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Conductivity of quantum spin chains: A quantum Monte Carlo approach
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We discuss zero-frequency transport properties of various spin-1/2 chains. We show that a careful analysis of
guantum Monte Carlo data on the imaginary axis allows to distinguish between intrinsic ballistic and diffusive
transport. We determine the Drude weight, current-relaxation lifetime, and the mean free path for integrable
and nonintegrable quantum spin chains. We discuss, in addition, some phenomenological relations between
various transport-coefficients and thermal response functions.
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[. INTRODUCTION commensurability. An alternative route to diffusive transport,
spin-phonon coupling, has been studied by NaroZfny.
The role of spin excitations on the transport properties of In his seminal papé? in 1964, Kohn proved that the ex-
quasi-one-dimensional Mott insulators has been the subje@tence of a delta peak at zero frequefiite Drude peakin
of extensive experimental research over the last few years. the conductivity is the essential difference between ground
recent 'O NMR investigation of Sr,CuQ;, extending an  states with localized and extended electronic states. A simple
earlier ®*Cu NMR study; measured aj=0 spin-diffusion  extension of this idea to the spin transport can be used to
coefficient(equivalent to diffusive magnetization transport gjstinguish, without other explicit information about the ex-
several orders-of-magnitude larger than the value for congjtation spectrum, a spin insulator, such as spin-Peierls com-
ventional diffusive systems. Thermal transport measuremenﬁounds, from a spin conductor such asGBr0;. Despite
in SCUG; and SrCuQ indicate at the same time, quasibal- onqging effortd”*8devoted to this problem, the fundamental
listic transport with a mean free path of several thousandsyifference between models with ballistic and diffusive trans-
angstrom. , , port properties has shown up only recently in quantum
It is well known from structural consideratichand from Monte Carlo(QMC) simulationst® The purpose of this paper
studies of the magnetic excitation spectftithat S\CUO; s 1o explain in detail how this important issue can be tackled
and SrCuQ@ can be accurately described by ti&Z chain: numerically by QMC methods.
3 The organization of the paper is as follows. Section Il
(xx2) — XX ot o S 77 contains the basic definitions and sets the notation that we
H Z 2 (5SS S ) IS8 will use throughout the paper. In Sec. Il we deduce the
) o o o connection between the spin current-current and density-
Evidence for ballistidor quasiballisti¢ magnetization trans- - gensity correlation functions emphasizing the role of bound-
port has been found in recent exact diagonalization stﬁdiesary terms that occur in Matsubara formalism, and in Sec. IV
of H**? at high temperature’s? A connection between inte- e discuss how to exploit that connection to compute the
grability, conservation laws, and ballistic transport has bee’&onductivity in imaginary frequency using quantum Monte
proposed by Zotos and co-workérs:*? If the current-  carlo cluster algorithms in an efficient way. In Sec. V we
current correlation does not decay to zero for long times, i.e.gescribe a procedure to extract transport coefficiéDtsde
when part of the current operator is conserved, and when Weight and the diffusion coefficienfrom QMC data in gen-
certain (nonzerg projection of the(here, magneticcurrent  era| one-dimensionallD) interacting systems, either inte-
operator commutes with the Hamiltonian, the transport isgrable or nonintegrable. In Sec. VI we apply this method to
ballistic even at finite temperatures. This seems to be thghe XXZ chain and we obtain the Drude weight at finite
case, in general, for Bethe-ansatz solvable models likgemperatures. We then discuss several phenomenological re-
H*?, although a formal proof for this connection is still |ations between transport and thermal coefficients in Sec.
outstanding. VII. Section VIl is devoted to the computation of diffusion

At present it is unclear whether there exist nonintegrablgonstants, mean free paths, and lifetimes in a nonintegrable

found so far. Real compounds like ,8u0O; and SrCuQ
correspond tdH®*? in any case only in first approximation.

