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Nonequilibrium Green functions depending on the observation time for ultrafast dynamics
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Nonequilibrium Green functions depending on the observation time are introduced in order to investigate
ultrafast dynamics involved in photoemission from metal surfaces. Phase decay due to scattering of secondary
particles(electrons and holes in the metalccounts for the dependence of the Green functions on the obser-
vation time of a main particléphotoelectronin the final state. The Green functio@®" ~ andG~* striding
over the forward and backward branches of the Keldysh contour represent the dynamics of the secondary
particles, i.e., decay of the secondary particles and electron thermalization due to inelastic scattering of the
secondary particles. Then, by applying the Green functions to two-photon photoemission from a metal surface,
it is shown that the decay of photoexcited holes accelerates the decrease of the photoelectron intensity as a
function of the pump-probe delay time and the electron thermalization can account for dephasing.

DOI: 10.1103/PhysRevB.66.094302 PACS nuniber71.10-w, 05.30—d, 78.68+m, 79.60-i

I. INTRODUCTION photoelectron densities are calculated based on optical Bloch
equations’® Originally, basic theories regarding optical
Owing to the recent progress in the femtosecond laseBloch equations are formulated for quantum optics of atoms
technology, investigation of laser-induced coherent processemd molecules in the gas phasElectrons in the atoms and
in solids as well as atoms and molecules in the gas phase hamlecules can interact with the electromagnetic field and
become an absorbing topic of physics and chemistry. Espdience recombine with holes by spontaneous emission. The
cially, electron dynamics at noble-metal surfaces is one ofifetime of the electronically excited state due to this mecha-
the ideal subjects for investigating quantum dynamics of conism is defined to be an energy relaxation time When the
herently excited quasiparticles since the electronic structurestoms and molecules collide with each other, the quantum
of the metals are well knowirf and experimental techniques phase of the electron system can change. Both the spontane-
for controlling interactions involving surface states, defectspus emission and the collision accounts for phase decay of
and adsorbates of the meta-ls are well investigéted. which the time scale can be given by a dephasing t,me
Here we focus on the time-resolved two-photon photo-— 1/2:. + 1/7,) "2, wherer, is a pure dephasing time due to
em|SS|on(t|m_eG—resoIv§d 2PPE, TR2PPEpectroscopy on  g|astic scattering between the atoms and molecules. Quan-
the surface$™ In a simple model, first an electron in an optics of insulators and semiconductors is similar to that
occupied state is excited to an unoccupied state by a PUMR a1oms and molecules in the gas phase except that electron-
laser pulse. Then electron relaxati@fecrease of the electron phonon interactions and electron scattering at local potentials

dpnsn;) and _dephasmgdecrease of the electron polariza- around defects, impurities, and surfaces account for dephas-
tion) can begin because of electron-electron/electron-phonon .
g instead of the collision¥’

scattering, or electron scattering by local potentials around’ ) .
defects, impurities, and the surface. Subsequently, the elec- One might apply the above theory to quantum optics at

tron is excited to a free-electron state above the vacuum Iev&‘etal surfaces. For example, we assume that a partial sys-

by a probe-laser pulse and hence emitted from the surfacetem consists of occupied and unoccupied surface states. Pho-

The 2PPE spectra are measured as functions of the pum yexcited electrons and holes can relax due to inelastic scat-
probe delay time and then information on the transient bel€ring by other electrons in the metal. The lifetime of a
havior of the system affected by relaxation and dephasin@hotoexcned electron is usually taken into account in optical
can be obtained. Estimation of both the electron lifetimeg3loch equations by assuming that corresponds to the life-
and dephasing times from the TR2PPE spectra has been &ime. Although mechanisms of dephasing at metal surfaces
tempted by phenomenological analysis with the aid of opti-have not been clarified yet, phenomenological dephasing
cal Bloch equation&® Although microscopic mechanisms of timesT, are taken into account by analogy of the quantum
electron relaxation have been extensively studied by quantiptics of insulators and semiconductdrs.

tative calculation of the lifetimes of the electron staté$, However, mechanisms of relaxation and dephasing at
microscopic analysis of the dephasing times is still an unremetal surfaces should be different from those of insulators
solved issue. and semiconductors because of existence of the Fermi sur-

