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Conductivity of quantum spin chains: A quantum Monte Carlo approach
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We discuss zero-frequency transport properties of various spin-1/2 chains. We show that a careful analysis of
quantum Monte Carlo data on the imaginary axis allows to distinguish between intrinsic ballistic and diffusive
transport. We determine the Drude weight, current-relaxation lifetime, and the mean free path for integrable
and nonintegrable quantum spin chains. We discuss, in addition, some phenomenological relations between
various transport-coefficients and thermal response functions.
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I. INTRODUCTION

The role of spin excitations on the transport properties
quasi-one-dimensional Mott insulators has been the sub
of extensive experimental research over the last few year
recent 17O NMR investigation1 of Sr2CuO3, extending an
earlier 63Cu NMR study,2 measured aq50 spin-diffusion
coefficient ~equivalent to diffusive magnetization transpo!
several orders-of-magnitude larger than the value for c
ventional diffusive systems. Thermal transport measurem
in Sr2CuO3 and SrCuO2 indicate at the same time, quasiba
listic transport with a mean free path of several thousan3

angstrom.
It is well known from structural considerations4 and from

studies of the magnetic excitation spectrum4,5 that Sr2CuO3
and SrCuO2 can be accurately described by theXXZ chain:

H (xxz)5(
i

FJxx

2
~Si

1Si 11
2 1Si

2Si 11
1 !1JzSi

zSi 11
z G .

Evidence for ballistic~or quasiballistic! magnetization trans
port has been found in recent exact diagonalization stud6

of H (xxz) at high temperatures.7,8 A connection between inte
grability, conservation laws, and ballistic transport has b
proposed by Zotos and co-workers.7,9–12 If the current-
current correlation does not decay to zero for long times,
when part of the current operator is conserved, and whe
certain ~nonzero! projection of the~here, magnetic! current
operator commutes with the Hamiltonian, the transport
ballistic even at finite temperatures. This seems to be
case, in general, for Bethe-ansatz solvable models
H (xxz), although a formal proof for this connection is st
outstanding.

At present it is unclear whether there exist nonintegra
models which exhibit ballistic transport; none have be
found so far. Real compounds like Sr2CuO3 and SrCuO2
correspond toH (xxz) in any case only in first approximation
It is therefore important to examine whether general, non
tegrable, quantum spin chains show ballistic or diffus
transport properties at finite temperatures. This question
been studied by Rosch and Andrei13 within a short-time ap-
proximation ~a memory-matrix approach, extending an e
lier analysis by Giamarchi14! for Luttinger liquids with
higher-order umklapp scattering. They found only expon
tially small deviations from ballistic transport away fro
0163-1829/2002/66~9!/094403~9!/$20.00 66 0944
f
ct
A

-
ts

s

s

n

.,
a

s
e
e

e
n

-

as

-

-

commensurability. An alternative route to diffusive transpo
spin-phonon coupling, has been studied by Narozhny.15

In his seminal paper16 in 1964, Kohn proved that the ex
istence of a delta peak at zero frequency~the Drude peak! in
the conductivity is the essential difference between grou
states with localized and extended electronic states. A sim
extension of this idea to the spin transport can be used
distinguish, without other explicit information about the e
citation spectrum, a spin insulator, such as spin-Peierls c
pounds, from a spin conductor such as Sr2CuO3. Despite
ongoing efforts17,18devoted to this problem, the fundament
difference between models with ballistic and diffusive tran
port properties has shown up only recently in quant
Monte Carlo~QMC! simulations.19 The purpose of this pape
is to explain in detail how this important issue can be tack
numerically by QMC methods.

The organization of the paper is as follows. Section
contains the basic definitions and sets the notation that
will use throughout the paper. In Sec. III we deduce t
connection between the spin current-current and dens
density correlation functions emphasizing the role of bou
ary terms that occur in Matsubara formalism, and in Sec.
we discuss how to exploit that connection to compute
conductivity in imaginary frequency using quantum Mon
Carlo cluster algorithms in an efficient way. In Sec. V w
describe a procedure to extract transport coefficients~Drude
weight and the diffusion coefficient! from QMC data in gen-
eral one-dimensional~1D! interacting systems, either inte
grable or nonintegrable. In Sec. VI we apply this method
the XXZ chain and we obtain the Drude weight at fini
temperatures. We then discuss several phenomenologica
lations between transport and thermal coefficients in S
VII. Section VIII is devoted to the computation of diffusio
constants, mean free paths, and lifetimes in a nonintegr
spin chain. In Sec. IX we present our conclusions.

