slope. Consequently, the Zeeman shif
subdominant to the stronger effects discussed in the bod
the paper.

APPENDIX C:
MICROSCOPIC THEORY FOR COUPLING

BETWEEN SC AND SDW ORDER PARAMETERS

In this appendix we discuss the microscopic origin of t
effective interactionk between the SC and SDW order p
rameters in Eq.~1.10!. We will argue that repulsivek.0 is a
remarkable property of doped Mott insulators, but wea
interacting electron systems quite possibly havek,0.

We start by considering aweakly coupledFermi liquid of
electronscis moving on the sitesi of a square lattice which
is close to superconducting and commensurate antiferrom
netic instabilities

Z5E Dc†DceS[c] ,

S@c#5E
0

b

dtS (
i

ci
†]tci2H@c# D ,

H@c#5(
ks

ekcks
† cks1Himp2(

k
~Dkck↑

† ck↓
† 1H.c.!

1
D0

2

2lSC
2FW (

k
ck1Qa

† sW abckb
† 1

FW 2

2lAF
. ~C1!

HereDk5D0(coskx2cosky)/2[D0dk is the superconducting
d-wave order parameter, and we assume a nearest-neig
tight binding dispersion of the electronsek522t(coskx
1cosky)2m, Q5(p,p), and everywhere in this section mo
mentum integrals go over the first Brillouin zone.Himp de-
scribes the static potential of the impurities which gives r
to a finite quasiparticle lifetime

1

t
52pnimpN~0!V2, ~C2!

whereN(0) is the density of states on the fermi level andV
is the impurity potential.

Assuming thatD0 and FW are small we can integrate ou
the fermions and obtain

Z5e2bF,

F5FGL@D0#1FAF@FW #1kuD0u2FW 2. ~C3!

The diagrammatic representations of the terms that con
ute tok are shown on Fig. 33. Solid lines correspond to
quasiparticle propagators

G~p,vn!5@ ivn2ep2 i /~2t!sgn~v!#, ~C4!
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e

zigzag lines correspond to thed-wave superconducting orde
parameter and contribute a factordp ; wavy line describe the
SDW, and dashed line describes the static disorder poten
We have

~a!5
1

bE d2p

~2p!2
dpdp1Q(

vn

G~vn ,p!G~2vn ,2p!

3G~vn ,p1Q!G~2vn ,2p2Q!,

~b!5
1

bE d2p

~2p!2
dp

2(
vn

G~vn ,p!G~2vn ,2p!

3G~vn ,p1Q!G~2vn ,2p2Q!,

~c!5nimpV
2

1

b (
vn

L~vn!M ~vn! ~C5!

with

L~vn!5E d2p

~2p!2
dp

2G~vn ,p!G~2vn ,2p!G~vn ,p!,

M ~vn!5E d2p

~2p!2
G~vn ,p!G~2vn ,2p!G~vn ,p1Q!.

~C6!
It is useful to note that if we define the static spin susc

tibility at momentumQ in the superconducting state

x~Q!52
1

b (
vn

E d2p

~2p!2
$Gsc~vn ,p!Gsc~vn ,p1Q!

1F~vn ,p!F~vn ,p1Q!%, ~C7!

FIG. 33. Diagrams that contribute to the effective interacti
between the superconducting and antiferromagnetic orders
Fermi liquids. Solid lines correspond to the quasiparticle propa
tors, zigzag lines correspond to thed-wave superconducting orde
parameter and contribute a factordp ; the wavy line describe the
SDW and a dashed line describes the static disorder potential.
1-28
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with the Green’s functions in the superconducting state
fined in the usual manner,122 then

k52
]2x~Q!

]D0* ]D0
U

D050

~C8!

which agrees with Eqs.~B6! and ~B7!.
In the limit mt@1 the main contribution tok comes from

the diagram~a! and we find forT→0

k52p^dp
2&N~0!

1

b (
n.0

1

~vn11/2t!@m21~vn11/2t!2#

'2
1

2m2
ln~mt!. ~C9!

It is important to note that in deriving the expression~C9! we
relied on the fact that we have ad-wave superconductor with
dp1Q52dp and took the average value of^dp

2& on the Fermi
surface to be 1. Hence, such Fermi liquids on the squ
lattice have an effective ‘‘attraction’’ between the antiferr
magnetic and superconducting orders, which can be tra
back to the enhancement of the antiferromagnetic susc
bility ~C7! in the d-wave superconducting state.

