PHYSICAL REVIEW B 66, 094207 (2002

Bose-Einstein condensation on inhomogeneous networks: Mesoscopic aspects
versus thermodynamic limit
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We study the filling of states in a pure hopping boson model on the comb lattice, a low-dimensional discrete
structure where geometrical inhomogeneity induces Bose-Einstein conden&tiGhat finite temperature.
By a careful analysis of the thermodynamic limit on combs we show that, unlike the standard lattice case, BEC
is characterized by a macroscopic occupation of a finite number of states with energy belonging to a small
neighborhood of the ground state energy. Such a remarkable feature gives rise to an anomalous behavior in the
large distance two-point correlation functions. Finally, we prove a general theorem providing the conditions for
the pure hopping model to exhibit the standard behavior, i.e. to present a macroscopic occupation of the ground
state only.
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I. INTRODUCTION the filling of the structure is completely described only if a
finite number of states belonging to a small neighborhood of
The most recent experiments on Bose-Einstein condens#e ground state is considered. This result is proven by ex-
tion (BEC) stimulated a large wealth of theoretical work actly evaluating the occupation of the quantum states of me-
aimed at a better understanding of the basic properties GOSCOPIC comb lattices, with large but finite sizes. The spec-

such interesting phenomendim particular the possibility of UM Of such structures is nearly continuous, but the energy
. . - . . levels are still distinguishable since they pertain to orthogo-
confining ultracold bosonic atoms within optical lattices

- _ ' nal wave functions which differ on a macroscopic scale.
along with the most recent studies on arrays of Josephson e paper is organized as follows. In Sec. Il we introduce

junctions, arouse a great interest in bosonic models defineghe pure hopping modewhich describes the low coupling
on Euclidean lattice$? limit for the Josephson junction arrays or a model of nonin-
Even more interesting from this point of view would be teracting atoms confined in an optical lattice. Using the Van
the arrangement of the Josephson junctions, or possibly ofHove spheres, we define the thermodynamic limit for a gen-
tical traps, into more complex networkdndeed it was re- eral infinite discrete structure. Then we recall the definition
cently put into evidence’ that, due to topological inhomo- of the low energy hidden spectrumnd we give the general
geneity, BEC at finite temperature can occur on lowconditions on the graph spectra for the condensation in an
dimensional structures, such as the comb laftieeen in the  arbitrarily small energy regiohIn Sec. Il we consider the
absence of an external potential. Such results were obtaingdoblem of the states filling for the pure hopping bosonic
mainly in the thermodynamic limiti.e., for structures of model comparing the known results for the three-
infinite size, but it is clear that a deeper understanding of thedimensional lattice with the numerical results obtained on
onset of the phenomenon on finite-size structures is needet!® comb graph. We show that in the first case only the
This is especially true in view of the experimental researcHOWeSt Energy state presents a macroscopic occupation, while
which is currently being developed in this fild. the c_omb graph exhibits a dn‘ferent. behavior since a macro-
One of the distinctive features of usual BE@ continu- scopic occupation of many states is present. In Sec. IV we

ous Euclidean geometry, possibly in the presence of haﬁ‘owe analytically the problem of the states filling on the

monic potentialsis the macroscopic occupation of a single comb graph proving that, in the thermodynamic limit, also

quantum state. More precisely it is possible to prove that th he first excited states are filled by a finite fraction of par-

filing of any excited state vanishes in the thermodynamic!des' Furthe(more we_show that the numerical data perfectly
limit. As for general networks, Refs. 5—7 mainly dealt with fit the analytlga}l predictions. In Sec. V we prove that the
the thermodynamic aspect of the problem. In particular it i macroscopic filling of many states gives rise to an gnomalous
shown that on a low-dimensional inhomogeneous networ .ehaV|0r of the Iargg distance two pomt.(':orrelatlon func-
such as the comb lattice, BEC is characterized by the ma 10nS. In Sec. VI we give the speciral cor!dltlons for the pure
roscopic occupation of the states belonging to an arbitraril opping model to present a macroscopical occupation of a
small energy neighborhood of the ground state. This is g!ngle quantum state, and in Sec. VIl we present our conclu-
more general condition, since it does not necessarily entafi’o"s:
that only the ground state features a macroscopic occupation. Il BOSONIC HOPPING MODELS ON GRAPHS