It is therefore important to examine whether general, nonin-
tegrable, quantum spin chains show ballistic or diffusive
transport properties at finite temperatures. This question has QMC simulations yield, in general, correlation functions
been studied by Rosch and Andraiithin a short-time ap-  on the imaginary-time axis. We therefore consider the Kubo
proximation(a memory-matrix approach, extending an ear-formula for spin conductivity in the Matsubara formalism.

lier analysis by Giamarch) for Luttinger liquids with The spin conductivity in one-dimensional spin chains can
higher-order umklapp scattering. They found only exponenbe defined as the response of the current to a homogeneous
tially small deviations from ballistic transport away from and time-dependent twish =X, ¢, in the quantization axis:

II. SPIN CONDUCTIVITY
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(o) o Vs Equation (10) leads, via analytical continuationw,— w
H (‘19):2I [k cos ) +jisin(¢y) + 3,55 41], +idand6—0, usingo(w,) =lim,_o(q,w,), to the usual
1) representation of the dynamical conductivity

where o(0)=7D(T)8(w) + oreg( @, T), 11y

klz‘]?x"(sl+sl—+l+ S'S%)) 2) whereD_(T) is the Drude weighP that can be computed via
D(T)=I|mwnﬂol|qu0D(q,wn):
and
D(T)=—(K)—A(q—0,0,—0). (12

Jxx +o— — ot
=27 (S'Sh1—S S, ()

Formally, Eq.(1) is the Hamiltonian of anXXZ chain in
which the quantization axis of the local spin operators has

been rotated by a site-dependent anfjl@long thez axis. To d’E
obtain the expression of the Kubo formula for the spin con- N ﬁ ’
ductivity we expandH®*2(®) in a Taylor series: ®=0

It can be provett that this limit is consistent with the defi-
nition introduced by Koht? at T=0,

(13

K, whereE is the ground-state energy addthe total external
HOA(P)=HOD+ > jf¢|+§¢|2, (4)  flux. RecentlyD has been extended by Zotos, Naef, and
! Previogk' to finite T

and we obtain théotal spin-density current by differentiating
with respect tog, , exp(—BE,)
D=L ——
IHA(P) @

g
. ) ) It is important to note that the limits lign,, and lim,,_,
The first term is the paramagnetic part of the current. Ifdo not commute. When the limits are taken in the opposite

the z component of the magnetization is conserved, it carprder one obtains the conventional spin stiffness which rep-
also be deduced using the discretized continuity equation resents the response tostatic twist:

dzEa) 10
. .
o/

=(iDT=ifrke. 5

%Sz(t)+[J'|Z(t)—j|zfl(t)]=0, (6) ps=lim lim D(q,w,). (15)
qg—0 w,—0
where the second term is the discrete version of the diver-
gence in one dimension. If we combine it with the equation A nonzero value of the Drude weight implies that the total
of motion, magnetic current does not decay to zero wherw (i.e., the
transport is ballistic The most simple example to illustrate

J ) ; this situation is theXX chain. In that caséHyx,j*(q)]
Esl(t):'[H'Sl]’ (@) =0. Taking the spectral representation &ofq,w,) for w,
) ] ] >0 we have
we obtain the expressiof8). The second term in Eq5),
proportional to the magnetic flux, is called the diamagnetic Em#*En - BE . )
current. The expectation value of the total current is e ml(mlj*(q)[n)|

A(Gon) =51 2

2 o (En—Ey - 19

(1", 00))==[(K)+ A(q,00)] ¢, ®

where (K)=(Z k) is the expectation value of the kinetic ~ Note that degenerated states are explicitly excluded from
energy per site and is the current-current correlation as a the sum and thereforlém|j*(q)|n)|=0 and the conductivity
function of the Matsubara frequency, reduces tar=— m(K) 8(w), which saturates thesum rule.
Interactions spoil the commutation of spin current and
B onr/ 2 . Hamiltonian but, if the umklapp part of the interaction is
A(q’w”)_ffo (i, 1~ q,0)dr. ©) irrelevant and the system remains gapless, the Drude weight
remains finite and the current-current correlation functions
The response to the time—integl’ated twist is then Obtaineean reduce the Drude peak from the kinetic energy_ Th|S
from Eq. (8) and the dynamical conductivity takes the usualsjtyation is indeed realized in the gapless regime ofXX&

form chain but the integrable nature of the interaction in this case
e plays, as we will see, a definitive role. The regular part of the
(Q0,) = (K)=A(q,wp) _ D(a,@n) _ (10 conductivity is in any caséintegrable or nonintegrable sys-
Wn Wn tems enhanced to fulfill thé sum rule.
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IIl. RELATION BETWEEN CORRELATION FUNCTIONS
AT T#0