We have so far examined the interplay between SC
SDW orders near the boundary of their instability to
weakly interacting Fermi liquid. Now let us turn to the sam
interplay, but in the vicinity of a Mott insulator. Strong in
teractions are required to produce the Mott insulator, and
the perturbative approach of Eq.~C1! cannot be directly ap-
plied. Instead, we have to turn to alternative strong coup
approaches, in which the existence of the Mott insulato
built in at the outset. Such approaches have been discu
recently, and these are expressed in terms of collective
grees of freedom which are natural in the vicinity of of Mo
insulator. Electron spin singlet states, spin one magno
Cooper pairs of holes, and fermionic quasiparticles are in
duced as individual excitations, and interactions betw
them are obtained from the microscopict-J Hamiltonian51,123

~phenomenological models of just the bosonic degrees
freedom have also been considered107!. All these papers find
strong repulsion between magnon and hole pair states,
ing from the constraint on the allowed Hilbert space. T
origin of this repulsion therefore lies in the short distan
lattice-scale physics of allowed low-energy states nea
Mott insulator, rather than effects near the Fermi surface
the weak-coupling analysis discussed earlier. The Coo
pair-magnon repulsion immediately implies repulsion b
tween the superconducting and antiferromagnetic ord
since the superconducting and antiferromagnetic phases
respond to the condensates of the corresponding particle
an example, see Fig. 2 in Ref. 51: the pairing amplitude
weak in the region with magnetic order, but rises rapid
once the magnetic order is suppressed.
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APPENDIX D: RENORMALIZATION GROUP ANALYSIS
OF COMPLEX VECTOR FIELDS

This appendix will briefly review existing theoretical re
sults for the critical properties of field theories which a
similar toSF , but simpler. The analysis of the fullSF theory
will be addressed in future work.

The simplification made here is to consider a field theo
with only one complex vector fieldFa , with a51•••m;
the original model has two such fieldsFxa and Fy,a . For
the case of only one such field, we can always rescalex and
y coordinates to make all velocities unity; then ind space
dimensions we are interested in the field theory with acti

Sc5E ddr dtF u]tFau21u¹rFau21suFau21
u1

2
uFau4

1
u2

2
uFa

2 u2G . ~D1!

This theory has upper critical dimensiond53, and can be
studied in an expansion ine532d. Renormalization group
equations for the quartic terms were obtained toO(e2) by
Joneset al.55–57

du1

dl
5e u12Kd@~m14!u1

214u1u214u2
2#

12Kd
2F3

2
~3m17!u1

3122u1
2u2

1~5m124!u1u2
214~m12!u2

3G ,
du2

dl
5e u22Kd@mu2

216u1u2#

22Kd
2F ~m24!u2

322~513m!u2
2u1

2
1

2
~5m141!u2u1

2G , ~D2!

where Kd522d11/@pd/2G(d/2)#. These flow equations al
ways have two unstable fixed points: the Gaussian pointu1*
5u2* 50 and the isotropic O(2m) Heisenberg fixed point

u1* 5
e

Kd

1

m14
1O~e2!,

u2* 50. ~D3!

For sufficiently large or smallm there may also be two othe
fixed points

u* 5
e

6Kd
Bm@3m2212m114473mRm

1/2#e1O~e2!,

v* 5
e

Kd
Bm@m21m21263Rm

1/2#e1O~e2!, ~D4!
1-29
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where Bm
215m314m2224m1144 and Rm5m2224m

148. The last two fixed points are absent in the case om
53. We note, however, that form52 and in the largem
limit a stable fixed point~the so-called chiral fixed point, se
Ref. 57! is possible foru2.0, so it may control the transi
tion to the spiral order. Whenu2,0, the system always
flows towards strong couplingu2→2`, so we expect the
transition to collinear order to be weakly first order.

APPENDIX E:
NUMERICAL SOLUTION IN THE SC PHASE

We will use the methods and notation described
Brandt.124 First, assume we knowVH(r ). Write its Fourier
expansion in the form

VH~r !5(
G

dGeiG•r, ~E1!

wheredG5d2G are both real, andG are the reciprocal lattice
vectors of the triangular vortex lattice. Unlike the conventi
followed by Brandt, the sum overG always includesG
50, unless stated otherwise explicitly. In Brandt’s notatio
Eq. ~E1! can be inverted bydG5^VH(r )cos(G•r )&, where
the angular bracket denotes a spatial average. Because o
symmetry we can work on only half a unit cell of the vorte
lattice, and for simplicity we choose the half unit cell to b
the one plotted in Fig. 13.

