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The question of localization in a one-dimensional tight-binding model with aperiodicity given by substitu-
tions is discussed. Since the localization properties of the well-known Rudin-Shapiro chain is still far from well
understood, partly due to the absence of rigorous analytical results, we introduce a sequence that has several
features in common with the Rudin-Shapiro sequence. We derive a trace map for this system and prove
analytically that the electron spectrum is singular continuous. Despite the extéraiedormalizablgnature
of the corresponding wave functions, the states show strong localization for finite approximations of the chain.
Similar localization properties are found for the Rudin-Shapiro chain, where earlier results have indicated a
pure point spectrum. We compare the properties for two other physical systems, ordered according to the two
discussed sequences; stationary electron transmission is studied through finite chains using a dynamical map,
optical properties of dielectric multilayer structures are investigated.
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[. INTRODUCTION from periodic systems, gaps in the energy spectrum corre-

The field of localization has in recent years showed interspond to Bragg peaks in the Fourier transform. For smooth
esting development which seem to somewhat contradict thenough quasiperiodic potentials the corresponding so called
intuitive picture related to Anderson localization. In 1990 gap-labeling theoref? has been shown to be valid. How-
Dunlap and co-worketsstudied a random dimer tight- ever, numerical results indicate, that for the Rudin-Shapiro
binding model, where the site energies are distributed ranmodel the energy spectrum is a dense set of dapspite of
domly in pairs. They showed thafN of the eigenstates are the absence of singularities in the Fourier spectrum. This
extended, wher@&\ is equal to the length of the system. Sil indicates that the above conjectured connection is not clear
et al? gave in 1993 a simple example of a one-dimensionaln the case of general aperiodic sequences.
model with all the electronic states extended. Their model There are very few rigorous results concerning the elec-
has constant site-energies and the hopping matrix elementionic spectrum and the associated wave functions for the
assume the valugsand —t with the probabilitiesp and (1  Rudin-Shapiro system, probably due to the complexity of the
—p), respectively. It has later been showhy using ideas sequence. Results based on numerical data indfctit for
from Sil et al,, that there exist tight-binding models with a finite approximations of the Rudin-Shapiro sequence all
deterministic aperiodic distribution of the off-diagonal ma- eigenstates are localized, for almost any value of the poten-
trix elements that give all states extended and one state péal strength, but that the localization can be weaker than
riodic. Perhaps even more interesting is that a theoreticagxponential. That the localization problem for this system is
model with correlated disorder also can have all states exstill under discussion can, for instance, be seen in Ref. 11.
tended, one of which is periodfcThis is probably as far With this somewhat detailed, but still rather selective in-
away as one can get, from what has become almost a folkroduction, we have wanted to show that the localization
lore, that in a one-dimensional disordered system all statgsroblem is a rather complex and in some parts rather nonin-
are localized. tuitive issue, that is not completely understood yet. Since the

Coming from the other end one could ask if there existRudin-Shapiro sequence is suggested to be an extreme case,
perfectly ordered systems that have all states localized. And there is still very few analytical result concerning this
possible candidate for generating this is the Rudin-Shapirgystem, we present in Sec. Il a new sequence with the same
chain®® This binary sequence can be generated by a substbasic block structure and a very similar generating scheme as
tutional rule acting on four different letters, which is then the Rudin-Shapiro sequence, but that is rigorously proven to
reduced to a sequence of two letters. One reason for thgenerate a singular continuous spectrum for the tight-binding
interest in the Rudin-Shapiro sequence is that its Fouriemodel.
transform is an absolutely continuous function such as for a We think it is of great interest to find a sequence as close
random sequence. It is even so that the Rudin-Shapiro ses possible to the Rudin-Shapiro chain, concerning both
guence has a Fourier transform which is a constant. This is ibuilding blocks and generating scheme, and compare some
sharp contrast to the other well known deterministic aperiphysical properties of this new chain with the Rudin-Shapiro
odic sequences; the Fibonacci sequence has a Fourier tramm$rain. In Sec. Il we study stationary electron transmission in
form that consists of delta peaks, while the Thue-Morse sea tight-binding model. Finally, optical transmission through
quence has a Fourier transform which is singular continuousnultilayered materials is addressed in Sec. IV.
The importance of the character of the Fourier transform for All systems are discrete and one dimensional and we
the properties of the electronic spectra comes from the ideaould like to see if any fundamental differences in physical
that there ought to exist a connection between energy gagsoperties exist concerning the underlying sequence of these
and singularities in the Fourier spectra. As is well-knownsystems. If our result could also initiate some new successful
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analytical attack on the old problem of the nature of the  ga)=ab, &b)=ac, &c)=db, &d)=dc. (2)
spectrum of the Rudin-Shapiro chain, it would be useful for

a more complete understanding of the localization problentf the letteraiis used as the seed, the following word is found
in low-dimensional systems. after four successive applications of the r(@