In the following we indeed show that the macroscopic '
occupation of the ground state does not entirely account for Graph theory provides the most natural mathematical de-
BEC on the comb lattice. Even in the thermodynamic limit, scription of generic discrete network#\ graph is a count-
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able setV of sitesi connected pairwise by a sEtof unori-
ented links (,j)=(j,i). Two sites joined by a link are called
nearest neighbors. The topology of a graph is fully described
by its adjacency matrid;; , with A;;=1 if (i,j) is a link of

the graph and\; =0 otherwise. Avalkin G is a sequence of
concatenated links((i,k),(k,h) ...,(n,m),(m,k)} and a
graph is said to be connected if for any two sites there is
always a walk joining them. The length of a walk is the
number of links appearing in the sequence, and the length of
the shortest walk joining two sites is called tikhemical
distancebetween them. The latter defines the intrinsic metric
every connected graph is endowed with. The Van Hove
spheresS; ,, of centero and radiug,, is the set of sites whose
chemical distance from site is equal or less than In the
following we will consider only connected graphs with poly- o _ _
nomial growth, where the numbet, , of sites withinS, , FIG._ 1. The _comb gra_lph, which is obtained by conn_ectlng_ to
grows at most as a power of the radius. This choice énsuré@ch site of a Illnear chain, called a backbone, a one-dimensional
that the discrete structure can be embedded in a finite dimeffain called a finger.

sional Euclidean space. Since for this class of graphs it is

possible to prove that the thermodynamic limit is indepen- p(E)~(E-Epn)“* ! for E-E, ®
dent f_rom the _ch0|ce of the center of th_e sph€rén the where E,,=Inf(Supfip(E)]), and « is an exponent deter-
following we will drop the relevant subscript. mined by the topology of the grapfhr'?

Let us recall some basic results obtained for the pure hop- o inhomogeneous structures the density of states can
ping model on a generic graph complete description of the present some interesting anomalies, such as Higelen
subject can be found in Refs. 6 and @n a grapfG the pure  eqion of the spectrum defined in Refs. 6 and 7hilden
hopping model for bosons is defined by the HamiltoRian region of the spectrum consists of an energy interval

[E1,E5] such that [Eq,E>]NSupppe(E))=0 and
H=—t EV Ajala, (1) lim,_ N g,;>0, whereNfg g, is the number of eigen-

ije

values of—tA{j in the interval E; ,E,]. Notice that, in gen-

wherea anda; are the creation and annihilation operator ateral,Nig, g, can diverge for —c and the eigenvalues can
sitei ([ a ,af]:aij), andA; is the adjacency matrix of the become dense ifE;,E,] in the thermodynamic limit.
graph. Therefore, the presence of a hidden spectrum is a far more

To study the behavior of Eq1) in the thermodynamic general property than the existence of a discrete spectrum,
limit, where BEC can arise, we restrict the mode8q and  where a finite number of states fills the spectral region. An
analyze its properties as the radius of the Van Hove spheriateresting example of this kind of behavior is exhibited by
goes to infinity. The model restricted & is defined by the the the comb lattice® (see Fig. 1 which will be studied in
Hamiltonian detail in the following sections. We now define the lowest
energy level for the sequence of densitigéE), settingEg
H=S —tAirjaiTaj, 2 =Inf(E}) andEo=lim __Eg. In general Eo<Ey. If Eg

i <E., then[Eq,E] is a hidden region of the spectrum

which will be called low energy hidden spectrum.

C P .
whereA;; =A;; if 1,] € S, andA;; =0 otherwise. The corre- 1o correct way of taking the thermodynamic limit con-

sponding normalized density of state{E) is sists in adjusting the populatidd of the system so that the
1 filling N/N, is set to a fixed valué as the radius of the Van

p'(E)=— 2 S(E—ED), (3) Hov_e sphere goes to |nf|n|ty. In particular, in the macroca-

N, % nonical ensemble, the equation that determines the fugacity

. _ as a function of3=T"1, f, andr is
whereE, are the eigenvalues of tAj; andN, is the number

of sites within the sphere. The functiiE) is defined to be 1
the thermodynamic density of states -etA;; if it satisfies f= f I
the following condition: z e -1

"(E)dE. (6)

Setting Eq=0 yields O<z(f,B8,r)<1. A system presents
lim f |p"(E)— p(E)|dE=0. (4  BEC at finite temperature if there exists a temperaflige
r—o such that for allT<T. Ilmrﬂmz(f,,B,r)zl.

