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Exact analytic calculations in spin-1/2Y chains show the presence of long-time tails in the asymptotic
dynamics of spatially inhomogeneous excitations. The decay of inhomogeneittes faris given in the form
of a power law {/7q) "<, where the relaxation timeg and the exponentg depend on the wave vectQ,
characterizing the spatial modulation of the initial excitation. We consider several variants ¥ theodel
(dimerized, with staggered magnetic field, with bond alternation, and with isotropic and uniform intergctions
that are grouped into two families, whether the energy spectrum has a gap or not. Once the initial condition is
given, the nonequilibrium problem for the magnetization is solved in closed form, without any other assump-
tion. The long-time behavior fdr—« can be obtained systematically in a form of an asymptotic series through
the stationary phase method. We found that gapped models show critical behavior with re<pet the
sense that there exist critical valu@s where the relaxation timeq diverges and the exponeng changes
discontinuously. At those points, a slowing down of the relaxation process is induced, similarly to phenomena
occurring near phase transitions. Long-lived excitations are identified as incommensurate spin density waves
that emerge in gapped systems, as a consequence of both approximate nesting of the spectrum and the
degeneracy of some stationary points. In contrast, gapless models do not present the above anomalies as a
function of the wave vecto®.
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I. INTRODUCTION A great deal of theoretical information has been gathered
concerning equilibrium properties, with calculations of quan-
The spin-1/2XY chain and its variants are among the tities such as the specific heat, the magnetic susceptibility,
most widely used and quoted models in theoretical investiand equal-time spin-spin correlation functidri€*3As for
gations on spin systems. This popularity among theorists ithe dynamic properties, the quantities most thoroughly stud-
due to two facts. On the one hand, this family of modelsied are the time-dependent spin-spin correlation functions
allows for exact theoretical description of many static as wel(TDCF)
as dynamic properti¢see Ref. 1-38 and on the other hand, _ .
in some important cases, it provides a good description of I I
real systemgf“37As an exampﬁe, we noteq[hat the dimF:arized (SO = < ex[{ﬁ"”) SJHeXp( - gHt) 3#> @
chain, with alternating antiferromagnetic bonds, has been
studied in relation with the spin-Peierls transitifrand itis ~ whereH is the Hamiltonian of the system, is an index for
thought to represent the spin degrees of freedom of organiie spin componenty=x,y,z), and(---) is the equilib-
compounds that undergo the so calReierls distortion The  rium average:”'***They are important for the description
present state of the art in fabricating low-dimensional sysof such dynamic phenomena as magnetic resonance, mag-
tems, with the material science technology developed aftepetic neutron scattering, spin diffusion, and other relaxation
the synthesis of the superconducting cuprate oxides, magroperties:* It should be noted however, that their appli-
now tailor compounds that reveal a wealth of new magnetigation is restricted to situations near the equilibrium state,
phenomena, including random spin chains, spin ladders, antihere the linear response theory is véfid! In particular,
doped magnetic chains among other systems with exotic bdor the uniformXY model, an old calculation for the time-
haviors. For theorists, these systems are fascinating, with ndependent autocorrelatidi$g(t) S;(0)) showed the absence
parallel in classical or three-dimensional physics. Being sysef spin diffusion in the limitt—o.® This behavior was
tems of low dimensionality with low values of the spin, they thought to be accidental and specific of tK& model for
are dominated by quantum effeélsCompounds such as spin 1/2 (see, for example, Ref. 25However, recent re-
PrCk, PrEtSQ (Pr ethyl sulfatg, and CsCoCl, are among search has shown that this surprising property is shared by a
the quasi-one-dimensional systems, whose low-temperatusghole family of integrable models, and is attributed to the
properties are thought to be described by X model. existence of a macroscopic number of conservation f&ws.
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This remarkable result has been probed in magnetic reso- M
nance experiments in some one-dimensigagl) systems?® Ho=—upg >, (1S5 1+ 0S5
We will turn to this point later. m=1
In spite of the wide range of their applicability, we note N
that TDCF do not give a direct description of the time evo- —J3> (S, ,+99,,). (5)
lution of the nonequilibrium proce$§:** This description is = o
achieved through a different method, which we briefly dis-
cuss below. _
This second direction in investigating the dynamics relies€!d:
on calculation of averages of the type

(1) XY model with bond alternation without magnetic

M
Hy=— mEzl (I 152mels)z(m+ | 25¥m,1532/m

(Ah=Trp(D)A], 2
where p(t) is the density matrix that satisfies Liouville 1S5 Sme 171180 S 1) (6)
equation
q We will refer to them as models |, I, Ill, respectively. In
p expression$4)—(6), N=2M, ug is the Bohr magnetorg is
iﬁﬁp(t)Z[H,p(t)]. (3) the gyromagnetic ratio,h,h;,h, are magnetic fields,

J,J;,J,,14,1, are exchange integralsJ{=J,>0 and J

Averages of such a kind give a direct account of the nonequi->0)v and FYF“C boundary ConQItlons are assumed_ The

librium evolution of the physical observabla, indepen- @bove restriction onJ;,J,, andJ is not important in our

dently of how far the initial state is from the equilibrium Problem and is introduced for convenience.

state or from a stationary one. Unfortunately, calculations of 10 investigate SIM dynamics in the above models, we

these quantities are much more involved than the calculatioWill use a previously developed method given in Ref. 31.

