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Localization-delocalization in aperiodic systems
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The question of localization in a one-dimensional tight-binding model with aperiodicity given by substitu-
tions is discussed. Since the localization properties of the well-known Rudin-Shapiro chain is still far from well
understood, partly due to the absence of rigorous analytical results, we introduce a sequence that has several
features in common with the Rudin-Shapiro sequence. We derive a trace map for this system and prove
analytically that the electron spectrum is singular continuous. Despite the extended~non-normalizable! nature
of the corresponding wave functions, the states show strong localization for finite approximations of the chain.
Similar localization properties are found for the Rudin-Shapiro chain, where earlier results have indicated a
pure point spectrum. We compare the properties for two other physical systems, ordered according to the two
discussed sequences; stationary electron transmission is studied through finite chains using a dynamical map,
optical properties of dielectric multilayer structures are investigated.

DOI: 10.1103/PhysRevB.66.094204 PACS number~s!: 71.23.Ft, 73.21.Cd
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I. INTRODUCTION

The field of localization has in recent years showed int
esting development which seem to somewhat contradict
intuitive picture related to Anderson localization. In 199
Dunlap and co-workers1 studied a random dimer tight
binding model, where the site energies are distributed r
domly in pairs. They showed thatAN of the eigenstates ar
extended, whereN is equal to the length of the system. S
et al.2 gave in 1993 a simple example of a one-dimensio
model with all the electronic states extended. Their mo
has constant site-energies and the hopping matrix elem
assume the valuest and 2t with the probabilitiesp and (1
2p), respectively. It has later been shown,3 by using ideas
from Sil et al., that there exist tight-binding models with
deterministic aperiodic distribution of the off-diagonal m
trix elements that give all states extended and one state
riodic. Perhaps even more interesting is that a theoret
model with correlated disorder also can have all states
tended, one of which is periodic.4 This is probably as far
away as one can get, from what has become almost a f
lore, that in a one-dimensional disordered system all st
are localized.

Coming from the other end one could ask if there ex
perfectly ordered systems that have all states localized
possible candidate for generating this is the Rudin-Sha
chain.5,6 This binary sequence can be generated by a su
tutional rule acting on four different letters, which is the
reduced to a sequence of two letters. One reason for
interest in the Rudin-Shapiro sequence is that its Fou
transform is an absolutely continuous function such as fo
random sequence. It is even so that the Rudin-Shapiro
quence has a Fourier transform which is a constant. This
sharp contrast to the other well known deterministic ap
odic sequences; the Fibonacci sequence has a Fourier t
form that consists of delta peaks, while the Thue-Morse
quence has a Fourier transform which is singular continuo
The importance of the character of the Fourier transform
the properties of the electronic spectra comes from the
that there ought to exist a connection between energy g
and singularities in the Fourier spectra. As is well-know
0163-1829/2002/66~9!/094204~9!/$20.00 66 0942
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from periodic systems, gaps in the energy spectrum co
spond to Bragg peaks in the Fourier transform. For smo
enough quasiperiodic potentials the corresponding so ca
gap-labeling theorem7,8 has been shown to be valid. How
ever, numerical results indicate, that for the Rudin-Shap
model the energy spectrum is a dense set of gaps,9 in spite of
the absence of singularities in the Fourier spectrum. T
indicates that the above conjectured connection is not c
in the case of general aperiodic sequences.

There are very few rigorous results concerning the el
tronic spectrum and the associated wave functions for
Rudin-Shapiro system, probably due to the complexity of
sequence. Results based on numerical data indicate10 that for
finite approximations of the Rudin-Shapiro sequence
eigenstates are localized, for almost any value of the po
tial strength, but that the localization can be weaker th
exponential. That the localization problem for this system
still under discussion can, for instance, be seen in Ref. 1

With this somewhat detailed, but still rather selective
troduction, we have wanted to show that the localizat
problem is a rather complex and in some parts rather no
tuitive issue, that is not completely understood yet. Since
Rudin-Shapiro sequence is suggested to be an extreme
and there is still very few analytical result concerning th
system, we present in Sec. II a new sequence with the s
basic block structure and a very similar generating schem
the Rudin-Shapiro sequence, but that is rigorously prove
generate a singular continuous spectrum for the tight-bind
model.

