
PHYSICAL REVIEW B 66, 094302 ~2002!
Nonequilibrium Green functions depending on the observation time for ultrafast dynamics
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Nonequilibrium Green functions depending on the observation time are introduced in order to investigate
ultrafast dynamics involved in photoemission from metal surfaces. Phase decay due to scattering of secondary
particles~electrons and holes in the metal! accounts for the dependence of the Green functions on the obser-
vation time of a main particle~photoelectron! in the final state. The Green functionsG12 andG21 striding
over the forward and backward branches of the Keldysh contour represent the dynamics of the secondary
particles, i.e., decay of the secondary particles and electron thermalization due to inelastic scattering of the
secondary particles. Then, by applying the Green functions to two-photon photoemission from a metal surface,
it is shown that the decay of photoexcited holes accelerates the decrease of the photoelectron intensity as a
function of the pump-probe delay time and the electron thermalization can account for dephasing.
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I. INTRODUCTION

Owing to the recent progress in the femtosecond la
technology, investigation of laser-induced coherent proce
in solids as well as atoms and molecules in the gas phase
become an absorbing topic of physics and chemistry. Es
cially, electron dynamics at noble-metal surfaces is one
the ideal subjects for investigating quantum dynamics of
herently excited quasiparticles since the electronic struct
of the metals are well known1,2 and experimental technique
for controlling interactions involving surface states, defec
and adsorbates of the metals are well investigated.3

Here we focus on the time-resolved two-photon pho
emission ~time-resolved 2PPE, TR2PPE! spectroscopy on
the surfaces.3–6 In a simple model, first an electron in a
occupied state is excited to an unoccupied state by a pu
laser pulse. Then electron relaxation~decrease of the electro
density! and dephasing~decrease of the electron polariz
tion! can begin because of electron-electron/electron-pho
scattering, or electron scattering by local potentials aro
defects, impurities, and the surface. Subsequently, the e
tron is excited to a free-electron state above the vacuum l
by a probe-laser pulse and hence emitted from the surfa

The 2PPE spectra are measured as functions of the pu
probe delay time and then information on the transient
havior of the system affected by relaxation and dephas
can be obtained. Estimation of both the electron lifetim
and dephasing times from the TR2PPE spectra has bee
tempted by phenomenological analysis with the aid of o
cal Bloch equations.3,5 Although microscopic mechanisms o
electron relaxation have been extensively studied by qua
tative calculation of the lifetimes of the electron states,2,7,8

microscopic analysis of the dephasing times is still an un
solved issue.

For analysis of experimental TR2PPE spectra, usually,
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photoelectron densities are calculated based on optical B
equations.3,5 Originally, basic theories regarding optica
Bloch equations are formulated for quantum optics of ato
and molecules in the gas phase.9 Electrons in the atoms an
molecules can interact with the electromagnetic field a
hence recombine with holes by spontaneous emission.
lifetime of the electronically excited state due to this mech
nism is defined to be an energy relaxation timet1. When the
atoms and molecules collide with each other, the quan
phase of the electron system can change. Both the spon
ous emission and the collision accounts for phase deca
which the time scale can be given by a dephasing timet2

5(1/2t111/t̄2)21, wheret̄2 is a pure dephasing time due t
elastic scattering between the atoms and molecules. Q
tum optics of insulators and semiconductors is similar to t
of atoms and molecules in the gas phase except that elec
phonon interactions and electron scattering at local poten
around defects, impurities, and surfaces account for dep
ing instead of the collisions.10

One might apply the above theory to quantum optics
metal surfaces.11 For example, we assume that a partial sy
tem consists of occupied and unoccupied surface states.
toexcited electrons and holes can relax due to inelastic s
tering by other electrons in the metal. The lifetime of
photoexcited electron is usually taken into account in opti
Bloch equations by assuming thatt1 corresponds to the life-
time. Although mechanisms of dephasing at metal surfa
have not been clarified yet, phenomenological dephas
times t̄2 are taken into account by analogy of the quantu
optics of insulators and semiconductors.3,5

However, mechanisms of relaxation and dephasing
metal surfaces should be different from those of insulat
and semiconductors because of existence of the Fermi
face. By inelastic electron-electron scattering of photoexci
©2002 The American Physical Society02-1
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electrons and holes, secondary electrons and holes ca
excited in the vicinity of the Fermi level.12 These secondary
electrons and holes can be inelastically scattered again
hence dissipate into the metal by losing coherence~thermal-
ization!. Therefore we can deduce thatmicroscopicallyin-
elastic scattering can account formacroscopicallyelastic
scattering introduced within the framework of optical Blo
equations. Then the observation probability of the photoe
tron, i.e., the photoelectron density, can change dynamic
until the observation because of the phase decay due to
tering of the secondary electrons and holes which remai
the metal after the photoemission~here, photoexcited hole
can be classified as secondary particles since the relax
processes of the electrons and holes in metals are us
independent of each other!. Thus the observation time depe
dence of the photoelectron density contains information
the phase decay. However, as shown in Sec. III, the obse
tion time dependence cannot be derived from optical Blo
equations. Therefore it is necessary to introduce ano
method by which we can investigate the effects of scatte
of the secondary electrons and holes on the observation
dependence.