In general the asymptotic behavior at low energies of the The general conditions for the occurrence of BEC at finite
thermodynamic density of states is described by a power lawemperature is strictly related to the propertiesp¢E).” In
of the form particular it is proven that BEC arises either in models pre-
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senting a low energy hidden spectrum or in models where th
parametera appearing in Eq(5) is larger than two. The

comb lattice is an example of the former situation, whereas

the latter condition is satisfied by any Euclidean lattice with

dimension larger than two, since for such a structure the

parameterr coincides with the Euclidean dimension.

Ill. SINGLE STATE FILLING

BEC on Euclidean lattices is characterized by the nonana-

lytic behavior of the thermodynamic functions at the critical
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€ 27k 2ah
o= 6t—2t cosT —2t cosT
27|

— 2t cos— (9)

]kl,...L;hl,...L;jl,...L
and the equation determining the fugacityor each finite
lattice is

L3 Ek6(7'| e'BEk_ Z

1 z z

=— —+
f L31-z

(10

’

temperature and by a macroscopic filling of a single quantum
state. The definition of BEC we gave in Sec. Il is strictly wheren,=L 3(z"*—1) 1 is the filling of the ground state

connected with the singular propertiesTat. For example in
the thermodynamic limit the average energy per particle is

1 E
<E>:?f S igeE_ P(B)IE @

wherez=1 for temperature below the critical temperature,
whereas fofT>T it is a function of T andf determined by
Eq. (6). Therefore Eq.7) presents the typical nonanalytic
behavior of the thermodynamic functions of BEC at the criti-
cal point.

Let us now consider the filling of the states. Beldw
any arbitrarily small energy region arouii, is filled by a
finite fraction of particles, as it is known by classical results
on BEC. More precisely, for ak>0 the fractionn, of par-
ticles with energy in the regiofE,Eq+ €] is always greater
than the positive quantity{p,

nTD:f_f

where E;=0 and the subscripT D stands for thermody-
namic.

Since Ey is the only real number belonging {&g,Eq
+ €] for any value ofe, one would argue that the only pos-
sible way to satisfy the condition,.>n;p>0 Ve>0 is to
fill the lowest energy state with a finite fraction of particles.
However, if we look carefully at how the thermodynamic
limit is performed, the question is not so trivial. Indeed, if
the model does not present a gdps is also the case of the
usual condensation on lattigethe energy of the first excited
states tends t& in the thermodynamic limit and it belongs
to [Eq,Ep+ €] for all values ofe. For instance, in order to
determine the fillingh, of the first excited stat&,, one first
has to solve Eq.(6) for z(r) and then evaluaten;
=lim___N; (z(r) 'exd BE4(r)]-1)~*. The result of this

limit depends on howN,—«, E;(r)—Ey=0 andz(r)—1
in the thermodynamic limit.

This limit is trivial on lattices: there the pure hopping
model does not present a gap, and it is known that bé&lgw

p(E)dE, 8

efF-1

andL %[z lexp(BE)—1] lis the filling of a state of energy
E\ . Below the critical temperature EQLO) has a solution in

the thermodynamic limit only iz— 1 for L—co. In particu-

lar one has that

)
z~1-— for L—co.

E (1

Substituting Eq(11) into Eq.(10) one obtains,= 5" * and

n():f_f

Henceny=n{p and the lowest energy state is the only mac-
roscopically filled state. As a further check of this result we
can explicitly evaluate the filling, of the first excited state
in the thermodynamic limit. According to E¢Q) the energy

of the first excited state i§;=t[2—2 cos(27/L)] and, from
Eq. (11), its filling is

1
efF-1

p(E)dE. (12)

. 1 z . 1 1
M=1lm s e,y — ™ (5 g, v oi® 0

(13

in the thermodynamic limit.

