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Long-time tails and anomalous slowing down in the relaxation of spatially inhomogeneous
excitations in quantum spin chains
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Exact analytic calculations in spin-1/2XY chains show the presence of long-time tails in the asymptotic
dynamics of spatially inhomogeneous excitations. The decay of inhomogeneities fort→`, is given in the form
of a power law (t/tQ)2nQ, where the relaxation timetQ and the exponentnQ depend on the wave vectorQ,
characterizing the spatial modulation of the initial excitation. We consider several variants of theXY model
~dimerized, with staggered magnetic field, with bond alternation, and with isotropic and uniform interactions!,
that are grouped into two families, whether the energy spectrum has a gap or not. Once the initial condition is
given, the nonequilibrium problem for the magnetization is solved in closed form, without any other assump-
tion. The long-time behavior fort→` can be obtained systematically in a form of an asymptotic series through
the stationary phase method. We found that gapped models show critical behavior with respect toQ, in the
sense that there exist critical valuesQc where the relaxation timetQ diverges and the exponentnQ changes
discontinuously. At those points, a slowing down of the relaxation process is induced, similarly to phenomena
occurring near phase transitions. Long-lived excitations are identified as incommensurate spin density waves
that emerge in gapped systems, as a consequence of both approximate nesting of the spectrum and the
degeneracy of some stationary points. In contrast, gapless models do not present the above anomalies as a
function of the wave vectorQ.

DOI: 10.1103/PhysRevB.66.094401 PACS number~s!: 75.10.2b, 75.10.Jm, 76.20.1q
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I. INTRODUCTION

The spin-1/2XY chain and its variants are among th
most widely used and quoted models in theoretical inve
gations on spin systems. This popularity among theorist
due to two facts. On the one hand, this family of mod
allows for exact theoretical description of many static as w
as dynamic properties~see Ref. 1–33!, and on the other hand
in some important cases, it provides a good description
real systems.34–37As an example, we note that the dimeriz
chain, with alternating antiferromagnetic bonds, has b
studied in relation with the spin-Peierls transition,38 and it is
thought to represent the spin degrees of freedom of org
compounds that undergo the so calledPeierls distortion. The
present state of the art in fabricating low-dimensional s
tems, with the material science technology developed a
the synthesis of the superconducting cuprate oxides,
now tailor compounds that reveal a wealth of new magn
phenomena, including random spin chains, spin ladders,
doped magnetic chains among other systems with exotic
haviors. For theorists, these systems are fascinating, wit
parallel in classical or three-dimensional physics. Being s
tems of low dimensionality with low values of the spin, the
are dominated by quantum effects.39 Compounds such a
PrCl3 , PrEtSO4 ~Pr ethyl sulfate!, and Cs2CoCl4 are among
the quasi-one-dimensional systems, whose low-tempera
properties are thought to be described by theXY model.
0163-1829/2002/66~9!/094401~12!/$20.00 66 0944
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A great deal of theoretical information has been gathe
concerning equilibrium properties, with calculations of qua
tities such as the specific heat, the magnetic susceptib
and equal-time spin-spin correlation functions.1,3,8,13As for
the dynamic properties, the quantities most thoroughly st
ied are the time-dependent spin-spin correlation functi
~TDCF!

^Sj
m~ t !Sl

m&5 K expS i

\
Ht DSj

mexpS 2
i

\
Ht DSl

mL , ~1!

whereH is the Hamiltonian of the system,m is an index for
the spin component (m5x,y,z), and ^•••& is the equilib-
rium average.3,7,14,23They are important for the descriptio
of such dynamic phenomena as magnetic resonance, m
netic neutron scattering, spin diffusion, and other relaxat
properties.24,25 It should be noted however, that their app
cation is restricted to situations near the equilibrium sta
where the linear response theory is valid.40,41 In particular,
for the uniformXY model, an old calculation for the time
dependent autocorrelation^S0

z(t)S0
z(0)& showed the absenc

of spin diffusion in the limit t→`.3 This behavior was
thought to be accidental and specific of theXY model for
spin 1/2 ~see, for example, Ref. 25!. However, recent re-
search has shown that this surprising property is shared
whole family of integrable models, and is attributed to t
existence of a macroscopic number of conservation law42
©2002 The American Physical Society01-1
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This remarkable result has been probed in magnetic r
nance experiments in some one-dimensional~1D! systems.36

We will turn to this point later.
In spite of the wide range of their applicability, we no

that TDCF do not give a direct description of the time ev
lution of the nonequilibrium process.24,41 This description is
achieved through a different method, which we briefly d
cuss below.

This second direction in investigating the dynamics rel
on calculation of averages of the type

^A& t5Tr@r~ t !A#, ~2!

where r(t) is the density matrix that satisfies Liouvill
equation

i\
]

]t
r~ t !5@H,r~ t !#. ~3!

Averages of such a kind give a direct account of the none
librium evolution of the physical observableA, indepen-
dently of how far the initial state is from the equilibrium
state or from a stationary one. Unfortunately, calculations
these quantities are much more involved than the calcula
of TDCF ~1! for linear response, and few exact results a
known.3,4,6,26–33

Whether the dynamical process is near or far from eq
librium, most works in the literature deal with cases whe
the initial state isspatially uniform. This premise is assume
in an explicit or a nonexplicit way, and the methods dev
oped to solve the problem are heavily based on it. In c
trast, the study of spatially nonuniform excitations is prac
cally new, in spite of its interest, both theoretical a
experimental. This problem is important for a deeper und
standing of dynamical processes in many-particle spin s
tems with strong exchange interactions. Inhomogeneous
tial states can be prepared in real systems by external act
for instance, strong inhomogeneous magnetic fields or ac
tic waves. On the other hand, from the theoretical side, ex
results on the dynamics~as in the case of theXY model!, can
elucidate details of spin-spin relaxation processes in m
complicated systems.

In the present contribution, we will adopt the meth
based on formulas~2! and~3!, and will analyze in detail the
long-time evolution of the magnetization in three versions
theXY model. The initial excitation is always prepared in t
form of a spatially inhomogeneous magnetization~SIM!, and
the calculation is done in exact analytic form. The three va
ants of theXY model that we consider are enumerated
low:

~I! Isotropic dimerizedXY model with Hamiltonian:

H152mBgh(
j 51

N

Sj
z2 (

m51

M

@J1~S2m21
x S2m

x 1S2m21
y S2m

y !