Ap o\
Il. SPECTRUM AND WAVE FUNCTIONS ¢*(a)=abacabdbabacdcac ©)

The physical system studied first is a one-orbital tight-and the Rudin-Shapiro sequence is obtained after identifying

binding model with potential¥,, distributed aperiodically on €acha andb with A, and eaclt andd with B in the semi-
a one-dimensional chain of atoms with unit spacing. Thdnfinite word £”(a). This fix point is actually easier to visu-

electron can hop between nearest-neighbor atoms accordiﬁ#ze if we apply the substitution rulg) twice and then use
to the equation the same projection as before. By defining the alphabet

={AA,AB,BA,BB} consisting of two-letter words and the

(wnﬂ) - ( (E-vpt 1 — 1)( ¥n ) @ substitution rule acting on these words by

Un ! 0 /\¥n-a E(AA)=AAAB, ¢(AB)=AABA

wherey,, denotes the amplitude of the wave function on site

n, E is the energy of the electron, amds the hopping inte- ¢&(BA)=BBAB, &(BB)=BBBA 4)

gral. We will consider binary aperiodic sequences of on-site , ) , )
potentials obtained from projections of fix points to substitu-tN€ Rudin-Shapiro sequence is readily foundtagAA). In

tion sequences. Here, a fix point is an invariant word of @Practice we have to consider finite approximations of the
substitution rule¢ which is defined on some finite set, sequence. The wordA is called the first generation of the

. - . k -
called an alphabet. Truly infinite sequences, consistent wit§eduence. Théth generation, containing “2elements, is
Eq. (1), are obtained as concatenation of these fix pdfhts. found by applying the substitution rufé) (k—1) times. For

The above described deterministic aperiodic system ha&x@mple, the fourth generation Rudin-Shapiro chain reads

been extensively used to study the electronic properties in 3 _
models for one-dimensional quasicrystals or aperiodic super- & (AA=AAABAABAAAABBBAB ®)

lattices. It turns out that the poorly understood and somewhatach element\ (B) in the chain of atoms is assigned the
exotic singular continuous electron spectrum is commorvalueV (—V), where we consider on-site potentials=0.
among these models. If the on-site potentials is distribute@rom the substitution rulé2) an eight-dimensional trace
according to the Fibonacci, Thue-Morse, and period-map, with a six-dimensional invariant subspace, was
doubling sequences the spectrum is rigorously proven to bgerived®® The dynamics of this map can yield a lot of infor-
purely singular continuous regardless of the potentiaation about the spectral properties as well as the localiza-
strength'” These results where obtained using the transfetion of wave functions. In all calculations made, we have set
matrix formalism. In this context, the transfer matrices arethe hopping integral=—1.
considered as operatof¢a), wherea e A, in the group of From the Schidinger equation and the invariance of rule
real unimodular matrices of order 2. When the niAps  (4), with respect to the interchanging of #ls with B’s, it
combined with the substitution ruga dynamical system is follows that the spectrum is symmetric around the energy
formed, from which the properties of the spectrum in prin-E=0, where the integrated density of states equals 1/2. As-
ciple can be obtained. But it has turned out more useful t&uming that the atoms in a Rudin-Shapiro lattice contribute
derive from this system a set of recursive equations for thvith one electron each, the Fermi energy is locatedE at
traces of these transfer matrices, called the trace map. For-a0. For the conduction properties, the existence of states
specific class of substitutions, meeting certain conditions ofyith energy zero is therefore of special interest. Using the
the substitution rule, and the corresponding trace map, Barace map, zero-energy states were fdfiridr any periodic
vier and Ghe?'”have obtained sufficient conditions for the approximant Corresponding to the even generations of the
spectrum to be singular and purely singular continuous, rechain for certain values of the potential strength. We have
spectively. The Rudin-Shapiro sequence is an example of jade a similar numerical analysis of the trace map and
fix point to a substitution rule that does not belong to thisfound that the energig=0 seems to be allowed also for any
class, and the nature of the spectrum for this model is still aperiodic approximant corresponding to the even generations
open problem. In this context, it may be noted that the propof the Rudin-Shapiro chain if we choose the potential
erties utilizing this class are not necessary in order to deter= 214 \\e show in Fig. 1 the eigenstate closest to the middle
mine the spectral type. In the remaining part of this sectiongf the spectrum for a Rudin-Shapiro chain with 4096 sites
the Rudin-Shapiro system will be discussed and compared t@g|culated with rigid boundary conditiorisote the logarith-
an aperiodic chain having singular continuous spectrum.  mjc scal@. The eigenstate shows some intricate self-similar
_ _ ) pattern with an overall tendency towards localization. Due to
A. The Rudin-Shapiro chain the boundary conditions the eigenenergy is not exactly zero,
In order to generate the Rudin-Shapiro sequeffem a  but for larger even generations we get closer to the genuine
substitution rule, a four-letter alphabf,b,c,d} is needed zero-energy state. It may be noted that all results presented
followed by a final projection to give the binary sequence.here are calculated in multiple precision in order to avoid
The rule has the form divergence of transfer matrices multiplication, as well as the
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FIG. 1. The eigenstate closest to the center of the spectrum for FIG. 2. “Extendedlike” state for a Rudin-Shapiro chain with
the 12th generation Rudin-Shapiro chain with potentiat2¥4 ~ 8192 sites, energf=—4.22616518...x 10 %% and on-site po-
energyE= —7.52755748 . . x 1033, using rigid boundary condi- tential V=214 using rigid boundary conditions. The absolute value
tions. The logarithm of the absolute value of the wave functionof the wave function coefficient is plotted in logarithmic scale as a
coefficient versus site index is shown. function of site index.