II. SPIN CONDUCTIVITY

QMC simulations yield, in general, correlation function
on the imaginary-time axis. We therefore consider the Ku
formula for spin conductivity in the Matsubara formalism.

The spin conductivity in one-dimensional spin chains c
be defined as the response of the current to a homogen
and time-dependent twistF5( lf l in the quantization axis:
©2002 The American Physical Society03-1
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H (xxz)~F!5(
l

@kl cos~f l !1 j l
z sin~f l !1JzSl

zSl 11
z #,

~1!

where

kl5
Jxx

2
~Sl

1Sl 11
2 1Sl

2Sl 11
1 ! ~2!

and

j l
z5

Jxx

2i
~Sl

1Sl 11
2 2Sl

2Sl 11
1 !. ~3!

Formally, Eq. ~1! is the Hamiltonian of anXXZ chain in
which the quantization axis of the local spin operators
been rotated by a site-dependent anglef l along thez axis. To
obtain the expression of the Kubo formula for the spin co
ductivity we expandH (xxz)(F) in a Taylor series:

H (xxz)~F!5H (xxz)1(
l

j l
zf l1

kl

2
f l

2 , ~4!

and we obtain thetotal spin-density current by differentiatin
with respect tof l ,

]H (xxz)~F!

]f l
5~ j l

z!T5 j l
z1klf l . ~5!

The first term is the paramagnetic part of the current
the z component of the magnetization is conserved, it c
also be deduced using the discretized continuity equatio

]

]t
Sl

z~ t !1@ j l
z~ t !2 j l 21

z ~ t !#50, ~6!

where the second term is the discrete version of the di
gence in one dimension. If we combine it with the equat
of motion,

]

]t
Sl

z~ t !5 i @H,Sl
z#, ~7!

we obtain the expression~3!. The second term in Eq.~5!,
proportional to the magnetic flux, is called the diamagne
current. The expectation value of the total current is

^ j T~q,vn!&52@^K&1L~q,vn!#f l , ~8!

where ^K&5^( lkl& is the expectation value of the kinet
energy per site andL is the current-current correlation as
function of the Matsubara frequency,

L~q,vn!5
1

LE0

b

eivnt^ j z~q,t! j z~2q,0!&dt. ~9!

The response to the time-integrated twist is then obtai
from Eq. ~8! and the dynamical conductivity takes the usu
form

s~q,vn!5
2^K&2L~q,vn!

vn
[

D~q,vn!

vn
. ~10!
09440
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Equation ~10! leads, via analytical continuationivn→v
1 id andd→0, usings(vn)5 limq→0s(q,vn), to the usual
representation of the dynamical conductivity

s~v!5pD~T!d~v!1s reg~v,T!, ~11!

whereD(T) is the Drude weight20 that can be computed via
D(T)5 limvn→0

limq→0D(q,vn):

D~T!52^K&2L~q→0,vn→0!. ~12!

It can be proved11 that this limit is consistent with the defi
nition introduced by Kohn16 at T50,

D5LS d2E

d2F
D

F50

, ~13!

whereE is the ground-state energy andF the total external
flux. RecentlyD has been extended by Zotos, Naef, a
Prevlošek11 to finite T:

D~T!5L(
a

exp~2bEa!

Z S d2Ea

d2F
D

F50

. ~14!

It is important to note that the limits limq→0 and limv→0
do not commute. When the limits are taken in the oppos
order one obtains the conventional spin stiffness which r
resents the response to astatic twist:

rs5 lim
q→0

lim
vn→0

D~q,vn!. ~15!

A nonzero value of the Drude weight implies that the to
magnetic current does not decay to zero whent→` ~i.e., the
transport is ballistic!. The most simple example to illustrat
this situation is theXX chain. In that case@HXX , j z(q)#
50. Taking the spectral representation ofL(q,vn) for vn
.0 we have

L~q,vn!5
1

ZL (
m,n

EmÞEn e2bEmu^mu j z~q!un&u2

ivn2~Em2En!
. ~16!