1J2~S2m
x S2m11

x 1S2m
y S2m11

y !#. ~4!

~II ! IsotropicXY model in a staggered magnetic field wi
Hamiltonian:
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H252mBg (
m51

M

~h1S2m21
z 1h2S2m

z !

2J(
j 51

N

~Sj
xSj 11

x 1Sj
ySj 11

y !. ~5!

~III ! XY model with bond alternation without magnet
field:

H352 (
m51

M

~ I 1S2m21
x S2m

x 1I 2S2m21
y S2m

y

1I 2S2m
x S2m11

x 1I 1S2m
y S2m11

y !. ~6!

We will refer to them as models I, II, III, respectively. I
expressions~4!–~6!, N52M , mB is the Bohr magneton,g is
the gyromagnetic ratio,h,h1 ,h2 are magnetic fields,
J,J1 ,J2 ,I 1 ,I 2 are exchange integrals (J1>J2.0 and J
.0), and cyclic boundary conditions are assumed. T
above restriction onJ1 ,J2, and J is not important in our
problem and is introduced for convenience.

To investigate SIM dynamics in the above models,
will use a previously developed method given in Ref. 3
This method was applied earlier by one of the authors32,33 to
the same study for the isotropicXY chain in a homogeneou
magnetic field, with Hamiltonian:

H452mBgh(
j 51

N

Sj
z2J(

j 51

N

~Sj
xSj 11

x 1Sj
ySj 11

y !. ~7!

We will refer to this model as model IV subsequently. W
remark that highly nontrivial results were obtained in Re
32 and 33. In particular, it was shown that in thet→` limit,
some of the spatially inhomogeneous excitations do not
appear and are still time dependent. The time evolution
SIM’s ~and also their spatial distribution! is probed through
the computation of the Fourier components^SQ

z (t)& of the
magnetization as a function of theQ-wave number. The cal-
culation yields a relaxation process in the form of a pow
law

S t

t D 2n

, ~8!

where the exponentn depends on the initial state. In Ref. 3
the anisotropicXY model was also studied in the limit o
strong anisotropy. It was found that the exponentn in power
law ~8! changes discontinuously at some critical valuesQc of
the wave vectorQ. The valuesQc depend solely on the pa
rameters of the Hamiltonian and are not connected with
preparation of the initial state, nor the particular compon
of the magnetization that is relaxing. Moreover, in the lim
Q→Qc , the relaxation timet of power law~8! diverges to
t→`, with the corresponding slowing down of the proce
This phenomenon is at variance with some conventio
views for the time evolution of physical quantities in man
particle systems, according to which all quantities must
temporally independent in the limitt→` . The concept of
spin temperature, widely used in nonequilibrium magne
1-2
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LONG-TIME TAILS AND ANOMALOUS SLOWING DOWN . . . PHYSICAL REVIEW B66, 094401 ~2002!
phenomena43 is based on the assumption that the spin-s
relaxation is much faster than the final relaxation to the
tice degrees of freedom.

Model I was also preliminary investigated by some of t
authors, and similar conclusions were attained for the dim
ized XY model44 in the sense that a critical-like slowin
down of the relaxation process takes place at special po
6Qc of the Q space. In other words, foruQu→Qc , the in-
verse time scalet21 for some of the oscillating componen
of SIM, goes to zero following the power lawt21

; z(uQu2Qc) z. Such behavior is not surprising for the ca
Qc50, for which the corresponding value of the total ma
netizationSz is a constant of motion, but is unusual forQc

Þ0, where the corresponding Fourier componentSQ
z is not

conserved.
We note thatQ50 is the only critical point for the uni-

form isotropic XY model ~model IV and limit J15J2 for
model I andh15h2 for model II!. The t→` behavior is
dominated by one oscillating component, and this com
nent has no critical properties. The present paper is dev
to elucidate this remarkable difference within a more gene
context, by the extensive study of a whole family of mode
We suggest that dissimilar behaviors are due to the pres
of a gap in the spectrum of the energy excitations, the u
form isotropic model being gapless.

Our paper is organized as follows: In Sec. II, we outli
the main steps in the analytic calculation. All the models
diagonalized by means of a modified Jordan-Wigner tra
formation, which maps the spin model into an equivale
fermion Hamiltonian. Then, the average^SQ

z & t is calculated
in exact closed form, and its asymptotic behavior fort→` is
obtained after taking the thermodynamic limitN→`. In Sec.
III, we give a detailed analysis of the results, including
models and the long-time behavior of the magnetizati
Section IV closes the paper with final discussions.

II. MAIN STEPS OF SOLUTION

The quantity of our interest is the time-dependentz com-
ponent of SIM,

^SQ
z & t [ Tr@r~ t !SQ

z #, ~9!

wherer(t) is the density matrix of the system, and

SQ
z 5(

j 51

N

Sj
zexp~ iQ j ! ~10!

is the Fourier transform of the magnetization. In Eq.~9!, Q is
the wave vector characterizing the spatial inhomogeneity
the initial state (Q52pn/N,n52N/211, . . . ,N/2). To cal-
culate^SQ

z & t one can use the identity:

^SQ
z & t5^SQ

z ~ t !&0[Tr@r~0!SQ
z ~ t !#, ~11!

wherer(0) is the initial density matrix, andSQ
z (t) is the spin

operator in the Heisenberg representation

SQ
z ~ t !5expS i

\
Ht DSQ

z expS 2
i

\
Ht D .
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To obtain exact results for̂SQ
z & t , for each of the models

considered, we follow the steps:
~i! Diagonalization of the corresponding Hamiltonian u

ing the fermion representation of the Jordan-Wigner trans
mation. At the end, we get a free-fermion system.

~ii ! Transformation ofSQ
z in terms of fermionic operators

to get the time-dependentSQ
z (t).

~iii ! Averaging of SQ
z (t) with the initial density matrix

r(0).
The last step depends on the form of initial matrixr(0).

As it was shown in Ref. 31, exact solutions of this proble
may be obtained in the case whenr(0) is a functional of
only one component of the spin operator:

r~0!5F~Sg! ~g5x,y,z!. ~12!