of TDCF (1) for linear response, and few exact results are! Nis method was applied earlier by one of the autffottto

known 3:4:6:26-33 the same study for the isotropi€Y chain in a homogeneous
Whether the dynamical process is near or far from equimagnetic field, with Hamiltonian:

librium, most works in the literature deal with cases where N N

the initial state ispatially uniform This premise is assumed _ z_ XX =

in an explicit or a nonexplicit way, and the methods devel- Ha= = usd hjzl S szl (§541+5/541). ()

oped to solve the problem are heavily based on it. In con-

trast, the study of spatially nonuniform excitations is practi-We will refer to this mO(_jgl as model IV subsgquen_tly. We
cally new, in spite of its interest, both theoretical andremark that highly nontrivial results were obtained in Refs.

experimental. This problem is important for a deeper under32 and 33. In particular, it was shown that in the limit,

standing of dynamical processes in many-particle spin syss°Me of the spatia_lly !nhomogeneous excitgtions do not dis-
tems with strong exchange interactions. Inhomogeneous inRPP€ar ar:jd zlire Sht'", time q?%(_anqﬁnt: The tlrgede\;]olutlorrll of
tial states can be prepared in real systems by external actioralM'S (and also their spatial distributios probed throug

for instance, strong inhomogeneous magnetic fields or acoudl® computation of the Fourier componeiigy(t)) of the

tic waves. On the other hand, from the theoretical side, exadhiagnetization as a function of tig-wave number. The cal-
results on the dynamidsgs in the case of théY mode), can culation yields a relaxation process in the form of a power
elucidate details of spin-spin relaxation processes in moré&W

complicated systems. £
In the present contribution, we will adopt the method <_) , (8)
based on formula&2) and(3), and will analyze in detail the 7

long-time evolution of the magnetization in three versions of, here the exponent depends on the initial state. In Ref. 33
the XY model. The initial excitation is always prepared in the o anisotropicXY model was also studied in the limit of

form of a spatially inhomogeneous magnetizatiSiM), and  g4rong anisotropy. It was found that the exponefit power

the calculation is done in exact analytic form. The three variq,,, (8) changes discontinuously at some critical val@gsf

ants of theXY model that we consider are enumerated bey,a \vave vecto. The valuesQ, depend solely on the pa-

low: o , o rameters of the Hamiltonian and are not connected with the
(1) Isotropic dimerizedX'y model with Hamiltonian: preparation of the initial state, nor the particular component

of the magnetization that is relaxing. Moreover, in the limit

N M . . .
_ z_ X X y Q—Q., the relaxation timer of power law(8) diverges to
Hi 89 hJZl S mz:“l [31(S2m-12m* Sim-153m) T—, With the corresponding slowing down of the process.
This phenomenon is at variance with some conventional
+32(S5mSome 1+ SnSm+1)1- (4)  views for the time evolution of physical quantities in many

particle systems, according to which all quantities must be
(I IsotropicXY model in a staggered magnetic field with temporally independent in the limit—o . The concept of
Hamiltonian: spin temperature, widely used in nonequilibrium magnetic
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phenomen® is based on the assumption that the spin-spirTo obtain exact results fofSq)., for each of the models

relaxation is much faster than the final relaxation to the latconsidered, we follow the steps:

tice degrees of freedom. (i) Diagonalization of the corresponding Hamiltonian us-
Model | was also preliminary investigated by some of theing the fermion representation of the Jordan-Wigner transfor-

authors, and similar conclusions were attained for the dimermation. At the end, we get a free-fermion system.

ized XY modef* in the sense that a critical-like slowing (i) Transformation ofS5 in terms of fermionic operators

down of the relaxation process takes place at special poing get the time-depende§(t).

= Qg of the Q space. In other words, fdQ|— Q.. the in- (iii) Averaging of Sh(t) ‘with the initial density matrix
verse time scale™ - for some of the oscillating components p(0)

. _l N
of SIM, goes to zero following the power lawr The last step depends on the form of initial magi¢0).

~|(IQ=Qc)|. Such behavior is not surprising for the case ag it was shown in Ref. 31, exact solutions of this problem
Q.=0, for which the corresponding value of the total Mag-may be obtained in the case whe0) is a functional of
netizationS’ is a constant of motion, but is unusual Qg only one component of the spin operator:

#0, where the corresponding Fourier componS@tis not
conserved, p(0)=F(S) (7=xy.2). (12
We note thatQ=0 is the only critical point for the uni- o )
form isotropic XY model (model IV and limitJ;=J, for Let us note that such initial state can actually be prepared in
model | andh;=h, for model I). The t—o behavior is real systems att Iew temperature, with a strong nonholmoge-
dominated by one oscillating component, and this compol€0us magnetic field directed along the coordinate &xis
nent has no critical properties. The present paper is devoted
to elucidate this remarkable difference within a more general A. Diagonalization
context, by the extensive study of a whole family of models.  \1athods for diagonalization of Hamiltoniarid)—(6) are
We suggest that dissimilar behaviors are due tc_) the Presengei known (see for example Refs. 9, 11, and)18finor
of a gap in the spectrum of the energy excitations, the Unigigterences are specific for the version of the model to be
form |sotrop|c.model pelng gapless. ._solved. In our case we have employed the following proce-
Our paper is organized as follows: In Sec. II, we outline y,o.
the main steps in the analytic calculation. All the models are (a) Use of the Jordan-Wigner transformation to change
diagonalized by means of a modified Jordan-Wigner transfrom spin to Fermi operatorsb{ b):
formation, which maps the spin model into an equivalent e

termion Hamiltonian. Thert, the avera_ngé)I is _calculat_ed S}(:Lj(b;r"f_ bj)/2, S}’=Lj(bf—bj)/2i,
in exact closed form, and its asymptotic behaviortferw is
obtained after taking the thermodynamic limNit-c. In Sec. sz: bjtbj —1/2, (13)