We think it is of great interest to find a sequence as cl
as possible to the Rudin-Shapiro chain, concerning b
building blocks and generating scheme, and compare s
physical properties of this new chain with the Rudin-Shap
chain. In Sec. III we study stationary electron transmission
a tight-binding model. Finally, optical transmission throu
multilayered materials is addressed in Sec. IV.

All systems are discrete and one dimensional and
would like to see if any fundamental differences in physic
properties exist concerning the underlying sequence of th
systems. If our result could also initiate some new succes
©2002 The American Physical Society04-1
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analytical attack on the old problem of the nature of t
spectrum of the Rudin-Shapiro chain, it would be useful
a more complete understanding of the localization prob
in low-dimensional systems.

II. SPECTRUM AND WAVE FUNCTIONS

The physical system studied first is a one-orbital tig
binding model with potentialsVn distributed aperiodically on
a one-dimensional chain of atoms with unit spacing. T
electron can hop between nearest-neighbor atoms acco
to the equation

S cn11

cn
D 5S ~E2Vn!t21 21

1 0 D S cn

cn21
D , ~1!

wherecn denotes the amplitude of the wave function on s
n, E is the energy of the electron, andt is the hopping inte-
gral. We will consider binary aperiodic sequences of on-s
potentials obtained from projections of fix points to substi
tion sequences. Here, a fix point is an invariant word o
substitution rulej which is defined on some finite setA,
called an alphabet. Truly infinite sequences, consistent w
Eq. ~1!, are obtained as concatenation of these fix points12

The above described deterministic aperiodic system
been extensively used to study the electronic propertie
models for one-dimensional quasicrystals or aperiodic su
lattices. It turns out that the poorly understood and somew
exotic singular continuous electron spectrum is comm
among these models. If the on-site potentials is distribu
according to the Fibonacci, Thue-Morse, and perio
doubling sequences the spectrum is rigorously proven to
purely singular continuous regardless of the poten
strength.12 These results where obtained using the trans
matrix formalism. In this context, the transfer matrices a
considered as operatorsT(a), whereaPA, in the group of
real unimodular matrices of order 2. When the mapT is
combined with the substitution rulej a dynamical system is
formed, from which the properties of the spectrum in pr
ciple can be obtained. But it has turned out more usefu
derive from this system a set of recursive equations for
traces of these transfer matrices, called the trace map. F
specific class of substitutions, meeting certain conditions
the substitution rule, and the corresponding trace map,
vier and Ghez13,14have obtained sufficient conditions for th
spectrum to be singular and purely singular continuous,
spectively. The Rudin-Shapiro sequence is an example
fix point to a substitution rule that does not belong to t
class, and the nature of the spectrum for this model is stil
open problem. In this context, it may be noted that the pr
erties utilizing this class are not necessary in order to de
mine the spectral type. In the remaining part of this secti
the Rudin-Shapiro system will be discussed and compare
an aperiodic chain having singular continuous spectrum.

A. The Rudin-Shapiro chain

In order to generate the Rudin-Shapiro sequence5,6 from a
substitution rule, a four-letter alphabet$a,b,c,d% is needed
followed by a final projection to give the binary sequenc
The rule has the form
09420
r

-

e
ing

e
-
a

th

as
in
r-
at
n
d
-
e
l
r

e

-
o
e
r a
f

o-

e-
a

n
-
r-
,
to

.

j~a!5ab, j~b!5ac, j~c!5db, j~d!5dc. ~2!

If the lettera is used as the seed, the following word is fou
after four successive applications of the rule~2!

j4~a!5abacabdbabacdcac, ~3!

and the Rudin-Shapiro sequence is obtained after identify
eacha andb with A, and eachc andd with B in the semi-
infinite word j`(a). This fix point is actually easier to visu
alize if we apply the substitution rule~2! twice and then use
the same projection as before. By defining the alphabeA
5$AA,AB,BA,BB% consisting of two-letter words and th
substitution rule acting on these words by

j~AA!5AAAB, j~AB!5AABA,

j~BA!5BBAB, j~BB!5BBBA, ~4!

the Rudin-Shapiro sequence is readily found asj`(AA). In
practice we have to consider finite approximations of
sequence. The wordAA is called the first generation of th
sequence. Thekth generation, containing 2k elements, is
found by applying the substitution rule~4! (k21) times. For
example, the fourth generation Rudin-Shapiro chain read

j3~AA!5AAABAABAAAABBBAB. ~5!