Let us note that such initial state can actually be prepare
real systems at low temperature, with a strong nonhomo
neous magnetic field directed along the coordinate axisg.

A. Diagonalization

Methods for diagonalization of Hamiltonians~4!–~6! are
well known ~see for example Refs. 9, 11, and 13!. Minor
differences are specific for the version of the model to
solved. In our case we have employed the following pro
dure:

~a! Use of the Jordan-Wigner transformation to chan
from spin to Fermi operators (bj

† ,bj ):

Sj
x5L j~bj

†1bj !/2, Sj
y5L j~bj

†2bj !/2i ,

Sj
z5bj

†bj21/2, ~13!

where

L j5)
l 51

j 21

~2bl
†bl21!, L1[1, ~L j

251!. ~14!

~b! Introduction of two types of Fermi operators for eve
and odd sites:

cm
a 5b2m

a , dm
a 5b2m21

a , m51,2, . . . ,M , a561,
~15!

and of their Fourier transformsck
a ,dk

a :

ck
a5

1

AM
(

m51

M

exp~2 iakm!cm
a ,

dk
a5

1

AM
(

m51

M

exp@2 iak~m21/2!#dm
a , ~16!

k52pm1 /M , with m152M /211, . . . ,M /2, where we
have adopted the compact notation

c25c, c15c†,

d25d, d15d†. ~17!
1-3
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~c! After the above steps, Hamiltonians~4!–~6! are trans-
formed into quadratic forms in terms of operators (ck

a ,dk
a).

Diagonalization of these quadratic Hamiltonians is standa
but depends on the specific model under consideration.
Hamiltonians~4! and~5! it can be done with the help of th
Bogoliubov transformation given below:

ck
a5ukhk

a1vk
abk

a , dk
a5vk

2ahk
a2ukbk

a , ~18!

where (hk
a ,bk

a) are new Fermi operators,vk
2a5(vk

a)* , and
uk is a real function ofk. We are using the same conventio
~17! for a56. For Hamiltonian~4!, the functions (uk , vk)
are given by

uk5
1

A2
, vk

a5
1

A2
exp~ iauk!, ~19!

where

tanuk5
12d

11d
tan~k/2!, d5J2 /J1<1.

For Hamiltonian~5!, one gets

uk5@~Pk2vd!/2Pk#
1/2,

vk5@~Pk1vd!/2Pk#
1/2sgn~cosk/2!, ~20!

wherevk
a is real ~independent ofa) and

vd5mBg~h12h2!/2\,

Pk5~vd
21ve

2cos2k/2!1/2, ve5J/\. ~21!

~d! Following Ref. 11, diagonalization of Hamiltonian~6!
is achieved through

ck
a5~2hk

a1h2k
a 1bk

a1b2k
a !/2,

dk
a5~hk

a1h2k
a 1bk

a2b2k
a !/2. ~22!

As a final result, all the three Hamiltonians can be rep
sented in the diagonal form

Hi5\(
k

@vk
( i )hk

†hk1Qk
( i )bk

†bk#, ~ i 51,2,3! ~23!

except for constant terms that are not important for the
namics. The indexi 51,2,3 refers to models~I!, ~II !, and
~III !, respectively. The dispersion relations of Eq.~23! are
given by

vk
(1)52v01v1Rk , vk

(2)52vs1Pk ,

vk
(3)52~ I 2 /\!cos~k/2!,

Qk
(1)52v02v1Rk , Qk

(2)52vs2Pk ,

Qk
(3)5~ I 1 /\!cos~k/2!,

where
09440
d,
or

-

-

Rk5A11d212d cosk, Pk5Avd
21ve

2cos2~k/2!,

v05mBgh/\, vs5mBg~h11h2!/2\,

v15J1/2\.

Note that here and in the following, we neglect, as usua
done,1,4,9,13the boundary term of the order 1/N that appeared
in a chain with cyclic boundary conditions. The thermod
namic limit N→` will be taken at the end of the calculation

B. Calculation of ŠSQ
z
‹ t

Using formulas~10! and~13!–~16!, one can easily obtain
the following expression,

SQ
z 52MdQ,01(

k
~cp

1cq1dp
1dq!, ~24!

wherep5k2Q,q5k1Q, with definitions common for all
models. To obtain the time dependence ofSQ

z , we first ex-
press relation~24! in terms of the canonicalh ’s and b ’s
through transformations~18! for models I and II, and relation
~22! for model III. Then, we insert the time evolution of suc
operators

hk
a~ t !5hk

aexp~ iavk
( i )t !,

bk
a~ t !5bk

aexp~ iaQk
( i )t !, i 51,2

to get

SQ
z ~ t !52MdQ,01(

k
$~upuq1vp* vq!exp@ i ~V i

2~k,Q!t#

3hp
1hq1~upuq1vpvq* !exp@2 iV i

2~k,Q!t#bp
1bq

1~upvq* 2uqvp* !exp@ iV i
1~k,Q!t#hp

1bq

1~uqvp2upvq!exp@2 iV i
1~k,Q!t#bp

1hq% ~25!

for models I and II, where

V i
1~k,Q!5vp

( i )2Qq
( i ) ,

V i
2~k,Q!5vp

( i )2vq
( i ) , i 51,2

and functions (up , vp) are defined by formulas~19! and~20!
respectively.

In the same way, for model III, we obtain

SQ
z ~ t !5(

k
$b2q

1 hp
1exp@ i ~vp

(3)1Qq
(3)!t#

1h2pbqexp@2 i ~vp
(3)1Qq

(3)!t#%. ~26!

To calculate the time dependent average^SQ
z & t , we use the

identity ~11!, which means that, equivalently, one can calc
late the average of operatorSQ

z (t) in the Heisenberg picture
in relation to the initial density matrixr(0).