To obtain GH , we want all the eigenvalues and eige
functions of the Schro¨dinger equation~4.20!. As in the usual
Bloch theory, these are labeled by a wave vectork in the first
Brillouin zone, and a band indexm. The explicit form of
these are

Jmk~r !5
eik•r

AAU
(
G

cmG~k!eiG•r, ~E2!

where AU is the area of the unit cell, and thecmG(k) are
normalized so that

(
G

ucmG~k!u251. ~E3!

If we chooseM values ofG ~also as in Brandt!, thenm51
•••M , and thecmG(k) are the orthonormal eigenvalues
the M3M matrix MG,G8(k) where

(
G8

MG,G8~k!cmG8~k!5Em
2 ~k!cmG~k!,

MG,G8~k!5~k1G!2dG,G81dG2G8 . ~E4!

After this diagonalization we obtain the Fourier compone
of Eq. ~E1! as
09450
,

the

s

d05s2sc1kS (
G

aG21D 1
Nu

NkAU

3(
k,G

F coth@EG~k!/~2T!#

EG~k!
2

1

A~k1G!21D0
2G ,

~E5!

and forGÞ0

dG52kaG1
Nu

2NkAU
(

k,G8,m

cmG8@cm(G81G)~k!

1cm(G82G)~k!#
coth@Em~k!/~2T!#

Em~k!
, ~E6!

where the sum overk is overNk points which average ove
the first Brillouin zone. Also note that cmG(k)
5cm,R(G)@R(k)#, whereR denotes a rotation byp/3. This
can be used to cut the number ofk points in 1/6.

The iteration of Eqs.~E5! and ~E6! will produce the so-
lution to Eq. ~4.17! for a givencH(r ). The next step is to
solve Eq.~4.18!, givenVH(r ) in Eq. ~E1!. This is done just
as in Brandt. His Eq.~9! is replaced by

~2“ r
212!v52H F11S 12

k2

4uY D uc0u22
k

4uY
~VH2D0

2!Gv
2S 12

k2

4uY Dv22vQ22gJ ~E7!

and a corresponding change to Brandt’s Eq.~11!. The new
form of Brandt’s Eq.~12! is

aGªaG

3

K F S 12
k2

4uY D uc0u22
k

4uY
~VH2D0

2!Gv2vQ22gL
^v2&@12k2/~4uY!#

.

~E8!

After determiningv from above, we use this result t
obtain newVH(r ) by solving Eq.~4.17!, and so on. By itera-
tion of Eqs.~4.17! and ~4.18!, we will be able to have the
final solution to both of them.

Note that in order to get our numerical results, we did u
a finite momentum cutoff. However, the equations have b
designed to be cutoff independent and we did find that
Fourier components ofcH(r ) and VH(r ) decreases rapidly
upon going to higher momenta.

APPENDIX F:
SPIN ORDERING PHASE BOUNDARY NEAR M

Here we discuss the analytical solution of Eqs.~4.17! and
~4.18! in the vicinity of the multi-critical pointM in Fig. 3,
with the aim of determining the location of the AM phas
boundary in its vicinity. Analytical progress is possible b
cause the amplitude of the superconducting orderucH(r )u2 is
small in this region. Our analysis will show that in this r
1-30
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gion AM behaves asH512%(k2s1sc), where% is a nu-
merical constant. The earlier full numerical solution in S
IV C led to the estimate%'1.2, and we shall find a consis
tent result here.

In addition to Eq.~E1!, we use the Fourier expansions

T(
vn

GH~r ,r ,vn!2E dvd2k

8p3

1

v21k21D0
2

5(
G

bGeiG•r,

~F1!

ucH~r !u25(
G

aGeiG•r. ~F2!

Note that this notation foraG is slightly different from that
above and in Brandt.

Then Eq.~4.17! becomes

d05D0
21k~a02uc0u2!12Nub0 ,

dG5kaG12NubG , GÞ0. ~F3!

Second, we can solve Eq.~4.6! by a Feynman graph ex
pansion indGÞ0. This yields

b05E
0

`kdk

2p F coth~Ak21d0/2T!

2Ak21d0

2
1

2Ak21D0
2G1O~dGÞ0

2 !

5
Ad02D0

4p
1O~dGÞ0

2 ! at T50 ~F4!

and

bG52
dG

4p2E0

` d2k

~k1G!22k2 Fcoth~Ak21d0/2T!

2Ak21d0

2
coth@A~k1G!21d0/2T#

2A~k1G!21d0
G1O~dGÞ0

2 !