[ll, we give a detailed analysis of the results, including all
models and the long-time behavior of the magnetizationwhere
Section 1V closes the paper with final discussions.
-1

_ T — 2_
IIl. MAIN STEPS OF SOLUTION '—j—lﬂl (2b/b—1), L,=1, (Lj=1). (14

The quantity of our interest is the time-dependecbm-

ponent of SIM (b) Introduction of two types of Fermi operators for even

and odd sites:

ot = Trp(t)So], 9
(S)e = Tp(S] ® ci=bg., d¥=b% ,, m=12...M, a==1,
wherep(t) is the density matrix of the system, and (15)
N and of their Fourier transformsy ,dy :
=2 StexniQj) (10
=1 M
1 _ N
is the Fourier transform of the magnetization. In E®), Q is Ck:\/_m mE:l exp(—iakm)cp,
the wave vector characterizing the spatial inhomogeneity of
the initial state Q=2#n/N,n=—N/2+1, ... N/2). To cal- 1 M
culate(Sg), one can use the identity: g:_M > exf —iak(m-1/2)]d2, (16)
m=1
(SE)=(S5(1)o=Tr p(0)SH(1)], (1D)

k=27m,/M, with m;=—M/2+1,... M/2, where we
wherep(0) is the initial density matrix, ansg(t) is the spin  have adopted the compact notation

operator in the Heisenberg representation

c =c, c'=c',

2 v — -
QeXp( p Y d-=d, d*=d". 17

i
6(t)=exr{%Ht
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(c) After the above steps, Hamiltoniaf$)—(6) are trans- R = \/m’ P= \/W '
formed into quadratic forms in terms of operatocg (dy).
Diagonalization of these quadratic Hamiltonians is standard, wo=pugght, ws=pugg(hy+h,)/2%,
but depends on the specific model under consideration. For
Hamiltonians(4) and (5) it can be done with the help of the w1=J41/2h.

Bogoliubov transformation given below: Note that here and in the following, we neglect, as usually

- donel*®13the boundary term of the orderNLthat appeared
Ca:u a+ a a, da: a a_u a' 18 ! y ) ‘ - “

k= Uit oicBic, die= i mic UiBi (18 in a chain with cyclic boundary conditions. The thermody-
where (¢ ,B%) are new Fermi operators, “=(v{)*, and namic limitN— o will be taken at the end of the calculation.
Uy is a real function ok. We are using the same convention

(17) for a= =+. For Hamiltonian(4), the functions ¢, vy) B. Calculation of (Sg),
are given by Using formulas(10) and(13)—(16), one can easily obtain
the following expression,
1 1
U=—=, vi=—=expiaf), (19
\/E \/E Séz_M(SQ,O+Zk (C;Cq—’_d;dq): (24)
where . _
wherep=k—Q,g=k+Q, with definitions common for all
1-8 models. To obtain the time dependenceSgf, we first ex-
tanakzmtar(kIZ), 0=J,13;<1. press relation(24) in terms of the canonicak’s and B’s
through transformationd 8) for models | and II, and relation
For Hamiltonian(5), one gets (22) for model Ill. Then, we insert the time evolution of such
operators

U= [(Px— wg)/2P]"?, .
7t = piexpliawdt),
=[(Py+ wq)/2P,]Y?*sgr(cosk/2), 20 .
v =[(Py+ wq)/2Py ]~ sgn( ) (20) BE(t) = Brexplia®t), =12
wherevy is real (independent ot) and
to get

wq= ugg(h1—hy)/2%, o

Sé(t)Z—MéQ’O-F}k: {(upug+vivgexdi(Q) (k,Q)t]

P=(w3+ w2cogki2)'?,  w.=Jlh. (21)
X 93 pg+ (Uglgtov¥)exd —iQ; (k,Q)t] 8,
(d) Following Ref. 11, diagonalization of Hamiltonia6) 7p Ma't (Uplgtupvg ) exi  (kQIIA, Bq

is achieved through +(Upvg —Ugup)exdiQ;" (k,Q)t] 7, By

CﬁZ(—ﬂﬁ"' 776—(k+ﬂlt<y+ﬁik)/2- +(qup—Upvq)eXﬁ:—iQr(k,Q)t]ﬂ;ﬂq} (25

N 0w 0w for models | and Il, where
di=(m+ 78+ B — BLWI2. (22 . .
Q' kQ=w-00,

As a final result, all the three Hamiltonians can be repre- ' P
sented in the diagonal form Q;(k,Q)zwg)_wg) . i=1,2