Now we will derive a connection in between the current- s™--] s
current correlation functiod (q,»,) and the dynamical sus-
ceptibility S(q,w,); in the next section we will explain how a,)
to exploit this connection in QMC calculations. The spin-
spin correlation function is defined by s F--15s

1(6
S(q,wn)=tfo e “n7(SY(1)S 4(0)). 17)

In Fourier space, the continuity E() takes the form

d _
T2 SUn=[H,S1=i(1-€9)jE. (18)

We integrate the right-hand side of E@7) with respect tor
twice, use Eq(18), and obtain

b

4 sirt(q/2
w/\(q,wn), FIG. 1. (8) Two-loop contribution to the current-current correla-

Wy tion function; anS* andS~ operator must be applied in each loop
(19 to close it consistently in terms of the loop orientati¢in). and (c)

where we have used the definitié®). The double commu- Two kinds of one-loop contributions to the current-current correla-
tator in the right-hand side of Eq19) is the boundary term tion function. The ordering of th€" andS™ in terms of loop time
of the partial integration and is evaluated to read is crucial to evaluate the contribution of these terms.

-1
S(g,00) = —([[H.S1.5 4))

([[H,Sé],siq]):4sir?(q/Z)(K). (20) algorithm?3 When these nondiagonal operators are tyvo—
point-like, only one-loop terms contribute to the correlation
Recalling the definition oD (g, w,) we arrive at function. In that case it is possible to design efficient im-

proved estimators, meaning that a given magnitude is evalu-
ated not only in one configuration but in all configurations
related by loop flippings. The evaluation of a four-point cor-
relation function is more involvetf In that case there are
two-loop terms and one-loop terms which contribute in dif-
Ferent ways depending on the specific shape of the loop, see
Fig. 1 for an illustration. As a consequence the improved
estimators are much less efficient. The dynamical suscepti-
IV. QMC EVALUATION OF THE CONDUCTIVITY bility in S(qg,w,) is, on the other hand, a two-point diagonal
In this section we will discuss the usefulness of E2{) operator that can be evaluated efficiently using improved es-

in the context of QMC simulation, comparing two different timators, and it is related to the conductivity using the Kubo
possibilities to compute the conductivity using quantum C|us_f0rmula(;0) and the relation21). L
ter algorithms. Cluster algorithms for QMC simulations al- N particular, one can compute within each loapthe
low for global updates of the configuration by flipping simul- Magnitude:
taneously spin-clusters whose typical sizes are of the order of
the correlation length of the system. The loop algorﬁﬁm_e W(d,wq,0) = 1~ S SH(reiten), (23)
used in the present study gives an efficient prescription to T (xnea
construct clusters. The resulting autocorrelation time is i
general of the order of one Monte Carlo stepe Ref. 22 for
an excellent revieyw

The current-current correlation function in real space and S(d, wp)~ 2 W(G,0n,)W(—0,—w,,a), (24)
imaginary time takes the form “

2
wn
D(q,wn)zmﬂq,wn). (21

Note, that the double commutator in E49) occurs for the
Matsubara correlation functions and does not occur for
related real-frequency correlation functith.