For analysis of experimental TR2PPE spectra, usually, théace. By inelastic electron-electron scattering of photoexcited
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electrons and holes, secondary electrons and holes can beonvenient and, in numerous cases, the absolute-time de-
excited in the vicinity of the Fermi levéf These secondary pendence is ignored for simplicit§=?? By taking an ex-
electrons and holes can be inelastically scattered again ar@nple of one-photon photoemissiddPPE spectroscopy
hence dissipate into the metal by losing cohereficermal- ~ Which can probe the hole dynamics in the energy do-
ization). Therefore we can deduce thaticroscopicallyin- ~ mMain;'**we discuss this problem by referring to the results
elastic scattering can account fanacroscopicallyelastic ~ obtained by the Green-function method introduced in this
scattering introduced within the framework of optical Bloch Paper.
equations. Then the observation probability of the photoelec-
tron, i.e., the photoelectron density, can change dynamically II. NONEQUILIBRIUM GREEN FUNCTIONS
until the observation because of the phase decay due to scat- . . L
tering of the secondary electrons and holes which remain in e introduce a system of which the Hamiltonian is de-
the metal after the photoemissidhere, photoexcited holes SCribed asH=Ho+H'(t), where the unperturbed Hamil-
can be classified as secondary particles since the relaxatiéfnian is given by
processes of the electrons and holes in metals are usually
independent of each otheilhus the observation time depen- H :2 E cle 1)
dence of the photoelectron density contains information on 0 i
the phase decay. However, as shown in Sec. lll, the observa-
tion time dependence cannot be derived from optical BloctHereE,,, CL, andc,, stand for the energy and the creation
equations. Therefore it is necessary to introduce anotheand annihilation operators of a quantum stételuding a
method by which we can investigate the effects of scatteringpin) |«) of a particle, respectively. The perturbatibti(t)
of the secondary electrons and holes on the observation time W(t) +V consists of interactions of a particle with time-
dependence. dependent external fields,

Green functions are useful tools for investigation of elec-
tron dynamics from a microscopic point of view. Especially
the Keldysh Green-function methtid*is one of the repre- W(t)=2> W, (t)clc,, 2
sentative methods for investigating nonequilibrium problems wr
i_ncluding pho'goemission. However thi; method is not eﬁ.ec'and two-body interactions between the particles,
tive for investigating the observation time dependence since
the Green functions are defined by assuming efficiently long
observation times. In this paper, we introduce nonequilib- V=
rium Green functions for finite observation times by pertur-
bative expansion of a density matrix. Then we discuss on the
basis of the formulas of the Green functions how the dynam- The density matrix of the whole system can be expanded
ics of the secondary electrons and holes is concerned withith respect toH’ (t) as®
the observation time dependence of the Green functions. By
applying these Green functions to 2PPE from a metal sur- TT[P(tob)CIC,L]
face, we demonstrate how the photoexcited hole decay an@,.(ton) = W
thermalization of secondary electrons and holes affect the PAlob
photoelectron density. » L\ s e

In fact, absolute-time dependence of the Keldysh Green = E Z (—) f dt; .. f dtr'],
functions is an important issue of many-body quantum =0 n1=g 1% * *
theory. The original theory by Keldy$hsuggests nothing

tAf
2 VK)\/,U,VC)\CKC,LLCV' (3)
KN\, u,v

N| =

about the absolute-time dependence so the correlation func- xf dt, ... f dtle(tob—t;,)

tions in the Green functions may be given by the spectral - -

theorem in the same way as the equilibrium Green functions. P T '

By the Keldysh rotation, the Keldysh Green functions are KOty =ty ) - 0tz = 1) Bt o)
transformed into advanced and retarded Green functions and X O(top—tn) O(t,—th—1) ... O(ta—ty) B(t1—to)
a “dynamical distribution function.” By deducing from

semiclassical theories, some ideas were proposed that the x(h'(ty) .. .h’(t,;,fl)h’(t,;,)c,t(tob)
dynamical distribution function will depend on the absolute

times when the state of the system is far from the Xc,(top)h'(t))h" (th—1) .. . (1))
equilibrium**® Then the absolute-time dependence of the ® 4N e B

dynamical distribution function can be introduced by attach- => <_) _f dt, ... f dt

ing additional conditions based on these hypotheses, e.g., the n=o \ift) nt)_o —

generalized Kadanoff-Baym ansatzAlthough there are ap- .o - )
plications of the Green functions based on the hypotheses to X(Te(top)[Co(top)Cultop)h’(te) .. W' (t)]),
dynamics induced by ultrashort laser pul$&¥,the require- (4)

ment of the hypotheses in which the quantum theoretical
basis is not solid makes the Keldysh Green-function methosvhere 4(t) is a step function, and
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lob ) Jl is the temperaturel(ty,)[ . . . ] denotes that the contained
. operators are ordered along the Keldysh corttbti?’where
: lg> the time evolves first from,, to the observation timé,,
STITLILITICILILILELILELEL ERes (forward branch, and next front, to t; (backward branch
Y We consider an example of 2PPE from a metal surface