problem with near degeneracy of eigenvalues when detefingular continuous spectrum, although with a number of
mining the eigenstates. An exact zero-energy wave functior?P€N questions yet to be closed before reaching such a con-
obtained from the transfer matrix multiplicatioh) subjected ~ ¢lusion. The Rudin-Shapiro sequence is a primitive substitu-
to the initial conditionsy,=0 and ¢, =1, will produce a tion, which means that there emsts an mte@guch that for
non-normalized wave function witE=0 and a pattern al- 2"y Wo lettersa, S e A the word £(a) contains the letter
most impossible to distinguish from the state displayed inB: However, our result does no.t rule out the poss[blhty of a
Fig. 1. mixed spectrum fo/=1 or poss_lbly even a pure point spec-
Other values of the energy, apart frdE=0, for which f[rum for str_ong enoug_h potentials. It would indeed t_)e very
the dynamics of the trace map is trapped into a sixJnteresting |f_ there emst; a perfectly ordered substitutional
dimensional invariant subspace ae=+(2+V?)Y2 The Sequence with a pure point spectrum.
wave functions around these energivalues, where the inte-
grated density of states equals 1/4 and 3/4, respectively, look B. A chain with singular continuous spectrum
sharply localized and they display a rich self-similar hierar-
chy of peaks. We conclude that, for this potential strengt
and every even generation of the Rudin-Shapiro chain, al
states show an overall tendency towards localization. How-
ever, numerical investigations indicate that the Lyapunov ex-
ponent vanishes, so that the localization is weaker than ex-
ponential. Especially, this holds true for the state shown in &(d)=dc, ¢&(e)=ad, &(f)=fe, (6)
Fig. 1. )
A different feature is found for the odd generations, keep-d€efined on the alphabg¢a,b,c,d,e,f}, act on the seed an
ing the valuev =2 for the potential strength. The energy mfmng number of times. Due to the regularity of these rela-
E=0 seems to never occur for these generations. This treridnS it suffices to consider the two-letter words alphaket
of nonrecurrence of zero energy with respect to generatiorr 1aP-ad.dc.fe}. Starting from the first generation of the
number is already knowt?:18 It turns out that for odd gen- subgtltutlon(G), the 'rule can be expressed as concatenation
erations there exist, what we call, “extendedlike” states. In©f different generations of words by
Fig. 2 we show an example of this behavior for one of the
states closest to the central gap. This kind of state is not only
confined around the center of the spectrum but are also found
in, for example, the vicinity of the energieE==*(2 oKD= g0 70 k1) = 7K (k) (7
+2)¥2 It is hard to believe that, in the limit of large
chains, this kind of state is consistent with a pure point specHere »¥'=¢(a) stands for thekth generation of the se-
trum. In Ref. 10 it is argued that the spectrum for the Rudin-quence, containing*2elements, where the initial conditions
Shapiro model should be pure point for potentiis 1. But  areo®=ab, yM=ad, ¢®M=dc, andr¥=fe. The com-
Fig. 2 indicates that this may not be the case, and that theiflgination of the substitution rule with the transfer matrix is
exist values of the potential, e.gv,=2Y4 such that the accomplished by introducing the initial transfer matrices
states are “extendedlike” and that the spectrum probablyM,=7(b)7(a), N;=7(d)7(a), O,=7(c)7(d), and P;
contains a continuous part. In Ref. 12 it is intuitively conjec- =7(e)7(f). Then, it follows from the relation§7) that the
tured that any primitive substitution sequence should haveecursion of the transfer matrices can be written as