Note that degenerated states are explicitly excluded fr
the sum and thereforeu^mu j z(q)un&u50 and the conductivity
reduces tos52p^K&d(v), which saturates thef sum rule.
Interactions spoil the commutation of spin current a
Hamiltonian but, if the umklapp part of the interaction
irrelevant and the system remains gapless, the Drude we
remains finite and the current-current correlation functio
can reduce the Drude peak from the kinetic energy. T
situation is indeed realized in the gapless regime of theXXZ
chain but the integrable nature of the interaction in this c
plays, as we will see, a definitive role. The regular part of
conductivity is in any case~integrable or nonintegrable sys
tems! enhanced to fulfill thef sum rule.
3-2
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CONDUCTIVITY OF QUANTUM SPIN CHAINS: A . . . PHYSICAL REVIEW B66, 094403 ~2002!
III. RELATION BETWEEN CORRELATION FUNCTIONS
AT TÅ0

Now we will derive a connection in between the curre
current correlation functionD(q,vn) and the dynamical sus
ceptibility S(q,vn); in the next section we will explain how
to exploit this connection in QMC calculations. The spi
spin correlation function is defined by

S~q,vn!5
1

LE0

b

eivnt^Sq
z~t!S2q

z ~0!&. ~17!

In Fourier space, the continuity Eq.~6! takes the form

d

dt
Sq

z~t!5@H,Sq
z#5 i ~12eiq! j q

z . ~18!

We integrate the right-hand side of Eq.~17! with respect tot
twice, use Eq.~18!, and obtain

S~q,vn!5
21

vn
2 ^@@H,Sq

z#,S2q
z #&2

4 sin2~q/2!

vn
2 L~q,vn!,

~19!

where we have used the definition~9!. The double commu-
tator in the right-hand side of Eq.~19! is the boundary term
of the partial integration and is evaluated to read

^@@H,Sq
z#,S2q

z #&54 sin2~q/2!^K&. ~20!

Recalling the definition ofD(q,vn) we arrive at

D~q,vn!5
vn

2

4 sin2~q/2!
S~q,vn!. ~21!

Note, that the double commutator in Eq.~19! occurs for the
Matsubara correlation functions and does not occur fo
related real-frequency correlation function.12

IV. QMC EVALUATION OF THE CONDUCTIVITY

In this section we will discuss the usefulness of Eq.~21!
in the context of QMC simulation, comparing two differe
possibilities to compute the conductivity using quantum cl
ter algorithms. Cluster algorithms for QMC simulations a
low for global updates of the configuration by flipping simu
taneously spin-clusters whose typical sizes are of the orde
the correlation length of the system. The loop algorithm21 we
used in the present study gives an efficient prescription
construct clusters. The resulting autocorrelation time is
general of the order of one Monte Carlo step~see Ref. 22 for
an excellent review!.

The current-current correlation function in real space a
imaginary time takes the form

L~ l ,t!5
1

LNT
(
l 8,t8

j l 1 l 8
z

~t81t! j l 8
z

~t8!, ~22!

whereNT is the number of Trotter slices. The contributio
to L( l ,t) are nondiagonal four-site operators, typica
(Jxx/4)Sl 1

1(t1)Sl 111
2 (t1)Sl 2

2(t2)Sl 211
1 (t2). In principle, non-

diagonal operators can be computed using the l
09440
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algorithm.23 When these nondiagonal operators are tw
point-like, only one-loop terms contribute to the correlati
function. In that case it is possible to design efficient im
proved estimators, meaning that a given magnitude is ev
ated not only in one configuration but in all configuratio
related by loop flippings. The evaluation of a four-point co
relation function is more involved.24 In that case there are
two-loop terms and one-loop terms which contribute in d
ferent ways depending on the specific shape of the loop,
Fig. 1 for an illustration. As a consequence the improv
estimators are much less efficient. The dynamical susce
bility in S(q,vn) is, on the other hand, a two-point diagon
operator that can be evaluated efficiently using improved
timators, and it is related to the conductivity using the Ku
formula ~10! and the relation~21!.

In particular, one can compute within each loopa the
magnitude:

W~q,vn ,a!5
b

NT
(

(x,t)Pa
Sl

z~t!ei (ql1vnt). ~23!