‘0

> that a fermion in an interacting syste@lectron in a metal
is consecutively excited by external fieldsltraviolet and
visible laser pulsestwice before detection by an instrument
FIG. 1. Example of a fourth-order diagram with respect to in- att,, as given by a diagram in Fig. 1. Here, first a particle in
teractionsW of a particle(fermion) with external fields. A dotted |q) is excited to|k) (forward branch or |k’) (backward
arrow denotes the Keldysh contour whékedenoted by dots are  hranch, and subsequently the particle is excitedfta Then
ordered a$,, t,, t;, andt; . The horizontal dashed line divides the we obtain the density dff) as
diagram into the forward branctupper sid¢ and the backward
branch(lower sidg. Solid arrows denote one-particle Green func-

t()'h t’z t']

tions for quantum states indicated by appended wave vectors. pii(ton) =—i% lim lim E E E J'_mdti
t=tob= 0t/ ot ,,—0 *
(A)= M (5) Xf dtéj dtzf dt; 6(top—t5)
Trlpo(ton)] * - -

X O(ty— 1) O(top—tp) Ot —t1) W (t])

stands for the statistical avera&r po(t) ]=Tr[p(t)] is in- , + .
dependent of} of an operatoA. t, is the time at which the X Wier(t2) Wi t2) Wieg(t2) G (1t op)
system is in Ehe equilibrium state ,and we can give ><G;kar(tz,tlitob)Ggq_(tl,ti;tob)

to— —c0. Herec,(t), c.(t), po(t), andh’(t)=w(t)+v(t) o

arecl,, c,, p(t) and H'(t) in the interaction represen- X Gy (11,155t Gy (13,1 top). (6)

tation, respectively. From Eq(4), we obtain py(tp)
=exp(—Hy/kgT), wherekg is the Boltzmann constant add  Here we introduce thatrabranch Green functions by

G, (LUt =[G, (t' t;tgp)]*

® © 1 n+n'+1 ~_, o » »
=> > (E) J dti...J dt,;,f dtn...f dt; (top—t),) . . . B(ty—1})
O o0 — o0 —oC

o]

n

Xe(tob_tn)---g(tZ_tl)l ) > Ot — 0Ot —1) Ot —t) Ot — 1)
=12

X[O(t—t ) (u(t]) .. vt )ty .. .cu(t) .. .cht) .. u(ty)

FOt —t)(v(ty) . ..ot u(t,) .. ity .. Cu(t) . v (ty))], (7)
|
and theinterbranchGreen function by X O(t—1) (t],  ,—t") Ot —t/,)
+ - ’.
G (L tep) X(v(ty) .. .CI('[’) .. .v(tr’],)
© © 1 n+n'+1 ~_, o
s S (_) f dti---f ) Xv(ty) -+ Cu(t) .. u(ty), )
n=0 n"=0 Ih © 0
= = wheret,,; andt/,,, in the summations are replaced with
xf dt, .. f dtlﬁ(tob—t,'],) S0t t) top- The functions for fermions take the upper signs and
_°° _°° those for bosons take the lower signs. We can also introduce
non another interbranch Green function by deriving a formula of
X O(top—tp) - . . a(tz—tl)E 2 Ot 1—1) the hole density for a diagram in which the bold arrows in
=171 Fig. 1 are reversed:
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SRR . - <}
— dt; . f dt’, i
n=0 ngo (lﬁ) fm ! o " 2 ______ g'

X dtn...fi ‘dtlo(tob—t;,) CO(th—t)

—o0

n n’
XO(toh—tn) - - . 9(t2_t1)|21 > 0t~ (a) Inelastic (b) Quasielastic
=121

FIG. 2. Examples ofa) inelastic andb) quasielastic scattering

X 0(t—t|,)0(t|+1—t Vot —t)(u(ty) .. 'C#(t) T involving homogeneous and inhomogeneous fermion states. Left

/ t0 sides show the energy diagram of initially occupied homogeneous
Xv(ty)u(tn) ... C(1) .. 0(t)). ©) states in the shaded areas and unoccupied states in the empty areas.
Equations (7)—(9) can be rewritten by using the time- Right sides show the energy level of an inhomogeneous state occu-
ordering symbol as pied by a main particle which is to be scattered. Dashed lines de-
note interactions between particles indicated by filled circles.
S o(1\"1 (= ”
Gﬁf(tvt/?tob):ngo (E) mf_xdtl e f_wdt“ XV el Te(top) [CH(tA+ 2nan) Cp(tA+nam)C(14)

xc!,(t"B+2nam)ch, (t'B+n
X(Te(tep)[C,(tNCHt BYu(ty) . . .0 (ty)]), vl 87)Cp( B7)