In Fig. 2 we plotnyp [obtained from Eq(8) with f=1],
ng (the filling of the lowest energy stagteand n, for two
different values of. To determineny andn, we first evalu-
ated the exact spectrum of a finite lattice consistingNpf
=125000 sites, then we obtainefll,3,r) by numerical in-
version of Eq.(6). This allowed us to evaluate the filling

=Nz *efE—1)"1 of the energy leveE,. From Fig.
2 we have that the differences between the plots are very
small and they can be ascribed to finite size effects. These
numerical results confirm the known property of BEC on
regular lattices of presenting a macroscopic occupation only
in the state of lowest energy.

Let us focus on the case of the comb graph proving that
on inhomogeneous structures, due to the presence of hidden
regions in the spectrum, a macroscopic filling of states of
energy arbitrarily near to the ground state is possible. In Fig.
3, ntp, Ng, andn, for a comb graph consisting of 40 000

the lowest energy eigenstate is the only one with a macrosites are shown. In this case it is evident that, since the filling

scopic occupatioh® Let us first consider the case of the

of the ground statéthe curveng) is lower thann;p, there

three-dimensional lattice. The spectrum of a finite lattice ofmust be macroscopically filled states other thgn From the

L3=N, sites is given by

general resulfEg. (8)] the energies of these states must tend
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' ' ' ' ' g determines the fugacity for each finite size comb. The energy
1 - ::F;o_oz i spectrum of the pure hopping model on a finite comb graph
R T ne005 consisting of N,=LXL is the union of four setsop

={E0}U0'_U0'0U o4 .6 Sett|ngE0:O

0=[Ek=t(\/§—2 \/?522%"”

27k
Uoz[Ek=t( 82 cos%)] , (14)
k=12L-1

k=1,2,[(L—1)/4]

04

02 . o=\ E=t

27k

V8+2 \/1+cosz(—+—

L 2

0 L ' L L ! . %
1] 1 2 3 4 5 6 7

] k=1,2,[(L—1)/4]

FIG. 2. The state filling in the three-dimensional lattice as aThe degeneratiod(E,) of the states of energ, e o and
function of the temperature measured in units.ofhe dotted line  Exe o is 2, while for the states of enerds € oy we have
represents the theoretical valuersfy obtained from Eq(8). The  d(E,)=L. Hence, in the thermodynamic limit;_ and o
solid line is a numerical evaluation of the filling of the ground stateare filled by a vanishing fraction of state$2(L
ny. The dashed and dash-dotted lines are numerical evaluatjons —1)/(4L2)] and they belong to the hidden Spectrﬁlm,
for two different small values of: e=0.02 ande=0.0%. Numeri- whereaso, gives rise to the spectral region of measure one,
cal data are obtained from a lattice lf= 125 000 sites. since the relevant fraction of stated il — ]_)/L2 o repro-

duce the spectral density of a linear chain and its states are
to Eg asL—o. Actually, the curvesi, representing the fill-  completetely delocalized. On the other hand the states.in
ing relevant to the energy regi¢i,,Eq+ €] is very close to  ando, , which characterize the typical behavior of the comb

nrp even for small values oé. graph, are localized along the backbone presenting an expo-
nential decay in the direction of the finger. The equation
IV. STATES FILLING ON THE COMB GRAPH determining the fugacity for a finite comb is
On the comb graph, the anomalous behavior of the filling f=ng(z,L)+n, (zL)+n, (z,L)+n, (zL), (19

can be explained by carefully considering E), which )
with 0=<z=<1. Here ny(zL), n(,+(z,L), n, (zL), and

' - ' - - ' — nUO(Z,L) represent, respectively, the fraction of particles in
IS - ::km H the ground state and in the three spectral regions. More pre-
o __ne=005 cisely,
\.\
.

