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Quantum annealing by the path-integral Monte Carlo method:
The two-dimensional random Ising model
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Quantum annealing was recently found experimentally in a disordered spin-1
2 magnet to be more effective

than its classical, thermal counterpart. We use the random two-dimensional Ising model as a test example and
perform on it both classical and quantum~path-integral! Monte Carlo annealing. A systematic study of the
dependence of the final residual energy on the annealing Monte Carlo time quantitatively demonstrates the
superiority of quantum relative to classical annealing in this system. In order to determine the parameter regime
for optimal efficiency of the quantum annealing procedure we explore a range of values of Trotter slice number
P and temperatureT. This identifies two different regimes of freezing with respect to efficiency of the algo-
rithm, and leads to useful guidelines for the optimal choice of quantum annealing parameters.
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I. INTRODUCTION

Optimization problems encountered in science and te
nology are not infrequently ‘‘hard’’ ones. Well-known har
problem prototypes include, e.g., the traveling salesm
problem, finding the ground state of a spin glass, satisfia
ity problems, etc. For a class of such problems (NP com-
plete problems! the time necessary to find the optimal sol
tion grows faster than any polynomial ofN, the size of the
system, thus making an exact determination of the ove
optimal state practically impossible, except for very sm
values ofN. What therefore acquires particular importance
the possibility to optimize any such system approximat
but efficiently. In the search for an approximate optimal st
the method of stochastic optimization, or classical simula
annealing~CA!,1,2 is widely used in practice, along with
many variants developed over the last two decades. In
one introduces a real or fictitious temperatureT so as to
sample stochastically the phase space$x% of the problem ac-
cording to the Boltzmann factore2H(x)/T. HereH(x) is the
Hamiltonian of the problem~or more generally, the ‘‘cos
function’’ associated with a configurationx). Once the ther-
mal energy is sufficient to overcome even the largest barr
surrounding metastable local minima, the system esca
trapping in any specific minimum, and can thus sample
full phase space. By gradually reducing the temperaturT
during some long annealing timet, the phase-space sam
pling concentrates more and more on regions of lower
ergy, until a final energyEf inal(t) is attained whenT hits
zero. Generally speaking, for a system which is large
complex, and for a finite annealing rate 1/t, the sampling,
unable to negotiate all barriers in the finite timet, attains at
the end of the CA protocol an average energyEf inal(t)
strictly larger than the true ground-state~GS! energyEGS.
The average residual energye res(t)5Ef inal(t)2EGS is ex-
pected to be a slowly decreasing function of the annea
time t, e res(t);(ln t)2z.3 In the case of a spin glass, gener
theoretical arguments by Huse and Fisher3 predict an upper
0163-1829/2002/66~9!/094203~8!/$20.00 66 0942
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bound z<2, which implies an exceedingly slow conve
gence of CA.

Quantum mechanics provides an unexpected alternativ
temperature in the annealing problem4,5. One introduces in
the Hamiltonian a real or fictitious kinetic-energy term, po
sessing a nonzero commutator with the initial classi
Hamiltonian, and characterized by a strengthG. This
strength is initially large, providing the necessary quant
fluctuations and broad wave functionsC(x,t) necessary to
explore the full phase space. SubsequentlyG is gradually
reduced to zero, again in a timet. Tunneling through barri-
ers, rather than thermal hopping over the barriers, is
mechanism by which quantum mechanics avoids trappin
metastable local minima. AsG is gradually reduced the sys
tem explores regions of increasingly lower potential ener
until, once again, a final energyEf inal(t) is attained. This
alternative annealing scheme is known as quantum annea
~QA!.5

Recently Brookeet al.provided an interesting experimen
tal realization of QA on an Ising spin-glass system, spec
cally the spin-12 disordered Ising ferromagne
LiHo0.44Y0.56F4.6 Quantum fluctuations were introduced
the form of an external magnetic field lying in a plane o
thogonal to the Ising easy axis, so thatG is precisely the
transverse field strength. Experimental comparison of
properties displayed by the system transported from the s
initial state A—a paramagnetic high-T state—to the same
nominal final stateB—a low-T glassy state—through two
different routes in the@T,G# plane, presents evidence th
QA, the ‘‘quantum route’’ fromA to B, yields for the same
‘‘cooling’’ rate 1/t, a better annealed final stateB, detected
through faster relaxation times in the dynamic
susceptibility.6