From Eqs.~25! and ~26!, one sees that this problem re
duces to calculation of averages of the type^hp

†hq&0 ,
^bp

†bq&0 , . . . , including all the combinations of canonica
operators. This is achieved going back to the spin repres
1-4
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tation, in order to employ the initial condition~12!. One is
then led to computation of spin averages including
‘‘string’’ operators ~14!. This technique has been previous
used by some of the authors in Refs. 32, 33, and 44, an
described in detail in Ref. 45. Putting everything together
Eq. ~25! for models I and II, and taking the continuum lim
N→`, we get expressions for^SQ

z & t in the form of integra-
tions over the Brillouin zone:

^SQ
z & t5

1

4pE2p

p

$F1~k,Q!cos@ tV i
1~k,Q!#

1F2~k,Q!cos@ tV i
2~k,Q!#%dk, ~27!

wherei 51,2, for the two models treated here. Quantities
Eq. ~27! are

F6~k,Q!564uq~up
22uvpu2!@ i ~e2 ip/21eiq/2!^«Q

x &0Imvq

1~e2 ip/22eiq/2!^«Q1p
x &Revq#

for g5x, and

F6~k,Q!5A6~k,Q!^SQ
z &01B6~k,Q!^SQ1p

z &0 ,

A6~k,Q!517@122up
2uq

222uvpvqu224upuqRe~vp* vq!#,

B6~k,Q!564iupuqIm~vp* vq!,

for g5z.
Substituting the specific values~19! and~20! for (up ,vp)

into formula~27! one obtains the corresponding expressio
for models I and II. In the same way, analogous results m
be obtained for model III.

Below, we will summarize these results together with t
ones obtained in Ref. 33 for model IV. We note that ex
solutions can be obtained for the special forms of the ini
density matrixr(0) given by Eq.~12!.

~1! In the caseg5x ~the caseg5y is the same by sym
metry!, we have

^SQ
z & t50 ~28!

for models I, III, IV, and

^SQ
z & t52

i

p
vevdsin~Q/2!eiQ/2^«Q1p

x &0E
2p

p sin2~k/2!

PpPq

3$cos@ tV2
1~k,Q!#2cos@ tV2

2~k,Q!#%dk, ~29!

for model II, where

^«k
x&05(

j 51

N

^Sj
xSj 11

x &0exp~ ik j ! ~30!

is the Fourier transform of the short-range order correlat
of the x component.

~2! In the caseg5z, we have different expressions for a
the cases.
09440
e
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~a! For model I, we get the formula

^SQ
z & t5

1

4pE2p

p

$F1~k,Q!cos@ tV1
1~k,Q!#

1F2~k,Q!cos@ tV1
2~k,Q!#%dk, ~31!

with

F6~k,Q!5A6~k,Q!^SQ
z &01B6~k,Q!^SQ1p

z &0 ,

A6~k,Q!517
~11d2!cosQ12d cosk

RpRq
,

B6~k,Q!56
i ~12d2!sinQ

RpRq
. ~32!

~b! For model II, we have the more explicit form

^SQ
z & t5

1

4p
^SQ

z &0E
2p

p

dk„2@ve
2cos~p/2!cos~q/2!/PpPq#

3cos@ tV2
1~k,Q!#1$11@vd

21ve
2cos~p/2!

3cos~q/2!#/PpPq%cos@ tV2
2~k,Q!#…. ~33!

~c! For model III, we have the compact expression:

^SQ
z & t5

1

2p
^SQ

z &0E
2p

p

cos@ tV~k,Q!#dk, ~34!

where

V~k,Q!5yQcos~k/21aQ!,

tanaQ5
I 11I 2

I 12I 2
tan~Q/2!,

\yQ5AI 1
21I 2

222I 1I 2cosQ. ~35!

Let us note that at the specific valueQ5p, the time depen-
dence of̂ SQ

z & t is given by the simple formula:

^Sp
z & t5^Sp

z &0 J0S I 11I 2

\
t D ,

whereJ0(x) is the Bessel function of first kind.
~d! For model IV, the result

^SQ
z & t5^SQ

z &0J0~VQt !, ~36!

was found in Ref. 33 withVQ52(J/\)sinQ/2.

III. ANALYSIS OF RESULTS

In this section, we first discuss general properties of
time evolution of the magnetization, which can be inferr
directly from Eqs.~27!–~36!. In addition, we will study in
detail the asymptotic behavior at long times, in the limitt
→`. We will show that the evolution of SIM’s display
1-5
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interesting unusual features, depending on the wave vectQ
characterizing the inhomogeneous initial state.

A. General properties of ŠSQ
z
‹ t

Let us first consider model I in the caseg5z for the
initial density matrix, since it presents a specific feature t
is absent in the other models studied here. From Eqs.~27!,
~31!, and ~32!, one sees that the value of the magnetizat
^SQ

z & t at t.0, depends on the initial values of the two Fo
rier componentŝ SQ

z &0 and ^SQ1p
z &0. This means that, if

only one component ofSQ
z exists att50, for example, for

wave vectorQ0, i.e.,

^SQ
z &05^SQ0

z &0dQ,Q0
,

then a twofold response develops fort.0, with components
^SQ0

z & t and ^Sp1Q0

z & t , whose time evolution is described b

Eq. ~27!, with F6(k,Q)5A6(k,Q0)^SQ0

z &0dQ,Q0
and

F6(k,Q)5B6(k,Q01p)^SQ0

z &0dQ,Q01p , respectively. In

contrast, for models II–IV, if there is only one initial com
ponent^SQ0

z &0, only one component̂SQ
z & t of the same wave

vectorQ5Q0 exists at subsequent times,t.0.
When the initial condition is prepared withg5x, the av-

eragê SQ
z & t vanishes identically for models I, III, and IV, fo

any t.0. This result may be understood intuitively, witho
any calculation, if one notes that the part of the Hamilton
that describes the coupling of spins with the magnetic fi
commutes with the other one describing the exchange in
actions@in the case of model III, this statement is trivial fo
we only have the exchange part#. Denoting the latter asHex,
we get the time evolution

^SQ
z & t5TrFr~0!expS i

\
Hext DSQ

z expS 2
i

\
Hext D G , ~37!

which is governed by the exchange only. Inside the trace
Eq. ~37!, we now perform a unitary transformation consis
ing in a rotation byp around thex axis. Under this opera
tion, the spin operators transform as follows:

Sj
x→Sj

x , Sj
y→2Sj

y , Sj
z→2Sj

z .