The dynamical structure factor is then

S~q,vn!;(
a

W~q,vn ,a!W~2q,2vn ,a!, ~24!

where a runs over all loops constructed. In particular w
want to emphasize the importance of relation~21!, because
only using it we obtained the high-quality data~large set of
uncorrelated measurements with small statistical error b!
that is necessary in order to extract dc-transport coefficie

Finally we mention a few numerical details. We used t
discrete imaginary-time version of the loop algorithm with
Trotter decomposition of typicallyNT580022000 and on

FIG. 1. ~a! Two-loop contribution to the current-current correl
tion function; anS1 andS2 operator must be applied in each loo
to close it consistently in terms of the loop orientation.~b! and ~c!
Two kinds of one-loop contributions to the current-current corre
tion function. The ordering of theS1 andS2 in terms of loop time
is crucial to evaluate the contribution of these terms.
3-3



l
al
th
s

nd

xi

a
e

to
,

in
a
r
ra

o
al

ha

e

sh
s

gh
he

f

Eq.

es
r

ht

the
ow.

e
n

e

a

J. V. ALVAREZ AND CLAUDIUS GROS PHYSICAL REVIEW B66, 094403 ~2002!
the average 63106 full MC updates in the grand-canonica
ensemble. Test runs within a canonical ensemble were
performed to exclude any influence of the ensemble in
transport properties. The error bars~either the statistical one
or those derived from the fitting! are of the order of the
symbol size in all the figures presented.

V. DATA ANALYSIS

QMC simulations yield results on the imaginary axis a
the analytic continuationivn→v1 id is a numerically ill-
conditioned problem. This is a subtle issue, since the e
tence of a finite Drude peak atv50 cannot be obtained
reliably by a numerical analytic continuation. The dynamic
conductivity is, however, analytic in the upper half of th
complex plane; its lowvn behavior can therefore be used
determine its lowv behavior when~i! a general expression
correct at low frequencies, fors(z) ~for complex z) is
known and~ii ! if one works at low enough temperatures
the QMC simulations such that the spacing of the Matsub
frequencies vn52pT allows the numerical results fo
s( ivn) to determine reliably the parameters of the gene
fitting functions. We will use this procedure here.

At low temperatures and frequencies, the scaling
D(q,vn) can be obtained simply invoking the conform
symmetry of the model emerging in the gapless regimeJz
,Jxx . S(q,vn) at small q takes the form

S~q,vn!5
D1~T!q2

~cq!21vn
2

. ~25!

Note that, unlike nearq5p, the dynamical susceptibility
about q50 does not show power laws. TheXXZ model
maps to an interacting 1D spinless fermionic system at
filling. For the noninteracting case~the XX chain! we can
compute exactlyD1(q,vn) and we obtainD1(0)5Jxx /p,
and limq→0Jxx sin(q)5Jxxq[cq.

Expression~25! and Eq.~21! suggest the form

D~q,vn!5
D1~T!vn

2

D2~q!1vn
2

. ~26!

Alternatively, Eq.~26! can be viewed as the first term of th
exact representation forD(q,vn) containing an infinite num-
ber of terms:18

D~q,vn!5(
j 51

2 D j~q!vn
2

D j
2~q!12g j~q!vn1vn

2
. ~27!

The choice of this fitting function is essential to distingui
the transport properties of ballistic and diffusive system
indeed it allows the correct computation of the Drude wei
and the diffusion coefficient. We discuss now in detail t
properties of Eq.~27!:

~i! For g j (q)>0, D(q,vn) is analytic in the upper half o
the complex plane.

~ii ! For the zero-q gapsD i(0)5 limq→0D i(q) we find two
possibilities: D1(0)50 and D2(0).0, i.e., Eq. ~27! de-
scribes a gapless phase, andD1(0).0 andD2(0).D1(0),
09440
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i.e., Eq.~27! describes a gapped phase. In the first case,
~27! reproduces the correctv and q dependencies for the
scaling form of the Luttinger liquid~26!. The first term in
Eq. ~27! dominates the low-frequency behavior in both cas
and we have set generallyg2[0 in order to keep the numbe
of parameters to a minimum.