This kind of observation raises a number of questio
First, fundamental, questions are why QA should, at leas
this case, work better than CA, and more generally wha
the underlying mechanism of QA. A second question, with
©2002 The American Physical Society03-1



n
n

on
nt
t
e

s

u
ffi
al

le
te

n
r r

a
is
e

e

ve

h

t
-

t
.
t

d
in
de

te
e
l

r

nd
h

l-
of
f

ion

s
ble,
ring

,
ted

ce

in
for-

ical
re

ibe
gral

MC
e-
u-
g-

ical
d in

ng
ere

o
t,

ss
f

true
ate
bi-
ss

rgy
he
ior.
ng

s
ibed

e is
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potentially large impact in the field of heuristic optimizatio
algorithms, is if, and how, it could be possible to impleme
QA on a computer to obtain a more efficient optimizati
algorithm for more general hard problems. We have rece
addressed the first questions,7 identifying the main elemen
of real-time QA in the form of a cascade of Landau-Zen
tunneling events connected with the~avoided! level cross-
ings which the instantaneous ground state undergoes asG is
reduced. For the spin-glass case, it was moreover sugge
that the final energyEf inal(t) in QA should approach the
exact ground-state energyEGS in a logarithmically slow
manner, e res(t)5Ef inal(t)2EGS;(ln t)2zQA, essentially
similar to CA.7 However, contrary to CA wherez<2, QA
may possess a generally larger exponentzQA which makes it
quantitatively better.7

The present paper is devoted to the second class of q
tions, dealing with the more technical aspects for the e
cient implementation of QA as a numerical optimization
gorithm, using the two-dimensional~2D! Ising spin glass as
a benchmark example, and Monte Carlo~MC! as the tech-
nique of choice. In fact, although one could, in princip
conceive a real-time QA algorithm based on numerical in
gration of the time-dependent Schro¨dinger equation, such a
approach is presently extremely demanding on compute
sources and as such it is not feasible except for very sm
size systems.8–10 For the larger systems of real interest it
mandatory to resort to stochastic methods, which includ
variety of quantum Monte Carlo~QMC! techniques. An early
study on the optimal configuration of small Lennard-Jon
clusters—where the standard kinetic energy2(\2/2M )¹2

with variable massM plays the role of the quantum term—
used diffusion Monte Carlo to propagate the initial wa
function of the system in imaginary time ~at zero
temperature!.5 Another standard QMC technique, the pat
integral Monte Carlo~PIMC!, allows instead the simulation
of a quantum system at a finite temperature. Working a
sufficiently low but finite temperatureT, and slowly decreas
ing the strength of the quantum kinetic term, it is possible
use PIMC as a QA method to approach the ground state7,10

Presently, a variant of this method is also being applied
Lennard-Jones clusters.11 An alternative quantum Monte
Carlo scheme, essentially a ground-state path integral, is
cussed in Ref. 10, where applications to small 16-city
stances of the traveling salesman problem are also provi

In PIMC, besides the temperatureT, one must also
specify the imaginary-time slice number~Trotter number! P,
counting the coupled classical replicas of the physical sys
used to represent the quantum system. The optimal choic
T andP for QA is nota priori obvious. In some path-integra
QA ~PIQA! studies conducted so far~applied to a small pro-
tein folding problem12,13! both parameters were changed du
ing the annealing. In Ref. 12 the strategy adopted was
combine QA with CA by starting at a high temperature a
gradually decreasingT to zero, while performing, at eac
temperature step, a PIMC QA. The Trotter numberP was
also decreased asT was lowered so that atT50 a classical
system with P51 was recovered. In Ref. 13 a Migda
Kadanoff renormalization scheme was used, consisting
progressive decimation of Trotter slices~i.e., a decrease o
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P) while reducing at the same time the quantum fluctuat
parameterG.

