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Bose-Einstein condensation on inhomogeneous networks: Mesoscopic aspects
versus thermodynamic limit
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We study the filling of states in a pure hopping boson model on the comb lattice, a low-dimensional discrete
structure where geometrical inhomogeneity induces Bose-Einstein condensation~BEC! at finite temperature.
By a careful analysis of the thermodynamic limit on combs we show that, unlike the standard lattice case, BEC
is characterized by a macroscopic occupation of a finite number of states with energy belonging to a small
neighborhood of the ground state energy. Such a remarkable feature gives rise to an anomalous behavior in the
large distance two-point correlation functions. Finally, we prove a general theorem providing the conditions for
the pure hopping model to exhibit the standard behavior, i.e. to present a macroscopic occupation of the ground
state only.
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I. INTRODUCTION

The most recent experiments on Bose-Einstein conde
tion ~BEC! stimulated a large wealth of theoretical wo
aimed at a better understanding of the basic propertie
such interesting phenomenon.1 In particular the possibility of
confining ultracold bosonic atoms within optical lattice
along with the most recent studies on arrays of Joseph
junctions, arouse a great interest in bosonic models defi
on Euclidean lattices.2,3

Even more interesting from this point of view would b
the arrangement of the Josephson junctions, or possibly
tical traps, into more complex networks.4 Indeed it was re-
cently put into evidence5–7 that, due to topological inhomo
geneity, BEC at finite temperature can occur on lo
dimensional structures, such as the comb lattice,8 even in the
absence of an external potential. Such results were obta
mainly in the thermodynamic limit~i.e., for structures of
infinite size!, but it is clear that a deeper understanding of
onset of the phenomenon on finite-size structures is nee
This is especially true in view of the experimental resea
which is currently being developed in this field.4

One of the distinctive features of usual BEC~in continu-
ous Euclidean geometry, possibly in the presence of
monic potentials! is the macroscopic occupation of a sing
quantum state. More precisely it is possible to prove that
filling of any excited state vanishes in the thermodynam
limit. As for general networks, Refs. 5–7 mainly dealt wi
the thermodynamic aspect of the problem. In particular i
shown that on a low-dimensional inhomogeneous netwo
such as the comb lattice, BEC is characterized by the m
roscopic occupation of the states belonging to an arbitra
small energy neighborhood of the ground state. This i
more general condition, since it does not necessarily en
that only the ground state features a macroscopic occupa

In the following we indeed show that the macroscop
occupation of the ground state does not entirely account
BEC on the comb lattice. Even in the thermodynamic lim
0163-1829/2002/66~9!/094207~8!/$20.00 66 0942
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the filling of the structure is completely described only if
finite number of states belonging to a small neighborhood
the ground state is considered. This result is proven by
actly evaluating the occupation of the quantum states of
soscopic comb lattices, with large but finite sizes. The sp
trum of such structures is nearly continuous, but the ene
levels are still distinguishable since they pertain to ortho
nal wave functions which differ on a macroscopic scale.

The paper is organized as follows. In Sec. II we introdu
the pure hopping model5 which describes the low coupling
limit for the Josephson junction arrays or a model of non
teracting atoms confined in an optical lattice. Using the V
Hove spheres, we define the thermodynamic limit for a g
eral infinite discrete structure. Then we recall the definiti
of the low energy hidden spectrum, and we give the genera
conditions on the graph spectra for the condensation in
arbitrarily small energy region.7 In Sec. III we consider the
problem of the states filling for the pure hopping boson
model comparing the known results for the thre
dimensional lattice with the numerical results obtained
the comb graph. We show that in the first case only
lowest energy state presents a macroscopic occupation, w
the comb graph exhibits a different behavior since a mac
scopic occupation of many states is present. In Sec. IV
solve analytically the problem of the states filling on t
comb graph proving that, in the thermodynamic limit, al
the first excited states are filled by a finite fraction of pa
ticles. Furthermore we show that the numerical data perfe
fit the analytical predictions. In Sec. V we prove that t
macroscopic filling of many states gives rise to an anomal
behavior of the large distance two point correlation fun
tions. In Sec. VI we give the spectral conditions for the pu
hopping model to present a macroscopical occupation o
single quantum state, and in Sec. VII we present our con
sions.