The exchange HamiltonianHex is invariant under this trans
formation because it is a sum of products of the formSj

xSj 61
x

andSj
ySj 61

y . The initial density matrixr(0) is also invariant
since it only depends on theSx component of the spins (g
5x). So, the right-hand side of Eq.~37! will change its sign,
yielding ^SQ

z & t52^SQ
z & t i.e., ^SQ

z & t50. Another important
consequence of Eq.~37! is that the time evolution of SIM’s
is independent of the value of the external fieldh ~valid for
any g), and is determined solely by the exchange term.

In the case of model II, the exchange part does not co
mute with the total HamiltonianH2. This leads, in general
to a nonvanishinĝSQ

z & t , for t.0, which gives results pro
portional to^«Q1p

x &0, where^«k
x&0 is the Fourier transform

of the spin-spin correlation function̂Sj
xSj 11

x &0 evaluated at
the initial condition@see relation~30!#. If the initial state is
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prepared with a singleQ vector in the form ^«k
x&0

5^«Q0

x &0dk,Q0
, then ^Sp1Q0

z & t is the only component tha

exists fort.0.
For Q5Q050 ~homogeneous initial state!, and for any

g, we get the~evident! result

^SQ50
z & t5^SQ50

z &0 ,

for models I, II, IV. This is a direct consequence of the co
servation of the totalz component of the magnetization. I
the case of model III, wheng5z, we get the closed result:

^SQ50
z & t5^SQ50

z &0J0~n0t !,

where\n05uI 12I 2u and J0 is the Bessel function of zero
order.

Special important limits ared51(J15J2) in model I and
h15h2 in model II, that map onto model IV. In both of thes
cases, the corresponding formulas for^SQ

z & t reduce to Eq.
~36!, which was obtained in Ref. 33.

Unfortunately, it is difficult to get more information from
formula ~27!, ~29!, ~32!, and ~33!, because they are rathe
involved. So, in the following, we will consider the limiting
caset→`, which will be studied using the stationary pha
method.

B. Long-time behavior of ŠSQ
z
‹ t for the initial condition gÄz

1. Model I

According to the stationary phase method,46 the long-time
evolution of ^SQ

z & t is dominated by the contribution of th
stationary points of the functionsV1

6(k,Q). The number of
these points depends on the value of the wave vectorQ. For
convenience of further discussion, let us introduce here
so-calledcritical values ofQ:

Qc1
5arccosd, Qc2

5p2arccosd, Qc3
50. ~38!

The above values are determined in a standard ma
through the stationary phase method, being the locus wh
stationary points become degenerate.46 Let us first ex-
amine the role ofV1

1(k,Q). It is easy to show that it has five
nondegenerate stationary points forQ in the interval
Qc1

,uQu,Qc2
:

k150, k252k35p,

k452k55wQ , wQ5arccos~2d21cosQ!. ~39!

In turn, forQc2
,uQu<p andQc3

,uQu,Qc1
, one gets three

nondegenerate points at

k150, k252k35p.

Exactly at the critical values, we obtain:
~i! For Q56Qc1

, one nondegenerate pointk150

and two degenerate onesk252k35p„@V1
1(6p,Q)#9

5@V1
1(6p,Q)#-50, @V1

1(6p,Q)# IVÞ0 , where deriva-
tions are taken with respect tok….
1-6
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~ii ! For Q56Qc2
, two nondegenerate pointsk252k3

5p, and one degenerate atk5k150„@V1
1(0,Q)#9

5@V1
1(0,Q)#-50,@V1

1(0,Q)# IVÞ0….
~iii ! For Q5Qc3

50 , there is no time evolution, since th

magnetization̂ SQ50
z & t is a constant of the motion

^SQ50
z & t5^SQ50

z &0 .

The function V1
2(k,Q) vanishes atQ5Qc3

50 and Q

56p. For any other wave numberQ, it has two nondegen
erate stationary points:

k652k75cQ , cQ5arccos~2d cosQ!.

This finishes the analysis of the stationary points that do
nate the long-time behavior of Eq.~31!. The corresponding
asymptotic development of̂SQ

z & t for t→`, can be repre-
sented as a sum of several oscillating components w
Q-dependent frequencies and amplitudes:

^SQ
z & t;(

i
Si~Q,t !, ~40!

Si~Q,t !5(
l 50

`

ai ,l~Q!S t

t i
D 2n i (2l 11)

cos@ tV i~Q!1a i ,l #,

~41!

where t i[t i(Q) are functions ofQ and the exponentn i
assumes the values 1/2 or 1/4~the latter value will be dis-
cussed in detail below!. The number of componentsSi(Q,t)
depends onQ. For Qc1

,uQu,Qc2
~excluding Q56p/2,

which is a degenerate point whereV1 and V2 coincide!,
there are four components. For 0<uQu,Qc1

and Qc2
,uQu

,p ~excluding accidental degeneracies!, there are only three
terms in relation~40!. The frequenciesV i(Q) and the in-
verse of the characteristic timest i

21 of Eq. ~41! are given
below:

V1~Q!5v1~11d212d cosQ!1/2,

t1
215v1d~11d cosQ!

ud1cosQu

RQ
3

, QÞ6Qc2

V2~Q!5v1~11d222d cosQ!1/2,

t2
215v1d~12d cosQ!

ud2cosQu

RQ1p
3

, QÞ6Qc1

V3~Q!5v1S RcQ2Q2RcQ1Q

2
D ,

t3
215v1

d

2~12d2!
~RcQ2Q1RcQ1Q!usinQusincQ ,

QÞQc3
50
09440
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th

V4~Q!5v1S RwQ2Q1RwQ1Q

2
D ,

t4
215v1

d

2~12d2!
~RwQ2Q2RwQ1Q!sinQ sinwQ ,

Qc1
,uQu,Qc2

. ~42!

We display typicalQ dependences of the frequenciesV i(Q)
and of the inverse of the relaxation timest i

21 in Figs. 1 and
2, respectively, for particular values ofd. Slowing down of
the relaxation process occurs at points where thet i

21’s van-
ish.

At a genericQ point, the first nonvanishing terms in Eq
~41! have the form

Si~Q,t !'ai ,0~Q!S t

t i
D 21/2

cos@ tV i~Q!1a i ,0#~ i 51, . . . ,4!,

~43!

with the amplitudes

ai ,0~Q!5ai ,0
c ~Q!^SQ

z &01 iai ,0
s ~Q!^SQ1p

z &0 ,

showing that the value atQ depends on the two initial com
ponentŝ SQ

z &0 and^SQ1p
z &0. Explicit formulas for the coef-

ficientsai ,0
c (Q) andai ,0

s (Q), as well as the phasesa i ,0 , are
given in Ref. 45.