Each elementA ~B! in the chain of atoms is assigned th
value V (2V), where we consider on-site potentialsV>0.
From the substitution rule~2! an eight-dimensional trace
map, with a six-dimensional invariant subspace, w
derived.15 The dynamics of this map can yield a lot of info
mation about the spectral properties as well as the local
tion of wave functions. In all calculations made, we have
the hopping integralt521.

From the Schro¨dinger equation and the invariance of ru
~4!, with respect to the interchanging of allA’s with B’s, it
follows that the spectrum is symmetric around the ene
E50, where the integrated density of states equals 1/2.
suming that the atoms in a Rudin-Shapiro lattice contrib
with one electron each, the Fermi energy is located aE
50. For the conduction properties, the existence of sta
with energy zero is therefore of special interest. Using
trace map, zero-energy states were found16 for any periodic
approximant corresponding to the even generations of
chain for certain values of the potential strength. We ha
made a similar numerical analysis of the trace map a
found that the energyE50 seems to be allowed also for an
periodic approximant corresponding to the even generat
of the Rudin-Shapiro chain if we choose the potentialV
521/4. We show in Fig. 1 the eigenstate closest to the mid
of the spectrum for a Rudin-Shapiro chain with 4096 si
calculated with rigid boundary conditions~note the logarith-
mic scale!. The eigenstate shows some intricate self-sim
pattern with an overall tendency towards localization. Due
the boundary conditions the eigenenergy is not exactly z
but for larger even generations we get closer to the genu
zero-energy state. It may be noted that all results prese
here are calculated in multiple precision in order to avo
divergence of transfer matrices multiplication, as well as
4-2
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problem with near degeneracy of eigenvalues when de
mining the eigenstates. An exact zero-energy wave funct
obtained from the transfer matrix multiplication~1! subjected
to the initial conditionsc050 and c151, will produce a
non-normalized wave function withE50 and a pattern al-
most impossible to distinguish from the state displayed
Fig. 1.

Other values of the energy, apart fromE50, for which
the dynamics of the trace map is trapped into a s
dimensional invariant subspace areE56(21V2)1/2. The
wave functions around these energivalues, where the i
grated density of states equals 1/4 and 3/4, respectively,
sharply localized and they display a rich self-similar hier
chy of peaks. We conclude that, for this potential stren
and every even generation of the Rudin-Shapiro chain,
states show an overall tendency towards localization. H
ever, numerical investigations indicate that the Lyapunov
ponent vanishes, so that the localization is weaker than
ponential. Especially, this holds true for the state shown
Fig. 1.

A different feature is found for the odd generations, kee
ing the valueV521/4 for the potential strength. The energ
E50 seems to never occur for these generations. This tr
of nonrecurrence of zero energy with respect to genera
number is already known.15,16 It turns out that for odd gen
erations there exist, what we call, ‘‘extendedlike’’ states.
Fig. 2 we show an example of this behavior for one of t
states closest to the central gap. This kind of state is not o
confined around the center of the spectrum but are also fo
in, for example, the vicinity of the energiesE56(2
1A2)1/2. It is hard to believe that, in the limit of larg
chains, this kind of state is consistent with a pure point sp
trum. In Ref. 10 it is argued that the spectrum for the Rud
Shapiro model should be pure point for potentialsV>1. But
Fig. 2 indicates that this may not be the case, and that t
exist values of the potential, e.g.,V521/4, such that the
states are ‘‘extendedlike’’ and that the spectrum proba
contains a continuous part. In Ref. 12 it is intuitively conje
tured that any primitive substitution sequence should h

FIG. 1. The eigenstate closest to the center of the spectrum
the 12th generation Rudin-Shapiro chain with potentialV521/4,
energyE527.52755748 . . .310233, using rigid boundary condi-
tions. The logarithm of the absolute value of the wave funct
coefficient versus site index is shown.
09420
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singular continuous spectrum, although with a number
open questions yet to be closed before reaching such a
clusion. The Rudin-Shapiro sequence is a primitive subst
tion, which means that there exists an integerk such that for
any two lettersa,bPA the wordjk(a) contains the letter
b. However, our result does not rule out the possibility o
mixed spectrum forV>1 or possibly even a pure point spe
trum for strong enough potentials. It would indeed be ve
interesting if there exists a perfectly ordered substitutio
sequence with a pure point spectrum.