~iii ! At high frequencies

lim
vn→`

D~0,vn!52^K&[D1~0!1D2~0!, ~28!

and a finiteD2(0) results in a reduction of the Drude weig
D(T) with respect to the kinetic energy, see Eq.~12!. A finite
D2(0) measures the amount of decay experienced by
total current due to the interactions, see discussion bel
We note also that the ansatz Eq.~27! for D(q,vn), together
with Eq. ~28!, is consistent with thef sum rule25

1

pE0

`

Res~v!dv52^K& ~29!

for the optical conductivity.
~iv! In the gapless regimeD(q,vn)/vn can describe a

normal conductor with finite dc conductivity whenever th
damping g1(0) is finite. Using the analytic continuatio
ivn→v1 id we find for a termn51,2, contributing the op-
tical conductivityD(q,vn)/vn ,

lim
v→0

2 ivDn~0!

Dn
2~0!22ivgn~0!2v2 U

Dn(0).0

50. ~30!

We find in general thatD2(q).0, as illustrated in Fig. 3
below, and henceD2(0) does not contribute to the Drud
weight.

The real part of the optical conductivity~10! takes then,
for small frequencies, the Drude form:

Res~v!5
2D1~0!g1~0!

v214g1
2~0!

[
s0

11~vt!2 , ~31!

where we introduced the dc conductivity

s05D1~0!/@2g1~0!# ~32!

and the quasiparticle lifetime

t5@2g1~0!#21. ~33!

For t→` Eq. ~31! reduces to Res(v)5pD1(0)d(v).
If we consider now theq dependence for 1/v@t, the

optical conductivity takes@for smallcq/g1(0)] the diffusion
form

s~q,v!5
s0v

v1 iD sq
2

, Ds5
c2

2g1~0!
[c2t. ~34!

Ds is the spin-diffusion constant. Equation~34! is consistent
with Ds5cls , wherels5ct is the mean free length.

~v! The uniform spin stiffness rs
5 limq→0limvn→0D(q,vn) is always zero, as expected for
quantum critical antiferromagnetic chain.
3-4
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CONDUCTIVITY OF QUANTUM SPIN CHAINS: A . . . PHYSICAL REVIEW B66, 094403 ~2002!
~vi! The quality of the fit toD(q,vn) by Eq. ~27! is, in
general, excellent, as illustrated in Fig. 2 forJz50.5Jxx and
Jz51.5Jxx . Note that theq→0 limiting curve forD(q,vn)
is singular in the gapless phase (Jz50.5Jxx), but well de-
fined in the gapped phase (Jz51.5Jxx).

VI. BALLISTIC TRANSPORT

In this section we will apply the procedure described
Sec. IV to theXXZ chain. We will compare with exac
known results and study the controversial finite tempera
behavior ofs(v50) for this model.

We present in Fig. 3 selected values forD1,2(q), D1(q),
and g1(q) for Jz /Jxx51.0 and 1.5 as obtained by fittin
D(q,vn) with Eq. ~27!, see Fig. 2. We have included~no fit!
in Fig. 3 the linearized Bethe-ansatz result for the magn
dispersion limq→0D1(q)5c(Jz)q, which is valid in the gap-
less regimeJz<Jxx . The magnon velocityc(Jz) is given
by26

c~Jz!5
p

2

AJxx
2 2Jz

2

arcos~Jz /Jxx!
5

p

2

sin~u!

u
, ~35!

whereJz5cos(u)Jxx. In the gapped phase we used the st
dard ansatzD1(q)5AD0

21(cq)2 for a gapped dispersion re
lation, finding D050.191Jxx , which is close to twice the
one-magnon gap of 0.091Jxx .26

We find that the dampingg1(q) is very small for Jz
,Jxx and reduces forq→0. Within numerical accuracy we
conclude thatg1(0)50 and that Res(v) diverges forv
→0. In the gapped phase, on the other side, we have fo
finite values for the damping withg1(q), slightly increasing
for q→0, see Fig. 3. Phenomenologically the relati
g1(q)D1(q)'const holds forJz.Jxx , independent ofq.