Although many possible variations or hybrid algorithm
combining thermal and quantum annealing are conceiva
it appears that a detailed analysis of the ingredients ente
a plain PIQA, with constant Trotter numberP and constant
low temperatureT, would be at this point very desirable
especially in the design and control of more sophistica
techniques. The present work aims at filling this gap.

In Ref. 7 we compared the efficiency of such a fixedP,T
PIQA with that of standard CA by studying the dependen
of the final residual energye res(t) on the annealing timet
for L3L 2D samples of an Ising spin glass up toL580. In
this work, using the same test system, we explore PIQA
more detail, by studying systematically the annealing per
mance for different values ofP and T. As a result of this
analysis we derive useful guidelines for a suitable pract
implementation of the PIQA procedure, of hopefully mo
general validity.

The paper is organized as follows. In Sec. II we descr
the model used as our test case, and sketch its path-inte
representation. In Sec. III we describe in some detail the
implementation of the PIQA technique. Section IV is d
voted to the discussion of the results of PIQA and CA sim
lations. Finally, in Sec. V we draw our conclusions and su
gest possible directions for future improvements. Techn
details about the path-integral representation are include
the Appendix for the reader’s convenience.

II. THE MODEL AND THE PATH-INTEGRAL
REPRESENTATION OF THE PARTITION FUNCTION

Our test complex system will be the 2D random Isi
model, a choice dictated by several reasons. First we w
directly inspired by Brookeet al.’s experimental system, als
a disordered Ising magnet.6 A second and main reason is tha
although technically a polynomial problem14 and not a spin
glass at anyT.0, the 2D random Ising model is nonethele
of prohibitively large complexity, with a large continuum o
metastable minima above the ground state as in a
glass.15 A final reason is that the exact classical ground st
energy of this model is numerically accessible, for an ar
trary realization of random couplings, via the spin-gla
server16 up to sufficiently large lattice sizes;1003100, per-
mitting an absolutely precise measure of the residual ene
after every annealing protocol, which in turn provides t
superior accuracy needed to study the asymptotic behav

The Edwards-Anderson model Hamiltonian of the Isi
spin glass is

HEA52(̂
i j &

Ji j sisj . ~1!

Here Ising spins (si561) occupy the sites of a
d-dimensional cubic lattice, andJi j are the random coupling
between nearest-neighbor sites drawn from some prescr
distribution. When the couplingsJi j fluctuate randomly with-
out a definite sign, the Hamiltonian~1! describes a frustrated
and disordered system. The task of finding its ground stat
3-2
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a hard computational problem. It is known in three dime
sions to beNP complete:14,17 the ground state cannot b
systematically attained with an algorithm whose time
creases as any finite power with the size of the system. W
in two dimensions that is strictly speaking not the case
there is also no true spin-glass phase at finiteT ~Ref. 15!—
the annealing problem is in practice still prohibitive, th
providing a suitable testing ground.

Adding a magnetic field orthogonal to the Ising axis o
obtains the Hamiltonian of the Ising spin glass in transve
field,

H52(̂
i j &

Ji j s i
zs j

z2G(
i

s i
x , ~2!

wheres i
x ,s i

z are Pauli matrices corresponding to the spin
lattice sitei. Model ~2! is directly inspired by the experimen
tal system of Brookeet al.6 Physically, the transverse fieldG
represents a kinetic energy which does not commute with
classical Ising term, inducing transitions between the↑ and↓
states of each single spin, thus turning the model from c
sical to quantum.

In order to derive a path-integral representation for
quantum Ising spin-glass model~2! we apply to its canonica
partition function the standard path-integral technique.18 We
write

H5U1K,

U52(̂
i j &

Ji j s i
zs j

z, K52G(
i

s i
x ,

where, as previously mentioned, the termsU ~potential en-
ergy! and K ~kinetic energy! do not commute,@K,U#Þ0.
Defining, as usual,b51/kBT, wherekB is the Boltzmann
constant which we set henceforth to 1, the partition funct
Z at a temperatureT can be written as

Z5Tr e2bH

5Tr~e2bH/P!P

5Tr~e2b(K1U)/P!P5(
s1

. . . (
sP

^s1ue2b(K1U)/Pus2&

3^s2ue2b(K1U)/P . . . usP&^sPue2b(K1U)/Pus1&. ~3!