B. A chain with singular continuous spectrum

We introduce an aperiodic sequence by letting the pri
tive substitution rule

j~a!5ab, j~b!5ad, j~c!5 f e,

j~d!5dc, j~e!5ad, j~ f !5 f e, ~6!

defined on the alphabet$a,b,c,d,e, f %, act on the seeda an
infinite number of times. Due to the regularity of these re
tions it suffices to consider the two-letter words alphabetA
5$ab,ad,dc, f e%. Starting from the first generation of th
substitution~6!, the rule can be expressed as concatena
of different generations of words by

v (k11)5v (k)h (k), h (k11)5v (k)s (k),

s (k11)5s (k)t (k), t (k11)5t (k)h (k). ~7!

Here v (k)5jk(a) stands for thekth generation of the se
quence, containing 2k elements, where the initial condition
arev (1)5ab, h (1)5ad, s (1)5dc, andt (1)5 f e. The com-
bination of the substitution rule with the transfer matrix
accomplished by introducing the initial transfer matric
M15T(b)T(a), N15T(d)T(a), O15T(c)T(d), and P1
5T(e)T( f ). Then, it follows from the relations~7! that the
recursion of the transfer matrices can be written as

or FIG. 2. ‘‘Extendedlike’’ state for a Rudin-Shapiro chain wit
8192 sites, energyE524.226165180 . . .310223, and on-site po-
tential V521/4 using rigid boundary conditions. The absolute val
of the wave function coefficient is plotted in logarithmic scale a
function of site index.
4-3
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Mk115NkMk , Nk115OkMk , ~8!

Ok115PkOk , Pk115NkPk ,

whereMk is the correspondingkth generation transfer ma
trix. In the Appendix we derive a trace map for this syste
and prove analytically that the corresponding electron sp
trum is purely singular continuous regardless of the poten
strength.

Given the substitution sequencej`(ab) a variety of bi-
nary sequences can be obtained using different projecti
As long as they are aperiodic sequences, they will all sh
the property of having purely singular continuous spec
From now on eacha, b, andc is identified with anA, and
eachd, e, and f is projected onto the elementB in the se-
quencej`(ab). Starting from the second iteration of the ru
~6! this procedure is equivalent to let the binary substitut
act on the alphabetA5$AA,AB,BA,BB% according to

j~AA!5AAAB, j~AB!5AABA, ~9!

j~BA!5BABB, j~BB!5BBAB,

producing the binary aperiodic sequencej`(AA). As an ex-
ample, the fourth generation is given by@see. Eq.~5!#

j3~AA!5AAABAABAAAABBABB. ~10!

This sequence is to be compared to the Rudin-Shapiro
quence described by the rule~4!. In this notation both se-
quences are defined by primitive substitutions acting on
same alphabet. Inspection of the relations~4! and~9! reveals
that the infinite sequences contain strings of the elemenA
andB of length 1–4. Using the substitution matrix17 we con-
clude that the density of the elements in the alphabet ap
with equal weight, implying that the elementsA and B are
equally common for both sequences. The substitution ma
for the rule~9! reads

S 1 1 0 0

1 0 0 1

0 1 1 0

0 0 1 1

D , ~11!

with eigenvalues 0,0,1, and 2. Amatrix with integer coeffi-
cients is said to possess the Pisot property18–20 if the leading
eigenvalue of the matrix has modulus greater than unity
all other eigenvalues are less than unity in modulus. Here
second largest eigenvalue is exactly one and the matri
said to belong to a marginal case. For the Rudin-Sha
sequence the corresponding matrix belongs to the non-P
case, in agreement with the nonexistence of Bragg peak
the Fourier spectrum.17

In order to compare the electronic eigenstates for fin
generations of this chain with the states found for the Rud
Shapiro chain in Sec. II A, we choose the same param
values for the hopping integral and the potential stren
used there. First, we mention that for this chain states w
zero energy for potential strength seem to exist both lar
and less than one. Here, they are not of the same inte
09420
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because the spectrum for this chain is not symmetric aro
zero, which is easily seen from the substitution rule~9!. The
really interesting part is that for almost any value of t
potential strength and for large, but finite lattices, the eig
states show localization properties similar to the states fo
for the Rudin-Shapiro chain, despite the fact that the sp
trum is purely singular continuous. That is, all states
extended in the sense that they are non-normalizable for
infinite chain. As for the Rudin-Shapiro model,21 there exist
values of the on-site potential such that the wave functi
also appear extendedlike for this chain. However, the gen
property seems to be an overall tendency towards local
tion for finite approximations of the chain. The special val
V521/4 gives even stronger localization of the states than
states found for the Rudin-Shapiro chain. This characteri
feature is shown in Fig. 3 for an arbitrary state near
middle of the spectrum for the sequence~9! with 2048 sites.
This example clearly demonstrates that aperiodic chains w
singular continuous spectra can show strong localiza
properties, regarding the electronic wave functions, for la
but finite approximations of the chains. Consequently, t
puts earlier arguments and conjectures about the spe
properties for the Rudin-Shapiro model in a partly differe
perspective.