In Fig. 4 we present values obtained by QMC simulatio

FIG. 2. D(q,vn) as a function ofvn for various momentaq,
T50.004Jxx , and Jz /Jxx50.5 and 1.5. The lines are fits by Eq
~27!. Statistical errors are of the order of the symbol size. Note
different limiting behavior ofD(q→0,vn) for Jz /Jxx50.5 and
Jz /Jxx51.5.
09440
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for the q-dependent Drude weight forJz5Jxx at T
50.004Jxx . We find good convergence for small but finiteq,
but slow convergence forq→0 as a function of system size
due to the multiplicative logarithmic corrections present
the isotropic point. We have indicated by the horizontal
row the T50, q50 Bethe-ansatz result.27 For Jz,Jxx the
agreement between low-T QMC and T50, q50 Bethe-
ansatz results is excellent.19

e

FIG. 3. D1(q), D1,2(q), andg1(q) from Eq. ~27! as a function
of momentaq for the XXZ model,L5512, and for variousJz at
T50.004Jxx . g1(q) is too small forJz<Jxx to show up on this
scale. The lines are the Bethe-ansatz result~35! for the velocity
c(Jz) ~no fit, for Jz<Jxx). For the discussion of the fit forJz

51.5Jxx , see the text.

FIG. 4. Theq-dependent Drude weightD1(q) for the isotropic
Heisenberg chain atT50.004Jxx for various system sizesL
564, . . . ,512. TheT50, q50 result given by Eq.~41! is indi-
cated by the arrow. The convergence with system size is slow
q→0, due to the logarithmic corrections present at the isotro
point Jz5Jxx .
3-5
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J. V. ALVAREZ AND CLAUDIUS GROS PHYSICAL REVIEW B66, 094403 ~2002!
In order to obtain reliable data for the thermodynam
limit it is very helpful to avoid the problems apparent in Fi
4 present in models with strong multiplicative correction
This can be achieved by consideringJz,Jxx . Here we con-
siderJz5Jxx cos(p/6), see Fig. 5, since~i! Bethe-ansatz re
sults have been presented for this ratio ofJz /Jxx , ~ii ! nu-
merical problems due to multiplicative logarithm
corrections are absent for this value ofJz /Jxx ~see Fig. 6!,
and~iii ! Jz is large enough that substantial effects due to
‘‘interaction term’’ Jz can be observed.

A fast decay of the Drude weight at low temperatures
been found by a Bethe-ansatz calculation by Zotos.28 This
result is in the high-temperature limit in agreement with e
act diagonalization studies which converge relatively well

FIG. 5. QMC results for the Drude weight forL5512 and 1024
and Jz5Jxx cos(p/6)50.866Jxx as a function of temperature~in
units of Jxx) in comparison with two~solid lines: Ref. 29, dashed
lines: Ref. 28! Bethe-ansatz results.

FIG. 6. QMC results for the uniform susceptibilityx(T) for L
5512 and 1024 andJz50.85Jxx together with the Bethe-ansat
result ~solid line, Ref. 30!, as a function of temperature. The st
denotes theT50 Bethe-ansatz result. Note the absence of fin
size effects forT.0.012Jxx in the QMC data.
09440
.

e

s
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the limit of infinite temperatures.7 A functionally different
behavior forD(T) has been found by Klu¨mperet al.,29 with
an alternative Bethe-ansatz approach, see Fig. 5. The di
ences between the two different Bethe-ansatz predictions
substantial. In Fig. 5 we show a comparison of our data w
the two available analytical results.28,29 Our results agree
with the temperature dependence predicted by Klu¨mperet al.

We have evaluated the uniform susceptibilityx(T) for
Jz50.85Jxx , and L5512 and 1024, and several low tem
peratures in order to address the following two questions~i!
Is it correct to compareT50 Bethe-ansatz results with QMC
results obtained for a temperatureT50.004Jxx andL5512?
~ii ! Is T50.02Jxx large enough forL5512 and 1024 not to
be affected substantially by finite-size effects? The data p
sented in Fig. 6 shows thatT50.004Jxx is indeed below the
finite-size gap and should be a good approximation to
T50 data, and that forT>0.012Jxx no finite-lattice effect
can be observed within the statistical error bars given. N
that the low-T dependence of the Bethe-ansatz30 result
shown in Fig. 6 forx(T) can be fitted byx(T);Tx with x
'0.867. This exponent is very close to the exact valuex
50.858 obtained by Eggertet al.32 for Jz50.85Jxx . Since
x,1 the slopedx(T)/dT diverges forT→0. This diver-
gence is, however, not relevant for the temperature scale
sented in Fig. 6.