II. BOSONIC HOPPING MODELS ON GRAPHS

Graph theory provides the most natural mathematical
scription of generic discrete networks.9 A graph is a count-
©2002 The American Physical Society07-1
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able setV of sitesi connected pairwise by a setE of unori-
ented links (i , j )5( j ,i ). Two sites joined by a link are calle
nearest neighbors. The topology of a graph is fully descri
by its adjacency matrixAi j , with Ai j 51 if ( i , j ) is a link of
the graph andAi j 50 otherwise. Awalk in G is a sequence o
concatenated links$( i ,k),(k,h) . . . ,(n,m),(m,k)% and a
graph is said to be connected if for any two sites there
always a walk joining them. The length of a walk is th
number of links appearing in the sequence, and the lengt
the shortest walk joining two sites is called thechemical
distancebetween them. The latter defines the intrinsic me
every connected graph is endowed with. The Van Ho
sphereSr ,o , of centero and radiusr, is the set of sites whos
chemical distance from siteo is equal or less thanr. In the
following we will consider only connected graphs with pol
nomial growth, where the numberNr ,o of sites withinSr ,o
grows at most as a power of the radius. This choice ens
that the discrete structure can be embedded in a finite dim
sional Euclidean space. Since for this class of graphs
possible to prove that the thermodynamic limit is indepe
dent from the choice of the center of the sphere,10 in the
following we will drop the relevant subscript.

Let us recall some basic results obtained for the pure h
ping model on a generic graph~a complete description of th
subject can be found in Refs. 6 and 7!. On a graphG the pure
hopping model for bosons is defined by the Hamiltonian5

H52t (
i , j PV

Ai j ai
†aj , ~1!

whereai
† andai are the creation and annihilation operator

site i (@ai ,aj
†#5d i j ), andAi j is the adjacency matrix of the

graph.
To study the behavior of Eq.~1! in the thermodynamic

limit, where BEC can arise, we restrict the model toSr , and
analyze its properties as the radius of the Van Hove sph
goes to infinity. The model restricted toSr is defined by the
Hamiltonian

Hr5(
i , j

2tAi j
r ai

†aj , ~2!

whereAi j
r 5Ai j if i , j PSr , andAi j

r 50 otherwise. The corre
sponding normalized density of statesr r(E) is

r r~E!5
1

Nr
(

k
d~E2Ek

r !, ~3!

whereEk
r are the eigenvalues of2tAi j

r andNr is the number
of sites within the sphere. The functionr(E) is defined to be
the thermodynamic density of states of2tAi j if it satisfies
the following condition:

lim
r→`

E ur r~E!2r~E!udE50. ~4!

In general the asymptotic behavior at low energies of
thermodynamic density of states is described by a power
of the form
09420
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r~E!;~E2Em!a/221 for E→Em ~5!

where Em[Inf„Supp@r(E)#…, and a is an exponent deter
mined by the topology of the graph.11,12

On inhomogeneous structures the density of states
present some interesting anomalies, such as thehidden
region of the spectrum defined in Refs. 6 and 7. Ahidden
region of the spectrum consists of an energy interv
@E1 ,E2# such that @E1 ,E2#ùSupp(r(E))50/ and
lim

r→`
N[E1 ,E2]

r .0, whereN[E1 ,E2]
r is the number of eigen-

values of2tAi j
r in the interval@E1 ,E2#. Notice that, in gen-

eral,N[E1 ,E2]
r can diverge forr→` and the eigenvalues ca

become dense in@E1 ,E2# in the thermodynamic limit.
Therefore, the presence of a hidden spectrum is a far m
general property than the existence of a discrete spectr
where a finite number of states fills the spectral region.
interesting example of this kind of behavior is exhibited
the the comb lattice5,6 ~see Fig. 1! which will be studied in
detail in the following sections. We now define the lowe
energy level for the sequence of densitiesr r(E), settingE0

r

5Infk(Ek
r ) and E05 lim

r→`
E0

r . In general,E0<Em . If E0

,Em , then @E0 ,Em# is a hidden region of the spectrum
which will be called low energy hidden spectrum.