Green functions are useful tools for investigation of ele
tron dynamics from a microscopic point of view. Especia
the Keldysh Green-function method13,14 is one of the repre-
sentative methods for investigating nonequilibrium proble
including photoemission. However this method is not effe
tive for investigating the observation time dependence si
the Green functions are defined by assuming efficiently lo
observation times. In this paper, we introduce nonequi
rium Green functions for finite observation times by pert
bative expansion of a density matrix. Then we discuss on
basis of the formulas of the Green functions how the dyna
ics of the secondary electrons and holes is concerned
the observation time dependence of the Green functions
applying these Green functions to 2PPE from a metal s
face, we demonstrate how the photoexcited hole decay
thermalization of secondary electrons and holes affect
photoelectron density.

In fact, absolute-time dependence of the Keldysh Gr
functions is an important issue of many-body quant
theory. The original theory by Keldysh13 suggests nothing
about the absolute-time dependence so the correlation f
tions in the Green functions may be given by the spec
theorem in the same way as the equilibrium Green functio
By the Keldysh rotation, the Keldysh Green functions a
transformed into advanced and retarded Green functions
a ‘‘dynamical distribution function.’’ By deducing from
semiclassical theories, some ideas were proposed tha
dynamical distribution function will depend on the absolu
times when the state of the system is far from t
equilibrium.14,15 Then the absolute-time dependence of
dynamical distribution function can be introduced by atta
ing additional conditions based on these hypotheses, e.g
generalized Kadanoff-Baym ansatz.15 Although there are ap
plications of the Green functions based on the hypothese
dynamics induced by ultrashort laser pulses,16,17 the require-
ment of the hypotheses in which the quantum theoret
basis is not solid makes the Keldysh Green-function met
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inconvenient and, in numerous cases, the absolute-time
pendence is ignored for simplicity.18–22 By taking an ex-
ample of one-photon photoemission~1PPE! spectroscopy
which can probe the hole dynamics in the energy d
main,18–25we discuss this problem by referring to the resu
obtained by the Green-function method introduced in t
paper.

II. NONEQUILIBRIUM GREEN FUNCTIONS

We introduce a system of which the Hamiltonian is d
scribed asH5H01H8(t), where the unperturbed Hamil
tonian is given by

H05(
m

Emcm
† cm . ~1!

HereEm , cm
† , andcm stand for the energy and the creatio

and annihilation operators of a quantum state~including a
spin! um& of a particle, respectively. The perturbationH8(t)
5W(t)1V consists of interactions of a particle with time
dependent external fields,

W~ t !5(
m,n

Wmn~ t !cm
† cn , ~2!

and two-body interactions between the particles,

V5
1

2 (
k,l,m,n

Vkl/mncl
†ck

†cmcn. ~3!

The density matrix of the whole system can be expan
with respect toH8(t) as26

rmn~ tob!5
Tr@r~ tob!cn

†cm#

Tr@r~ tob!#

5 (
n50

`

(
n850

` S 1

i\ D n1n8 È2`

dt18 . . . È2`

dtn8
8

3E
2`

`

dtn . . . E
2`

`

dt1u~ tob2tn8
8 !

3u~ tn8
8 2tn821

8 ! . . . u~ t282t18!u~ t182t0!

3u~ tob2tn!u~ tn2tn21! . . . u~ t22t1!u~ t12t0!

3^h8~ t18! . . . h8~ tn821
8 !h8~ tn8

8 !cn
†~ tob!

3cm~ tob!h8~ tn!h8~ tn21! . . . h8~ t1!&

[ (
n50

` S 1

i\ D n 1

n! E2`

`

dt1 . . . E
2`

`

dtn

3^Tc~ tob!@cn
†~ tob

2 !cm~ tob
1 !h8~ t1! . . . h8~ tn!#&,

~4!

whereu(t) is a step function, and
2-2
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^A&5
Tr@r0~ t0!A#

Tr@r0~ tob!#
~5!

stands for the statistical average$Tr@r0(t)#5Tr@r(t)# is in-
dependent oft% of an operatorA. t0 is the time at which the
system is in the equilibrium state and we can g
t0→2`. Herecm

† (t), cm(t), r0(t), andh8(t)5w(t)1v(t)
are cm

† , cm , r(t) and H8(t) in the interaction represen
tation, respectively. From Eq.~4!, we obtain r0(t0)
5exp(2H0 /kBT), wherekB is the Boltzmann constant andT