Heresk5$si
k% denotes a configuration of all the spins in t

kth Trotter slice, and the last equality follows from insertio
of the identity operator15(skusk&^sku. Thus far everything
is exact. Now we apply the Trotter breakup formu
e2b(K1U)'e2bKe2bU, which neglects commutators ofK
andU,18 obtaining an approximationZP to Z whose error is
proportional to the square of the Trotter breakup timeDt
5b/P. The final expression, after simple algebra which
reproduce in the Appendix for the reader’s convenience,

Z'ZP5CNP(
s1

. . . (
sP

e2Hd11 /PT, ~4!
09420
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Hd1152 (
k51

P S (̂
i j &

Ji j si
ksj

k1J'(
i

si
ksi

k11D , ~5!

whereN is the number of lattice sites in thed-dimensional
lattice, and

J'52
PT

2
ln tanh

G

PT
.0, ~6!

C5S 1

2
sinh

2G

PTD 1/2

.

ZP is the partition function of a classical (d11)-dimensional
anisotropicIsing system at temperaturePT, with couplings
Ji j along the originald-dimensional lattice bonds~same for
all Trotter slices!, and J' ~ferromagnetic and uniform, i.e.
the same for all sitesi ) along the extra dimension, where th
system has a finite lengthP. It follows from the properties of
the trace that periodic boundary conditions have to be ta
along this dimension, i.e.,sP115s1. This well-known
mapping18 of thed-dimensional quantum Ising system onto
(d11)-dimensional classical Ising system allows simulati
of the quantum system by a standard classical Monte C
sampling.

III. MONTE CARLO IMPLEMENTATION

Since we are interested in annealing, that is, approach
as closely as possible the classical ground state, rather
reproducing the exact quantum averages, we do not ne
sarily have to work in the large Trotter numberP limit, or
perform extrapolations toP→`. For the same reason, w
could, in principle, relax the boundary conditions along t
imaginary-time direction, required to be periodic by the tra
condition. In the present benchmark study, however, we
liberately retained the standard PIMC boundary conditio
which are periodic along the imaginary-time direction,
well as along the spatial directions.

The results presented in this paper concern a single r
ization of the 2D Edwards-Anderson model with rando
couplings on a 80380 sample with periodic boundary con
ditions. The random couplings were distributed according
a uniform distribution on the interval (22;2). Wenote that
we performed similar simulations with several realizations
random couplings on systems 32332 and 48348 and ob-
tained in all cases very similar results. Thus, the results
the 80380 system can be regarded as typical.

We start by discussing the initialization of the PIQA pr
cedure. It follows from the mapping that at the beginning
PIQA, when the transverse fieldG is large, the couplingJ'

~6! between the neighboring slices is very small and the
fore the (211)D system behaves like a collection of noni
teracting 2D systems at temperaturePT. An appropriate ini-
tial configuration is thus to set all Trotter slices equal to o
another, with a spin configuration corresponding to the eq
librium Boltzmann distribution at temperaturePT. This
choice does, however, assume the ability to achieve a t
mal equilibrium distribution with temperaturePT, which is
possible in practice only ifPT is not too small, i.e., larger
3-3
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than the corresponding glass transition temperatureTglass.
Specifically, one should guarantee thatPT*uJu, whereuJu is
a typical scale of the couplings. Since our couplings have
average magnitude ofuJu;1, our PT should not be smalle
than 1; we used here values ofPT ranging from 1 to 2
(PT51,1.5,2). In all these cases we prepared the initial c
figuration by performing a classical preannealing that c
sisted of~i! starting from a completely random spin config
ration at a sufficiently large initial temperature ofT053, and
~ii ! decreasing the temperature in steps ofDT50.05 down to
the desired value ofPT performing 100 MC steps per spin a
each temperature step. This annealing rate turned out t
sufficient for our case.