III. ELECTRON TRANSMISSION

In this section we will study stationary transmissio
through a finite, aperiodic chain described by the discr
time-independent Schro¨dinger equation, which is equivalen
to the ordinary tight-binding Eq.~1!, with the hopping inte-
gral normalized to21,

Vncn2cn112cn215Ecn , ~12!

for 1<n<N. The finite chain is embedded in an infinit
periodic chain, where the wave functions are taken as sin
Bloch waves specified by a wave vectork

FIG. 3. The natural logarithm of the absolute value of the wa
function amplitude plotted as a function of site index for the ch
~9! with 2048 sites, potential V521/4, and energy E
50.087064038••• using rigid boundary conditions.
4-4
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cn5R0eikn1R1e2 ikn, n<1,

cn5Teikn, n>N, ~13!

with R0 , R1, and T defining the incident, reflected, an
transmitted wave amplitudes, respectively. For the perio
chain@also described by Eq.~12! with Vn[0], the energyE
is related to the Bloch wave vectork throughE522 cosk.
Motivated by the semi-infinite extension of the period
chain to the left and to the right, we use this relation for t
energy also in the finite aperiodic sample. Hence, we
restricted to the energy interval22<E<2.

The transmission coefficientt is defined as the fraction o
the transmitted intensityuTu2 to the incident intensityuR0u2.
Inferring the quantities defined by

xn5ucnu2/uTu2, yn5Re~cncn21* !/uTu2, ~14!

the four-dimensional Eq.~12! in real domain can, by the us
of current conservation@J[Im(cncn21* )#, be reduced to a
two-dimensional mapping22–24

xn215xn
21~yn

21sin2k!, ;n,

yn2152yn1xn21~Vn212E!, 2<n<N11, ~15!

where the initial conditions arexN1151, yN115cosk. Itera-
tion of Eq. ~15! from the output end to the input end of th
finite, aperiodic chain gives, using Eqs.~13! and ~14!, the
transmission coefficient

t5
4 sin2k

x11x022y1cosk12 sin2k
. ~16!

The transmission problem is directly related to the wa
functions for the chains described by Eq.~12!, with on-site
potentialsVn distributed according to the sequences stud
in Sec. II. Therefore, the strength of the on-site potentia
again chosen asV521/4. In all calculations made, we hav
normalized the transmitted intensityuTu251. In Figs. 4~a!
and 4~b! we show the transmission spectrum in an ene
interval aroundE50 for two generations of the Rudin
Shapiro chain with lengthN5256 andN5512, respectively.
The transmission coefficient in the gaps is roughly squa
when doubling the chain length and the transmission in th
regions is practically zero. By choosing the wave vectok
5arccos (2E/2), the current density will cause the tran
mission peaks to shift a small amount in energy compa
with the energy spectra of the corresponding chains. For
even generation of the Rudin-Shapiro chain, we find a sin
peak with transmission coefficientt'0.6331022 at approxi-
mately zero energy, while for the odd generation a gap at
center of the spectrum appears surrounded by peaks wt
'0.40. The field intensitiesxn5ucnu2 as a function of site
index n for these peaks look similar in structure as the c
responding wave functions studied in Sec. II. The existe
of ‘‘extendedlike’’ states for the even generations of t
Rudin-Shapiro sequence results in peaks with better tr
mission through these chains than through the chains co
sponding to the odd generations of the sequence. Despit
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overall tendency towards localization of the wave functio
for the odd generations of the sequence, we find peaks
good transmission@the peak atE520.055583429••• in Fig.
4~a! has t'0.86], which is explained by the self-similarit
of the corresponding field intensities. For this value of t
potential strength, we do not find perfect transmission a
where and the field intensities~or the corresponding wave
functions! cannot be strictly self-similar.