) ) ) and functions @, v,) are defined by formulad 9) and(20)
Hizﬁ; [0 nim+OPBIB,  (1=1,23) (23)  respectively.
In the same way, for model Ill, we obtain
except for constant terms that are not important for the dy-
namics. The index=1,2,3 refers to modelél), (I), and 2()=> (B niexdi(w®+0®)t]
(1), respectively. The dispersion relations of Eg3) are % k tB=a7s . g
iven b .
g y +7_pBeexd —i(0P+OI]}. (26
o)=—wotwiRy, of)=—wstPy, To calculate the time dependent averd@g),, we use the
3)_ _ identity (11), which means that, equivalently, one can calcu-
“k (I2/%)cogki2), late the average of operatSE(t) in the Heisenberg picture
1y_ 2)_ in relation to the initial density matrix(0).
O'=—wo—w1Ry, O;7=—ws—Py, From Egs.(25) and(26), one sees that this problem re-
®(k3):(lllh)cos{k/2) duces to calculation of averages of the typa;nq%,
(ﬁ;r,[g’q>o, ..., including all the combinations of canonical
where operators. This is achieved going back to the spin represen-
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tation, in order to employ the initial conditiofi2). One is (a) For model I, we get the formula
then led to computation of spin averages including the
“string” operators (14). This technique has been previously 1 "
used by some of the authors in Refs. 32, 33, and 44, and is (Soh=7,]_{F"(kQyrcodtl; (k. Q)]
described in detail in Ref. 45. Putting everything together in
Eq. (25) for models | and Il, and taking the continuum limit +F7(k,Q)codtQ, (k,Q)]}dk, (31
N—, we get expressions fdiS;); in the form of integra- ith
tions over the Brillouin zone: wit

L F=(k,Q)=A%(k,Q)(S&)o+B=(k,Q)(S%; »)o:

(Sh=7= | 1F (kQicog10 Q)]
T)-n . (14 6%)cosQ+ 26 cosk
_ A= (kQ)=1% :

+F 7 (k,Q)cogtQ; (k,Q) 3 dk, (27) RuR,
wherei=1,2, for the two models treated here. Quantities in . i(1—6%)sinQ
Eq. (27) are B~ (k,Q)= i—Rqu : (32

F=(k,Q)= = 4ug(ui—|v,|?)[i(e P2+ e92)(ef)olmu, (b) For model Il, we have the more explicit form

+ (efip/Z_ eiq/2)<£XQ+7T>Ra)q]

1 T
(Sgh=7-(Sdho f dk(—[ w5cog p/2)cog q/2)/ PPy ]
for y=x, and m -

X cogtQ; (k,Q)]+{1+[ w3+ wicod p/2)
X €0gq/2)]/P,Pgtcogt; (k,Q)]). (33

F=(k,Q)=A%(k,Q)(S5)o+ B (k,Q){(Sg »)o

A" (k,Q)=1F[1—2uluZ—2|vvgl*—4u,uqRevivg)],
(c) For model Ill, we have the compact expression:
B=(k,Q)=*4iuugim(vyvg), 1 .
for y=2z. <SZQ>t:%<Sé>OJ7 ﬁCOS{tQ(k,Q)]dk, (34)
Substituting the specific valu&€$9) and(20) for (u,,v,)
into formula(27) one obtains the corresponding expressiondVhere
for models | and Il. In the same way, analogous results may
be obtained for model IIl.
Below, we will summarize these results together with the
ones obtained in Ref. 33 for model IV. We note that exact
solutions can be obtained for the special forms of the initial
density matrixp(0) given by Eq.(12).
(1) In the casey=x (the casey=Yy is the same by sym- fhiug=12+15—2141,c0sQ. (35)
metry), we have

Q(k,Q) = UQCOSk/Z‘i‘ OZQ),

I+

|
tanag= I 2tar( Q/2),
2

Il_

Let us note that at the specific val@e= 7, the time depen-

<SZQ>t:O (29) dence 0f(S5); is given by the simple formula:
I+
for models I, lll, 1V, and (S59=(S)o Jo( 1h ZI),
i _ o = Sire(k/2) _ _ o
(SHH=— — wewgsin(Q/2)€'? <8)c(g+w>0f PP whereJy(x) is the Bessel function of first kind.
m -7 Tphd (d) For model IV, the result
x{cogtQ; (k,Q)]—cogtQ; (k, dk, (29

for model I, where was found in Ref. 33 withq=2(J/#)sinQ/2.

N
(e0)0= >, SIS, oexplikj) (30) Il. ANALYSIS OF RESULTS
i=1
In this section, we first discuss general properties of the
is the Fourier transform of the short-range order correlatiortime evolution of the magnetization, which can be inferred

of the x component. directly from Egs.(27)—(36). In addition, we will study in
(2) In the casey=z, we have different expressions for all detail the asymptotic behavior at long times, in the limnit
the cases. —o. We will show that the evolution of SIM’s displays
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interesting unusual features, depending on the wave vextor prepared with a singleQ vector in the form (ey)q

characterizing the inhomogeneous initial state.

A. General properties of {Sg),

Let us first consider model | in the cage=z for the

=(eq )00k q, then(S;.q )¢ is the only component that
exists fort>0.

For Q=Qy=0 (homogeneous initial stateand for any
v, we get the(evidenj result

initial density matrix, since it presents a specific feature that

is absent in the other models studied here. From E2jB,

<56:o>t:<56:0>0'

(39’ and(32), one sees that the value of the magnetizationy,. nogels |, 11, IV. This is a direct consequence of the con-
(Sg)i att>0, depends on the initial values of the two FOU- geryation of the totaz component of the magnetization. In

rier componentsS,)o and (Sg. ,)o. This means that, if
only one component 0'[5-?g exists att=0, for example, for
wave vectorQ,, i.e.,

(S5)0=(Sg,)0%.q

then a twofold response develops for0, with components

the case of model Ill, whey=z, we get the closed result:

(Sg=0)t=(Sg=0)0Jo(¥ot),

wherefivy=|1,—1,| and Jq is the Bessel function of zero
order.
Special important limits aré=1(J;=J,) in model | and

(S )t and(S; ;o )t whose time evolution is described by hy=h; in model II, that map onto model IV. In both of these

Eq (27), W|th Ft(k,Q):Ai(k,Q0)<SZQO>05QyQO and
Fi(k,Q)zBi(k,Qoer)(Séo)O&Q,QOM, respectively. In

contrast, for models II-IV, if there is only one initial com-

ponent(ngo)O, only one componer(lSé)t of the same wave

vector Q= Q, exists at subsequent times; 0.
When the initial condition is prepared with= X, the av-

erage(Sp); vanishes identically for models |, 111, and 1V, for

cases, the corresponding formulas {&); reduce to Eq.
(36), which was obtained in Ref. 33.