Next, we need to choose an initial valueG0 of the trans-
verse field. In CA the choice of the initial temperature is n
critical provided the value is high enough for the system
be able to reach thermal equilibrium. In PIQA, on the oth
hand, if G is too large, the Trotter slices are practically d
coupled. Although initialized to the same configuration, af
evolution in the decoupled regime for too long they w
become uncorrelated, which is bad in view of the subsequ
introduction of interslice correlations upon decreasingG.
Conversely, an excessively small initialG0 value can also
have an adverse effect since now the slices do not h
enough time to build proper correlations between them.
this reason a moderate initial value ofG0 is best. The optimal
value of G0 was determined by testing several values
eachP andT using a short annealing timet. For PT51 the
best value turned out to be about 3.0 while forPT51.5 and
PT52 the value of 2.5 was optimal;G0 found in this way
was then used for all values oft.

We sampled the system by a standard Metropolis a
rithm employing both local and global moves as is comm
in PIMC simulations. The local moves attempt independ
spin flips at all sites in all Trotter slices. In a global mov
instead, an attempt is made to flip simultaneously all
replicas of the same spin in all Trotter slices. Clearly,
acceptance ratio of the global moves does not depend on
transverse fieldG since both replicas of the same spin
neighboring Trotter slices which interact viaJ' ~which de-
pends onG) are always flipped at the same time.

The QA annealing protocol consisted of a linear decre
of the transverse fieldG from the initial value ofG0 to the
final value ~close to zero but still finite! of G51028. The
temperatureT and Trotter numberP were kept constant dur
ing the annealing. At each value ofG one MC step per spin
~MCS! is performed. Each MCS consists here of a lo
move followed by a global move and the total number
MCS’s performed during the annealing ist. From this defi-
nition it follows that the CPU time required for 1 MCS scal
linearly with the Trotter numberP. At the end of the quan-
tum annealing we proceeded to identify the Trotter slice w
minimum energy and took that energy asEf inal . The search
was always repeatedN545 times and the final energy wa
averaged over all searches. We note that each search
initialized from a different classically preannealed configu
tion.

To end this section we briefly mention also the CA a
nealing protocol used. We started from a spin configurat
09420
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with randomly chosen spins and the temperatureT was lin-
early decreased from the initial value ofT053.0 to zero,
performing at each temperature step one MCS resulting
total of t MCS’s. Also for CA, we always averaged the fin
energies overN545 searches, each search starting from
different random configuration.

IV. RESULTS AND DISCUSSION

We first characterize the efficiency of both the PIQA a
CA methods, by studying the cooling rate dependence
e res(t) upon varying the annealing timet over as many
decades as possible.19 Besides a quantitative comparison b
tween CA and PIQA, which is not our main scope here, t
will lead to a discussion of the behavior of PIQA Mon
Carlo data as a function of the simulation parametersP andT
and provide an interpretation in terms of different regimes
freezing during the PIQA procedure. We stress that, for
large system studied here, it is impossible to characterize
efficiency of an algorithm through the ‘‘probability of gettin
the actual GS’’ during the simulation,PGS(t), as done in
Refs. 8–10, sincePGS(t) is vanishingly small.

A. Dependence of quantum annealing onP and T

As previously mentioned, the productPT determines the
couplings both between the spin replicas in neighbor
Trotter slices~for a given value ofG) and between the spin
within slices @Eqs. ~4!–~6!#. For a given value ofPT, the
Trotter numberP itself only determines the size of the lattic
along the imaginary-time direction. Therefore it seems na
ral to study the PIQA efficiency by varying independen
PT and P. As mentioned in the previous section we us
here three values ofPT51, 1.5, and 2. ForPT51.5 and
PT52 we used the values ofP530 and P540, respec-
tively, corresponding toT50.05. For the smallest valu
PT51 we performed a more detailed study using seve
values ofP55, 10, 20, 30, 40, and 50. The values of t
total annealing time range fromt560 MCS’s to t
5300 000 MCS’s.