The transmission through a sequence of on-site poten
generated by the substitution rule~9! essentially share the
properties described above for the Rudin-Shapiro model.
show in Fig. 5 the transmission coefficient as a function
energy around a region of the middle of the spectrum for
chain ~9! with N5256. The transmission peaks for th
model are even more narrow than the peaks in Fig. 4~a! and
the corresponding field intensities appear more localized t
for the Rudin-Shapiro chain. As an example, we show in
inset of Fig. 5 the field intensities as a function of positi
for one of the peaks in Fig. 5 with high transmission. No
that, when plotted in linear scale, only the dominating pe
of the distribution of the field intensities can be seen.

IV. OPTICAL TRANSMISSION THROUGH MULTILAYERS

To further compare some physical properties of the latt
presented in this paper and the Rudin-Shapiro lattice,

FIG. 4. The logarithm of the transmission coefficientt as a
function of energyE for a Rudin-Shapiro chain with on-site poten
tial V521/4 and lengthN using the same scale.~a! N5256. ~b! N
5512. The insets show magnifications of the regions around
center of the spectra.
4-5



io
e
ar
e
tio
o
-

en

k-
on

o
o

n

de

er
s-

e

n the

h

LARS KROON, ERIK LENNHOLM, AND ROLF RIKLUND PHYSICAL REVIEW B66, 094204 ~2002!
present numerical calculations of optical transmiss
through two different multilayers, based on the two s
quences. Since the formalism used has been described e
in several other places,25–27,21,28the presentation here will b
rather short. The system which we analyze in this sec
consists of a finite dielectric multilayer constructed of tw
components A and B characterized by wavelength
independent refractive indicesnA and nB , and thicknesses
dA anddB , respectively. The multilayer is inserted betwe
two semi-infinite media of typeA. The wave polarization is
parallel to the layer surfaces and for simplicity the thic
nesses are assumed to be adjusted such that the variati
the phase is the same in both types of layersA and B ~i.e.,
dA5kAdA5kBdB5dB5d), wherekA and kB are the wave
vectors within the two different types of layers. The values
the electric field and its first derivative at the interface of tw
successive layers are components of some vector give
the unimodular transfer matrix associated with the layern,

Mn5S 1 0

0 kn11 /kn
D S cosd 2sind

sind cosd D , ~17!

which means that

Mn5S cosd 2r n
21sind

r nsind cosd
D , ~18!

wherer n equals 1 if thenth layer is of typeA, or nA /nB if it
is of type B. The propagation of light throughN layers is
now represented by a total transfer matrixMN(d) which is a
suitable product of transfer matrices of the type just
scribed above associated which each layern. For a multilayer
sandwiched between two layers of typeA the transmission
coefficientTN(d) is then given by

TN~d!5@~m111m22!
21~m212m12!

2#/4, ~19!

where themi j are the matrix elements of the total transf
matrix MN(d). We present the result by plotting the tran
mission coefficientTN(d) as function of the phased in the

FIG. 5. The logarithm of the transmission coefficientt as a
function of energyE for the chain~9! with N5256, and potential
strengthV521/4. The inset shows the field intensitiesxn versus
positionn corresponding to the peak withE50.083741813••• and
t'0.70 in the main figure.
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interval p to 2p. The same values of the two refractiv
indices (nA5 2.0 andnB52.75, respectively! are used in all
cases studied here. Since the result depends strongly o
length N of the multilayer we display the result for bothN
5256 andN5512. In Fig. 6 panels~a! and ~b! concern
sequence~9!, and panels~c! and ~d! concern the Rudin-
Shapiro sequence. The sequence~9! gives a ‘‘band’’ of very

FIG. 6. The transmission coefficientT as a function of the phase
d in units ofp for a multi-layer given by~a! the sequence~9! with
N5256, ~b! the sequence~9! with N5512, ~c! the Rudin-Shapiro
sequence withN5256, and~d! the Rudin-Shapiro sequence wit
N5512.
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high transmission in the middle of the spectrum~with a local
maximum exactly in the middle! and the width of this
‘‘band’’ decreases asN is increasing. The transmissio
through the Rudin-Shapiro multilayers show a much m
evenly spread out variation~with a minimum at the absolute
middle point for the short sample withN5256). Note the
very drastic shrinking of the center region asN is doubled
and that the transmission atd53p/2 now instead has a
maximum ~perfect transmission!. Since the Rudin-Shapiro
sequence has some properties in common with a disord
sequence, we have also studied the transmission thro
various disordered multilayers having the same lengths
identical optical parameters. It turns out that the developm
of certain peaks~as well as gaps! in the transmission spectr
agree for the Rudin-Shapiro case and the random cases
random cases also showed a more evenly spread out v
tion similar to the Rudin-Shapiro case. Peaks with perf
transmission atd53p/2 were never found for the differen
random multilayers.