The dynamical process described by relations~40! and
~41!, with the explicit formulas~42!, is remarkable, since i
exhibits long-time tails in the relaxation of SIM’s to the sp
tially homogeneous state. In contrast to the exponential
laxation, which is characterized by a single parameter t
yields the time scale or the relaxation rate, the power l
relaxation given by relations~41! and ~43! is characterized
by two parameters:t i

21 , which determines the inverse tim
scale of the process, and the exponentn i , which determines
the relaxation rate. In general, no conservation laws or lo
lived hydrodynamic modes seem to be associated with
above long-time tails.

In the neighborhood of critical points, the relaxation
some of the components of relation~40! begins to stop, with
the corresponding relaxation timet i diverging, as shown in
Fig. 2. Exactly in the limit, the corresponding exponentn i
jumps discontinuously from 1/2 to 1/4. This slowing dow
of the relaxation process is very similar to the critical slo
ing down found in phase transition phenomena.47

Let us summarize below the singular behavior of the
laxation time at special points~they are displayed in Fig. 2!:

~a! t1
21→0 whenQ→6Qc2

, for anyd ;

~b! t2
21→0 whenQ→6Qc1

, for anyd;

~c! t4
21→0 whenQ→6Qc1

,6Qc2
, for anyd;

~d! t3
21→0 whenQ→0,6p, for anyd.

All the t i
21 vanish according to the law:

t21; z~ uQu2Qc!zforuQu→Qc .

We now give the behavior of components of relation~40! at
the critical points:
1-7
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FIG. 1. Frequencies of the asymptotic comp
nents of the magnetization in Eq.~41!, as func-
tions of the wave numberQ, for several values of
the parameterd. The different branchesV i , for
i 51,2,3,4, are indicated by the numbers. We a
display the critical points6Qc1

and 6Qc2
by

solid squares. Note that theV4 branch is tangent
to the V1 and V2 branches atQc2

and Qc1
, re-

spectively, but it is only defined between critica
points, Qc1

,uQu,Qc2
. The completeV4 curve

is shown as a guide for the eye.
t

-

~I! In the limit Q→6Qc1
, the componentsS2(Q,t) and

S4(Q,t) merge into a single component withn51/4:

S2~6Qc1
,t !5a2,0~6Qc1

!S t

tc
D 21/4

cos@ tV2~Qc1
!1p/8#,

~44!

with

a2,0~6Qc1
!5

A4 24

8p
G~1/4!@~11d!^S6Qc1

z &0

1 iA12d2^Sp6Qc1

z &0#,

tc
2153v1d2/~12d2!,

whereG(x) is the gamma function. The other componen
follows the law~43! with Q56Qc1

.

09440
s

~II ! Analogously, forQ→6Qc2
, the componentsS1(Q,t)

and S4(Q,t) join together withn51/4 and the time depen
dence:

S1~6Qc2
,t !5a1,0~6Qc2

!S t

tc
D 21/4

cos@ tV1~Qc2
!1p/8#,

where

a1,0~6Qc2
!5

A4 24

8p
G~1/4!@~12d!^S6Qc2

z &0

1 iA12d2^Sp6Qc2

z &0#.

The other components follows the law~43! with Q
56Qc2

.

~III ! The componentS3(Q,t) is critical at Q5Qc3
50,

with the relaxation timet3;1/uQu diverging in the vicinity
of Q50. Note that the frequencyV3 vanishes in the limit
1-8
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FIG. 2. Inverse of the relaxation time
(v1t i)

21 of the power-law decay of Eq.~41!, as
functions of the wave numberQ for the same
values of the parameterd displayed in the previ-
ous figure. The numbers label the differe
branches, in close correspondence with Fig.
Solid squares are used to display (v1t4)21,
which vanishes at the critical points. The arrow
in the upper figure indicate values out of th
scale.
,

g
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Q→0. The criticality of Qc3
has a different connotation

since it is related to the conservation of the totalz component
of the spin,

SQ50
s 5(

j 51

N

Sj
z,

which is valid for all the model with axial symmetry alon
the z axis. The divergence oft3 nearQ'0 is connected to
the stability of hydrodynamic excitations of long wav
length.

~IV ! Note the exception ofQ→6p for the component
S3(Q,t), because the amplitudea3,0(Q) goes to zero in this
limit.

2. Model II

When applying the same method to get the asympt
behavior of Eq.~33! for long times, one sees that the work
facilitated by the development of the preceding section.
fact, the frequenciesV2

6(k,Q) and the functionsPk that ap-
09440
ic

n

peared in Eq.~33! of model II, can be mapped onto th
correspondingV1

6(k,Q) and v1Rk of model ~I!, with the
substitution:

d→
Avd

21ve
22uvdu

Avd
21ve

21uvdu
, v1→

1

2
Avd

21ve
21

uvdu
2

.

~45!

To avoid numerous definitions, we use the previous symb
d and v1 throughout this section, with the meaning give
above in relation~45!. With these variables, the stationa
and critical points, the inverse characteristic timest i

21 and
the frequenciesV i(Q) coincide with those of model I.

The expression for̂SQ
z & t has the form~41! with the fol-

lowing values of the first nonvanishing amplitudesai ,k(Q)
~at a genericQ point!:

a1,1~Q!5^SQ
z &0

d~12d!2~12cosQ!

RQ
4 A8p

,

1-9
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a2,0~Q!5^SQ
z &0A2

p

d~12cosQ!

RQ1p
2

,

a3,0~Q!5^SQ
z &0A2

p

11d cosQ

11d
,

a4,0~Q!5^SQ
z &0A2

p

d1cosQ

11d
,

Note that the component with frequencyV1(Q) decays to
zero ast23/2 ~exponentn51/2 andl 51), i.e., more rapidly
if compared with the similar component of model I. We no
summarize the behavior at the critical points:

~i! At the critical point Q56Qc1
, the components

S2(Q,t) andS4(Q,t) are degenerate and decay to zero w
exponentn51/4, following the law~44! with

a2,0~6Qc1!5
A4 24

2p
G~1/4!

d

11d
.