The correct way of taking the thermodynamic limit co
sists in adjusting the populationN of the system so that the
filling N/Nr is set to a fixed valuef as the radius of the Van
Hove sphere goes to infinity. In particular, in the macroc
nonical ensemble, the equation that determines the fugacz
as a function ofb5T21, f, andr is

f 5E 1

z21ebE21
r r~E!dE. ~6!

Setting E050 yields 0<z( f ,b,r )<1. A system presents
BEC at finite temperature if there exists a temperatureTC
such that for allT<TC lim

r→`
z( f ,b,r )51.

The general conditions for the occurrence of BEC at fin
temperature is strictly related to the properties ofr(E).7 In
particular it is proven that BEC arises either in models p

FIG. 1. The comb graph, which is obtained by connecting
each site of a linear chain, called a backbone, a one-dimensi
chain called a finger.
7-2
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senting a low energy hidden spectrum or in models where
parametera appearing in Eq.~5! is larger than two. The
comb lattice is an example of the former situation, wher
the latter condition is satisfied by any Euclidean lattice w
dimension larger than two, since for such a structure
parametera coincides with the Euclidean dimension.

III. SINGLE STATE FILLING

BEC on Euclidean lattices is characterized by the nona
lytic behavior of the thermodynamic functions at the critic
temperature and by a macroscopic filling of a single quan
state. The definition of BEC we gave in Sec. II is stric
connected with the singular properties atTC . For example in
the thermodynamic limit the average energy per particle

^E&5
1

f E E

z21ebE21
r~E!dE, ~7!

wherez51 for temperature below the critical temperatu
whereas forT.TC it is a function ofT and f determined by
Eq. ~6!. Therefore Eq.~7! presents the typical nonanalyt
behavior of the thermodynamic functions of BEC at the cr
cal point.

Let us now consider the filling of the states. BelowTC
any arbitrarily small energy region aroundE0 is filled by a
finite fraction of particles, as it is known by classical resu
on BEC. More precisely, for alle.0 the fractionne of par-
ticles with energy in the region@E0 ,E01e# is always greater
than the positive quantitynTD ,

nTD5 f 2E 1

ebE21
r~E!dE, ~8!

where E050 and the subscriptTD stands for thermody-
namic.

Since E0 is the only real number belonging to@E0 ,E0
1e# for any value ofe, one would argue that the only pos
sible way to satisfy the conditionne.nTD.0 ;e.0 is to
fill the lowest energy state with a finite fraction of particle
However, if we look carefully at how the thermodynam
limit is performed, the question is not so trivial. Indeed,
the model does not present a gap~this is also the case of th
usual condensation on lattices!, the energy of the first excited
states tends toE0 in the thermodynamic limit and it belong
to @E0 ,E01e# for all values ofe. For instance, in order to
determine the fillingn1 of the first excited stateE1, one first
has to solve Eq.~6! for z(r ) and then evaluaten1

5 lim
r→`

Nr
21

„z(r )21exp@bE1(r)#21…21. The result of this

limit depends on howNr→`, E1(r )→E050 andz(r )→1
in the thermodynamic limit.

This limit is trivial on lattices: there the pure hoppin
model does not present a gap, and it is known that belowTC
the lowest energy eigenstate is the only one with a ma
scopic occupation.13 Let us first consider the case of th
three-dimensional lattice. The spectrum of a finite lattice
L35Nr sites is given by
09420
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s l5H 6t22t cos
2pk

L
22t cos

2ph

L

22t cos
2p j

L J
k51, . . . ,L;h51, . . . ,L; j 51, . . . ,L

, ~9!

and the equation determining the fugacityz for each finite
lattice is

f 5
1

L3

z

12z
1

1

L3 (
EkPs l

EkÞ0
z

ebEk2z
, ~10!

wheren05L23(z2121)21 is the filling of the ground state
andL23@z21exp(bEk)21#21 is the filling of a state of energy
Ek . Below the critical temperature Eq.~10! has a solution in
the thermodynamic limit only ifz→1 for L→`. In particu-
lar one has that

z;12
d

L3
for L→`. ~11!

Substituting Eq.~11! into Eq. ~10! one obtainsn05d21 and

n05 f 2E 1

ebE21
r~E!dE. ~12!