V. SUMMARY

The localization properties for deterministic aperiod
chains were investigated in the on-site tight-binding mod
The Rudin-Shapiro chain was considered in some detail.
existence of a zero-energy state for any periodic approxim
corresponding to the even generations of this chain was
merically indicated. For these generations of the chain,
also pointed out the overall tendency towards localization
the eigenstates. The wave functions for finite chains co
sponding to the odd generations of the Rudin-Shapiro
quence gave a different picture. Here, we found ‘‘extend
like’’ states, even for amplitudes of the on-site potentialV
.1 in units of the hopping integral, a result which is
contradiction with earlier arguments about the generic pr
erty of localization for finite Rudin-Shapiro lattices.

A step towards the question of localization in more ge
eral aperiodic chains was taken by introduction of an ap
odic substitution sequence which has several feature
common with the Rudin-Shapiro sequence. A trace map
this system was derived and we proved analytically that
electron spectrum is singular continuous. However, it turn
out that for almost any value of the potential strength
wave functions for finite approximations showed localizati
properties similar to the states found for the Rudin-Shap
lattice, despite the fact that the spectrum is singular cont
ous. We came to the conclusion that aperiodic chains w
singular continuous spectra can show strong localiza
properties regarding the electronic wave functions, for la
but finite approximants. This result points in the directi
that singular continuous spectra could be a universal p
erty for tight-binding systems with on-site potentials gen
ated from primitive substitutions. Consequently this res
also puts earlier arguments and conjectures about the spe
properties for the Rudin-Shapiro model in a partly differe
perspective.

Stationary electron transmission through finite cha
based on the two discussed sequences was numericall
vestigated by the use of a dynamical map. The transmis
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properties were found to be in accordance with the locali
tion of the electronic wave functions, i.e., mostly low tran
mission coefficients, for both models. Despite the rat
strong localization, we found peaks with high transmiss
which is traced to the self-similarity of the field intensitie
or equivalently to the self-similarity of the correspondin
wave functions.

Finally, we considered optical transmission through
electric multilayers ordered according to these sequen
and an arbitrary disordered multilayer. We showed that
two aperiodically ordered multilayers can have perfect tra
mission in the center, with a ‘‘bandlike’’ structure for th
sequence introduced in this article. In the global structu
the Rudin-Shapiro multilayer showed more in common w
the representative for the disordered multilayers.
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APPENDIX A

For an arbritary substitution rule, Kola´ř and Nori15 have
shown the existence of a finite subsetB,A* and polynomial
mapsFb for eachbPB, such that

xk11~b!5Fb@xk~b1!, . . . ,xk~b uBu!#, ~A1!

where the trace coordinatexk(b)[tr T k(b) is defined as the
trace of the correspondingkth generation transfer matrix
Here, the setA* consists of all finitely long words that ca
be written using the alphabetA. In order to obtain an explicit
expression for the trace map, corresponding to the sys
~8!, we can use the formula15

tr~QLQJ!5tr~QL!tr~QJ!1tr~LJ!2tr~L!tr~J!,
~A2!

which is easily derived from the Cayley-Hamilton theore
and applies to all unimodular matrices of order two. Intr
ducing the trace coordinates defined by

kk5tr~Ok11Mk11!, sk5tr~PkOk!,

l k5tr~Nk11Pk11!, tk5tr~NkPk!,

mk5tr~Mk!, uk5tr~OkNk!,

nk5tr~Nk!, vk5tr~MkPk!2tr~Mk!tr~Pk!,

ok5tr~Ok!, wk5tr~PkOkNk!, ~A3!

pk5tr~Pk!, xk5tr~PkOkMk!

qk5tr~NkMk!, yk5tr~MkNkPk!,

r k5tr~OkMk!, zk5tr~MkNkOk!
4-7
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and making use of the relations~8!, Eq. ~A2!, and the invari-
ance of the trace with respect to cyclic permutation of
matrices, we get the trace map

kk115mk11wk112okpksk1pk
21ok

222,

l k115sk11qk111okpksk2pk
22ok

212

1nk11~xk112mk11sk11!,

mk115qk ,

nk115r k ,

ok115sk ,

pk115tk ,

qk115qkr k1uk2nkok ,

r k115kk , ~A4!

sk115pkwk2uk ,

tk115 l k ,

uk115okxk2v12mkpk ,

vk115v1~5vk!,

wk115pk~okl k2yk!2okzk1qk ,

xk115qk~pkwk2uk!1pk~xk2mksk!1mkok2r k ,

yk115pk11qk111nk11v11ok11 ,

zk115kkr k1skuk2okwk2nkpk1tk .