FIG. 1. Example of a fourth-order diagram with respect to
teractionsW of a particle~fermion! with external fields. A dotted
arrow denotes the Keldysh contour whereW denoted by dots are
ordered ast1 , t2 , t28 , andt18 . The horizontal dashed line divides th
diagram into the forward branch~upper side! and the backward
branch~lower side!. Solid arrows denote one-particle Green fun
tions for quantum states indicated by appended wave vectors.
09430
is the temperature.Tc(tob)@ . . . # denotes that the containe
operators are ordered along the Keldysh contour13,14,27where
the time evolves first fromt1, to the observation timetob

~forward branch!, and next fromtob to t18 ~backward branch!.
We consider an example of 2PPE from a metal surf

that a fermion in an interacting system~electron in a metal!
is consecutively excited by external fields~ultraviolet and
visible laser pulses! twice before detection by an instrume
at tob as given by a diagram in Fig. 1. Here, first a particle
uq& is excited to uk& ~forward branch! or uk8& ~backward
branch!, and subsequently the particle is excited tou f &. Then
we obtain the density ofu f & as

r f f~ tob!52 i\ lim
t→tob20

lim
t8→tob20

(
k

(
k8

(
q
È2`

dt18

3 È2`

dt28E
2`

`

dt2E
2`

`

dt1u~ tob2t28!

3u~ t282t18!u~ tob2t2!u~ t22t1!Wqk8~ t18!

3Wk8 f~ t28!Wf k~ t2!Wkq~ t1!Gf f
11~ t,t2 ;tob!

3Gkk
11~ t2 ,t1 ;tob!Gqq

12~ t1 ,t18 ;tob!

3Gk8k8
22

~ t18 ,t28 ;tob!Gf f
22~ t28 ,t8;tob!. ~6!

Here we introduce theintrabranchGreen functions by

-

Gmn
11~ t,t8;tob!5@Gnm

22~ t8,t;tob!#*

5 (
n50

`

(
n850

` S 1

i\ D n1n811 È2`

dt18 . . . È2`

dtn8
8 E

2`

`

dtn . . . E
2`

`

dt1u~ tob2tn8
8 ! . . . u~ t282t18!

3u~ tob2tn! . . . u~ t22t1!(
l 51

n

(
l 851

n

u~ t l 112t !u~ t2t l !u~ t l 8112t8!u~ t82t l 8!

3@u~ t2t8!^v~ t18! . . . v~ tn8
8 !v~ tn! . . . cm~ t ! . . . cn

†~ t8! . . . v~ t1!&

7u~ t82t !^v~ t18! . . . v~ tn8
8 !v~ tn! . . . cn

†~ t8! . . . cm~ t ! . . . v~ t1!&#, ~7!
th
nd
uce
of
in
and theinterbranchGreen function by

Gmn
12~ t,t8;tob!

57 (
n50

`

(
n850

` S 1

i\ D n1n811 È2`

dt18 . . . È2`

dtn8
8

3E
2`

`

dtn . . . E
2`

`

dt1u~ tob2tn8
8 ! . . . u~ t282t18!

3u~ tob2tn! . . . u~ t22t1!(
l 51

n

(
l 851

n’

u~ t l 112t !
3u~ t2t l !u~ t l 811
8 2t8!u~ t82t l 8

8 !

3^v~ t18! . . . cn
†~ t8! . . . v~ tn8

8 !

3v~ tn! . . . cm~ t ! . . . v~ t1!&, ~8!

where tn11 and tn811
8 in the summations are replaced wi

tob. The functions for fermions take the upper signs a
those for bosons take the lower signs. We can also introd
another interbranch Green function by deriving a formula
the hole density for a diagram in which the bold arrows
Fig. 1 are reversed:
2-3
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Gmn
21~ t,t8;tob!

5 (
n50

`

(
n850

` S 1

i\ D n1n811 È2`

dt18 . . . È2`

dtn8
8

3E
2`

`

dtn . . . E
2`

`

dt1u~ tob2tn8
8 ! . . . u~ t282t18!

3u~ tob2tn! . . . u~ t22t1!(
l 51

n

(
l 851

n’

u~ t l 811
8 2t !

3u~ t2t l 8
8 !u~ t l 112t8!u~ t82t l !^v~ t18! . . . cm~ t ! . . .

3v~ tn8
8 !v~ tn! . . . cn

†~ t8! . . . v~ t1!&. ~9!

Equations ~7!–~9! can be rewritten by using the time
ordering symbol as

Gmn
AB~ t,t8;tob!5 (

n50

` S 1

i\ D n 1

n! E2`

`

dt1 . . . E
2`

`

dtn

3^Tc~ tob!@cm~ tA!cn
†~ t8B!v~ t1! . . . v~ tn!#&,

~10!

whereA andB are ‘1’ or ‘ 2’. These Green functions satisf
the equation of motion in the matrix representation in
same way as do the usual Keldysh Green functions:14

F i\
]

]t
2H0GszG~ t,t8;tob!2E

2`

`

dt9 S~ t,t9;tob!G~ t9,t8;tob!