VII. PHENOMENOLOGICAL RELATIONS BETWEEN
TRANSPORT COEFFICIENTS

Let us consider a 1D system with a finite magnetizat
relaxation timet, which might be due to either intrinsic
relaxation processes or due to weak residual coupling to
external bath~i.e., phonons!. The dc-magnetic conductivity
takes then the form

s~v50!5D1~0!t, ~36!

see Eqs.~32! and ~33!.
Let us assume that an inhomogeneous magnetic fi

Bz(x) is applied in the chain along thez axis. In principle,
this is a nonequilibrium situation but ifdBz/dx is small we
can assume, after coarse-graining the chain, that we ha
well-defined local magnetizationM (x) and all thermody-
namic relations hold locally. Generalizing the usu
phenomenology31 for electric transport we write the mag
netic current as

j ~x!5v@M ~x1l!2M ~x!#5lv
dM

dx
, ~37!

where l5vt is the mean free path andv is the velocity
associated to the magnetization current that we will iden
later. We can express the magnetization current in term
the gradient of the magnetic field:

j ~x!5v2t
dM

dx
5v2t

dM

dBz

dBz

dx
. ~38!

Using j (x)5s(dBz/dx) we arrive at the expression

s5v2tx. ~39!
-

3-6
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This relation is analogous to the well-known31 phenomeno-
logical kinetic formula for the thermal conductivityk
5cVv2t, wherecV is the specific heat andk the thermal
conductivity.t can be eliminated if we use Eq.~36!:

s

xt
5

D1~0!t

xt
5

D1~0!

x
5v2. ~40!

This phenomenological equation is independent of the va
of t, and holds also in the limitt→`, whenD1(0) becomes
the Drude weight. Since the derivation of Eq.~40! is based
on quasiballistic arguments, it is of interest to exam
whether this relation holds at low temperatures for Lutting
liquids and Bethe-solvable models. AtT50 both magnitudes
x andD have been computed exactly27,32 for theXXZ chain
by Bethe Ansatz:

D~0!5
Jxxp

4

sin~u!

u~p2u!
, ~41!

where we have definedJz5cos(u)Jxx and

x~0!5
u

Jxxp~p2u!sin~u!
. ~42!

Dividing both relations we obtain

D1~0!

x~0!
5

p2Jxx
2

4

sin2~u!

u2
[c2~Jz!. ~43!

This result then allows us to identify the magnetizatio
transport velocityv in Eq. ~40! with the spin-wave velocity
c(Jz): At T50 Eq. ~40! is then exact. The validity of Eq
~43! in a leading, low-T correction is an open question pre
ently. The leadingT corrections toD1(T) andx(T) are;T2

for Jz50 and do not cancel; Eq.~43! is exact for theXX
model only atT50. The leadingT corrections to the suscep
tibility show,32 however, an exponent crossover forJz
50.5Jxx and Eq.~43! might hold in leading low-T order for
Jz.0.5Jxx .

A relation similar to Eq.~40! has been discussed recen
for thermal transport33,34 experiments,3,35 where we
define20,33 k(T)[k th(T)t, wherek th is the thermal Drude
weight. For theXXZ chain one finds34 that bothk th(T) and
cV(T) are linear in temperature for small temperatures a
that

lim
T→0

k th~T!

cV~T!
5c2~Jz!. ~44!

Combining Eq.~40! and Eq.~44! we obtain

D1~0!

x~0!
5 lim

T→0

k th~T!

cV~T!
. ~45!

For ballistic systems the quantityD1(0) in the above equa
tion is identical to the Drude weight. This relation can the
fore be interpreted in the framework of a Luttinger liqui
The Hamiltonian of a Luttinger liquid can be written in th
diagonal form:
09440
e

e
r

-

d

-

H5(
q

vsuqubq
†bq1

1

2

p

L
~vNN21vJJ

2!, ~46!

where the first term corresponds to the bosonic part anN
andJ are integer quantum numbers associated to states
nonzero charge and current, respectively. The three veloc
present in the Hamiltonian, the sound velocityvs , the charge
velocity vN , and the current velocityvJ , are not indepen-
dent but restricted by an universal relation valid in all micr
scopic models in the Luttinger-liquid universality class:36

vNvJ5vs
2 . ~47!