Mhe dynamical structure factor is then

1 where « runs over all loops constructed. In particular we
_ .z / Z want to emphasize the importance of relati@i), because
All,n= LN+ ,23 fa (T D), 22 only using it we obtained the high-quality dadlarge set of
) ) o uncorrelated measurements with small statistical error)bars
whereNy is the number of Trotter slices. The contributions {hat is necessary in order to extract de-transport coefficients.
to A(l,7) are nondiagonal four-site operators, typically  Finally we mention a few numerical details. We used the
(3ad DS (71)S], 4 1(m1)S(72) S+ 1(72). In principle, non-  discrete imaginary-time version of the loop algorithm with a
diagonal operators can be computed using the loodrotter decomposition of typicalliN+=800-2000 and on
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the average & 10° full MC updates in the grand-canonical i.e., EqQ.(27) describes a gapped phase. In the first case, Eq.
ensemble. Test runs within a canonical ensemble were als@7) reproduces the correeb and q dependencies for the
performed to exclude any influence of the ensemble in thecaling form of the Luttinger liquid26). The first term in
transport properties. The error bdesther the statistical ones Eq.(27) dominates the low-frequency behavior in both cases
or those derived from the fittingare of the order of the and we have set generaly=0 in order to keep the number
symbol size in all the figures presented. of parameters to a minimum.
(iii ) At high frequencies
V. DATA ANALYSIS .
lim D(0,w,)=—(K)=D1(0)+Dy(0), (28
QMC simulations yield results on the imaginary axis and @y

the analytic continuationw,—~w+ié is a numerically ill- -~ o4 5 finited . (0) results in a reduction of the Drude weight
conditioned problem. This is a subtle issue, since the exisx

- - . D(T) with respect to the kinetic energy, see ELR). A finite
Felfably by a numerical analyic continuation. The dynamicalD2(C) MeaSUIeS the amount of decay experienced by the
ybyarl ytic con ' y total current due to the interactions, see discussion below.
conductivity is, however, analytic in the upper half of the

complex plane; its loww,, behavior can therefore be used to We note also that the ansatz Bg7) for D(q, «.), together

. . : . o
determine its loww behavior wherl(i) a general expression, with Eq. (28), is consistent with thé sum rulé

correct at low frequencies, foo(z) (for complex z) is 1 (=

known and(ii) if one works at low enough temperatures in —f Reo(w)dw=—(K) (29
the QMC simulations such that the spacing of the Matsubara mJo

frequencies w,=27T allows the numerical results for for the optical conductivity.

o(iw,) to determine reliably the parameters of the general (i) In the gapless regim®(q,w,)/», can describe a
fitting functions. We will use this procedure here. normal conductor with finite dc conductivity whenever the
At low temperatures and frequencies, the scaling ofgamping y,(0) is finite. Using the analytic continuation
D(q,w) can be obtained simply invoking the conformal j, — w+i8 we find for a termn=1,2, contributing the op-

symmetry of the model emerging in the gapless regiye tical conductivityD(q, w,)/ @, ,
<Jyx- S(0,w,) at small g takes the form

—iwD,(0)

Dy(T)q? 25 M A20)— 2iwyy(0)—?

=0. (30)

S(q,w,)=———F. A,(0)>0
i ) .. We find in general that\,(q)>0, as illustrated in Fig. 3

Note that, unlike neag=r, the dynamical susceptibility pejow, and hencd®,(0) does not contribute to the Drude

aboutg=0 does not show power laws. TheXZ model weight.

maps to an interacting 1D spinless fermionic system at half The real part of the optical conductivifiL0) takes then,

filling. For the noninteracting casghe XX chain we can  for small frequencies, the Drude form:

compute exactlyD,(q,w,) and we obtainD,(0)=J,,/,

and lim,_ oJ,x SIN@) =J0=cq 2D41(0)71(0) g
Expression25) and Eq.(21) suggest the form Reo(w)= w71472(0) 1t (wn?’ (31
Dl(T)wﬁ where we introduced the dc conductivity
D(Q.wn)Zﬁ- (26)
(@)+ e 00=D1(0)/[27,(0)] (32
Alternatively, Eq.(26) can be viewed as the first term of the and the quasiparticle lifetime
exact representation f@(q,w,) containing an infinite num-
ber of terms'® r=[2y,(0)]" 1. (33
2 Dj(q)wﬁ For —o Eq. (31) reduces to Re(w)=mD4(0)5(w).
D(q,wn)zz (27) If we consider now they dependence for &> r, the

2 27
=1 Aj(a)+2yj(q)wnt oy optical conductivity take§for smallcg/y,(0)] the difusion