5d~ t2t8!I , ~11!

where

G~ t,t8;tob!5S G11~ t,t8;tob! G12~ t,t8;tob!

G21~ t,t8;tob! G22~ t,t8;tob!
D , ~12!

S~ t,t8;tob!5S S11~ t,t8;tob! S12~ t,t8;tob!

S21~ t,t8;tob! S22~ t,t8;tob!
D , ~13!

sz5S 1 0

0 21D , ~14!

I5S 1 0

0 1D . ~15!

Here the self-energy functions are given by

Smn
AB~ t,t8;tob!

5 (
n50

` S 1

i\ D n 1

n! E2`

`

dt1 . . . E
2`

`

dtnH 221~nA1nB!

3(
ab

@Vam/bn7Vam/nb#^Tc~ tob!@ca
†~ tA1nAh!cb~ tA!

3v~ t1! . . . v~ tn!#&1nAnB(
abg

(
a8b8g8

Vam/bg
09430
e

3Vg8b8/na^Tc~ tob!@ca
†~ tA12nAh!cb~ tA1nAh!cg~ tA!

3cg8
†

~ t8B12nBh!cb8
†

~ t8B1nBh!

3ca8~ t8B!v~ t1! . . . v~ tn!#&J , ~16!

where A and B are ‘1’ or ‘ 2’, n151 and n2521, and
h→10. Diagrammatic expansion of the correlation functio
in Eqs. ~7!2~9! and ~16! is possible by Wick’s theorem~or
Bloch–de Dominicis’s theorem! in the same way as the ex
pansion of correlation functions included in the usu
Keldysh Green functions.14

It is useful to write the intrabranch Green functions in E
~7! as functions of the absolute timet of which the origin is
tob as well as functions of the relative timet2t8:

Gmn
11~ t,t8;tob!5Gmn

11~ tob2t,t2t8!, ~17!

Gnm
22~ t,t8;tob!5Gnm

22~ t2t8,t82tob!. ~18!

Here the signs of the relative times are defined by referr
to the time ordering along the Keldysh contour. In case ot
.t8 in G11(t,t8;tob), for example, after excitation of a
main particle att8, the particle can be scattered inelastica
until t @see Fig. 2~a!#. Thus thet2t8 dependence of the in
trabranch Green functions mainly represents the relaxatio
the main particle~e.g., electrons inuk&, uk8&, andu f &) in the
same way as do the usual Green functions. The main par
can also be scattered quasielastically fromt8 to t so that
secondary particles are excited@see Fig. 2~b!#.28 The second-
ary particles can be scattered before the observation of
main particle attob. Thus thetob2t dependence of the intra
branch Green functions represents the dephasing du
quasielastic scattering. When the quasielastic scatterin
negligible, the intrabranch Green functions become indep
dent oftob and hence equivalent to the usual Green functio
G11(t2t8) andG22(t2t8).

It is useful to write the interbranch Green functions
Eqs.~8! and~9! as functions of the absolute timest andt8 of
which the origin istob:

Gmn
12~ t,t8;tob!5Gmn

12~ tob2t,t82tob!, ~19!

FIG. 2. Examples of~a! inelastic and~b! quasielastic scattering
involving homogeneous and inhomogeneous fermion states.
sides show the energy diagram of initially occupied homogene
states in the shaded areas and unoccupied states in the empty
Right sides show the energy level of an inhomogeneous state o
pied by a main particle which is to be scattered. Dashed lines
note interactions between particles indicated by filled circles.
2-4
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Gmn
21~ t,t8;tob!5Gmn

21~ t2tob,tob2t8!. ~20!

These functions mainly represent the relaxation of second
particles~e.g., hole inuq&) which are excited att and t8 in
the forward and backward branches, respectively, and s
tered before the observation of the main particle attob. By
expanding Dyson’s equations derived from Eq.~11!,
Gmn

12(t,t8;tob) and Gmn
21(t,t8;tob) can be divided into two

terms:

Gmn
12~ t,t8;tob!5Gmn

12 [1]~ t,t8;tob!1Gmn
12 [2]~ t,t8;tob!, ~21!

Gmn
21~ t,t8;tob!5Gmn

21 [1]~ t,t8;tob!1Gmn
21 [2]~ t,t8;tob!. ~22!

Here, as shown in the following,Gmn
12 [1] (t,t8;tob) and

Gmn
21 [1] (t,t8;tob) represent decay of a secondary partic

and Gmn
12 [2] (t,t8;tob) and Gmn

21 [2] (t,t8;tob) represent ther-
malization.

Gmn
12 [1] (t,t8;tob) and Gmn

21 [1] (t,t8;tob) for low tempera-
tures can be given by

Gmn
12 [1]~ t,t8;tob!.7 i\ lim

t→tob20
u~t2t ! lim

t8→tob20

u~t82t8!

3(
l

Gml
11~ t,t;tob!Glm

22~t8,t8;tob!,

~23!