For theXXZ chain the values of these three parameters
the effective low-energy Hamiltonian~46! have been identi-
fied independently, vN and vs by Haldane36 and vJ by
Gomez-Santos,37 using the results of different Bethe-ansa
studies.27,38,39

Guided by the phenomenological derivation presen
above we propose the following~phenomenological! finite
temperature extensions of the velocities in Eq.~46!:

pvN→ 1

x~T!
,

vJ

p
→D1~T!, vs

2→ k th~T!

cV~T!
. ~48!

The extension to finite temperatures ofvN and vJ are in
agreement with their physical meaningspvN
5(dB/dM)B50 and20,37 vJ /p5L(d2E/d2F)F50 for Lut-
tinger liquids. On the other hand, for the magnitudes
volved in the thermal ratio, the bosonic part of the Ham
tonian does play an important role. In fact, only the boso
degrees of freedom transport the energy in the homogen
states~which, by definition31 do not carry particle currents!
relevant for the thermal conductivityk5k tht and the spe-
cific heatcV . It is therefore justified to considerk th/cV as
the natural extension ofvs

2 to low temperatures. Recently thi
ratio has been computed using Bethe-ansatz techniques
temperatures by Klu¨mper and Sakai.34 k th/cV is a well-
behaved function of T; even more it is very flat at low tem
peratures and takes the expected valuevs

2[c2(Jz) at T50.

VIII. DIFFUSIVE TRANSPORT

We study now the effect of nonintegrable interacti
terms in the conductivity of a 1D spin system. To be speci
we add a small perturbation toH (xxz), which breaks the in-
tegrability of H (xxz):

H85Jz8(
i

Si
zSi 13

z . ~49!

The expression~3! for the spin current remains valid, sinc
H8 does contain onlySz operators and the system remai
nonfrustrated and free from sign problems. We have p
formed QMC simulations for the resulting modelH
5H (xxz)1H8 mainly for Jz5Jxx cos(p/6). We find a transi-
tion to a gapped phase aroundJz8>0.3Jxx , see Fig. 7. The
exponential opening of the gap resembles a Kosterl
Thouless transition very similar to the one present in
XXZ chain at the isotropic point and suggests thatH8 does
3-7
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not change the universal properties ofH (xxz), it only shifts
the transition point and adds the ingredient of nonintegra
ity. We find the relaxation time t51/@2g1(0)#
5 limq→01/@2g1(q)# to be finite within numerical accurac
~due to finite-q and vn resolution!, leading to a finite dc
conductivity in the gapless phase.

We have examined the temperature dependence of th
sulting dc conductivity. Due to our restriction toT!Jxx ,
resulting from the finite-vn resolution on the imaginary axi
~see Sec. IV!, we could not examine a large enoughT range

FIG. 7. ForL5512 andT50.004Jxx the QMC results for the
gapD1(0), therelaxation rateg1(0), the effective velocityc, and
the parameterD1(0) as a function ofJz8 for H (xxz)1H8 with Jz

5Jxx cos(p/6).
v

ev

e,

.

Re

09440
l-

re-

in order to determine the fullT dependence ofs(0). We
found for Jz850.3Jxx s(T50.004Jxx)513.660.9, s(T
50.008Jxx)512.161.0, ands(T50.012Jxx)510.160.8.

In agreement with our expectation of a diverging dc co
ductivity in a translationally invariant system atT50 we
find s(0.008).s(0.012). The increase froms(0.008) to
s(0.004) is, on the other hand, only modest, presumably
to the finite-size resolution limitation illustrated in Fig. 6.

IX. CONCLUSIONS

We have shown that quantum Monte Carlo simulations
quantum spin chains are a powerful tool to obtain finite a
diverging transport coefficients at very low temperatures.
have derived an useful relation between the dynamical st
ture factor S(q,vn) and the dynamical conductivity
s(q,vn), which allows to calculates(q,vn) to very high
accuracy on the imaginary axis. For an integrable chain
support the original suggestion by Zotoset al.9–11 of a finite
Drude weight at finite temperatures and settle a recent
pute regarding the functional form ofD(T). In addition we
present results suggesting the absence of ballistic trans
~i.e., a zero Drude weight! for a nonintegrable model, fo
which we are able to estimate the magnitude of the dc c
ductivity. We have discussed our result in the framework
phenomenological relations and Luttinger-liquid theo
Connections to recent studies of the diverging thermal c
ductivity of quantum spin chains were made.
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