The choice of this fitting function is essential to distinguish form

the transport properties of ballistic and diffusive systems;

indeed it allows the correct computation of the Drude weight o(q,0)= Oow D.— c

and the diffusion coefficient. We discuss now in detail the ' w+iDg? ° 271(0)

properties of Eq(27): ) o _ ) )
(i) For y;(g)=0, D(q,w,) is analytic in the upper half of D, is the spin-diffusion constant. Equati¢d4) is consistent

2

=c?r. (34)

the complex plane. with Dg=c\4, wherehg=cr is the mean free length.
(i) For the zerog gapsA;(0)=lim,_oA;(q) we find two () The uniform spin stiffness  ps
possibilities: A;(0)=0 and A,(0)>0, i.e., Eq.(27) de- =limg_olim, oD(q,wy) is always zero, as expected for a

scribes a gapless phase, abg{0)>0 andA,(0)>A,(0), quantum critical antiferromagnetic chain.
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0471 D(q,w,) L=512, T=0.004J, 03 ' : ' ;

0.3 1

0.2 1

0.1

0 0.05 0.1 0.15

q
FIG. 2. D(q,w,) as a function ofw, for various momentay, )
T=0.004,,, andJ,/J,,=0.5 and 1.5. The lines are fits by Eq. _ F!G: 3. D1(q), A1(q), andy,(q) from Eq.(27) as a function
(27). Statistical errors are of the order of the symbol size. Note the®f momentaq for the XXZ model,L=512, and for various, at

different limiting behavior ofD(q—0,w,) for J,/3,,=0.5 and 1~ 0004, ¥,(q) is too small forJ,<J,, to show up on this
3,13,,=1.5. scale. The lines are the Bethe-ansatz re€@® for the velocity

c(J,) (no fit, for J,<J,,). For the discussion of the fit fod,
(vi) The quality of the fit toD(q,,) by Eq.(27) is, in  ~ 13 see the text.
general, excellent, as illustrated in Fig. 2 fiy=0.53,, and
J,=1.5J,,. Note that theg—O0 limiting curve forD(q,»,)  for the g-dependent Drude weight fod,=J,, at T

07

is singular in the gapless phas&,€0.5],,), but well de- =0.004),,. We find good convergence for small but finite
fined in the gapped phasé, & 1.5],,). but slow convergence faz—0 as a function of system size,
due to the multiplicative logarithmic corrections present at
VI. BALLISTIC TRANSPORT the isotropic point. We have indicated by the horizontal ar-

row the T=0, q=0 Bethe-ansatz resufif. For J,<J,, the
In this section we will apply the procedure described inagreement between loWw-QMC and T=0, q=0 Bethe-
Sec. IV to theXXZ chain. We will compare with exact ansatz results is excelleht.
known results and study the controversial finite temperature

behavior ofo(w=0) for this model. 0.29 . .

We present in Fig. 3 selected values @y (q), A;(q), oL-64
and y,(q) for J,/J,,=1.0 and 1.5 as obtained by fitting o8 T=0.0044,,, J,=J,,
D(q,w,) with Eq. (27), see Fig. 2. We have includédo fit) 0.8 L ®L=256 _
in Fig. 3 the linearized Bethe-ansatz result for the magnon L=512
dispersion liy_,,A1(q) =c(J,)q, which is valid in the gap- .
less regimel,<J,,. The magnon velocityc(J,) is given 0.27 L e ¢ 8ng . * i
by?® - _ gul O, LI

w Bz ™ sin(6) 0.26 - . 1

C(‘]Z):Earco@z/\lxx)_ﬁ 0 (35)

whereJ,=cos()J,. In the gapped phase we used the stan-
dard ansata(q) = \/A(,2+(cq)2 for a gapped dispersion re-
lation, finding A;=0.191),,, which is close to twice the
one-magnon gap of 0.09], .%¢ 0.24 - ,