~ii ! At Q56Qc2
, the componentsS1(Q,t) and S4(Q,t)

merge into a single component with the evolution@n51/4
and l 51 in Eq. ~41!#

S1~6Qc2
,t !5a1,1~6Qc2

!S t

tc
D 23/4

cos@ tV1~Qc2
!1p/8#,

~46!

with

a1,1~6Qc2
!5

1

2p
~3/2!3/4G~3/4!

d

11d
.

3. Model III

The long-time behavior of Eq.~34! is much simpler than
those displayed by models I and II, for the phase funct
V(k,Q) in Eq. ~35! has only one stationary point atk5k1
522aQ . In the asymptotic limitt→` , it may be repre-
sented in the form

^SQ
z & t5^SQ

z &0A2

p
~ t/tQ!21/2cos~ tyQ2p/4!,

whereyQ is given by formula~35! andtQ
215yQ .

C. Long-time behavior of ŠSQ
z
‹ t for the initial condition gÄx

As it was mentioned in Sec. II B,̂SQ
z & t , for the initial

conditiong5x, vanishes identically for models I, III, IV, and
only has a nonzero value for model II. For the latter, t
asymptotic expression of^SQ

z & t for t→`, has the form of Eq.
~41! with the quantitiesV i andt i defined through formulas
~42! and ~45!. The coefficientsai ,l(Q) for the first nonvan-
ishing amplitudes in Eq.~41!, at genericQ points, are

a1,1~Q!5^«Q1p
x &0

Ad~12d!

2A2p
~12eiQ!/RQ

2 ,
09440
n

a2,0~Q!5^«Q1p
x &0

2Ad~12d!

A2p
~12eiQ!/RQ1p

2 ,

a3,0~Q!52^«Q1p
x &0

2Ad

A2p~11d!
~12eiQ!~11d cosQ!,

a4,0~Q!5^«Q1p
x &0

2Ad

A2p~11d!
~12eiQ!~11d21cosQ!,

where^«k
x&0 is the correlation function defined in Eq.~30!.

We remark that the first nonvanishing term for the comp
nent with frequencyV1 has n51/2 and l 51, yielding a
t23/2 power law for the time decay.

We make a summary of the critical behavior at singu
points:

~i! At the critical point Q56Qc1
, the components

S2(Q,t) and S4(Q,t) merge into one component with tim
evolution given by Eq.~44!, with n51/4 andl 50, with the
amplitude

a2,0~6Qc1
!5

A4 24

2p
G~1/4!

Ad

11d
~12d7 iA12d2!.

~ii ! In analogous form, atQ56Qc2
the components

S1(Q,t) andS4(Q,t) become degenerate with the time ev
lution of Eq. ~46!, with n51/4 andl 51, and the amplitude

a1,1~6Qc2
!5

1

2p
~3/2!3/4G~3/4!AdS 17 iA12d

11d D .

IV. FINAL DISCUSSION

We have studied the relaxation to the homogeneous s
of an initial excitation that has been prepared with a non
mogeneous magnetization profile along the magnetic ch
~SIM!. The time evolution of this excitation is probe
through the calculation of the Fourier component^SQ

z (t)& of
the magnetization, which is analyzed as a function of
wave vectorQ. We use periodic boundary conditions for th
spin Hamiltonian and take the thermodynamic limit (N
→`) before studying asymptotic long times. As remarked
Ref. 4, the order of the limits is very important. All th
models treated here show long-time tails in the relaxation
^SQ

z (t)&, which is apparent from the asymptotic study fort
→`, developed in the previous sections. This behav
manifests itself in the form of a power law decay in th
long-time evolution of SIM’s. This slow relaxation is a re
markable result for its own sake and is probably due to
absence of dissipation in the models. Since the systems
isolated at zero temperature, the dynamics is exclusiv
driven by quantum fluctuations.

Our calculation also shows striking differences, when o
compares the behaviors of models I and II on the one ha
with models III and IV, on the other. The dissimilarity lies i
the presence of critical valuesQci

for the wave vectorQ,
where we get a slowing down of the relaxation process. N
1-10
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critical points, the time scalet i , giving the relaxation of
some specific oscillating components of^SQ

z (t)&, diverge
with the lawt21; z(uQu2Qci

) z, for uQu→Qci
, reducing the

damping of these excitations. Such behavior is not surpris
for the caseQc3

50, for which the corresponding valueSQ50
z

is an integral of the motion, but is unusual for the caseQci

Þ0, whenSQ
z is not conserved. In this sense, the criticality

6Qc1
, 6Qc2

has different implications in the theory. Th

position of the critical values6Qc1
and6Qc2

depends only

on parameters of the Hamiltonian, and in the limitsQ→
6Qc1

,6Qc2
, the exponentn jumps discontinuously, the re

laxation rate becoming slower than for excitations withuQu
ÞQc1,2

. This means that the critical components will be t

only surviving ones at long enough times. These long-liv
excitations may be pictured as spin density waves~charge
density waves for the fermion model! with incommensurate
wave vectorQc1,2

, which develop in models that undergo
Peierls instability.38 In contrast, the dynamics of models I
and IV does not have such anomalies. There is no gap in
spectrum, and in the language of particles, the systems
always metallic and display no critical points~except the
point Q50). In the asymptotic regimet→`, only one os-
cillating component exists which displays no critical beha
ior.

Peculiar properties of the energy spectrum seem to de
mine the critical relaxation phenomena. In fact, models I a
II display an energy gap between the ground and exc
states, whose size is monitored by the parameterd @for
model II through the transformation~45!#. The existence of
critical points is directly related to the presence of the g
since the latter changes the curvature of the dispersion
tion for the energy. If one looks at formula~25! for the Fou-
rier componentSQ

z (t) of the magnetization, one realizes th
processes that contribute with the6V i

1 frequency~the one
that is critical! come from transitions between both branch
of the spectrum~interband transitions!, where a particle with
momentumq5k1Q is destroyed in a given band, and
particle with momentump5k2Q is created in the othe
one, with a net momentum transferDk562uQu. So the
criticality at Qc1,2

is not directly related to the one-partic
spectrum, but to a big density of states for those interb
transitions that exchange the same momentumDk562uQu
coherently~constructive interference!. The above is a conse
quence of anesting effect, which is achieved whenQ
5Qc1,2

, with the onset of a spin density wave for theSz

magnetization. In fact, the spectrum can be linearized in
neighborhood of the inflection points, yielding parallel line
branches for the upper and lower bands, which are conne
by p5k2Qc and q5k1Qc . This is accompanied by th
degeneracy of some stationary points.