(10 X Cor (t"BYu(ty) .. .o(t)]) Y, (16)

whereA andB are ‘+’ or ‘' —'. These Green functions satisfy

the equation of motion in the matrix representation in thewhere A andB are +’ or *—’, n,=1 andn_=-1, and

same way as do the usual Keldysh Green functiéns: n—+0. Diagrammatic expansion of the correlation functions
in Egs.(7)—(9) and (16) is possible by Wick’s theorertor

o d . o . v Bloch—de Dominicis’s theorejrin the same way as the ex-
'hﬁ_ Ho| o G(t,t" top) — %dt (6" top) (1", o) pansion of correlation functions included in the usual
Keldysh Green function¥'
=8(t—t")l, (11 It is useful to write the intrabranch Green functions in Eq.
(7) as functions of the absolute tintef which the origin is
where t,, as well as functions of the relative tinte-t':
++ /. + - /. ’. ’
Gt t"tob)=(G +(t,t o) GT(L ,tob)) 12 Gt it =G, (top—t,t—t'), 17)
o G~ (t,t';t G~ (t,t';t ' __ _
(6.1 o) (6. ton) G, (LUt =G, (t—t",t' —tgp). (18)
. ST ) 2T (L g Here the signs of the relative times are defined by referring
(Lt top) = Sty S (Lt (13 {0 the time ordering along the Keldysh contour. In case of

>t in GT7(1,t';tyy), for example, after excitation of a
1 0 main particle at’, the particle can be scattered inelastically
0'Z=(0 _1), (14 until t [see Fig. 2a)]. Thus the_t—t’ dependence of the i_n-
trabranch Green functions mainly represents the relaxation of
10 the main particlge.qg., electrons ifk), |k’), and|f)) in the
|:< ) _ (15) same way as do the usual Green functions. The main particle
can also be scattered quasielastically fromto t so that
secondary particles are excitiske Fig. )].2 The second-
ary particles can be scattered before the observation of the

0 1

Here the self-energy functions are given by

AB(t 47 main particle at,,. Thus thet,,—t dependence of the intra-
El,w(t’t 1t0b) . .
branch Green functions represents the dephasing due to
“ 1\ (= o ) quasielastic scattering. When the quasielastic scattering is
= 20 % mf dty ... f dtn{ 27 (natng) negligible, the intrabranch Green functions become indepen-
" T o dent oft,, and hence equivalent to the usual Green functions
G f(t—t') andG™ " (t—t’').
XE [VW,B,,IVw,vﬁ]<Tc(tob)[cL(tA+ nAr;)cB(tA) It is useful to write the interbranch Green functions in
ap Egs.(8) and(9) as functions of the absolute timeandt’ of

which the origin istgy:

Xo(ty) ..oty +nang > >V, - -
' AR Ny G, (Lt =G, (top—t,t' —top), (19)
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G,, (Lt'itg) =G, (t—toy,tep—t"). (20)

These functions mainly represent the relaxation of secondary
particles(e.g., hole in|q)) which are excited at andt’ in

the forward and backward branches, respectively, and scat-
tered before the observation of the main particle gt By
expanding Dyson’s equations derived from EqL1),
G*’(tt itop) and GM (t,t";typ) can be divided into two
terms

FIG. 3. Typical second-order diagrams & ~ 2! with respect
Tt t"tob)ZG;,f [l](t,t’;tob)+G;; 2l(t,t";t,,), (21)  totwo-body interactions/ denoted by dotted lines. The meanings
of the symbols are the same with those in Fig(tie Keldysh
+ [1] + + [2] I contour is omittell The diagrams fo ™" [2! are obtained by re-
(tt top) =G, (LUt TG, (L) (22) versing the direction of the arrows.
Here, as shown in the followingG;, M(t,t";ty) and
G, FB(t,t":t,,) represent decay of a secondary particle,
PR P [2 —+ 2t 47 — (172
and G, Pl(t,t";to) and G, I(t,t';t,) represent ther- G,, (Lt tey) =+ (ih) > 2 2 [ VyuipaVapiuy
maIization « B
, Mttt and G, M(t,t';tgp) for low tempera- TV, paV salr]
tures can be given by
GHo Wt it =Fi lim 6(r—1) lim 6+ ~t) x L dr’ fﬁxdTGﬁﬁ(t’T;tob)
T—1op=0 7' —top—0
XG,, (7't 5t Gy (7', Titop)