We find that the dampingy;(q) is very small forJ, 0 02 2
<J.y and reduces foq— 0. Within numerical accuracy we q

conclude thaty,(0)=0 and that Rer(w) (;Ilverges fore FIG. 4. Theg-dependent Drude weighi;(q) for the isotropic
—0. In the gapped phase, on the other side, we have foungeisenberg chain aff =0.004),, for various system sizes
finite values for the damping witly;(q), slightly increasing  —g4, ... 512. TheT=0, q=0 result given by Eq(41) is indi-
for g—0, see Fig. 3. Phenomenologically the relationcated by the arrow. The convergence with system size is slow for

v1(q)A1(g)~const holds fold,>J,,, independent of. g—0, due to the logarithmic corrections present at the isotropic
In Fig. 4 we present values obtained by QMC simulationspoint J,=J

0.25 [«— -

XX
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0.35 . . the limit of infinite temperatureSA functionally different
D(T) y=6 behavior forD(T) has been found by Khaperet al.2° with '
an alternative Bethe-ansatz approach, see Fig. 5. The differ-
98 g w % 1 ences between the two different Bethe-ansatz predictions are
i . : : : :
substantial. In Fig. 5 we show a comparison of our data with
\ the two available analytical resuf$?° Our results agree
0.8 1 \\ | with the temperature dependence predicted byngaret al.
~~ We have evaluated the uniform susceptibilipyT) for
T~ J,=0.85),,, andL=512 and 1024, and several low tem-
| peratures in order to address the following two questi@Gns:
Is it correct to compar@& =0 Bethe-ansatz results with QMC
6.5 | | results obtained for a temperature-0.004),, andL=512?
*kQMC, L=512 (i) Is T=0.021,, large enough fot. =512 and 1024 not to
A QMC, L=1024 be affected substantially by finite-size effects? The data pre-
i I i sented in Fig. 6 shows thdt=0.004],, is indeed below the
. 0.01 0.02 003 T 004  finite-size gap and should be a good approximation to the
T=0 data, and that fof=0.012],, no finite-lattice effect
can be observed within the statistical error bars given. Note
that the lowT dependence of the Bethe-ans@tzesult
shown in Fig. 6 fory(T) can be fitted byy(T)~T* with x
~0.867. This exponent is very close to the exact vatue
=0.858 obtained by Eggest al3? for J,=0.85],,. Since
x<1 the slopedy(T)/dT diverges forT—0. This diver-
gence is, however, not relevant for the temperature scale pre-
sented in Fig. 6.

—~—
L
—_——

0.1

FIG. 5. QMC results for the Drude weight far=512 and 1024
and J,=J,, cos(#/6)=0.866J,, as a function of temperaturén
units of J,,) in comparison with twdsolid lines: Ref. 29, dashed
lines: Ref. 28 Bethe-ansatz results.

In order to obtain reliable data for the thermodynamic
limit it is very helpful to avoid the problems apparent in Fig.
4 present in models with strong multiplicative corrections.
This can be achieved by consideridg<J,,. Here we con-
siderJ,=J,, cos(@/6), see Fig. 5, sincé) Bethe-ansatz re-
sults have been presented for this ratioJofJ,,, (i) nu-
merical problems due to multiplicative logarithmic

VIl. PHENOMENOLOGICAL RELATIONS BETWEEN
TRANSPORT COEFFICIENTS

corrections are absent for this value bl J,, (see Fig. 6, Let us consider a 1D system with a finite magnetization
and(iii) J, is large enough that substantial effects due to thgelaxation timer, which might be due to either intrinsic
“interaction term” J, can be observed. relaxation processes or due to weak residual coupling to an

A fast decay of the Drude weight at low temperatures hagxternal bath(i.e., phonons The dc-magnetic conductivity
been found by a Bethe-ansatz calculation by Z8%8his  takes then the form
result is in the high-temperature limit in agreement with ex-
act diagonalization studies which converge relatively well in o(0=0)=D4(0)7, (36)

see Eqgs(32) and (33).