The results for the residual energy in QA are shown in
log-log plot in Fig. 1. There are noticeable differences b
tween curves corresponding to different values ofPT. The
PT52 curve, obtained forT50.05 with P540, starts for
low t at the highest value ofe res and initially decreases, on
increasingt, at the fastest rate untilt;1000, where it starts
to develop a plateau. Further increase oft results only in a
very slow decrease ofe res(t) indicating that PIQA in this
regime is not efficient. ThePT51.5 curve, corresponding to
the sameT50.05 but now forP530, looks similar in shape
but develops the plateau around a slightly larger value ot
;2000; it also reaches a slightly lower value ofe res . For
PT51 andP increasing from 5 to 40 we have a series
curves which also have shapes similar to the previous o
However, in particular theP520 and P540 curves now
reach for larget considerably lower values ofe res . More-
over, a comparison of curves with increasingP reveals here
interesting convergence properties. The remarkable featu
that the curves corresponding to different values ofP, at
3-4
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fixed PT51, coincide up to a certain value oft. However,
for each value ofP there is a characteristic value oft where
the corresponding curve splits from the bunch and start
decrease in a much slower fashion for increasingt, leveling
off to a plateau. This characteristict increases with increas
ing P. While the P55 curve splits already att;500, the
P510 curve does so att;10 000 and theP520 curve splits
only at t;60 000. Overall, theP540 curve provides the
best results.

These findings can be understood as follows. The PI
can actually be seen as cooling a classical system from
initial temperaturePT to a final low temperatureT. How-
ever, unlike CA, where the temperature is straightforwar
lowered, in PIQAP decoupled replicas of the system a
initially created at a higher temperaturePT and subsequently
gradually forced into the same configuration by increas
the couplingJ' as the transverse fieldG is reduced to zero
Doing that slowly enough would indeed lead to a classi
equilibrium configuration of the system at a low temperat
T; given not enough time, the system will instead freeze
the process. There are two essentially different ways thed
11)-dimensional path-integral system can freeze depen
on whether at the end of the quantum annealing~when the
couplings between the Trotter slices become very large! all
Trotter slices are in the same configuration. The case w
this is true can be called ‘‘classical freezing’’ and the opp
site one perhaps ‘‘quantum freezing.’’

In order to check which of the two scenarios applies
calculated the average number of flipped spins betw
neighboring Trotter slices~transverse field term! in the final
configurations at the end of PIQA. These results are sho
in Fig. 2 and provide a clue to understanding the data of F
1. Comparison of the two figures shows that a curve sp
from the bunch when the number of flipped spins at the
of annealing goes to zero; in such a case the system un
goes a classical freezing at the end of quantum annealin
even before. The reason for this is that the sizeP of the
lattice along the Trotter dimension is too short for the giv
PT ~which determines couplings among the slices! and t.
Quantum fluctuations thus disappear before or whenG be-

FIG. 1. Residual energy per site obtained by PIQA for an
380 disordered 2D Ising model as a function of total anneal
time t for different values of parameterPT and Trotter numberP.
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comes zero and, not surprisingly, this is not an efficient
gime of PIQA. In the alternative case of quantum freezi
different Trotter slices explore and tunnel between differ
energy valleys until the very end of the annealing, whi
makes the annealing more efficient. With larger values oP
and/or a smaller coupling between the slices~smaller PT)
the annealing timet required to correlate completely a
Trotter slices, thus reaching the classical freezing regi
grows. This explains the main features of data shown in F
1 and Fig. 2.

B. Comparison between CA and QA

For comparison, we performed also a CA cooling ra
study on the same sample7 for a broad range oft ranging
from 60 to 63106. In Fig. 3 we show the CA results togethe
with the PIQA results. For a fair comparison of differe
methods we multiplied here thet values in PIQA by the
corresponding Trotter numberP, since performing one MCS
in PIQA requires updatingP replicas of the system, and cos
thereforeP times more computer time than the correspon
ing classical sweep of the lattice. The results show that PI
performs considerably better than CA, reaching, for the la
est t studied, values ofe res smaller by a factor of about 3
compared to CA.