08| S\ 1 1 z

A n.(zL)== 2 d(E) , (16

S 7 L2 Eco efE—z
N
o6r \\ ] whered(E) denotes the degeneracy of the energy skate
\,‘ Let us analyze these four contributions separately.
X, In the thermodynamic limit the filling of the ground state,
04f N R
\_.\} 1
%, Ng(z)= limnyg(z,L)= lim — —, (17)
0.2 S J L—oo Lo L21-2
S
“’\ and the filling of the low hidden region,
% 05 1 15 2 25 Nﬁ_é“ 3 4 no’(Z):L”m ng'i(ZyL)
T — 0
T : ; (L-1)/4
FIG. 3. The state fllllpg |n_the comb lattice as a function of the i i E [ZfleBt[\f§*2V/l+co§(2ﬂn/L)]_ 1]71

temperature measured in units tofThe dotted line represents the Low 2 &4 ’

theoretical value ofi;p obtained from Eq(8). The solid line is a
numerical evaluation of the filling of the ground statg. The (18
dashed and dash-dotted lines are numerical evaluatipfsr two . . - _ -
different small values oé: €e=0.02, ande=0.0%. Numerical data are different from zero if and only if IIrLTLwZ_ 1. The filling

are obtained from a comb &f, =40 000 sites. of the spectral region of measure 1 is given by
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L-1

. 1 z
nao(Z) = I_|ET’|3O ngo(z, L)= LIIan E ngl e/gt[\sﬁ—z cos(2m/L)] _

1 (2= 1

2w )0 7~ LeBUVE—2 cosk)] _ 1

1

ngo(z) is a finite positive number for each value nf0
=<z=1. For the high hidden regiosr, we obtain

0=n, (2)=imn, (zL)

o (L-1)/4

z
=lim — >,
L—» L2 n=1 eﬁt[\r‘§+2\/1+c0§(27rn/L)]_Z
2 z
<Ilm —————=0. (20

L L gBt(8+2)_4

Hencen,,+(z,L) can be neglected.
Let us consider the behavior of E(.5) in the thermody-
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-
n

— 0 H
. Pplng)
__ne=002

FIG. 4. Check of Eq(25). The dotted line represents the theo-
retical value ofn;p obtained from Eq(8). The solid line is a nu-
merical evaluation of the filling of the ground statg The dashed
line is a numerical evaluation, for e=0.02. The dash-dotted line
is obtained evaluatingrp from Eg.(25), whereé anda are given
by Egs.(24) and(22) andny is given by the numerical data of the
solid line. The temperature is measured in units ahd numerical

namic limit. Above the critical temperature it is satisfied by agata are obtained from a comb Kf =40 000 sites.

value ofz=z'<1 so that, according to Eq$l7) and (18),
no(z')=n, (z')=0. On the other hand, fof<T. Eq. (15

can be solved only letting—1 whenL—o. In particular
we obtain a solution of Eq.15) if and only if

)
z~1—§ for L—oo (21

Let us study in detail the behavior og(z) andn, (z)
whenztends to 1 as in Eq21). We obtain

1
No=73: (22

and the fraction of particles in-_ can be exactly evaluated

by summing the corresponding series

L-1)/4 1
n. = Iimg( ) eBVB=2 V1+cos'(2mn/L)] _ 1 4 K
7= LHOCLZ n=1 L2
N 2 _csch af @ cosha—sinha]
A=1 2\2Btm?n2+ 8 5 ’
(23
where
1 /6 1 |T 24
a= -3 —_—= -3 _—
27 tB o7 tng

Then, belowT¢, Eq. (15 for z becomes an equation for

the new variable,

6 '+ 6 * cschal @ cosha—sinha]=f—n, (1)=np
(25

which can be numerically solved. Hence, in order to obtain
Eq. (25 we had to evaluate the thermodynamic limit of Egs.
(17), (18), (19), and(20). We remark that only in the case of
the spectral region of measure one it is possible to replace
the sum by an integral, whereas in the other cases the sums
have to be explicitly calculated.

Equation(25) explains the main properties of BEC on the
comb lattice. First of all, in this casaerD=f—nUO(1) is the

sum of two contributions; the first due to the particles in the
lowest energy state,= &1, the other due to the particles in
the low hidden region, n, =8 * cscha[a cosha

—sinha]. Hence, on the comb graph, the filling of the
ground state is smaller tharyp, as it has been numerically
shown in Fig. 3.

A second point is that only states with arbitrary small
energy contribute toiry . Indeed the result of Eq23) does
not change if we force the index to be lower thaneL,
where e is an arbitrarily small fixed parameter. This means
that, Ve>0, only states with energy smaller thaf8
—2 1+ co(2me)] contribute tonyp .