We introduce an aperiodic sequence by letting the primi-
ive substitution rule

§(a)=ab, ¢&(b)=ad, &(c)=fe,

D= o0 0 (k1) = (1) ()

7
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My 1=NeMy, Ny 1= O My, (8)

Ok+1=POk,  Pys1=NiPx,

where M, is the correspondingth generation transfer ma-
trix. In the Appendix we derive a trace map for this system
and prove analytically that the corresponding electron spec-
trum is purely singular continuous regardless of the potential
strength.

Given the substitution sequené&(ab) a variety of bi-
nary sequences can be obtained using different projections.
As long as they are aperiodic sequences, they will all share

the property of having purely singular continuous spectra. 0 500 1000 15‘00 2(;00
From now on eacla, b, andc is identified with anA, and n
eachd, e, andf is projected onto the elemeg in the se- FIG. 3. The natural logarithm of the absolute value of the wave

quencet”(ab). Starting from the second iteration of the rule function amplitude plotted as a function of site index for the chain
(6) this procedure is equivalent to let the binary substitution(9) with 2048 sites, potential V=24 and energy E
act on the alphabetl={AA,AB,BA,BB} according to =0.087064038- - using rigid boundary conditions.

HAA=AAAB,  HAB)=AABA © because the spectrum for this chain is not symmetric around

_ _ zero, which is easily seen from the substitution r@g The
¢(BA)=BABB,  {(BB)=BBAB, really interesting part is that for almost any value of the
producing the binary aperiodic sequeri¢¢AA). As an ex-  potential strength and for large, but finite lattices, the eigen-
ample, the fourth generation is given f[see. Eq(5)] states show localization properties similar to the states found
for the Rudin-Shapiro chain, despite the fact that the spec-
£(AA)=AAABAABAAAABBABB (100 trum is purely singular continuous. That is, all states are

This sequence is to be compared to the Rudin-Shapiro séa_xtended in the sense that they are non-normalizable for the

uence described by the ruld). In this notation both se- infinite chain. As for the Rudin-Shapiro modelthere exist
q d by A L ) values of the on-site potential such that the wave functions
guences are defined by primitive substitutions acting on the ) . . ;
same alphabet. Inspection of the relati¢fisand (9) reveals also appear extendedlike for this chain. However, the generic
that the infinite sequences contain strings of the elem&nts property seems to t_)e an overall tende_ncy towards_ localiza-
andB of length 1—4. Using the substitution matwe con- tion for finite approximations of the chain. The special value

: : V=2 gives even stronger localization of the states than the
clude that the density of the elements in the alphabet appea ) . . . "
with equal weight, implying that the elememdsand B are Sates found for the Rudin-Shapiro chain. This characteristic

equally common for both sequences. The substitution matri>f<eature is shown in Fig. 3 for an arbitrary state near the
foqr theyrule(g) reads q ' middle of the spectrum for the sequen®e with 2048 sites.
This example clearly demonstrates that aperiodic chains with

singular continuous spectra can show strong localization

1100 properties, regarding the electronic wave functions, for large
1001 (11 but finite approximations of the chains. Consequently, this
0 1 1 0 ) puts earlier arguments and conjectures about the spectral
00 1 1 properties for the Rudin-Shapiro model in a partly different

perspective.

with eigenvalues ©, 1, and 2. Amatrix with integer coeffi-

cients is said to possess the Pisot progérifif the leading

eigenvalue of the matrix has modulus greater than unity and ll. ELECTRON TRANSMISSION
all other eigenvalues are less than unity in modulus. Here the
sepond largest elgenvalug is exactly one and ”“? matrix Iﬁwough a finite, aperiodic chain described by the discrete
said to belong to a margmal case. For the Rudm-Shap.lr% e-independent Schdinger equation, which is equivalent
sequence the corresponding matrix belongs to the non-P|sE>Fn .

case, in agreement with the nonexistence of Bragg peaks in the ordinary tight-binding Eq1), with the hopping inte-

the Fourier spectrurt. gral normalized to-1,

In order to compare the electronic eigenstates for finite
generations of this chain with the states found for the Rudin- _ _ _
Shapiro chain in Sec. Il A, we choose the same parameter Vo= ¥nea= Y- =B, 12
values for the hopping integral and the potential strength
used there. First, we mention that for this chain states witor 1<n=<N. The finite chain is embedded in an infinite,
zero energy for potential strength seem to exist both largeperiodic chain, where the wave functions are taken as single
and less than one. Here, they are not of the same intereBloch waves specified by a wave vector