02 ' ' Let us assume that an inhomogeneous magnetic field
0.18 | J,=0.85J,, B*(x) is applied in the chain along theaxis. In principle,
o8 | ] this is a nonequilibrium situation but @B*/dx is small we
can assume, after coarse-graining the chain, that we have a
0.14 ¢ /%\?\_\ T ] well-defined local magnetizatioM (x) and all thermody-
0121 P T ] namic relations hold locally. Generalizing the usual
r ) phenomenologi} for electric transport we write the mag-
X oaf /// ] netic current as
0.08 | / ///,/ . o y M ;
0.06 ¢ // /, —— Bethe-Ansatz ] J(X)_U[ (X—H\) (X)]_)\U dx’ ( 7)
dia E ;o e --QMC, L=512 ] . . .
{ ) e — e QMC, L=1024 whereA=v 7 is the mean free path and is the velocity
0.02 [ / 7K T=0, exact ] associated to the magnetization current that we will identify
[3 . . later. We can express the magnetization current in terms of
% 0.01 0.02 0.03 the gradient of the magnetic field:
T,
. . ,dM  dMdB*
FIG. 6. QMC results for the uniform susceptibilig(T) for L j(X)=v Tax Y Tggr dx (38

=512 and 1024 and,=0.85],, together with the Bethe-ansatz

result (solid line, Ref. 30, as a function of temperature. The star Using j (x) = o(dB%/dx) we arrive at the expression
denotes thelT=0 Bethe-ansatz result. Note the absence of finite-

size effects foiT>0.012,, in the QMC data. o=v’1x. (39
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This relation is analogous to the well-knot¥rphenomeno- 1

logical kinetic formula for the thermal conductivity H=2 vdalbiby+ > E(UNN2+UJ‘]2)1 (46)
=cy?7, wherec, is the specific heat and the thermal a

conductivity. 7 can be eliminated if we use E@6): where the first term corresponds to the bosonic partdnd

andJ are integer quantum numbers associated to states with
o _Dy0)r _Dy(0) 40  nonzero charge and current, respectively. The three velocities
xr xr  x (40 present in the Hamiltonian, the sound veloaity, the charge
velocity vy, and the current velocity ;, are not indepen-
Bent but restricted by an universal relation valid in all micro-
scopic models in the Luttinger-liquid universality cl&Ss:

This phenomenological equation is independent of the valu
of 7, and holds also in the limit— <, whenD(0) becomes
the Drude weight. Since the derivation of E40) is based

on quasiballistic arguments, it is of interest to examine vaJ=v§. (47
whether this relation holds at low temperatures for Luttinger
liquids and Bethe-solvable models. A& 0 both magnitudes For theXXZ chain the values of these three parameters of
x andD have been computed exadly?for the XXZ chain  the effective low-energy Hamiltoniaf#6) have been identi-
by Bethe Ansatz: fied independently vy, and vs by Haldané® and v; by
_ Gomez-Santo¥! using the results of different Bethe-ansatz
D(0)= Jxmsin(6) 1) studies?” 3839
4 6(m—0)’ Guided by the phenomenological derivation presented

above we propose the followin@phenomenologicalfinite

where we have defined,=cos()J, and temperature extensions of the velocities in Ef):

1 v (T
(42 TUN— J D(T), vg (M

(0)= —_— —— —
X XM @ (™)

Jom(m— 0)sin( ) (48)

Dividing both relations we obtain The extension to finite temperatureswqf andv; are in
2.2 . agreement  with  their  physical meaningswuy
D1(0) _ m*J Sir() —?(3,) (43 = (dBIAM)g_o and® v, /m=L(d?E/d?®) o for Lut-
x(0) 4 62 = tinger liquids. On the other hand, for the magnitudes in-
i i ) .. volved in the thermal ratio, the bosonic part of the Hamil-
This result then allows us to identify the magnetization-ygnian does play an important role. In fact, only the bosonic
transport velocity in Eq. (40) with the spin-wave velocity  jeqgrees of freedom transport the energy in the homogeneous

c(J,): At T=0 Eq. (40) is then exact. The validity of EqQ. giates(which, by definitiori* do not carry particle currents
(43) in a leading, lowT correction is an open question pres- (qjevant for the thermal conductivity= «"r and the spe-