To perform a further quantitative comparison betwe
PIQA and CA in terms of CPU time required to reach a giv
value ofe res we can make use of the Huse-Fisher theoreti
prediction of a logarithmic dependencee res(t)
5A(ln gt)2z, wherez<2.3 In Ref. 7 we showed that the CA
data are, for larget, compatible with this prediction al-
though it is not possible to determine the exact value of
exponentz. Nevertheless, we can make an estimate ass
ing for CA the fastest theoretically allowed decay corr
sponding toz52.3 Fitting the CA data in the asymptoti
regime with such a form we obtained the valuesA
50.9988,g50.0875. The lowest value ofe res reached by
PIQA wase res51.85731023, obtained forPT51, P540,

0
g

FIG. 2. Average number of flipped spins between neighbor
Trotter slices in the final configurations at the end of PIQA as
function of total annealing timet for different values of paramete
PT and Trotter numberP. The same symbols as in Fig. 1 have be
used for the same runs to make comparison easier.
3-5
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andt5300 000. According to the fitted logarithmic law, th
value would be reached by CA fort51.3531011 MCS’s. In
the PIQA simulation we effectively needed a CPU tim
equivalent toPt5403300 00051.23107 MCS’s. Such a
gain in CPU time with respect to CA of about four orders
magnitude represents a dramatic difference in efficiency:
can calculate using PIQA in one day what would be obtain
by plain CA in about 30 yr.

V. GUIDELINES, CONCLUSIONS AND OUTLOOK

A. Guidelines

Finally we can sum up our analysis of path-integral qu
tum annealing to yield simple guidelines for the choice
parametersP and T. In order to easily prepare the initia
configuration for the Trotter slices, one must be able
equilibrate the system at temperaturePT. This places a
lower bound onPT requiring it to be at least comparab
with the couplingsJ in the system. A reasonable choice th
is to takePT;J. At fixed PT, QA works progressively bet
ter upon increasingP. However, for fixed total annealing
time t the residual energy saturates to a limiting value
large P, as shown in Fig. 4. Therefore for each value oft
there is a value ofP beyond which further increasing ofP is
useless, and merely consumes computer time~Fig. 4!. Fi-
nally, in order to achieve a better annealing, a longer ann
ing time t is needed, but that in turn requires a larger va
of P for the best possiblee res .

B. Conclusions and outlook

In this paper we have explored the applicability of t
plain path-integral Monte Carlo technique with consta
Trotter numberP and constant low temperatureT to quantum
annealing using a 2D random Ising model as a test exam
We discussed issues related to the efficient implementa
of the PIQA procedure and performed a detailed study of

FIG. 3. Comparison of the residual energy per site for an
380 disordered 2D Ising model after CA and PIQA. The PIQA d
are shown forPT51 and different values of the Trotter numberP.
For fair comparison, the actual total annealing timet used in the
PIQA has been multiplied byP so that points at the samet require
roughly the same computer time.
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cooling rate dependence ofe res(t) for PIQA for different
values ofP and T. This study enabled us to identify tw
possible regimes of freezing in PIQA, and to clarify the r
lationship between the parametersP andT, the freezing re-
gime and efficiency of PIQA. For the system studied, PIQ
appears to be a more efficient method than CA since it
proaches the ground state considerably faster.

Quite clearly, our path-integral Monte Carlo, as well
the corresponding classical Monte Carlo, was based on
most simple local moves suggested by the problem: sin
spin flips. It is worth noting that much more efficient glob
moves for general spin systems have been introduced, in
last decade, through the so-calledloop algorithm.20,21 These
global moves provide the natural generalization to quant
spin systems of the cluster moves originally introduced
Swendsen and Wang for classical Ising systems.22 A success-
ful application to the two-dimensional random Ising ferr
magnet in a transverse field is reported in Ref. 23, where
interesting possibility of performing a continuous imaginar
time sampling, i.e., without Trotter discretization error,
emphasized. Such approaches are certainly worth pursuin
the attempt to improve on our basic scheme. We ment
however, the following two caveats:~i! the application of the
loop algorithm or similar cluster moves to a case with gen
ine frustration, like a spin glass, is not completely guarant
to be successful, as the use of Swendsen-Wang move
classical spin glasses shows;~ii ! similar smart global moves
are generally not available for a generic optimization pro
lem. In this respect, the simple minded ‘‘single spin flip
type of moves we have used is, often, all one can afford