52
dG

8uGu
1O~dGÞ0

2 ! at T50, GÞ0. ~F5!

Now we can solve Eqs.~F3!,~F4!,~F5! for thedG in terms of
the aG .

Finally, we need to determine theaG by solving Eq.
~4.18!. This can be done with the realization that for sm
cH , the functional form of the superconducting order para
eter can be assumed to be equal to the Abrikosov solut
So we assume

aG52
a0aG

A

2
, GÞ0, ~F6!

whereaG
A is given in Eq.~8! of Brandt. Now, it remains to

obtain a single additional equation to determinea0. This we
determine by multiplying Eq.~4.18! by cH* (r ) and averaging
over all space. Using the property of the Abrikosov soluti
for cH(r ), we obtain
09450
.

l
-
n.

S 12
k2

4uY D S (
G

aGa2G2uc0u2a0D
1

k

4uY S (
G

dGa2G2D0
2a0D 2Ha050. ~F7!

Equations~F3!–~F7! are now simple equations that can b
easily solved to obtain all the Fourier coefficients. The li
AM corresponds tod050. Our analytical result of the slop
of AM near M point is%'1.1, which is in acceptable agree
ment with that obtained from the full numerical solution.

APPENDIX G:
NUMERICAL SOLUTION IN THE SC ¿SDW PHASE

Here we will describe the solution of Eqs.~5.7!, ~5.4!, and
~5.8! for the unknownsVH(r ), cH(r ), andnH(r ). First, as
Eq. ~5.4! is linear innH(r ), it is convenient to rescale

nH~r !→nH~r !/A2Nu, ~G1!

and these equations become

VH~r !5s2sc1k@ ucH~r !u221#1nH
2 ~r !

12NuFT(
vn

GH~r ,r ,vn!2E dvd2k

8p3

1

v21k2G ,

~G2!

@2“ r
21VH~r !#nH~r !50, ~G3!

F S 12
k2

4uY D @ ucH~r !u221#1
k

4uY
@VH~r !2s1sc#

2~“ r2 iA!2GcH~r !50. ~G4!

We use two-step iteration to self-consistently solve
equations~G2, G3, G4!. The first step consists of solving Eq
~G2! and ~G3!, and the second step is solving~G4!.

For the first step, we use a four-substep iteration. Fi
define and calculate

hH~r !5s2sc1k@ ucH~r !u221#

12NuFT(
vn

GH~r ,r ,vn!2E dvd2k

8p3

1

v21k2G .

~G5!

Second, define and calculate the inverse of operator

A52“ r
21hH~r !. ~G6!

Third, calculatenH(r ) which satisfies

nH~r !52A 21nH
3 ~r !. ~G7!

Last, calculateVH(r ) using

VH~r !5hH~r !1nH
2 ~r !. ~G8!
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Choosing proper initial value forVH(r ) and nH(r ) and
iterate Eqs.~G5!, ~G6!, ~G7!, ~G8! will produce the solution
to both Eqs.~G2! and ~G3!.

In practice, the above steps are performed in moment
space. If we let

VH~r !5(
G

dGeiG•r,

nH~r !5(
G

f̃ GeiG•r,

hH~r !5(
G

gGeiG•r, ~G9!

whereG are the reciprocal lattice vectors of the vortex latti
@note thatf̃ G differs slightly from f G in Eq. ~5.10! because of
the rescaling Eq.~G1!#, then Eqs.~G5!–~G8! become

g05s2sc1kS (
G

aG21D
1

Nu

NkAU
(

k1GÞ0
Fcoth@EG~k!/~2T!#

EG~k!
2

1

uk1GuG ,
~G10!

gG52kaG1
Nu

2NkAU
(
k,G8

(
m,Em(k)Þ0

cmG8@cm(G81G)~k!

1cm(G82G)~k!#
coth@Em~k!/~2T!#

Em~k!
, ~G11!
p

a
n

y

a

Q

.

09450
m

AGG85G2dG,G81gG2G8 , ~G12!

f̃ G52(
G8

A GG8
21 ^nH

3 ~r !cos~G8•r !&, ~G13!

dG5gG1^nH
2 ~r !cos~G8•r !&. ~G14!

Note that in the substep~G13! the equation is solved b
another smaller iteration.

The second step is very similar to the case with no m
netic order as in Appendix E. Eq.~G4! can be solved by a
two-substep iteration of the following equations:

~2“ r
212!v52F @11G~r !#v2S 12

k2
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From the iteration results we are able to determineVH(r ),
nH(r ) andcH(r ).
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