Hencen05nTD and the lowest energy state is the only ma
roscopically filled state. As a further check of this result w
can explicitly evaluate the fillingn1 of the first excited state
in the thermodynamic limit. According to Eq.~9! the energy
of the first excited state isE15t@222 cos(2p/L)# and, from
Eq. ~11!, its filling is

n15 lim
L→`

1
L3

z

z21ebE121
5 lim

L→`

1
L3

1
bE11d/L3 50

~13!

in the thermodynamic limit.
In Fig. 2 we plotnTD @obtained from Eq.~8! with f 51],

n0 ~the filling of the lowest energy state!, and ne for two
different values ofe. To determinen0 andne we first evalu-
ated the exact spectrum of a finite lattice consisting ofNr
5125 000 sites, then we obtainedz(1,b,r ) by numerical in-
version of Eq.~6!. This allowed us to evaluate the filling
nk5Nr

21(z21ebEk21)21 of the energy levelEk . From Fig.
2 we have that the differences between the plots are v
small and they can be ascribed to finite size effects. Th
numerical results confirm the known property of BEC
regular lattices of presenting a macroscopic occupation o
in the state of lowest energy.

Let us focus on the case of the comb graph proving t
on inhomogeneous structures, due to the presence of hid
regions in the spectrum, a macroscopic filling of states
energy arbitrarily near to the ground state is possible. In F
3, nTD , n0, and ne for a comb graph consisting of 40 00
sites are shown. In this case it is evident that, since the fil
of the ground state~the curven0) is lower thannTD , there
must be macroscopically filled states other thanE0. From the
general result@Eq. ~8!# the energies of these states must te
7-3
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to E0 asL→`. Actually, the curvesne representing the fill-
ing relevant to the energy region@E0 ,E01e# is very close to
nTD even for small values ofe.

IV. STATES FILLING ON THE COMB GRAPH

On the comb graph, the anomalous behavior of the fill
can be explained by carefully considering Eq.~6!, which

FIG. 2. The state filling in the three-dimensional lattice as
function of the temperature measured in units oft. The dotted line
represents the theoretical value ofnTD obtained from Eq.~8!. The
solid line is a numerical evaluation of the filling of the ground sta
n0. The dashed and dash-dotted lines are numerical evaluationne

for two different small values ofe: e50.02t ande50.05t. Numeri-
cal data are obtained from a lattice ofNr5125 000 sites.

FIG. 3. The state filling in the comb lattice as a function of t
temperature measured in units oft. The dotted line represents th
theoretical value ofnTD obtained from Eq.~8!. The solid line is a
numerical evaluation of the filling of the ground staten0. The
dashed and dash-dotted lines are numerical evaluationsne for two
different small values ofe: e50.02t, ande50.05t. Numerical data
are obtained from a comb ofNr540 000 sites.
09420
g

determines the fugacity for each finite size comb. The ene
spectrum of the pure hopping model on a finite comb gra
consisting of Nr5L3L is the union of four sets,sP
5$E0%øs2øs0øs1 .6 SettingE050:

s25H Ek5tSA822A11cos2
2pk

L D J
k51,2,[(L21)/4]

s05H Ek5tSA822 cos
2pk

L D J
k51,2,L21

, ~14!

s15H Ek5t

3FA812A11cos2S 2pk

L
1

p

2 D G J
k51,2,[(L21)/4]

.

The degenerationd(Ek) of the states of energyEkPs2 and
EkPs1 is 2, while for the states of energyEkPs0 we have
d(Ek)5L. Hence, in the thermodynamic limit,s2 and s1

are filled by a vanishing fraction of states@2(L
21)/(4L2)# and they belong to the hidden spectrum6

whereass0 gives rise to the spectral region of measure o
since the relevant fraction of states isL(L21)/L2. s0 repro-
duce the spectral density of a linear chain and its states
completetely delocalized. On the other hand the states ins2

ands1 , which characterize the typical behavior of the com
graph, are localized along the backbone presenting an e
nential decay in the direction of the finger. The equati
determining the fugacityz for a finite comb is

f 5n0~z,L !1ns2
~z,L !1ns0

~z,L !1ns1
~z,L !, ~15!

with 0<z<1. Here n0(z,L), ns1
(z,L), ns2

(z,L), and

ns0
(z,L) represent, respectively, the fraction of particles

the ground state and in the three spectral regions. More
cisely,

ns~z,L !5
1

L2 (
EPs

d~E!
z

ebE2z
, ~16!

whered(E) denotes the degeneracy of the energy stateE.
Let us analyze these four contributions separately.