Finally substitutings~* with ng in Eq. (25), we obtain an
exact relation betweem, andnp . In Fig. 4 we checked that
the numerical results for the comb graph presented in Sec. Ill
are perfectly reproduced by the exact calculation. The
dashed-dotted line is obtained by first evaluatiggand then
using Eq.(25) to obtainntp(Nng). These data are very close
both ton, (filling of a small energy region arourte,)) and to
the theoretical value afitp .
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V. COHERENCE PROPERTIES OF THE CONDENSATE 1 ' ' ' ' ' T T 0

. T=2
L T=BT

The classical Bose-Einstein condensates on homogeneot
lattices present important large scale coherence propertie
due to the macroscopic filling of a single quantum state. One \
of the most effective ways to put into evidence this relevant

feature of BEC is the study of the long distance correlation
function C(i,j) defined by

L272 ¢(g)

MOV Tl
2 M, (26) S

C(i.j)= W S

where ¢4(j) is the eigenvector of-tAj; (2) of eigenvalue
Ei. In particular, considering the correlation function be-
tween two sites at a macroscopic distartice., rj;~r, r is
the radius of the Van Hove spherdelow the critical tem- 0 005 o1 015 02 025 03 om 04 o4 05
perature in the thermodynamic limit we have ¢

. PR FIG. 5. The correlation function given by E(QO) as a function
C(i,))~Ningpip (1) ¢ho(j)  for r—ee. (27)  of the macroscopic distana Above T, C(d) is zero, while at

Equation(27) shows that below  there areN,n;p particles low temperature it depends ah

. Fo .
n the ground state(]). On_regular lattices, the wave func_ macroscopical oscillations along the backbone and the filling
tion of the ground state is constant and the correlation 2 2.2 1. .- :

. , of each staté ?(y/28tw?k?+ 8) "1 is multiplied by an oscil-
function at large distances does not depend rgn In

. _1 . . . .
particular for the three-dimensional cashl, €L%)C(i,j) :catl?g fa?t?rr] COS(%kd)% (\/%L) IIS agamdthe normeﬂlzmg
~(L3n1p) (L3 % (L3nqp) is the asymptotic number of gc o'r'o_ce W?VSO unctions. trr:_fo and o, Wwe nave
particles of the condensate, and®(~* is the normalizing ~Ceo(1:1)=Co (1,])=0, since in this case™ (i) (i) is
factor given by the wave functiom(j). an oscillating factor with diverging frequency giving rise to

The large scale coherence properties of the Bose-Einsteffgcoherence effects. The large scale correlation function for
condensate on a comb graph can be studied by calculatif§® Pure hopping model is then
the correlation functions between siteandj of the back- ) .
bone at a chemical distancg=dL, (this way if the size of L et S 2 cog2mkd)
th_e ma_croscop_ic system is defined to be one, we are consid- (v2L) = V28t k2 + 8
ering sites at distanag). Let us evaluate the contribution to
Eq. (26) of eachL single spectral region by using the exact N, N 2 cog2wkd)
wave functions, (j) of the pure hopping model on a finite T - P I I
Lx L periodic comi, with N,=L?. For E, we have (V2Ny) 1 2ptrii o

C(i,j)=C(d)

for r=L—o. (30
. . . . Z —
Co(i,j)=Co(d)= 'ﬂé*(')lﬁh(l)ENLGo( Vau The two point correlation function diverges for-, a well
known property of localized condensates. Notice that each
for L—oo. (289 state of the condensate provides a different oscillating con-

tribution to Eq.(30). In Fig. 5 we plot the correlation func-
:t'?on C(i,j) as a function of the distanak
9 We can also evaluate the correlation function between two
sites of the same finger. Since all the states of macroscopic
filling present the same behavior along this directian ex-
ponential decay depending on the distance from the back-
C. (d) bone, in this case there are no interference effects and one
7- obtains an expression analogous to BY) (|i| and|j| rep-
(L—1)/4 resent the distance of the sites from the backlpone

= gl lpllz*(i)w:z(j)[Z—1eﬁt[\s“§—2\"1+c0§(2ﬂ'k/L)_1]—1

Co(i,j) does not depend on the distance between the sit
since the wave function of the ground state is constant alo
the backbone. In Eq28) L?n, represents the filling of the
state and (2L) ! is the normalizing factor of the wave
function. In the low energy hidden spectrum we have