Gmn
21 [1]~ t,t8;tob!. i\ lim

t→tob20
u~t2t ! lim

t8→tob20

u~t82t8!

3(
l

Gml
22~ t,t;tob!Glm

11~t8,t8;tob!.

~24!

These represent processes in which a particle excitedt
~forward branch! or t8 ~backward branch! is scattered until
tob and hence the density of the particle decreases as a f
tion of tob. The tob dependence of these Green functio
shows that combination of the intrabranch and interbra
Green functions doesnot give the retarded and advance
Green functions, and the canonical transform of the Keld
Green functions~the Keldysh rotation!13,14,27 is available
only for large tob at which the system is in the metastab
state.

Gmn
12 [2] (t,t8;tob) and Gmn

21 [2] (t,t8;tob) within typical
second-order diagrams with respect toV shown in Fig. 3 are
given by

Gmn
12 [2]~ t,t8;tob!57~ i\!2(

a
(
b

(
g

@Vbg/maVam/gb

7Vbg/maVam/bg#

3 È2`

dt8E
2`

`

dt Gmm
11~ t,t;tob!

3Gnn
22~t8,t8;tob!Gaa

21~t8,t;tob!

3Gbb
12~t,t8;tob!Ggg

12~t,t8;tob!, ~25!
09430
ry
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Gmn
21 [2]~ t,t8;tob!57~ i\!2(

a
(
b

(
g

@Vgm/baVab/mg

7Vgm/baVba/mg#

3 È2`

dt8E
2`

`

dt Gmm
22~ t,t;tob!

3Gnn
11~t8,t8;tob!Gaa

21~t8,t;tob!

3Gbb
21~t8,t;tob!Ggg

12~t,t8;tob!,

~26!

where the summations are taken over secondary quasipa
states. These represent processes in which an original
ticle in um& ~forward branch! or un& ~backward branch! is
inelastically scattered and hence three secondary particle
excited intoua&, ub& and ug&. Thus energies of the second
ary particles dissipate toward the thermal equilibrium by
peating such processes, as we can express by high-o
terms ofGmn

12 [2] (t,t8;tob) andGmn
21 [2] (t,t8;tob) with respect

to V.

III. HOLE DYNAMICS AT METAL SURFACES

We apply the Green functions introduced in the previo
section to 2PPE from metal surfaces. 2PPE spectra of c
noble metal ~111! surfaces show peaks due to occupi
Shockley surface states and unoccupied image-potentia
duced surface states.29 When the surfaces are covered wi
adsorbates~molecules!, the peaks observed in the spectra
the clean surfaces are weakened and peaks due to adso
induced occupied and unoccupied states are observed.30,31 In
this section, we investigate the dynamics of a hole photo
cited in an occupied stateuq& at the clean or adsorbate
covered surfaces by calculatingGqq

12(t,t8;tob).
We focus on the effects of hole decay and electron th

malization due to inelastic electron-electron scattering. In
femtosecond electron dynamics in metals, the availa
phase space for elastic and quasielastic scattering~including
electron-phonon scattering! can be smaller than that for th

FIG. 3. Typical second-order diagrams forG12 [2] with respect
to two-body interactionsV denoted by dotted lines. The meaning
of the symbols are the same with those in Fig. 1~the Keldysh
contour is omitted!. The diagrams forG21 [2] are obtained by re-
versing the direction of the arrows.
2-5
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inelastic scattering. Then, by ignoring elastic and quasie
ticscattering for simplicity, intrabranch Green functions b
come independent of absolute times as given by

Gmm
11~ t2t8!

52@Gmm
22~ t82t !#*

.~ i\!21$u~Em2EF!u~ t2t8!e(2 iEm2Gm)(t2t8)/\

2u~EF2Em!u~ t82t !e( iEm2Gm)(t82t)/\%, ~27!
of
u
d
p

or
iv

a

za
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whereGm5\/2tm is the inverse lifetime of a stateum& and
EF is the Fermi level. From Eqs.~23! and~25!, Gqq

12 can be
given by

Gqq
12 [1]~ tob2t,t82tob!

52~ i\!21u~EF2Eq!u~ tob2t !u~ tob2t8!

3e( iEq2Gq)(tob2t)/\e(2 iEq2Gq)(tob2t8)/\, ~28!
Gqq
12 [2]~ tob2t,t82tob!52~ i\!21u~EF2Eq!u~ tob2t !u~ tob2t8! (

a

unocc

(
b

occ

(
g

occ

@Vbg/qaVaq/gb2Vbg/qaVaq/bg#

3@~Eq1Ea2Eb2Eg!21~Gq2Ga2Gb2Gg!2#21

3$e~ iEq2Gq!~ tob2t !/\2e@ i ~Ea2Eb2Eg!2~Ga1Gb1Gg!#~ tob2t !/\%

3$e(2 iEq2Gq)(tob2t8)/\2e@2 i ~Ea2Eb2Eg!2~Ga1Gb1Gg!#~ tob2t8!/\%. ~29!
in
due

c-
f the
the

-

e-

e

he
Here, for simplicity, we substituteG12 [1] and G21 [1] for
G12 andG21 in the integral of Eq.~25!.