We have found that the above anomalous behavior in
relaxation is not an exclusive property of the Peierls tran
tion. In fact, other 1D gapped spin models, as theXY chain
with anisotropic interactions, present the same slowing do
of the relaxation at special points~Ref. 33 treats the Ising
limit !. A general connection between this critical behav
09440
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and the spectral properties is currently under research.48

Our results are all exact, with closed analytical form
from where the asymptotic regime fort→` is obtained. This
has been done using the fermion representation of
Jordan-Wigner approach for spin chains. Other procedure
solve the same systems are available, the most conspic
being the Bethe ansatz method, which applied to theXY
model might hint at ‘‘hidden’’ conservation laws of the se
eral versions of the model treated here. However, it is di
cult to conceive a similar analytic calculation of the rela
ation properties, using Bethe ansatz techniques.

We remark that integrable models display other unus
dynamical phenomena, with anomalies in the transp
properties.42 For the Heisenberg model, the absence of s
diffusion has been probed by bosonization techniques49 and
numerical calculations.50 Reference 50 presents exact n
merical computations for the spin-1/2XXZ chain at infinite
temperature (T5`), which include, as particular cases, th
isotropic Heisenberg model and theXY regime, which are
gapless, and the Heisenberg-Ising model, with a gap in
spectrum and long-range order for the ground state. Num
cal data are inconclusive due to finite-size effects, but th
are strong hints of a crossover from nondiffusive to diffusi
behavior when we go from the gapless region to the gap
one. Concerning the low-temperature properties, a calc
tion by Sachdev and Damle51 in the gapped region, show
that the diffusive behavior holds in the presence of lon
range order. It is however puzzling to admit that low-ener
properties of the spectrum may affect theT5` behavior.

From a more fundamental point of view, we have stud
the time evolution of a closed quantum many-body syst
~at zero temperature!, which is prepared in an arbitrary non
homogeneous initial state. The dynamics is solely given
the Schro¨dinger equation for the wave function or by th
Liouville equation for the density operator~which includes
the more general situation of a mixed ensemble for the ini
state!. In the thermodynamic limit and for long times (N
→` first than the limitt→`), we get irreversibility in the
form of a power law relaxation for the magnetization, desp
the dynamics being unitary. No internal interactions a
present, since all the Hamiltonians are reduced to the f
particle form. The irreversibility can be entirely ascribed
interference effects, which in our calculation are handled
ing the stationary phase method at asymptotic long tim
The infinite number of degrees of freedom precludes qu
tum recurrences, which may be observed in finite chains
systems with a discrete spectrum.52,53 Due to constructive
interference, gapped models develop long-lived collect
excitations with the texture of spin density waves~charge
density waves for the fermion versions! that persist for
longer times. We believe that those structures are unive
features of gapped one-dimensional models.

Finally, our simple quantum systems are good candida
for aging effects, a concept that has been coined to spe
nonequilibrium dynamics that depends on the initial con
tions and relaxes very ‘‘slowly.’’54 But a complete character
ization of quantum aging requires the calculation of two-tim
correlation functions.53
1-11



t

ff,

s.

r,

ce

94

s

G. O. BERIM, S. I. BERIM, AND G. G. CABRERA PHYSICAL REVIEW B66, 094401 ~2002!
*Present address: Department of Chemical Engineering, The S
University of New York, Buffalo, NY 14260.

†Email address: cabrera@ifi.unicamp.br
1E. Lieb, T. Schultz, and D. Mattis, Ann. Phys.~N.Y.! 16, 406

~1961!.
2S. Katsura, Phys. Rev.127, 1508~1962!.
3Th. Niemeijer, Physica~Amsterdam! 36, 377 ~1967!; 39, 313

~1968!.
4E. Barouch, B.M. McCoy, and M. Dresden, Phys. Rev. A2, 1075

~1970!.
5E. Barouch and B.M. McCoy, Phys. Rev. A3, 2137~1971!.
6E. Barouch and B.M. McCoy, Phys. Rev. A3, 786 ~1971!.
7B.M. McCoy, E. Barouch, and D.B. Abraham, Phys. Rev. A4,

2331 ~1971!.
8H. Nishimori, Phys. Lett. A100A, 239 ~1984!.
9J.H. Tailor and G. Mu¨ller, Physica A130, 1 ~1985!.

10G. Müller and R.E. Shrock, Phys. Rev. B31, 637 ~1985!.
11Y. Saika, J. Phys. Soc. Jpn.63, 3983~1994!.
12I.I. Satija and J.C. Chaves, Phys. Rev. B49, 13 239~1994!.
13K. Okamoto, J. Phys. Soc. Jpn.57, 2947~1988!; 58, 2004~1989!.
14A. Sur, D. Jasnow, and I.J. Lowe, Phys. Rev. B12, 3845~1975!.
15U. Brandt and K. Jacoby, Z. Phys. B25, 181 ~1976!; 26, 245

~1977!.
16H.W. Capel and J.H.H. Perk, Physica A87, 211 ~1977!.
17J.H.H. Perk and H.W. Capel, Physica A89, 265 ~1977!; 92, 163

~1978!; 100, 1 ~1980!.
18M.W. Puga and H. Beck, J. Phys. C15, 2441~1982!.
19G. Müller and R.E. Shrock, Phys. Rev. Lett.51, 219 ~1983!.
20J.H.H. Perk, H.W. Capel, G.R.W. Quispel, and F.W. Nijho

Physica A123, 1 ~1984!.
21W. Apel, Z. Phys. B63, 185 ~1986!.
22A.R. Its, A.G. Izergin, V.E. Korepin, and N.A. Slavnov, Phy

Rev. Lett.70, 1704~1993!.
23J. Stolze, A. No¨ppert, and G. Mu¨ller, Phys. Rev. B52, 4319
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