It is straightforward to expand the right-hand sides of
these relations in terms of the defined trace map coordin
~A3! for index k>1. When the initial conditions are spec
fied the coordinatevk5v1 is a constant and will be droppe
from Eq.~A4! leaving 15 trace coordinates. This number c
actually be reduced further, but the reduction of the num
of trace coordinates is not relevant for our purpose si
there is in fact nothing unique about this specific trace m
In view of Eq.~A1! this trace map represents a new dynam
cal system based on the traces of the transfer matrices
the elements of the finite setB are chosen as the word
corresponding to the initial trace maps coordinates~A3!. For
example, the coordinateq15trT(abad), corresponds to the
word v (2)5abad, which is included in setB. The other
elements are found in a similar fashion.

To every given trace map, there always exists a uni
reduced trace map,13 i.e., the mapping obtained when on
the monomial of highest degree are kept in the full tra
map. Here, degree simply refers to the number of elem
associated with each variable. With the trace map defined
Eq. ~A4!, with vk eliminated, we get the correspondin
unique reduced trace map
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kk115 l kokpkqk , l k115pkqkr kwk ,

mk115qk , nk115r k ,

ok115sk , pk115tk ,

qk115qkr k , r k115kk ,

sk115pkwk , tk115 l k , ~A5!

uk115okxk ,

wk115 l kokpk , xk115pkqkwk ,

yk115qkr ktk , zk115kkr k .

To proceed from here we suppress all subscripts in the
duced trace map~A5! and redefine the finite setB according
to B5$k,l ,m,n,o,p,q,r ,s,t,u,w,x,y,z%. Now the reduced
trace map~A5! can be considered as a mappingf:B→B* .
Here, the order of the elements is not specified so this m
ping is not unique. More importantly the mappingf, in this
particular case, belongs to the class ofsemiprimitive13 sub-
stitutions. A substitutionf on an alphabetB is called semi-
primitive if there exists a subsetC,B such thatf maps
C into C* , and the restriction off to C is a primitive sub-
stitution, and in additionfk(b), for some positive integer
k, contains at least one letter fromC for each letter
bPB. Using Eq. ~A5!, it follows that the choiceC
5$k,l ,o,p,q,r ,s,t,w% meets all of these conditions, an
hence ensures that our reduced trace map is semiprimiti

When the substitutionf, associated with the trace ma
~corresponding to a primitive substitutionj), is semiprimi-
tive as described above, and if there also exists a finite i
gerk0 such thatjk0(a0), where a0PA, contains the word
bb for some bPB, the spectrum is singular.13 From the
substitution rule~6!, we have

j4~ab!5j3~ab!j2~ab!dc f e f ead. ~A6!

Since f ePB @remember thatp15trT( f e)] and j4(ab) con-
tains the square of the elementf e the spectrum is singular
i.e., supported on a set of zero Lebesgue measure.

In order to establish the absence of eigenvalues in
spectrum, the structureA* is extended to a free groupÂ* by
adding the formal inverses of the letters inA as generators
When the spectrum is singular as described above, and
addition there exist finite integersn0 ,m0 such thatjn0(a0)
5jm0(g0)jm0(g0)dv, where g0PC, vPÂ* , and dPÂ*
has the property that there exists a finite integerk0 such that
jk0(d)5d. Then the spectrum is purely singular continuo
4-8
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and supported on a generalized Cantor set~i.e., a perfect
nowhere dense set! of zero Lebesgue measure.13,14Using this
extension, we may write

j2~ab!5~abad!2dd21~ad!21dc, ~A7!
c

:

09420
wherej(d)5d is satisfied withd5 f e(ab)21PÂ* . Hence,

with v5d21(ad)21dcPÂ* and g05abadPC ~more cor-
rectly, qPC) the conclusion of a purely singular continuo
electron spectrum is reached.
e
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