X ++ . - = ot B B
S G LTty (7t X G (7', 7o) B, (7.7,

(23 (26)
o Bt =ih lim 6(r—t) lm (7' —t)
7= tob~0 7' =ty 0 where the summations are taken over secondary quasiparticle
states. These represent processes in which an original par-
X > Gy (LTt Gy (7, tgp). ticle in |u) (forward branch or |v) (backward branchis
A

inelastically scattered and hence three secondary patrticles are
excited into|a), |8) and|y). Thus energies of the second-
ary particles dissipate toward the thermal equilibrium by re-
peating such processes, as we can express by high-order
L Pttty andG,,," PI(t,t;ty) with respect

(24)

These represent processes in which a particle excited at

(forward branch or t’ (backward branchis scattered until

top @nd hence the density of the particle decreases as a funferms OfG

tion of t,,. The ty, dependence of these Green functionst© V-

shows that combination of the intrabranch and interbranch

Green functions doesot give the retarded and advanced

Green functions, and the canonical transform of the Keldysh ll. HOLE DYNAMICS AT METAL SURFACES

Green functions(the Keldysh rotatioft>'*?” is available

only for larget,, at which the system is in the metastable We apply the Green functions introduced in the previous

state. section to 2PPE from metal surfaces. 2PPE spectra of clean
G;V_ [2](t,t’;tob) and G;;’ [Zl(t,t’;tob) within typical  noble metal(111) surfaces show peaks due to occupied

second-order diagrams with respecMaehown in Fig. 3 are  Shockley surface states and unoccupied image-potential in-

given by duced surface statéWhen the surfaces are covered with
adsorbatesmolecule$, the peaks observed in the spectra of
G,, @Ittty =F(i7)2D > > [V gy naV ety the clean surfaces are weakened and peaks due to adsorbate-

induced occupied and unoccupied states are obséhvéth
this section, we investigate the dynamics of a hole photoex-

FVgyiuaV auipy] cited in an occupied statg) at the clean or adsorbate-
o oo H +— !
y dr 4r G (Lt covered surfaces by calculatig,, (t,t";typ).
" . pmp i tob We focus on the effects of hole decay and electron ther-
malization due to inelastic electron-electron scattering. In the
XG,, (7't tep)Goa (7, i top) femtosecond electron dynamics in metals, the available

L , L , phase space for elastic and quasielastic scattéimotuding
XGpgp (1,7ten)G,, (7,7"5tep), (25 electron-phonon scatteringan be smaller than that for the
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inelastic scattering. Then, by ignoring elastic and quasielaswvherel’ ,=#%/27, is the inverse lifetime of a stafe.) and
ticscattering for simplicity, intrabranch Green functions be-E. is the Fermi level. From Eq$23) and(25), Ggq‘ can be

come independent of absolute times as given by given by
G, (t—t")
=—[G,, ("= Gaq Mtop=t,t' —top)
=(ih) Y O(E,—Ep o(t—t')el " Ep TR =— (i) T O(Ep—Eq) O(top—t) O(top—t")
— 6(Eg— Eu) o(t’ _t)e(iEfF#)(t’—t)/ﬁ}, (27) Xe(iEq—Fq)(tob—t)/he(—iEq—Fq)(tob—t’)/fz’ (28)

unocc occ occ

Geq Pltop=t,t" —top) = — (ih) " LO(Ep—Eq) O(top—1) B(top—1") > % > [VaygaVagys—VaygaYaqpy]
a Y

X[(Eq+E,—Eg—E)?+(Iq—T,—Ts-T)%] "

x {Eq~Ta)(tob /1 _ gli(Eq—Ep=Ey) = (Mot T gt T I(top= /A1)

> {e(—iEq—Fq)(tob—t’)/ﬁ_ e[—i(Ea—E,B—Ey)—(Fa-%—l"/;-%—l"y)](tob—t’)/ﬁ}. (29)

Here, for simplicity, we substitut&* - 1 andG~* 1 for P (top) o B(tg)e 18/ kg (t g~ tg)etob/ T, (31)
G*~ andG™ 7 in the integral of Eq(25).

Gq*q*(t,t’;tob) contains information on both densities of This shows that the observation probability of an electron in
secondary electrons and holes and correlation between qualiy decreases as tintg, passes because of phase decay due
tum phases in the forward and backward branches. The dyo the decay of a hole ifg) represented by the,, depen-
namical change of electron and hole densities can be reprelence ongq_ (1] Thus the densities of both the photoelec-
sented by the average absolute tifife,,—t) + (t,,—t')]1/2  tron and the hole decrease so that the electron density of the
dependence oegq*(t,t’;tob)_ This is understood from the whole system is conserved. Since the response time of the
photoelectron density;; for instantaneous laser pulses. For detector(e.g., time-of-flight analyzeris on the submicrosec-
example, when the electric fields of the laser pulses are giveand time scalé? the measured photoelectron intendity,)
by a delta functions(t) so thatWg (t), Wiq(t)cS(t) and  will be proportional to the integral of Eq31) overtgy:

W,r¢(t), Wi (t) < 5(t—tg), we obtain

1M (tg)= Jl dtoppt (ton) o B(tg) exr] —ta( 7 *+ 74 H)].

pit(ton) % O(top)e "4 kB(toy—ty) Ggq (ton, —top). (30) (32

Here we assume for simplicity that the photoexcitation of arThus we see that the decreasel gfty) mainly due to the
electron occurs within a three-level system consistinpf  electron decay ink) can be accelerated by the hole de-
|k), and|f). cay in|q).

In order to analyze effects of hole decay and thermaliza- In order to investigate the effects of thermalization, we
tion, we divide py; into contributions fromGg, 1! and  show the numerical results @, %! for a localized state
Gaq P, ie., pry=pli +pl? . By substituting Eq(28) for  |q) in Fig. 4. Here, for simplicity, Vs,/qaVaqvs
Eq. (30), we obtain —Vgy0aVagpy IN EQ. (29) is assumed to be constant and the

(b) t-t' dependence

G (b=t 41 =15 N i

(8) ta-{t+)2 dependence | aa(Zob o) | FIG. 4. S.econic%;(]:ier term of the |n.terbranch
Green functionGgq "“(top—t,t" —ton) with re-
spect toV for an occupied statéy) with a life-
time 7,=3 fs plotted as a function of,,—(t
+t')/2 andt—t’. (8 and (b) are plotted from

=16 different views by focusing on thet,,—(t
=10 12 +1")/2 andt—t’' dependencies, respectively.
s ® \t—f\@s)

| G*gg(tob-2,t -tob) |
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+1')/2<5 fs andt—t'<5 fs]. Consequently, in the long-
lim 4 (ta) time _scale, only_elgctrons and h_oles in the vicinity of the
74 00 Fermi level remain in the bulk. This accounts for the gradual
"""""""" "y (22) decrease 06, P (tgp—t,t' —tgp) for to,—(t+1')/2>5 fs
........ %L (25) andt—t'>5 fs.

We show in the following that thé—t’ dependence of
Gy Pl(tep—t,t" —tgy) is directly related to the dephasing
terms in Liouville—von Neumann equatioffsom which we
obtain optical Bloch equations within the rotating-wave
approximatior}) for an open three-level system:

_apy, (D)

ih———
0 1 2 3 4 5 6 7T 8 9 10 ot
Pump-probe delay time 74 (fs)

Photoelectron intensity

=[Ho+W(t),p%1)],,—iT,,p5 (1)

(u, v="1, k, q except foru=v=q),
FIG. 5. Photoelectron intensity as a function of the pump-probe (33
delay time forr,=2 fs and7,=3 fs. The dotted curve shows the

term1111(t,) representing the effects of hole decay, and the dashe o .
i (ta) rep g Y Inverse lifetimes by's;=0 andl',,=2I", . The off-diagonal

curve shows the ternﬁz](td) representing the effects of thermali- | . he | dephasi . -T
zation. The solid curve shows the photoelectron intensity©/€ments give the inverse dephasing times Iy =1

lim,_.1(tg) when the hole scattering is neglected. The values at= P, Tq=Tkq=Txt+Tq+I, and T'g=T¢q=Tq+T,
ty=0 are normalized to be the same. whereT is an inverse pure dephasing tiffeBy using Eq.
(27), we obtain the photoelectron density within the fourth
order with respect toV:

gnd pgq(t)=1. Here the diagonal elements bf give the

lifetime of a bulk electron state with an energy, is given
by the Fermi liquid theory® as h/ZFM=(EM—EF)‘2

x30fs [u=a, B, and y in Eq. (29]° G, '*) becomes o - -

. - . B _ ’ ’
large when the scattering probability of the hole into the bulk ~ Pri(ton) = — lﬁL dtlL dtZJiwdtZJLxdtl
is large so that the lifetime of the hole becomes short. Then,

in the following calculation, we choosg,=3 fs andr,=2 X O(top—15) O(th—17) B(top—to) Bt —1t4)

fs which correspond to the shorter limits of the lifetimes of

the highest occupied and lowest unoccupied molecular orbit- X Wii(11) Wier(t2) Wi (t2) Wigg(t1)

als of NO/C111),%* respectively. L. . _ ,
The top—(t+1t')/2 dependence ofG . P(ty—t,t’ XGii (top—t2) Gy (t2—11)Ggq (t1—ty)