In the future, we plan to apply the methodology we ha
presented to a 3D spin-glass case where the problem isNP
hard. It would also be interesting to elaborate on the optim
annealing schedule; it is possible that decreasing transv
field G in a nonlinear way could produce even better resu
Our results suggest that PIQA could indeed be a promis
optimization technique and it seems worthwhile to contin
to study its applicability also to other kinds of problems
physical and general interest. To do so, however, it is nec

0 FIG. 4. Residual energy per site obtained by PIQA for an
380 disordered 2D Ising model as a function of the Trotter num
P for different values of the total annealing timet. Lines are just
guides for the eye.
3-6



u
de
a
le
o

ir-
er

t
-

-

c-
,
lit
ve
ina

ch

r-
-

er
s-

n
th

te

-

ou-
are
.

(
ure

,
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sary to construct for each problem under consideration a s
able kinetic-energy operator and an appropriate Trotter
coupling, which might not be completely trivial. An extr
advantage of PIQA is the fact that it can be easily imp
mented on a parallel computer, each Trotter slice running
one node, providing a parallel optimization algorithm requ
ing little communication between the nodes. It is also int
esting to explore possible connections of the PIQA method
parallel tempering,24 a project which we are currently pursu
ing.
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APPENDIX:
DETAILS OF THE PATH-INTEGRAL DERIVATION

We include here, for the reader’s convenience, a few te
nical details on the path-integral representation18 of the Ising
spin glass used to perform quantum annealing~QA!.

Starting from Eq.~3! one applies the Trotter breakup fo
mula e2(K1U)/PT'e2K/PTe2U/PT which neglects commuta
tors of K andU,18 obtaining

Z'ZP5(
s1

•••(
sP

^s1ue2bK/Pe2bU/Pus2&

3^s2u . . . e2bK/Pe2bU/PusP&^sPue2bK/Pe2bU/Pus1&,

with an error proportional to the square of the Trott
breakup time,O„(b/P)2

….18 We need to evaluate the expre
sion ^skue2bK/Pe2bU/Pusk11&, which is simply reexpressed
as

^skue2bK/Pe2bU/Pusk11&5^skue2bK/Pusk11&e2bU(sk11)/P

~A1!

since the potential energyU is diagonal in the chosen spi
basis. The only nontrivial term is therefore the average of
kinetic term between two Trotter slices,^skue2bK/Pusk11&.
Since spin operators corresponding to different si
commute,25 we can rewrite such a term as
f

09420
it-
-

-
n

-
o

y

-

e

s

^skue2bK/Pusk11&5^skuexpS bG

P (
i 51

N

s i
xD usk11&

5)
i 51

N

^si
kuexpS bG

P
s i

xD usi
k11&,

whereN is the number of lattice sites. From simple spin1
2

algebra,25 it is easy to show that

^↑ueasxu↑&5^↓ueasxu↓&5cosha,

^↑ueasxu↓&5^↓ueasxu↑&5sinha,

which can be written as an Ising-like interaction (s,s8 now
mean single spins!

^sueasxus8&5CeBss8

with B52 1
2 ln tanha, and C25 1

2 sinh 2a. Collecting all
pieces together, we get

^skue2bK/Pe2bU/Pusk11&

5CNe(J'/PT)S i si
ksi

k11
e(1/PT)S^ i j &Ji j si

ksj
k
,

where

J'52
PT

2
ln tanh

G

PT
.0, ~A2!

C25
1

2
sinh

2G

PT
.

The J' term can be seen as a ferromagnetic Ising-like c
pling between the Trotter replicas of the same spin which
nearest neighbors (k andk11) along the Trotter dimension

For the full partition function we thus finally get

Z'ZP5CNP(
s1

. . . (
sP

e2Hd11 /PT, ~A3!

Hd1152 (
k51

P S (̂
i j &

Ji j si
ksj

k1J'(
i

si
ksi

k11D , ~A4!

which represents the partition function of a classicald
11)-dimensional anisotropic Ising system at temperat
PT. The system has couplingsJi j along the original
d-dimensional lattice bonds~same for all Trotter slices!, and
J' ~same for all sitesi ) along the extra Trotter dimension
where the system has a finite lengthP.
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