Unfortunately, it is difficult to get more information from
formula (27), (29), (32), and (33), because they are rather
involved. So, in the following, we will consider the limiting
caset— o, which will be studied using the stationary phase
method.

anyt>0. This result may be understood intuitively, without B. Long-time behavior of (Sg), for the initial condition y=z

any calculation, if one notes that the part of the Hamiltonian

1. Model |

that describes the coupling of spins with the magnetic field _ _ _
commutes with the other one describing the exchange inter- According to the stationary phase mett{6dhe long-time
actions[in the case of model lIl, this statement is trivial for evolution of (Sg); is dominated by the contribution of the

we only have the exchange phiDenoting the latter all,,
we get the time evolution

p(O)ex;{fIL—Hext éex;{ — ;/L—Hext”, (37)

stationary points of the functior@; (k,Q). The number of
these points depends on the value of the wave vegtdtor

convenience of further discussion, let us introduce here the

so-calledcritical values ofQ:

Qc,=arccoss, Q.,=m—arccoss, Q. =0. (38

which is governed by the exchange only. Inside the trace in

Eq. (37), we now perform a unitary transformation consist- The above values are determined in a standard manner
through the stationary phase method, being the locus where

ing in a rotation bysw around thex axis. Under this opera-
tion, the spin operators transform as follows:

S)-(HS}(, - Sjy,

:
i i Si— SJ.

i
The exchange Hamiltoniald ¢, is invariant under this trans-
formation because it is a sum of products of the @8} ;
andS'S/. ;. The initial density matrixp(0) is also invariant
since it only depends on th®, component of the spinsy(
=x). So, the right-hand side of E37) will change its sign,
yielding (Sg) = —(Sg): i-e., (Sg){=0. Another important
consequence of E@37) is that the time evolution of SIM’s
is independent of the value of the external fibldvalid for
any vy), and is determined solely by the exchange term.

stationary points become degenef&teLet us first ex-
amine the role of); (k,Q). Itis easy to show that it has five
nondegenerate stationary points f@ in the interval

Qc,<|QI<Qq,:
k1=0, k2:_k3:77,

ka=—ks=¢q, @o=arcco$—45 cosQ). (39

In turn, forQC2<|Q|$Tr andQC3<|Q|<ch, one gets three
nondegenerate points at

kl:O, k2: _k3: ar.

In the case of model Il, the exchange part does not com-

mute with the total Hamiltoniam,. This leads, in general,
to a nonvanishingS;);, for t>0, which gives results pro-
portional to(eg. )0, Where(sg)o is the Fourier transform
of the spin-spin correlation functiof§S;. ;), evaluated at
the initial condition[see relation30)]. If the initial state is

Exactly at the critical values, we obtain:

(i) For Q= iQCl, one nondegenerate point;=0
and two degenerate onek,=—k;=m(Q;(+7,Q)]"
=[Q;(£7,Q)]"=0, [Q; (= 7,Q)]V+#0 , where deriva-
tions are taken with respect 9.
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(ii) For taQCZ, two nondegenerate points,=—ks
=m, and one degenerate ak=k,=0(Q;(0Q)]"
=[0Q,(0Q)]"=0[Q;(0Q)]V+0).

(i) ForQ=Q.,=0, there is no time evolution, since the

magnetizationS;_ o), is a constant of the motion

<86:0>t:<86:0>0-

The functionQ; (k,Q) vanishes athQ%:O and Q

= *+ 4. For any other wave numb&)}, it has two nondegen-
erate stationary points:

ke=—Kk;=tq, o=arcco$—45coN).

This finishes the analysis of the stationary points that domi

nate the long-time behavior of E¢31). The corresponding
asymptotic development (:(fSé)t for t—, can be repre-

sented as a sum of several oscillating components WithSi(Qat)mai,O(Q)(;)
I

Q-dependent frequencies and amplitudes:

<Sf-g>t~2i S(Qt), (40)

3(Q,t)=l=§:o ai,|(Q)(;i cogtQi(Q)+ «; 1,

(41)

where 7;=1;(Q) are functions ofQ and the exponeny;
assumes the values 1/2 or Itfhe latter value will be dis-
cussed in detail beloywThe number of componeng(Q,t)
depends omQ. For ch<|Q|<Q02 (excluding Q= + 7/2,
which is a degenerate point whef®; and ), coincide,
there are four components. F0|s(1)Q|<QCl and QC2<|Q|
< (excluding accidental degeneragdighere are only three
terms in relation(40). The frequencie€);(Q) and the in-
verse of the characteristic times * of Eq. (41) are given
below:

t)—vi(ZH—l)

Q1(Q)=w,(1+ 6>+ 25cosQ)*?,

| 6+ cosQ)|
3 1
Ro

7, 1= w0,8(1+ 5 cosQ) Q#*Q,

Q,(Q)=w,(1+ 6>°—25cosQ)*?,

| 6—cosQ)|
3 1
Q+m

75 1= w,8(1— 6 cosQ) Q#*Q,

Ryg-@ 7 Ryg+
93<Q>=w1(‘?2—° :

T3 1= (Ryg-o R¢,Q+Q)|sinQ|sin¢/Q,

11— 67
Q¢Qc3:0
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Rqo _Q+R<P +Q
Q4<Q>=wl(% ,

5
11—
Q.,<IQl<Q.,

We display typicalQ dependences of the frequencieq Q)
and of the inverse of the relaxation times® in Figs. 1 and
2, respectively, for particular values éf Slowing down of
the relaxation process occurs at points whereﬁh@s van-
ish.