—t,p) Shows the time profile of densities of secondary elec-

trons and holes in the bulk. Wheg,— (t+t")/2=0, the hole

is localized at/g) and henceG, ?1(0,0=0. Then hole where

transfer from|q) occurs within, due to inelastic scattering o

of the hole so that the densities of secondary electrons and G;q‘(t—t’)= —(ih) *O(Eg— Elexp—iEq(t—t")/A

holes in the bulk increase. Finally the electrons and holes _

decay due to inelastic scattering. —(Tg+D)[t—t'|/7]. (35
In Fig. 5, we show the numerical results of(ty)

o f% dtoppid (to) with 11(ty) and lim, .l (ta) <exp

(—ta/ ) for reference. Foty<7,=3 fs,|’! decreases more

slowly thanl!* since the rate of hole transfer frojm) to the — o :

bulk due to inelastic scattering is superior to the decay rate dfLa*1'] +[”Stead of considering the nonexponential be-

the secondary electrons and holes in the bulk. For lpgg ~ Navior of Gqq (t,t";tey) shown in Fig. 4b). The photoelec-

|¥2](td) decreases faster so thaﬁ](td) exhibits a nonexpo- tron intensity as a function df (corr_elatlpn trac)abecomes

nential behavior which can affect dephasing times estimatefrower when the mean dephasing time is shortéhgd.

by phenomenological analysis of experimental data. SinceGg, (t—t') is independent ofy,, pfr(tey is not af-
Here, we go back to Fig. 4 in order to focus on the fected by the dynamical change of the density of secondary

—t’ dependence 05**[2](t0b_t,t'_tob)’ which shows €lectrons and holes in the bulk. However, referring to the

qq > <
the quantum phase correlation. Inelastic scattering of théesults in Fig. 5, we see that both thg—(t+t')/2 andt

hole in |q) causes excitation of secondary electrons and-t' dependencies 06, (top—t,t'—toy) can account for
holes in various bulk states. The electrons and holes exciteidie narrowing of the correlation trace.

into states far from the Fermi level decay rapidly because of When scattering probability of the photoexcited hole in
the large available phase space of inelastic electron-electrda) is small so thatr, is long, Ggq’ (1] becomes the main
scattering. Thus the phase correlation in the short time scakerm ofGJq’. In this case, the correlation trace can be af-

is lost rapidly [see G;q‘ 2t —t,t' —ty,) for te—(t  fected by 74 so that the effective lifetime measured at an

X Gy (t1=1) Gy (1~ top), (34)

By comparing with the numerical results G‘gq’(t,t’;tob),

we see thaggq’(t—t’) represents the phase correlation be-

tween two timeg andt’ by assuming a mean dephasing time
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energy positiorEy+ Eyopes WhereEp e, the probe photon _ o~ P HErE Vet — ,
energy, depends on the pump photon enefgym,. It is G [EE']= _de _xdT e MG (r, ).
known that effective lifetimes of bulk states in metals exhibit (39)
Epump dependence®® The experimental results were once
explained by considering effects of cascade and Auge . .
processe&?%-38however, recent experimental results sug-éy using Eqs(28) and(29), we obtain

gest that other mechanisms can be involved in the 2PPE

procgss‘*. We can deduce that the hole decay affects the dy- [, [E]= |Wio|2[(E—E,—Eg)%+ rg]fl

namical change of the probability of cascade and Auger pro-

cesses as well as the photoelectron density shown in Eq. ><{1+iﬁ2§q’[E—Ep—ig,E—Ep+i§]},
(32). This will give a hint for solving the problem about the

effective lifetimes. (40
When the scattering probability is large so thgis short,
G;q_ (2] hecomes the main term. In this case, the correlation SIO[EE']
o qq L=
trace can be affected by the lifetimes of secondary electrons
and holes in the vicinity oEg. When the temperature of the 18X
metal is finite, the lifetimes of the electrons and holes are “in ; % 27 [VsyiaaV aatys ™V pyigaV aaipy]
shortened because of scattering by thermally fluctuating elec-
trons and phonorid so that the mean dephasing time can be X[E+E,—Eg—E,—i(I'y+ g+ 1“7)]‘1
shortened due to electron thermalization whereas it is usually ) , 4
considered that temperature dependence of dephasing times X[E'+Ea—Ep=Eyti(lo+Tp+l))] "
is due to electron-phonon interactiohs. (41)
IV. 1PPE SPECTRA The first and second terms in the brace in &) are ob-