. . 2
ently. The leading’ corrections t,(T) andx(T) are~T*  (isic heatc, . It is therefore justified to consided"/c, as

for J,=0 and do not cancel; Ed43) is exact for theXX e hatyral extension of? to low temperatures. Recently this

model only aff =0. The leadingl corrections to the SUSCep- 44i has been computed using Bethe-ansatz techniques at all
tibility show,” however, an exponent crossover fdg temperatures by Kmper and Sakal «'"/c, is a well-

=0.5J,, and Eq.(43) might hold in leading lowF order for  popayed function of T; even more it is very flat at low tem-

32> 0.y . eratures and takes the expected valfrec?(J,) at T=0
A relation similar to Eq(40) has been discussed recently P P a@ (J) '

for thermal transpoit>* experiment$;®® where we
definé®33 k(T)=«"(T) 7, wherex™" is the thermal Drude

VIIl. DIFFUSIVE TRANSPORT

weight For theXXZ chain one find¥' that bothx™(T) and We study now the effect of nonintegrable interaction
cy(T) are linear in temperature for small temperatures anderms in the conductivity of a 1D spin system. To be specific,
that we add a small perturbation t8**?, which breaks the in-
tegrability of H>?:
kT Jreity
lim o™ =c“(J,). (44)
70tV H'IJQZ S,Z |Z+3- (49

Combining Eq.(40) and Eq.(44) we obtain
The expressiorn3) for the spin current remains valid, since
D,(0) . «™MN(T) H’ does contain onl\&* operators and the system remains
¥(0) :Tlinocv(T) : (45) nonfrustrated and free from sign problems. We have per-
formed QMC simulations for the resulting modéf
For ballistic systems the quanti§y;(0) in the above equa- =H®?+H’ mainly for J,=J,, cos(/6). We find a transi-
tion is identical to the Drude weight. This relation can there-tion to a gapped phase aroudf=0.3],,, see Fig. 7. The
fore be interpreted in the framework of a Luttinger liquid. exponential opening of the gap resembles a Kosterlitz-
The Hamiltonian of a Luttinger liquid can be written in the Thouless transition very similar to the one present in the
diagonal form: XXZ chain at the isotropic point and suggests tHatdoes
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FIG. 7. ForL=512 andT=0.004],, the QMC results for the
gapA4(0), therelaxation ratey,(0), the efective velocityc, and
the parameteD,(0) as a function of), for H®2+H' with J,
=J,, cos(@@/6).

not change the universal propertiest®f>?, it only shifts
the transition point and adds the ingredient of nonintegrabil
ity We find the relaxation time 7=1/[2vy,(0)]
=limg_o1[2y41(q)] to be finite within numerical accuracy
(due to finiteg and w, resolution, leading to a finite dc
conductivity in the gapless phase.

PHYSICAL REVIEW B66, 094403 (2002

in order to determine the full dependence o&(0). We
found for J,=0.3J,, o(T=0.004,,)=13.6-0.9, o(T
=0.008,,)=12.1+1.0, ando(T=0.012,,)=10.1+0.8.

In agreement with our expectation of a diverging dc con-
ductivity in a translationally invariant system at=0 we
find ¢(0.008)>¢(0.012). The increase from(0.008) to
0(0.004) is, on the other hand, only modest, presumably due
to the finite-size resolution limitation illustrated in Fig. 6.

IX. CONCLUSIONS

We have shown that quantum Monte Carlo simulations of
quantum spin chains are a powerful tool to obtain finite and
diverging transport coefficients at very low temperatures. We
have derived an useful relation between the dynamical struc-
ture factor S(q,w,) and the dynamical conductivity
o(q,w,), which allows to calculater(q,»,) to very high
accuracy on the imaginary axis. For an integrable chain we
support the original suggestion by Zotesal >~ of a finite
Drude weight at finite temperatures and settle a recent dis-
pute regarding the functional form & (T). In addition we
present results suggesting the absence of ballistic transport
(i.e., a zero Drude weightfor a nonintegrable model, for
which we are able to estimate the magnitude of the dc con-
ductivity. We have discussed our result in the framework of
phenomenological relations and Luttinger-liquid theory.
Connections to recent studies of the diverging thermal con-
ductivity of quantum spin chains were made.
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