In the thermodynamic limit the filling of the ground stat

n0~z!5 lim
L→`

n0~z,L !5 lim
L→`

1

L2

z
12z

, ~17!

and the filling of the low hidden region,

ns2
~z!5 lim

L→`
ns2

~z,L !

5 lim
L→`

2

L2 (
n51

(L21)/4

@z21ebt[A822A11cos2(2pn/L)]21#21,

~18!

are different from zero if and only if lim
L→`

z51. The filling

of the spectral region of measure 1 is given by
7-4
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ns0
~z!5 lim

L→`
ns0

~z,L !5 lim
L→`

1
L (

n51

L21 z

ebt[A822 cos(2pn/L)]2z

5
1

2pE0

2p

dk
1

z21ebt[A822 cosk)]21

5E 1

z21ebE21
r~E!dE. ~19!

ns0
(z) is a finite positive number for each value ofz, 0

<z<1. For the high hidden regions1 we obtain

0<ns1
~z!5 lim

L→`
ns1

~z,L !

5 lim
L→`

2

L2 (
n51

(L21)/4 z

ebt[A812 A11cos2(2pn/L)]2z

, lim
L→`

2

L

z

ebt(A812)2z
50. ~20!

Hencens1
(z,L) can be neglected.

Let us consider the behavior of Eq.~15! in the thermody-
namic limit. Above the critical temperature it is satisfied by
value of z5z8,1 so that, according to Eqs.~17! and ~18!,
n0(z8)5ns2

(z8)50. On the other hand, forT,TC Eq. ~15!

can be solved only lettingz→1 whenL→`. In particular
we obtain a solution of Eq.~15! if and only if

z;12
d

L2
for L→` ~21!

Let us study in detail the behavior ofn0(z) and ns2
(z)

whenz tends to 1 as in Eq.~21!. We obtain

n05
1

d
, ~22!

and the fraction of particles ins2 can be exactly evaluate
by summing the corresponding series

ns2
5 lim

L→`

2

L2 (
n51

(L21)/4 Febt[A822 A11cos2(2pn/L)]211
d

L2G21

5 (
n51

` 2

2A2btp2n21d
5

csch a@a cosha2sinha#

d
,

~23!

where

a5
1

2
3
4

A d

tb
5

1

2
3
4

A T

tn0
. ~24!

Then, belowTC , Eq. ~15! for z becomes an equation fo
the new variabled,
09420
d211d21 cscha@a cosha2sinha#5 f 2ns0
~1!5nTD

~25!

which can be numerically solved. Hence, in order to obt
Eq. ~25! we had to evaluate the thermodynamic limit of Eq
~17!, ~18!, ~19!, and~20!. We remark that only in the case o
the spectral region of measure one it is possible to rep
the sum by an integral, whereas in the other cases the s
have to be explicitly calculated.

Equation~25! explains the main properties of BEC on th
comb lattice. First of all, in this casenTD5 f 2ns0

(1) is the
sum of two contributions; the first due to the particles in t
lowest energy staten05d21, the other due to the particles i
the low hidden region, ns2

5d21 cscha@a cosha

2sinha#. Hence, on the comb graph, the filling of th
ground state is smaller thannTD , as it has been numericall
shown in Fig. 3.

A second point is that only states with arbitrary sm
energy contribute tonTD . Indeed the result of Eq.~23! does
not change if we force the indexn to be lower thaneL,
wheree is an arbitrarily small fixed parameter. This mea
that, ;e.0, only states with energy smaller thant@A8
22 A11cos2(2pe)# contribute tonTD .

Finally substitutingd21 with n0 in Eq. ~25!, we obtain an
exact relation betweenn0 andnTD . In Fig. 4 we checked tha
the numerical results for the comb graph presented in Sec
are perfectly reproduced by the exact calculation. T
dashed-dotted line is obtained by first evaluatingn0 and then
using Eq.~25! to obtainnTD(n0). These data are very clos
both tone ~filling of a small energy region aroundE0) and to
the theoretical value ofnTD .