At a genericQ point, the first nonvanishing terms in Eq.
(41) have the form

Ty (R¢Q_Q—R¢Q+Q)sinQ Singgq,

(42

-1/2
COitQi(Q)‘f'aiyo](i :1, PP ,4,
(43
with the amplitudes

a; o(Q)=a7o(Q)(SHotia7 o(Q)N(SH+ »o>

showing that the value & depends on the two initial com-
ponents(Sg)o and(S5. ,)o- Explicit formulas for the coef-
ficientsaiy(Q) andaj(Q), as well as the phases g, are
given in Ref. 45,

The dynamical process described by relatigd6) and
(41), with the explicit formulag42), is remarkable, since it
exhibits long-time tails in the relaxation of SIM’s to the spa-
tially homogeneous state. In contrast to the exponential re-
laxation, which is characterized by a single parameter that
yields the time scale or the relaxation rate, the power law
relaxation given by relation§41) and (43) is characterized
by two parameterst; 1 which determines the inverse time
scale of the process, and the expongntwhich determines
the relaxation rate. In general, no conservation laws or long-
lived hydrodynamic modes seem to be associated with the
above long-time tails.

In the neighborhood of critical points, the relaxation of
some of the components of relati¢f0) begins to stop, with
the corresponding relaxation time diverging, as shown in
Fig. 2. Exactly in the limit, the corresponding exponent
jumps discontinuously from 1/2 to 1/4. This slowing down
of the relaxation process is very similar to the critical slow-
ing down found in phase transition phenoméha.

Let us summarize below the singular behavior of the re-
laxation time at special pointshey are displayed in Fig.)2

(@ 7,'—0 whenQ—+Q.,, for any s ;

(b) 7, '—0 whenQ—=Q, , for any 5;

(c) 74 *—0 whenQ— +Q. , +Q.,, for any 5;

(d) 731—0 whenQ—0,* 7, for any 6.

All the 7, * vanish according to the law:

7 1~|(|Ql = Qo)lfor| Q| - Q..

We now give the behavior of components of relatidd) at
the critical points:
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FIG. 1. Frequencies of the asymptotic compo-
nents of the magnetization in E¢41), as func-
tions of the wave numbd®, for several values of
the parameteb. The different branche8;, for
i=1,2,3,4, are indicated by the numbers. We also
display the critical pointstQ.; and £Q., by
solid squares. Note that tt{e, branch is tangent
to the ), and (), branches aQ., and Q. , re-

spectively, but it is only defined between critical
points,QCl<|Q|<QCZ. The completeQ), curve
is shown as a guide for the eye.

Wave Vector Q

(I) In the limit Q—*Qc,, the componentS,(Q,t) and
S4(Q,t) merge into a single component with= 1/4:

t —-1/4
Sy(+ ch,t>=a2,o<chl)(T) c0§tQ(Qc,) + /8],
(44)

with

{24

4
82+ Qc)) = g T (LA[(1+ 5)<S§ch>o

+iyi- 5*2<s;chl>0],

7o 1=3w,6%/(1- &),

(I Analogously, forQ— = Qc, the componentS;(Q,t)

and S,;(Q,t) join together withv=1/4 and the time depen-
dence:

—1/4
SI(*Qc,=a1d *Qc,) ( ) cogt(Qe,) + /8],
where

42

al,o(chz):EF(lM)[(l—&)(SZtQCZ)O
+iV1=8%S, 2o, Jol-
The other components follows the la43) with Q

=*+Q.,
() The componentS;(Q,t) is critical atQ=0Q,=0,

whereI'(x) is the gamma function. The other componentswith the relaxation timer;~ 1//Q| diverging in the vicinity

follows the law(43) with Q= *Qq,-

of Q=0. Note that the frequenc§); vanishes in the limit
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"";,: FIG. 2. Inverse of the relaxation times
3 (wq7;) " of the power-law decay of Eq41), as
~ functions of the wave numbe® for the same

values of the parametet displayed in the previ-
ous figure. The numbers label the different
branches, in close correspondence with Fig. 1.
Solid squares are used to displaw,f,) %,
which vanishes at the critical points. The arrows
in the upper figure indicate values out of the
012 scale.
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0.04
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0.02] /

Wave Vector Q

Q—0. The criticality of Q;, has a different connotation, peared in Eq.(33) of model Il, can be mapped onto the

since it is related to the conservation of the tatabmponent ~ corresponding; (k,Q) and ;R of model (1), with the
of the spin, substitution:

SS_,=> 5HM
Q=0 =1 I’ \/wdz+we§+|wd|’

which is valid for all the model with axial symmetry along
the z axis. The divergence of; nearQ~0 is connected to To avoid numerous definitions, we use the previous symbols
the stability of hydrodynamic excitations of long wave- 6§ and w; throughout this section, with the meaning given
length. above in relation(45). With these variables, the stationary

(IV) Note the exception of)— = 7 for the component and critical points, the inverse characteristic timgs and
S;3(Q.t), because the amplitude o( Q) goes to zero in this the frequencie$);(Q) coincide with those of model I.
limit. The expression fo{S,), has the form(41) with the fol-

lowing values of the first nonvanishing amplitudas,(Q)
2. Model I (at a generidQ point):

When applying the same method to get the asymptotic
behavior of Eq(33) for long times, one sees that the work is 8(1— 8)%(1—cosQ)
facilitated by the development of the preceding section. In a11(Q)=(SH)o 7 :
fact, the frequencie@%(k,Q) and the function®, that ap- RQ@

1 ®
wi— E\/wg-i- wg-i- %.