Gqq
12(t,t8;tob) contains information on both densities

secondary electrons and holes and correlation between q
tum phases in the forward and backward branches. The
namical change of electron and hole densities can be re
sented by the average absolute time@(tob2t)1(tob2t8)#/2
dependence ofGqq

12(t,t8;tob). This is understood from the
photoelectron densityr f f for instantaneous laser pulses. F
example, when the electric fields of the laser pulses are g
by a delta functiond(t) so thatWqk8(t), Wkq(t)}d(t) and
Wk8 f(t), Wf k(t)}d(t2td), we obtain

r f f~ tob!}u~ tob!e
2td /tku~ tob2td!Gqq

12~ tob,2tob!. ~30!

Here we assume for simplicity that the photoexcitation of
electron occurs within a three-level system consisting ofuq&,
uk&, andu f &.

In order to analyze effects of hole decay and thermali
tion, we divide r f f into contributions fromGqq

12 [1] and
Gqq

12 [2] , i.e., r f f5r f f
[1]1r f f

[2] . By substituting Eq.~28! for
Eq. ~30!, we obtain
an-
y-
re-

en

n

-

r f f
[1]~ tob!}u~ td!e

2td /tku~ tob2td!e
2tob /tq. ~31!

This shows that the observation probability of an electron
u f & decreases as timetob passes because of phase decay
to the decay of a hole inuq& represented by thetob depen-
dence ofGqq

12 [1] . Thus the densities of both the photoele
tron and the hole decrease so that the electron density o
whole system is conserved. Since the response time of
detector~e.g., time-of-flight analyzer! is on the submicrosec
ond time scale,32 the measured photoelectron intensityI (td)
will be proportional to the integral of Eq.~31! over tob:

I f
[1]~ td!}E

2`

`

dtobr f f
[1]~ tob!}u~ td!exp@2td~tk

211tq
21!#.

~32!

Thus we see that the decrease ofI f(td) mainly due to the
electron decay inuk& can be accelerated by the hole d
cay in uq&.

In order to investigate the effects of thermalization, w
show the numerical results ofGqq

12 [2] for a localized state
uq& in Fig. 4. Here, for simplicity, Vbg/qaVaq/gb
2Vbg/qaVaq/bg in Eq. ~29! is assumed to be constant and t
h
FIG. 4. Second-order term of the interbranc
Green functionGqq

12 [2] (tob2t,t82tob) with re-
spect toV for an occupied stateuq& with a life-
time tq53 fs plotted as a function oftob2(t
1t8)/2 and t2t8. ~a! and ~b! are plotted from
different views by focusing on thetob2(t
1t8)/2 andt2t8 dependencies, respectively.
2-6
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lifetime of a bulk electron state with an energyEm is given
by the Fermi liquid theory33 as \/2Gm5(Em2EF)

22

330 fs @m5a, b, and g in Eq. ~29!#.5 Gqq
12 [2] becomes

large when the scattering probability of the hole into the b
is large so that the lifetime of the hole becomes short. Th
in the following calculation, we choosetq53 fs andtk52
fs which correspond to the shorter limits of the lifetimes
the highest occupied and lowest unoccupied molecular o
als of NO/Cu~111!,31 respectively.

The tob2(t1t8)/2 dependence ofGqq
12 [2] (tob2t,t8

2tob) shows the time profile of densities of secondary el
trons and holes in the bulk. Whentob2(t1t8)/250, the hole
is localized atuq& and henceGqq

12 [2] (0,0)50. Then hole
transfer fromuq& occurs withintq due to inelastic scattering
of the hole so that the densities of secondary electrons
holes in the bulk increase. Finally the electrons and ho
decay due to inelastic scattering.

In Fig. 5, we show the numerical results ofI f
[2] (td)

}*2`
` dtobr f f

[2] (tob) with I f
[1] (td) and limtq→`I f(td)}exp

(2td /tk) for reference. Fortd,tq53 fs, I f
[2] decreases more

slowly thanI f
[1] since the rate of hole transfer fromuq& to the

bulk due to inelastic scattering is superior to the decay rat
the secondary electrons and holes in the bulk. For longtob,
I f

[2] (td) decreases faster so thatI f
[2] (td) exhibits a nonexpo-

nential behavior which can affect dephasing times estima
by phenomenological analysis of experimental data.