In this section we will study stationary transmission
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Yn=Roe "+ R;e " n<1, of

Y=TeX",  n=N, (13)

with Ry, Ry, and T defining the incident, reflected, and -15|
transmitted wave amplitudes, respectively. For the periodic g |-
chain[also described by Eq12) with V,,=0], the energye

25 ¢
is related to the Bloch wave vect@rthroughE= —2 co. | |
Motivated by the semi-infinite extension of the periodic =
chain to the left and to the right, we use this relation for the boB’ i
energy also in the finite aperiodic sample. Hence, we are — [ 5 1
restricted to the energy interval 2<E<2. 45t ‘ -10° o 10° ‘ ‘
The transmission coefficiemntis defined as the fraction of 006 -004  -0.02 0 002 004 006
the transmitted intensityT|? to the incident intensityRo|?. E
Inferring the quantities defined by oF .
=]l TI% yo=Re(gnyi_DI[TI% (14 ST (b) 1
the four-dimensional Eq12) in real domain can, by the use "
of current conservatiofpJ=Im(¢,¢5_,)], be reduced to a 15
two-dimensional mappirfg=2* =/ i
[=]5 -
Xn_1=X, Y(y2+sirPk), Vn, &l ANAN |
a5 | U -4x10°  4x10° |
Yn-1=~YntX-1(Vh1—E), 2sn=N+1, (19 40 - 4
where the initial conditions angy, =1, yn;1=C0X. Itera- 451/ ‘ ‘ ‘ L \T

tion of Eq. (15) from the output end to the input end of the 006  -004  -0.02 0 002 004 006
finite, aperiodic chain gives, using Eq4d.3) and (14), the E

transmission coefficient FIG. 4. The logarithm of the transmission coefficignas a

. function of energ)E for a Rudin-Shapiro chain with on-site poten-
_ 4 sirtk (16) tial V=2Y*and lengthN using the same scalé) N=256. (b) N
Xq+Xo— 2y,COK+ 2 sirfk =512. The insets show magnifications of the regions around the
center of the spectra.

The transmission problem is directly related to the WaV€verall tendency towards localization of the wave functions
functions for the chains described by EG2), with on-site y

potentialsV,, distributed according to the sequences studieJOr the odd generations of the sequence, we find peaks with

: i .. good transmissiofthe peak aE= —0.055583429- - in Fig.
in S-ec. I. Therefcire,l/:c‘he strength of Fhe on-site potential |sg(a) hast~0.86], which is explained by the self-similarity
again chosen a¥=2"" In all calculations made, we have

. . . A0 . of the corresponding field intensities. For this value of the
normalized the transmitted intensit¥|°=1. In Figs. 4a) : X o
o . otential strength, we do not find perfect transmission any-
and 4b) we show the transmission spectrum in an energ ! ; . .
) . ) . here and the field intensitie®r the corresponding wave
interval aroundE=0 for two generations of the Rudin-

: o n o . functiong cannot be strictly self-similar.
Shapira chaqn W'th Ieng.thll—2$6 andN—51_2, respectively. The transmission through a sequence of on-site potentials
The transmission coefficient in the gaps is roughly square%

t

. X ST enerated by the substitution ru(®) essentially share the
Wh?” do_ublmg ;_he I?ham Iength ar:]d the tr?hnsm|55|on n:ﬁthes roperties described above for the Rudin-Shapiro model. We
r_eg|ons 'S pé?f 'C‘?hy Z€To. tydC o.(t)smg|| c wavte;] VG; 9" show in Fig. 5 the transmission coefficient as a function of
—arccos CE2), € current density will cause the trans- nergy around a region of the middle of the spectrum for the
mission peaks to shift a small amount in energy compare

. . . hain (9) with N=256. The transmission peaks for this
with the energy spectra of t_he corre_zspond_lng cha_lns. For th odel are even more narrow than the peaks in Fig. d@nd
eveE ggtr;]fetrat|on 9f t_he Rud]!fp-sr;ipc;rggzlagl,zw? find a S.'ngl?he corresponding field intensities appear more localized than
peak with fransmission coetticie ) atapproxi- - o the Rudin-Shapiro chain. As an example, we show in the
mately zero energy, while for the odd generation a gap at th

.., mset of Fig. 5 the field intensities as a function of position
center of the spectrum appears surrounded by peakS‘tW'thfor one of the peaks in Fig. 5 with high transmission. Note