. o — . :
When the pulse duration becomes long so that the energf"ned from Gqq . andeqqz [i]l’ respectively. Thg first
width of the light becomes narrow, the energy spectra of-orentzian [(E—E,— quj'rq] shows  the de?i'ty of
photoelectrons reflect the electronic density of states of thetates ing) given by|Gg " [E—E,+i£]|? whereG, [E]
sample materials. The energy spectra can be measured isythe Fourier transform o6, (t—t') given by Eq.(27).
1PPE as well as 2PP?° There are many theoretical stud- The  second  Lorentzian [(E—E,+E,—Egz—E,)?
ies of 1PPE from solids including metals by Green-function—(I',+T z+1I',)?] ! shows the density of states in the
methods(or by other methods based on the perturbationbulk given by |G§j[E—Ep+i§]*GgB+[E—Ep+i§]
theory).**?°"** Most of the theories can be approximately * G} "[E—E,+i£]|?, where %’ denotes convolution.
classified into two by methods of countermeasure to the The spectra obtained by methdid include parts corre-
problem of the absolute-time dependence of the Green fungponding to the squared absolute valuesGdf™ similar to
tions: (i) avoid the problem by calculating the transition ma- Eq. (40).2>?*Thus this method will be partially equivalent to
trix without using nonequilibrium Green functiof$?* (i)  the method introduced in this paper although systematic in-
ignore the problem and employ the spectral theol&i*®>  vestigation of many-body effects by diagrammatic technique
By using the Green functions introduced in this paper, thewill be difficult.
systematic method beyori@ and(ii) becomes available. In The spectra obtained by methdil) are approximately
this section, we show the relation of meth@dsand(ii) with  proportional to the imaginary parts of the retarded Green
the method introduced in this paper. functions*®2225n the spectral theorem, the Green functions
Usually, the 1PPE spectra can be obtained by assumingre assumed to be functions of the relative times and then
static light irradiation within the rotating-wave approxima- complicated many-body effects can be taken into account in
tion: the similar way to equilibrium Green functions. From Eqg.
_ (34), method(ii) will be partially equivalent to the density-
Wiq(t) =[Wqe() ]* = Weqe B, (36)  matrix method. Therefore the spectra obtained by mettipd
_ . will be related with the second term of E@0) as seen from
where E, is the photon energy. When applying the Greenyhe formulas of the retarded Green functions usually given
fupcnons introduced in this paper, the 1PPE spectrum is Oboy IMGE]=Im3[E]/[(E—Re[E])2+ (Im3[E])?] 2,
tained as whereX[E] is the self-energy function.
1 The Fourier transform of the Green functions introduced
I*TE]=pyl El, 37) in this paper are functions of two energies corresponding to
the time evolution in the forward and backward branches
while those used in metha@) are functions of one energy.
The importance of distinction between the two energies will
be understood from Ed4) which can be rewritten as a sum
for é&—+0. Here the Fourier transform o&* ~ (t,,—t,t’ of squared absolute values of multiple convolutions. There-
—t.p) IS defined by fore, when more complicated dynamics is involved, the “for-

1
piE]= E|Wfq|26;q7[E_ Ep—i§,E-Ept+ig], (39

094302-8
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tunate” agreement between meth@d and the method in- any additional condition, e.g., the generalized Kadanoff-
troduced in this paper as obtained for the 1PPE spectra wiBaym ansat2® Intensive investigation using the Green func-
not be guaranteed. tions introduced in this paper is expected to contribute to
clarification of microscopic mechanisms of both relaxation

V. CONCLUSIONS and dephasing in general systems as well as metal surfaces.

In conclusion, we have introduced nonequilibrium Green
functions depending on the observation time so that we can
investigate the dynamics of secondary particles which re- One of the authorg¢M.S. acknowledges the support by
main in the final state. The observation time dependence dhe Special Postdoctoral Researchers Program of RIKEN.
the Green functions represents the effects of phase decay dlibis work was partly supported by the Ministry of Educa-
to scattering of the secondary particles. By applying thetion, Culture, Sports, Science and Technology of Japan,
Green functions to 2PPE from a metal surface, we showethrough their Grant-in-Aid for COE ResearcfGrant No.
that photoexcited hole decay shortens effective lifetimes andOCE2004, Scientific ResearckGrant Nos. 11640375, and
electron thermalization affects pure dephasing times. Th&3650026 programs, by the New Energy and Industrial
present theory will be used as an entrance into microscopitechnology Development OrganizatioiNEDO), through
analysis of pure dephasing times at metal surfaces. their Materials and Nanotechnology program, and by the Ja-

The absolute-time dependence of the Green functions ipan Science and Technology Corporati@isT), through
troduced in this paper is derived from the pure quantum statheir Research and Development Applying Advanced Com-
tistics without any deduction from classical theotfemor  putational Science and Technology program.
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