C(i,j)
1 & L?2cog2wkd 2 = pearcsh(L)il+]i)
~ > 5{2 727 ) for L—oo. (29 ~ L noe~aresh(mlil+1il - 2e—
(\V2L) =1 \2Btnke+ 5 (\2L) =1 \2Btnk3+ 8
It should be noted that significant contribution to Eg9) N.n
arise only from states with energy close Eg, similar to = 1D o=(lil+libaresh(t) for p=| 00, (3D
what happens in Eq(18). Here the wave functions have (V2N;)
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C(i,j) presents the diverging behavior for—o typical of

lp""(E)—p(E)|
localized condensate. dE<Iim

T e dE=0,
(39
where we used conditiof82). Finally in the last term we let
As we have seen, in an inhomogeneous structure the oe’ —0, obtaining
currence of BEC does not imply the macroscopic occupation
of a single quantum state. In this last section we prove the n :f_f p(E)dE
general condition for a bosonic hopping model on a graph to 0 7z 1eBE_1

resent condensation only on the lowest energy state. In par-
b y 9y Paind this implies that only the lowest energy state has a mac-

ticular we will show that in a model presenting BEC at finite roscopic filling. The pure hopping model on the comb graph

tempfr?tg_réi.e.,_with a lOtW ?[Ee;]gé]hidr?en speocl:tra O,:. with a obviously does not satisfy E¢32). Notice that Eq.(32) is
spectral dimension greater than ahe has condensation on- . 5 ¢ongition orp(E), the density of states of the infinite

the single stat&, if the spectrunp(E) satisfies the spectral structures, but a prescription on hgW(E) tends top(E).

(p'"(E)—p(E))
efE_1

VI. GENERAL RESULT

=N7p, (36)

condition The single state occupation then is determined by the behav-
' ior of the model on each large but finite mesoscopic scale.
([ 1lp""(E)=p(E)| .
lim dE=0, (32
o) [E—Eo VIl. CONCLUDING REMARKS
where

In this paper we address the issue of Bose-Einstein con-
1 densation f_or a bqsonic hopping quel defined on the comb
p'"(E)=— > S(E—EL). (33  9graph, a simple inhomogeneous discrete structure. Such a
Ny & model is expected to describe the low coupling limit for a
comb-shaped network of Josephson juncti¢ms possibly,
of optical traps confining noninteracting atoma realistic
system which is currently the subject of experimental
tresearcr‘f In particular, we show that the macroscopic occu-
pation of the ground state, which is one of the distinctive
features of BEC orthomogeneoysEuclidean lattices, is not
sufficient for a complete description of the phenomenon on
the comb lattice. Indeed the inhomogeneity of the network
forces the macroscopic occupation of a spectral region just
above the ground state. This feature is strictly related to the
1 (p""(E)— p(E)) presence of the so-calléddden regionsn the spectrum of
f= +f o PV HE inhomogeneous structures such as the comb graph, and, as
z71-1 Jese z7lefE-1 we discuss in Sec. V, it is the cause of an anomalous behav-
ior of the large distance two point correlation functions.
N f p(E) dE (34) These results are obtained by exactly evaluating the states
Ese'z 1ePE_1 filing on mesoscopic combs, where the energy spectrum is
nearly continuous, but the levels are still distinguishable, be-
where we seE,=0 ande’ is a generic energy betwed  ing related to wave functions which differ on a large scale.
andE’ the energy of the first excited state. Let us now takeThe conditions restoring the standard feature of the BEC,
in (34) the thermodynamic limir—c. For the first term namely, the macroscopic occupation of a single quantum

The symbol=’ means that we are excluding from the sum
the contribution given by the ground state. E§2) has a
clear mathematical interpretation. Indeed as E.is the
necessary condition for evaluating the thermodynamic limi
of the average value of any bounded functib(E,) as
JT(E)p(E)dE, Eg. (32 represents the condition to evaluate
by an integral even unbounded functions divergindejas
(E—Ep) L. The general result can be obtained writing Eq.
(6) as:

lim __(z"'=1)"*=n,. For the second term we have state, are discussed as well.
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