_~ 1 i it = 2 1 I . . . .
73'40' fTh?hﬂeld |nte|£13||tlexkn _|‘/’_?| as ? fu?ctlon OIhS'te that, when plotted in linear scale, only the dominating peaks
Index n for these peaks 100K simiiar in Sructure as the Cor~o¢ yaa istribution of the field intensities can be seen.

responding wave functions studied in Sec. Il. The existence

of “extendediike” states for the even generations of the\, opricAl TRANSMISSION THROUGH MULTILAYERS
Rudin-Shapiro sequence results in peaks with better trans-
mission through these chains than through the chains corre- To further compare some physical properties of the lattice

sponding to the odd generations of the sequence. Despite tipeesented in this paper and the Rudin-Shapiro lattice, we

094204-5



LARS KROON, ERIK LENNHOLM, AND ROLF RIKLUND PHYSICAL REVIEW B66, 094204 (2002

o i

-10 - *
XI’I
20 - *
—~ 2x10"
N
oL -
—
a0
p UU
ol MU ]
L L
0.1 0

FIG. 5. The logarithm of the transmission coefficignas a
function of energyE for the chain(9) with N=256, and potential
strengthV=2%4 The inset shows the field intensitie versus
positionn corresponding to the peak with=0.083741813. - and
t~0.70 in the main figure.

present numerical calculations of optical transmission
through two different multilayers, based on the two se-
guences. Since the formalism used has been described earlier
in several other places; 2" ?1%%he presentation here will be
rather short. The system which we analyze in this section
consists of a finite dielectric multilayer constructed of two
components A and B characterized by wavelength-
independent refractive indicas, and ng, and thicknesses

d, anddg, respectively. The multilayer is inserted between
two semi-infinite media of typd. The wave polarization is
parallel to the layer surfaces and for simplicity the thick-
nesses are assumed to be adjusted such that the variation of
the phase is the same in both types of lay&randB (i.e.,
op=Kkpdp=kgdg= 6= 0), wherek, and kg are the wave
vectors within the two different types of layers. The values of
the electric field and its first derivative at the interface of two

successive layers are components of some vector given by
the unimodular transfer matrix associated with the layer Tl |
1 0 (cos& —siné I 1
M= . , 1 05 F p
" 10 Kyiq1/ky/\sSiNS coss (7 i |
which means that
71 . - u

( cosé —r, smé)l . @ ) Lm Jml

= 18
r,siné C0SéS (18) ! 4§ 16 L& 3

n

wherer , equals 1 if thenth layer is of typeA, or n/ng if it FIG. 6. The transmission coefficiefitas a function of the phase
n 1 . . . . .

is of type B. The propagation of light througN layers is S in units of 7 for a multl-layer_ given bya) the sequen_cé)) wnh
now represented by a total transfer matdy,(8) whichisa N 2°6: (b) the iequenc@) with N=512, (¢) the Rudin-Shapiro
suitable product of transfer matrices of the type just de—sequegCe WithN=256, and(d) the Rudin-Shapiro sequence with
scribed above associated which each layéfor a multilayer N=512.

sandwiched between two layers of typethe transmission

coefficientTy(d) is then given by interval = to 27. The same values of the two refractive

indices o= 2.0 andng=2.75, respectivelyare used in all
Ta(8) =[(Myg+ Myp)2+ (Myy— i) 214, (19) cases studied here. Since the result depends strongly on the
length N of the multilayer we display the result for bott
where them;; are the matrix elements of the total transfer =256 andN=512. In Fig. 6 panelga and (b) concern
matrix My(8). We present the result by plotting the trans- sequence(9), and panels(c) and (d) concern the Rudin-
mission coefficienfT\(5) as function of the phasé in the  Shapiro sequence. The sequel@egives a “band” of very
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high transmission in the middle of the spectronith a local ~ properties were found to be in accordance with the localiza-
maximum exactly in the middjeand the width of this tion of the electronic wave functions, i.e., mostly low trans-
“band” decreases adN is increasing. The transmission mission coefficients, for both models. Despite the rather
through the Rudin-Shapiro multilayers show a much morestrong localization, we found peaks with high transmission
evenly spread out variatiofwith a minimum at the absolute which is traced to the self-similarity of the field intensities,
middle point for the short sample with=256). Note the or equivalently to the self-similarity of the corresponding
very drastic shrinking of the center region idsis doubled  wave functions.