FIG. 4. Check of Eq.~25!. The dotted line represents the the
retical value ofnTD obtained from Eq.~8!. The solid line is a nu-
merical evaluation of the filling of the ground staten0. The dashed
line is a numerical evaluationne for e50.02t. The dash-dotted line
is obtained evaluatingnTD from Eq. ~25!, whered anda are given
by Eqs.~24! and ~22! andn0 is given by the numerical data of th
solid line. The temperature is measured in units oft and numerical
data are obtained from a comb ofNr540 000 sites.
7-5
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V. COHERENCE PROPERTIES OF THE CONDENSATE

The classical Bose-Einstein condensates on homogen
lattices present important large scale coherence prope
due to the macroscopic filling of a single quantum state. O
of the most effective ways to put into evidence this relev
feature of BEC is the study of the long distance correlat
function C( i , j ) defined by

C~ i , j !5(
k

ck
r * ~ i !ck

r ~ j !

z21ebEk21
, ~26!

whereck
r ( j ) is the eigenvector of2tAi j

r ~2! of eigenvalue
Ek

r . In particular, considering the correlation function b
tween two sites at a macroscopic distance~i.e., r i j ;r , r is
the radius of the Van Hove sphere!, below the critical tem-
perature in the thermodynamic limit we have

C~ i , j !;NrnTDc0*
r~ i !c0

r ~ j ! for r→`. ~27!

Equation~27! shows that belowTC there areNrnTD particles
in the ground statec0

r ( j ). On regular lattices, the wave func
tion of the ground state is constant and the correlat
function at large distances does not depend onr i j . In
particular for the three-dimensional case (Nr5L3)C( i , j )
;(L3nTD)(L3)21; (L3nTD) is the asymptotic number o
particles of the condensate, and (L3)21 is the normalizing
factor given by the wave functionc0

r ( j ).
The large scale coherence properties of the Bose-Eins

condensate on a comb graph can be studied by calcula
the correlation functions between sitesi and j of the back-
bone at a chemical distancer i j 5dL, ~this way if the size of
the macroscopic system is defined to be one, we are con
ering sites at distanced). Let us evaluate the contribution t
Eq. ~26! of each single spectral region by using the ex
wave functionsck

L( j ) of the pure hopping model on a finit
L3L periodic comb,6 with Nr5L2. For E0 we have

C0~ i , j !5C0~d!5c0
L* ~ i !c0

L~ j !
z

12z
;L2n0~A2L !21,

for L→`. ~28!

C0( i , j ) does not depend on the distance between the s
since the wave function of the ground state is constant al
the backbone. In Eq.~28! L2n0 represents the filling of the
state and (A2L)21 is the normalizing factor of the wav
function. In the low energy hidden spectrum we have

Cs2
~d!

5 (
k51

(L21)/4

ck
L* ~ i !ck

L~ j !@z21ebt[A822A11cos2(2pk/L)21#21

;
1

~A2L !
(
k51

`
L22 cos~2pkd!

A2btp2k21d
for L→`. ~29!

It should be noted that significant contribution to Eq.~29!
arise only from states with energy close toE0, similar to
what happens in Eq.~18!. Here the wave functions hav
09420
us
ies
e
t

n

n

in
ng

id-

t

es
g

macroscopical oscillations along the backbone and the fil
of each stateL2(A2btp2k21d)21 is multiplied by an oscil-
lating factor cos(2pkd). (A2L)21 is again the normalizing
factor of the wave functions. Ins0 and s1 we have
Cs0

( i , j )5Cs1
( i , j )50, since in this caseck

L* ( i )ck
L( j ) is

an oscillating factor with diverging frequency giving rise
decoherence effects. The large scale correlation function
the pure hopping model is then

C~ i , j !5C~d!;
L2

~A2L !
S n01 (

k51

`
2 cos~2pkd!

A2btp2k21d
D

5
Nr

~A2Nr !
S n01 (

k51

`
2 cos~2pkd!

A2btp2k21d
D

for r 5L→`. ~30!

The two point correlation function diverges forL→`, a well
known property of localized condensates. Notice that e
state of the condensate provides a different oscillating c
tribution to Eq.~30!. In Fig. 5 we plot the correlation func
tion C( i , j ) as a function of the distanced.