(45)
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2 6(1
2,4 Q)= (56>0\[7—( - Q)
Q+m

, 21+ 6cosQ
az Q) =(Sy)o \/;Té

, 2 6+cosQ
2 dQ) <SQ>°\[7T 1+6 °

Note that the component with frequen€y;(Q) decays to
zero ast” 812 (exponenty=1/2 andl=1), i.e., more rap|dIy

PHYSICAL REVIEW B56, 094401 (2002

2J8(1-6
az,o(QF(%w%#)( e)/RS, .,
26 _
azd Q)= —(ng)owﬂé)(l—e‘Q)(H 5cosQ),

.20
a4,O(Q)=<8Q+w>Om(

where(ey) is the correlation function defined in E¢B0).

1-€e9)(1+ 6 1cosQ),

summarize the behavior at the critical points:
(i) At the critical point Q==*Qc, the components

S,(Q,t) andS,(Q,t) are degenerate and decay to zero with

exponentr=1/4, following the law(44) with

4
2
804 = Qe1) = rr<1/4>1+5

(i) At Q= *Qc, the component$,(Q,t) and S,(Q,t)
merge into a single component with the evolution= 1/4
andl=1 in Eq. (4]

—3/4
cogt04(Q,) + /8],

(46)

t
Si(= ch,t) = a1,1( * ch) ( T_c>
with
1 o
- /. _
277(3/2)3“1“(3/4) 115

a1(*Qc,) =

3. Model 111
The long-time behavior of Eq34) is much simpler than

nent with frequency(); has v=1/2 andl=1, yielding a
t~3”2 power law for the time decay.

We make a summary of the critical behavior at singular
points:

(i) At the critical point Q= Q¢ the components

S,(Q,t) and $4(Q,t) merge into one component with time

evolution given by Eq(44), with v=1/4 andl =0, with the
amplitude
21 s
a2 ¥ Qo)) = 5 —T(1/4) (1= 6511~ 5.

(i) In analogous form, alQ:iQC2 the components

S1(Q,t) andS,(Q,t) become degenerate with the time evo-
lution of Eq. (46), with »=1/4 andl =1, and the amplitude

1-6

1+6)°

a14(+ Q)= %(3/2)3/41“(3/4) \/5( 15i

IV. FINAL DISCUSSION

We have studied the relaxation to the homogeneous state,
of an initial excitation that has been prepared with a nonho-

those displayed by models | and Il, for the phase functiormogeneous magnetization profile along the magnetic chain

Q(k,Q) in Eg. (35 has only one stationary point &=k,
=—2aq. In the asymptotic limitt—co , it may be repre-
sented in the form

2
<Sé>t=<SZQ>O\[;(t/TQ)1’2cos(tuQ— wld),
whereuvg is given by formula(35) and 7o '=vg.

C. Long-time behavior of (Sf?)t for the initial condition y=x

As it was mentioned in Sec. Il BSg);, for the initial
conditiony=x, vanishes identically for models I, IIl, IV, and

only has a nonzero value for model Il. For the latter, the

asymptotic expression ¢8g); for t—, has the form of Eq.
(41) with the quantitied); and 7; defined through formulas
(42) and (45). The coefficientsa; |(Q) for the first nonvan-
ishing amplitudes in Eq41), at genericQ points, are

V&(1-6)
Th

a11(Q)= <8Q+7T>0 1-eQ)/R3,

(SIM). The time evolution of this excitation is probed
through the calculation of the Fourier componéﬁé(t)) of

the magnetization, which is analyzed as a function of the
wave vectorQ. We use periodic boundary conditions for the
spin Hamiltonian and take the thermodynamic limN (

— ) before studying asymptotic long times. As remarked in
Ref. 4, the order of the limits is very important. All the
models treated here show long-time tails in the relaxation of
(S5(1)), which is apparent from the asymptotic study for
—oo, developed in the previous sections. This behavior
manifests itself in the form of a power law decay in the
long-time evolution of SIM’s. This slow relaxation is a re-
markable result for its own sake and is probably due to the
absence of dissipation in the models. Since the systems are
isolated at zero temperature, the dynamics is exclusively
driven by quantum fluctuations.