Here, we go back to Fig. 4 in order to focus on thet
2t8 dependence ofGqq

12 [2] (tob2t,t82tob), which shows
the quantum phase correlation. Inelastic scattering of
hole in uq& causes excitation of secondary electrons a
holes in various bulk states. The electrons and holes exc
into states far from the Fermi level decay rapidly because
the large available phase space of inelastic electron-elec
scattering. Thus the phase correlation in the short time s
is lost rapidly @see Gqq

12 [2] (tob2t,t82tob) for tob2(t

FIG. 5. Photoelectron intensity as a function of the pump-pro
delay time fortk52 fs andtq53 fs. The dotted curve shows th
term I f

[1] (td) representing the effects of hole decay, and the das
curve shows the termI f

[2] (td) representing the effects of thermal
zation. The solid curve shows the photoelectron intens
limtq→`I f(td) when the hole scattering is neglected. The values
td50 are normalized to be the same.
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1t8)/2,5 fs andt2t8,5 fs]. Consequently, in the long
time scale, only electrons and holes in the vicinity of t
Fermi level remain in the bulk. This accounts for the grad
decrease ofGqq

12 [2] (tob2t,t82tob) for tob2(t1t8)/2.5 fs
and t2t8.5 fs.

We show in the following that thet2t8 dependence of
Gqq

12 [2] (tob2t,t82tob) is directly related to the dephasin
terms in Liouville–von Neumann equations~from which we
obtain optical Bloch equations within the rotating-wa
approximation9! for an open three-level system:

i\
]rmn

B ~ t !

]t
5@H01W~ t !,rB~ t !#mn2 iGmnrmn

B ~ t !

~m, n5 f , k, q except form5n5q!,
~33!

and rqq
B (t)51. Here the diagonal elements ofG give the

inverse lifetimes byG f f50 andGkk52Gk . The off-diagonal
elements give the inverse dephasing times byGk f5G f k

5Gk , Gqk5Gkq5Gk1Gq1Ḡ, and Gq f5G f q5Gq1Ḡ,
whereḠ is an inverse pure dephasing time.34 By using Eq.
~27!, we obtain the photoelectron density within the four
order with respect toW:

r f f
B ~ tob!52 i\ È2`

dt18 È2`

dt28E
2`

`

dt2E
2`

`

dt1

3u~ tob2t28!u~ t282t18!u~ tob2t2!u~ t22t1!

3Wqk~ t18!Wk f~ t28!Wf k~ t2!Wkq~ t1!

3Gf f
11~ tob2t2!Gkk

11~ t22t1!Ḡqq
12~ t12t18!

3Gkk
22~ t182t28!Gf f

22~ t282tob!, ~34!

where

Ḡqq
12~ t2t8!52~ i\!21u~EF2Eq!@exp2 iEq~ t2t8!/\

2~Gq1Ḡ !ut2t8u/\#. ~35!

By comparing with the numerical results ofGqq
12(t,t8;tob),

we see thatḠqq
12(t2t8) represents the phase correlation b

tween two timest andt8 by assuming a mean dephasing tim
\@Gq1Ḡ#21 instead of considering the nonexponential b
havior of Gqq

12(t,t8;tob) shown in Fig. 4~b!. The photoelec-
tron intensity as a function oftd ~correlation trace! becomes
narrower when the mean dephasing time is shortened.12,35

SinceḠqq
12(t2t8) is independent oftob, r f f

B (tob) is not af-
fected by the dynamical change of the density of second
electrons and holes in the bulk. However, referring to
results in Fig. 5, we see that both thetob2(t1t8)/2 and t
2t8 dependencies ofGqq

12(tob2t,t82tob) can account for
the narrowing of the correlation trace.

When scattering probability of the photoexcited hole
uq& is small so thattq is long, Gqq

12 [1] becomes the main
term of Gqq

12 . In this case, the correlation trace can be
fected bytq so that the effective lifetime measured at
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energy positionEk1Eprobe, whereEprobe, the probe photon
energy, depends on the pump photon energyEpump. It is
known that effective lifetimes of bulk states in metals exhi
Epump dependence.5,36 The experimental results were onc
explained by considering effects of cascade and Au
processes,4,12,35–38however, recent experimental results su
gest that other mechanisms can be involved in the 2P
process.6 We can deduce that the hole decay affects the
namical change of the probability of cascade and Auger p
cesses as well as the photoelectron density shown in
~32!. This will give a hint for solving the problem about th
effective lifetimes.

When the scattering probability is large so thattq is short,
Gqq

12 [2] becomes the main term. In this case, the correla
trace can be affected by the lifetimes of secondary electr
and holes in the vicinity ofEF . When the temperature of th
metal is finite, the lifetimes of the electrons and holes
shortened because of scattering by thermally fluctuating e
trons and phonons33 so that the mean dephasing time can
shortened due to electron thermalization whereas it is usu
considered that temperature dependence of dephasing
is due to electron-phonon interactions.5

IV. 1PPE SPECTRA

When the pulse duration becomes long so that the en
width of the light becomes narrow, the energy spectra
photoelectrons reflect the electronic density of states of
sample materials. The energy spectra can be measure
1PPE as well as 2PPE.19,25 There are many theoretical stud
ies of 1PPE from solids including metals by Green-funct
methods~or by other methods based on the perturbat
theory!.18,20–24 Most of the theories can be approximate
classified into two by methods of countermeasure to
problem of the absolute-time dependence of the Green fu
tions: ~i! avoid the problem by calculating the transition m
trix without using nonequilibrium Green functions;23,24 ~ii !
ignore the problem and employ the spectral theorem.18–22,25

By using the Green functions introduced in this paper,
systematic method beyond~i! and ~ii ! becomes available. In
this section, we show the relation of methods~i! and~ii ! with
the method introduced in this paper.