We can also evaluate the correlation function between
sites of the same finger. Since all the states of macrosc
filling present the same behavior along this direction~an ex-
ponential decay depending on the distance from the ba
bone!, in this case there are no interference effects and
obtains an expression analogous to Eq.~27! (u i u and u j u rep-
resent the distance of the sites from the backbone!:

C~ i , j !

;
L2

~A2L !
S n0e2arcsh(1)(u i u1u j u1 (

k51

`
2e2arcsh(1)(u i u1u j u)

A2btp2k21d
D

5
NrnTD

~A2Nr !
e2(u i u1u j u)arcsh(1) for r 5L→`. ~31!

FIG. 5. The correlation function given by Eq.~30! as a function
of the macroscopic distanced. Above TC , C(d) is zero, while at
low temperature it depends ond.
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C( i , j ) presents the diverging behavior forL→` typical of
localized condensate.

VI. GENERAL RESULT

As we have seen, in an inhomogeneous structure the
currence of BEC does not imply the macroscopic occupa
of a single quantum state. In this last section we prove
general condition for a bosonic hopping model on a graph
present condensation only on the lowest energy state. In
ticular we will show that in a model presenting BEC at fini
temperature~i.e., with a low energy hidden spectra or with
spectral dimension greater than 2! one has condensation o
the single stateE0 if the spectrumr(E) satisfies the spectra
condition

lim
r→`

E ur8r~E!2r~E!u
uE2E0u

dE50, ~32!

where

r8r~E!5
1

Nr
( 8

k
d~E2Ek

r !. ~33!

The symbol(8 means that we are excluding from the su
the contribution given by the ground state. Eq.~32! has a
clear mathematical interpretation. Indeed as Eq.~4! is the
necessary condition for evaluating the thermodynamic li
of the average value of any bounded functionf (Ek) as
* f (E)r(E)dE, Eq. ~32! represents the condition to evalua
by an integral even unbounded functions diverging inE0 as
(E2E0)21. The general result can be obtained writing E
~6! as:

f 5
1

z2121
1E

E.e8

~r8r~E!2r~E!!

z21ebE21
dE

1E
E.e8

r~E!

z21ebE21
dE, ~34!

where we setE050 ande8 is a generic energy betweenE0
r

andE1
r the energy of the first excited state. Let us now ta

in ~34! the thermodynamic limitr→`. For the first term
lim

r→`
(z2121)215n0. For the second term we have
.

e

.
-

e

09420
c-
n
e

to
ar-

it

.

e

E U~r8r~E!2r~E!!

ebE21
UdE< lim

r→`
E ur8r~E!2r~E!u

uEu
dE50,

~35!

where we used condition~32!. Finally in the last term we let
e8→0, obtaining

n05 f 2E r~E!dE

z21ebE21
5nTD , ~36!

and this implies that only the lowest energy state has a m
roscopic filling. The pure hopping model on the comb gra
obviously does not satisfy Eq.~32!. Notice that Eq.~32! is
not a condition onr(E), the density of states of the infinit
structures, but a prescription on howr r(E) tends tor(E).
The single state occupation then is determined by the be
ior of the model on each large but finite mesoscopic sca

VII. CONCLUDING REMARKS

In this paper we address the issue of Bose-Einstein c
densation for a bosonic hopping model defined on the co
graph, a simple inhomogeneous discrete structure. Su
model is expected to describe the low coupling limit for
comb-shaped network of Josephson junctions~or, possibly,
of optical traps confining noninteracting atoms!, a realistic
system which is currently the subject of experimen
research.4 In particular, we show that the macroscopic occ
pation of the ground state, which is one of the distinct
features of BEC on~homogeneous! Euclidean lattices, is no
sufficient for a complete description of the phenomenon
the comb lattice. Indeed the inhomogeneity of the netw
forces the macroscopic occupation of a spectral region
above the ground state. This feature is strictly related to
presence of the so-calledhidden regionsin the spectrum of
inhomogeneous structures such as the comb graph, an
we discuss in Sec. V, it is the cause of an anomalous be
ior of the large distance two point correlation function
These results are obtained by exactly evaluating the st
filling on mesoscopic combs, where the energy spectrum
nearly continuous, but the levels are still distinguishable,
ing related to wave functions which differ on a large sca
The conditions restoring the standard feature of the BE
namely, the macroscopic occupation of a single quan
state, are discussed as well.
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