and that the transmission &t=3#/2 now instead has a Finally, we considered optical transmission through di-
maximum (perfect transmission Since the Rudin-Shapiro electric multilayers ordered according to these sequences,
sequence has some properties in common with a disorderedhd an arbitrary disordered multilayer. We showed that the
sequence, we have also studied the transmission throudivo aperiodically ordered multilayers can have perfect trans-
various disordered multilayers having the same lengths anchission in the center, with a “bandlike” structure for the
identical optical parameters. It turns out that the developmergequence introduced in this article. In the global structure,
of certain peakg$as well as gapsin the transmission spectra the Rudin-Shapiro multilayer showed more in common with
agree for the Rudin-Shapiro case and the random cases. Ttiee representative for the disordered multilayers.

random cases also showed a more evenly spread out varia-

tion similgr to the Rudin-Shapiro case. Peaks Wit_h perfect ACKNOWLEDGMENTS
transmission ab=37/2 were never found for the different
random multilayers. Financial support from the Swedish Research Council is

gratefully acknowledged.

V. SUMMARY
APPENDIX A

The localization properties for deterministic aperiodic . _— . i5
chains were investigated in the on-site tight-binding model. For an arb_rltary SUbSt't_Ut_'on rule, Kcviamd Nor ha\(e
The Rudin-Shapiro chain was considered in some detail. Th&NOWn the existence of a finite sub#r A* and polynomial
existence of a zero-energy state for any periodic approximarff@PSF s for eachg e B, such that
corresponding to the even generations of this chain was nu-
merically indicated. For these generations of the chain, we X1 (B)=Fp[X(Ba), - X Big) ], (A1)

also pointed out the overall tendency towards localization O(Nh : _ . :
: : o . re the tr rdinatg(B)=tr 7%(B) is defin h
the eigenstates. The wave functions for finite chains corre ere the trace coord (B)=tr T°(p) is defined as the

sponding to the odd generations of the Rudin-Shapiro s trace of the correspondingth generation transfer matrix.

Lence gave a different picture. Here we found “extende e_F|ere, the setd* consists of all finitely long words that can
q p 9 PIC ' ’ ; . be written using the alphabet. In order to obtain an explicit
like” states, even for amplitudes of the on-site potental

>1 in units of the hopping integral, a result which is in expression for the trace map, corresponding to the system

contradiction with earlier arguments about the generic propgg)’ we can use the formufa

erty of localization for finite Rudin-Shapiro lattices. . = _ 0= = _ =
A step towards the question of localization in more gen- r(OAOE)=tr(OM)(OF)+tr(AZ) tr(A)tr(H)(,Az)
eral aperiodic chains was taken by introduction of an aperi-

odic substitution sequence which has several features ighich is easily derived from the Cayley-Hamilton theorem

common with the Rudin-Shapiro sequence. A trace map foand applies to all unimodular matrices of order two. Intro-
this system was derived and we proved analytically that thejucing the trace coordinates defined by

electron spectrum is singular continuous. However, it turned
out that for almost any value of the potential strength the Ke=tr(Ops i Mis1)s  S=tr (PO,
wave functions for finite approximations showed localization
properties similar to the states found for the Rudin-Shapiro
lattice, despite the fact that the spectrum is singular continu-
ous. We came to the conclusion that aperiodic chains with
singular continuous spectra can show strong localization m=tr(My),  we=tr(OMN),
properties regarding the electronic wave functions, for large
but finite approximants. This result points in the direction N=tr(No),  v=tr(MP) — tr(M)tr(Py),
that singular continuous spectra could be a universal prop-
erty for tight-binding systems with on-site potentials gener- 0 =tr(0y), W =tr(PON, (A3)
ated from primitive substitutions. Consequently this result
also puts earlier arguments and conjectures about the spectral _ _
properties for the Rudin-Shapiro model in a partly different P=t(P), - XS tHAOM)
perspective.

Stationary electron transmission through finite chains
based on the two discussed sequences was numerically in-
vestigated by the use of a dynamical map. The transmission Ne=tr(OMy), = tr(MANOy)

L =tr(Ner1Pis1), = tr(NPy),

Qc=tr(MMy),  Ye=tr( MNP,
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and making use of the relatio®), Eqg. (A2), and the invari- i 1= 1OkPKOks Tkt 1= POkl kWi »
ance of the trace with respect to cyclic permutation of the
matrices, we get the trace map