Our calculation also shows striking differences, when one
compares the behaviors of models | and Il on the one hand,
with models Il and 1V, on the other. The dissimilarity lies in
the presence of critical valué@ci for the wave vectoiQ,

where we get a slowing down of the relaxation process. Near
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critical points, the time scale;, giving the relaxation of and the spectral properties is currently under rese®rch.
some specific oscillating components (q(t)), diverge Our results are all exact, with closed analytical forms,
with the law 7~ *~|(|Q| - Q.)|, for |Q|—Q.., reducing the from where the asymptotic regime for- is obtained. This

damping of these excitations. Such behavior is not surprisingas been done using the fermion representation of the
for the caschszo, for which the corresponding vall%:o ordan-Wigner approach for spin _chalns. Other procedu_res to
. . _ . solve the same systems are available, the most conspicuous
is an integral of the motion, but is unusual for the cexe being the Bethe ansatz method, which applied to Xhé

#0, WhenSf3 is not conserved. In this sense, the criticality at model might hint at “hidden” conservation laws of the sev-
*Qq,, *=Qc, has different implications in the theory. The eral versions of the model treated here. However, it is diffi-
position of the critical values- Q. and+Q., depends only cult to conceive a similar analytic calculation of the relax-

on parameters of the Hamiltonian, and in the lim@s—  ation properties, using Bethe ansatz techniques.
+Q..,+Q,., the exponent jumps discontinuously, the re- We _remark that mtegrab_le models qllsplgy other unusual

! 2 . . . dynamical phenomena, with anomalies in the transport
laxation rate becoming slower than for excitations Wit

. . . properties?? For the Heisenberg model, the absence of spin
#QCLZ. This means that the critical components will be thediffusion has been probed by bosonization technitfuesd

only surviving ones at long enough times. These long-livedy merical calculation® Reference 50 presents exact nu-
gxcnqnons ma); behplcf:tureq as Sp:}vdﬁns'w WalERIge  erical computations for the spin-1%XZ chain at infinite
ensity waves for the fermion modekith incommensurate o0 atire T=c0), which include, as particular cases, the

wave VectorQs, , which develop in models that undergo a o i Heisenberg model and theY regime, which are

. . o) 8 .

Peierls instability’® In contrast, the Qynam|cs (_)f modelsllll gapless, and the Heisenberg-Ising model, with a gap in the
and IV does r:jot. har\]/e lsuch anom?hes. Trere ';' no gap In theyectrym and long-range order for the ground state. Numeri-
sFectrum, r;m”. n tde d?‘”%”age 0 F;grtllc es, the Systt(irzns a%l data are inconclusive due to finite-size effects, but there
a"_VatyS _moe al'ctﬁn 'SP fi[\yt_no - |<;a_>£0|n(elxcep € are strong hints of a crossover from nondiffusive to diffusive
point Q=0). In the asymptotic regim » ONly ON€ 05~ 1,0 havior when we go from the gapless region to the gapped
cillating component exists which displays no critical behav- . .

) one. Concerning the low-temperature properties, a calcula-

ior. : . i
. : jon by Sachdev and Dantfein the gapped region, shows
Peculiar properties of the energy spectrum seem to Olete“hat the diffusive behavior holds in the presence of long-

mine the critical relaxation phenomena. In fact, models | and ) . :
Il display an energy gap between the ground and excitet@9€ qrder. It is however puzzling to admit that Iow-energy
states, whose size is monitored by the paramétdifor properties of the spectrum may _affect t_'ﬁeroc behavior. _
model Il through the transformatio@5)]. The existence of From a more fundamental point of view, we have studied
critical points is directly related to the presence of the gaptn€ time evolution of a closed quantum many-body system
since the latter changes the curvature of the dispersion rel4@t Zero temperatuyewhich is prepared in an arbitrary non-
tion for the energy. If one looks at formui@5) for the Fou- ~Nomogeneous initial state. The dynamics is solely given by
rier componenB,(t) of the magnetization, one realizes that the Schrainger equation for the wave function or by the

processes that contribute with tlje()r frequency(the one Liouville equation for the density operat@which includes

that is critica) come from transitions between both branchesthe more general situation of a mixed ensemble for the initial

of the spectruntinterband transitions where a particle with statg. In the thermodynamic limit and for long times\(

momentumg=K+Q is destroyed in a given band, and a —oo first than the limitt—o0), we get irreversibility in the
particle witr? momenturrp=k—yQ is creglted in the’ other form of a power law relaxation for the magnetization, despite

one, with a net momentum transférk=+2|Q|. So the the dynamics being unitary. No internal interactions are

L . ) 1, Present, since all the Hamiltonians are reduced to the free-
criticality at Q°1,2 is not directly related to the one-particle particle form. The irreversibility can be entirely ascribed to

spectrum, but to a big density of states for those interbanthterference effects, which in our calculation are handled us-
transitions that exchange the same momentike= =2|Q|  ing the stationary phase method at asymptotic long times.
coherently(constructive interferengeThe above is a conse- The infinite number of degrees of freedom precludes quan-
quence of anesting effect, which is achieved whe®  tum recurrences, which may be observed in finite chains or
=Qq, , With the onset of a spin density wave for t#  systems with a discrete spectrAt® Due to constructive
magnetization. In fact, the spectrum can be linearized in thénterference, gapped models develop long-lived collective
neighborhood of the inflection points, yielding parallel linear excitations with the texture of spin density wavieharge
branches for the upper and lower bands, which are connecteténsity waves for the fermion versionshat persist for

by p=k—Q. and g=k+ Q.. This is accompanied by the longer times. We believe that those structures are universal
degeneracy of some stationary points. features of gapped one-dimensional models.

We have found that the above anomalous behavior in the Finally, our simple quantum systems are good candidates
relaxation is not an exclusive property of the Peierls transifor aging effects, a concept that has been coined to specify
tion. In fact, other 1D gapped spin models, as ¥ chain  nonequilibrium dynamics that depends on the initial condi-
with anisotropic interactions, present the same slowing dowtions and relaxes very “slowly> But a complete character-
of the relaxation at special pointRef. 33 treats the Ising ization of quantum aging requires the calculation of two-time
limit). A general connection between this critical behaviorcorrelation functions?
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