Usually, the 1PPE spectra can be obtained by assum
static light irradiation within the rotating-wave approxim
tion:

Wf q~ t !5@Wq f~ t !#* 5Wf qe2 iEpt/\, ~36!

where Ep is the photon energy. When applying the Gre
functions introduced in this paper, the 1PPE spectrum is
tained as

I 1P@E#}r f f@E#, ~37!

r f f@E#5
1

i\
uWf qu2Gqq

12@E2Ep2 i j,E2Ep1 i j#, ~38!

for j→10. Here the Fourier transform ofG12(tob2t,t8
2tob) is defined by
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G12@E,E8#5E
2`

`

dtE
2`

`

dt8 e2 i (Et1E8t8)/\G12~t,t8!.

~39!

By using Eqs.~28! and ~29!, we obtain

r f f@E#5 uWf qu2@~E2Ep2Eq!21Gq
2#21

3$11 i\Sqq
12@E2Ep2 i j,E2Ep1 i j#%,

~40!

Sqq
12@E,E8#

5
1

i\ (
a

unocc

(
b

occ

(
g

occ

@Vbg/qaVaq/gb2Vbg/qaVaq/bg#

3@E1Ea2Eb2Eg2 i ~Ga1Gb1Gg!#21

3@E81Ea2Eb2Eg1 i ~Ga1Gb1Gg!#21.

~41!

The first and second terms in the brace in Eq.~40! are ob-
tained from Gqq

12 [1] and Gqq
12 [2] , respectively. The first

Lorentzian @(E2Ep2Eq)21Gq
2#21 shows the density of

states inuq& given by uGqq
11@E2Ep1 i j#u2, whereGmm

11@E#
is the Fourier transform ofGmm

11(t2t8) given by Eq.~27!.
The second Lorentzian @(E2Ep1Ea2Eb2Eg)2

2(Ga1Gb1Gg)2#21 shows the density of states in th
bulk given by uGaa

11@E2Ep1 i j#* Gbb
11@E2Ep1 i j#

* Ggg
11@E2Ep1 i j#u2, where ‘* ’ denotes convolution.
The spectra obtained by method~i! include parts corre-

sponding to the squared absolute values ofG11 similar to
Eq. ~40!.23,24Thus this method will be partially equivalent t
the method introduced in this paper although systematic
vestigation of many-body effects by diagrammatic techniq
will be difficult.

The spectra obtained by method~ii ! are approximately
proportional to the imaginary parts of the retarded Gre
functions.18–22,25In the spectral theorem, the Green functio
are assumed to be functions of the relative times and t
complicated many-body effects can be taken into accoun
the similar way to equilibrium Green functions. From E
~34!, method~ii ! will be partially equivalent to the density
matrix method. Therefore the spectra obtained by method~ii !
will be related with the second term of Eq.~40! as seen from
the formulas of the retarded Green functions usually giv
by ImGr@E#5ImS@E#/@(E2ReS@E#)21(ImS@E#)2#21,
whereS@E# is the self-energy function.

The Fourier transform of the Green functions introduc
in this paper are functions of two energies corresponding
the time evolution in the forward and backward branch
while those used in method~ii ! are functions of one energy
The importance of distinction between the two energies w
be understood from Eq.~4! which can be rewritten as a sum
of squared absolute values of multiple convolutions. The
fore, when more complicated dynamics is involved, the ‘‘fo
2-8
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tunate’’ agreement between method~ii ! and the method in-
troduced in this paper as obtained for the 1PPE spectra
not be guaranteed.

V. CONCLUSIONS

In conclusion, we have introduced nonequilibrium Gre
functions depending on the observation time so that we
investigate the dynamics of secondary particles which
main in the final state. The observation time dependenc
the Green functions represents the effects of phase deca
to scattering of the secondary particles. By applying
Green functions to 2PPE from a metal surface, we sho
that photoexcited hole decay shortens effective lifetimes
electron thermalization affects pure dephasing times.
present theory will be used as an entrance into microsc
analysis of pure dephasing times at metal surfaces.

The absolute-time dependence of the Green functions
troduced in this paper is derived from the pure quantum
tistics without any deduction from classical theories14 nor
o,

y

n

s

R
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any additional condition, e.g., the generalized Kadan
Baym ansatz.15 Intensive investigation using the Green fun
tions introduced in this paper is expected to contribute
clarification of microscopic mechanisms of both relaxat
and dephasing in general systems as well as metal surf
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