> 2 My+1=0k,  Nk+1= Tk,
Kicr 1= My 1Wyy 1 — Oy PyS+ P+ 0 — 2,

2 2 _ _
I+ 1= Skt 10k + 1+ OkPKSKk— Pk — O +2 Ok+1=Sks  Pr+1= s

N1 (X 17~ My 1Sk+1)
Oer1=Oilks  Ter1 =K,

Mg+ 1=k,
Nir1=r, Skr1=PiWi, 1=y, (A5)
Ok+17 Sk
Uk+1= OpXk,
Pi+ 1=tk
_ Wi 1= 0Pk,  Xkr1= W,
Qs 1= Okl K+ Ug— N0y, k+1= IkOkPk k+1= PrOkWk
M 1= K, (A4)

Yir1=0M ik, Zer 1=Kyl

Sk+1= PkWk— Uk, ) ]
To proceed from here we suppress all subscripts in the re-

ter 1=y, duced trace mapA5) and redefine the finite sé according

to B={k,l,m,n,0,p,q,r,s,t,u,w,x,y,z}. Now the reduced
Ug+ 1= O Xk— U1 — MyPy, trace map(A5) can be considered as a mappifgB3— B*.

Here, the order of the elements is not specified so this map-

Vir1=01(=vy), ping is not unique. More importantly the mappigg in this
particular case, belongs to the classsemiprimitivé® sub-

Wit 1= Pr(Ol k= Vi) — 0kZic+ Ay stitutions. A substitutionp on an alphabeB is called semi-
primitive if there exists a subselC B such that¢ maps

X+ 1= O PWK— Uy) + Pr( X — MySy) + M0 — 1y, C into C*, and the restriction ot to C is a primitive sub-

stitution, and in additionp¥(B), for some positive integer

Yi+1= P+ 10k+ 1+ Nk 101+ O 1, k, contains at least one letter frord for each letter
BeB. Using Eq. (A5), it follows that the choiceC

Zy 4 1= Kyl et Sl — O Wi — Ny P+t ={k,l,0,p,q,r,s,t,w} meets all of these conditions, and

hence ensures that our reduced trace map is semiprimitive.
When the substitutionp, associated with the trace map
orresponding to a primitive substituti@f), is semiprimi-
tive as described above, and if there also exists a finite inte-
gerk, such thatt*o(a,), where age A, contains the word
B for some Be B, the spectrum is singuldt. From the
ubstitution rule(6), we have

It is straightforward to expand the right-hand sides of all
these relations in terms of the defined trace map coordinat%
(A3) for indexk=1. When the initial conditions are speci-
fied the coordinate ,=v is a constant and will be dropped
from Eq.(A4) leaving 15 trace coordinates. This number can
actually be reduced further, but the reduction of the numbe
of trace coordinates is not relevant for our purpose since

there is in fact nothing unique about this specific trace map.

In view of Eq. (A1) this trace map represents a new dynami- & (ab)=£3%(ab)¢?(ab)dcfefead (AB)
cal system based on the traces of the transfer matrices and

the elements of the finite sé% are chosen as the words _. B 4
corresponding to the initial trace maps coordinafs). For ~ oincefee B [remember thap, =tr7(fe)] and £"(ab) con-
tains the square of the elemefr@ the spectrum is singular,

example, the coordinatg,=tr7(abad), corresponds to the .
P &, = r7( 9 P i.e., supported on a set of zero Lebesgue measure.

word w®=abad, which is included in sef3. The other ' order tablish the ab ¢ i | i th
elements are found in a similar fashion. n order to establis € absence of eigenvalues in the

To every given trace map, there always exists a uniquéPectrum, the structurd™ is extended to a free groug* by
reduced trace map,i.e., the mapping obtained when only adding the formal inverses of the lettersihas generators.
the monomial of highest degree are kept in the full traceWhen the spectrum is singular as described above, and if in
map. Here, degree simply refers to the number of element@ddition there exist finite integers,,mo such that¢" (o)
associated with each variable. With the trace map defined by: £€™(yq) £™( o) Sw, where yoeC, we A*, and Se A*

Eqg. (A4), with vy eliminated, we get the corresponding has the property that there exists a finite inteigesuch that
unique reduced trace map £o(8)= 4. Then the spectrum is purely singular continuous

094204-8



LOCALIZATION-DELOCALIZATION IN APERIODIC SYSTEMS PHYSICAL REVIEW B66, 094204 (2002

owhore ot S vero L ohtogt Cantorlﬁsﬁi a perfect where&(5)= 6 is satisfied with6=fe(ab) ~*e A*. Hence,
nowhere dense gaibf zero Lebesgue measure.” Using this with w=5"Y(ad) *dce A* and y,=abadeC (more cor-

extension, we may write . ) .
rectly, g e C) the conclusion of a purely singular continuous

£(ab)=(abad?ss *(ad) dc, (A7)  electron spectrum is reached.
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