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Quantum annealing was recently found experimentally in a disorderecﬁsnpiagnet to be more effective
than its classical, thermal counterpart. We use the random two-dimensional Ising model as a test example and
perform on it both classical and quantumath-integral Monte Carlo annealing. A systematic study of the
dependence of the final residual energy on the annealing Monte Carlo time quantitatively demonstrates the
superiority of quantum relative to classical annealing in this system. In order to determine the parameter regime
for optimal efficiency of the quantum annealing procedure we explore a range of values of Trotter slice number
P and temperatur&. This identifies two different regimes of freezing with respect to efficiency of the algo-
rithm, and leads to useful guidelines for the optimal choice of quantum annealing parameters.
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[. INTRODUCTION bound (=<2, which implies an exceedingly slow conver-
Optimization problems encountered in science and techgence of CA.

nology are not infrequently “hard” ones. Well-known hard ~ Quantum mechanics provides an unexpected alternative to
problem prototypes include, e.g., the traveling salesmatemperature in the annealing probfemOne introduces in
problem, finding the ground state of a spin glass, satisfiabilthe Hamiltonian a real or fictitious kinetic-energy term, pos-
ity problems, etc. For a class of such problemP(com-  sessing a nonzero commutator with the initial classical
plete problemsthe time necessary to find the optimal solu- Hamiltonian, and characterized by a strength This
tion grows faster than any polynomial df the size of the strength is initially large, providing the necessary quantum
system, thus making an exact determination of the overafluctuations and broad wave functiods(x,t) necessary to
optimal state practically impossible, except for very smallexplore the full phase space. Subsequeibtlys gradually
values ofN. What therefore acquires particular importance isreduced to zero, again in a time Tunneling through barri-
the possibility to optimize any such system approximatelyers, rather than thermal hopping over the barriers, is the
but efficiently. In the search for an approximate optimal statemechanism by which quantum mechanics avoids trapping in
the method of stochastic optimization, or classical simulategnetastable local minima. AE is gradually reduced the sys-
annealing(CA),"2 is widely used in practice, along with tem explores regions of increasingly lower potential energy,
many variants developed over the last two decades. In CAntil, once again, a final enerd¥;,,(7) is attained. This
one introduces a real or fictitious temperatdreso as to  alternative annealing scheme is known as quantum annealing
sample stochastically the phase spageof the problem ac- (QA).°
cording to the Boltzmann facta "', HereH(x) is the Recently Brookeet al. provided an interesting experimen-
Hamiltonian of the problem(or more generally, the “cost tal realization of QA on an Ising spin-glass system, specifi-
function” associated with a configuratior). Once the ther- cally the spin disordered Ising ferromagnet
mal energy is sufficient to overcome even the largest barriersiHog 44Y o sd74.6 Quantum fluctuations were introduced in
surrounding metastable local minima, the system escapehe form of an external magnetic field lying in a plane or-
trapping in any specific minimum, and can thus sample thehogonal to the Ising easy axis, so tHatis precisely the
full phase space. By gradually reducing the temperaiure transverse field strength. Experimental comparison of the
during some long annealing time, the phase-space sam- properties displayed by the system transported from the same
pling concentrates more and more on regions of lower eninitial state A—a paramagnetic high-state—to the same
ergy, until a final energyEyi,(7) is attained wherl hits  nominal final stateB—a low-T glassy state—through two
zero. Generally speaking, for a system which is large andlifferent routes in thg T,I'] plane, presents evidence that
complex, and for a finite annealing raterlthe sampling, QA, the “quantum route” fromA to B, yields for the same
unable to negotiate all barriers in the finite timeattains at  “cooling” rate 1/7, a better annealed final stale detected
the end of the CA protocol an average eneiy,a(7) through faster relaxation times in the dynamical
strictly larger than the true ground-stai@S) energyEgs. susceptibility?
The average residual ener@y.(7) =E¢inal(7) —Egs IS ex- This kind of observation raises a number of questions.
pected to be a slowly decreasing function of the annealingrirst, fundamental, questions are why QA should, at least in
time 7, €,05(7)~ (In 773 In the case of a spin glass, general this case, work better than CA, and more generally what is
theoretical arguments by Huse and Fisheredict an upper the underlying mechanism of QA. A second question, with a
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potentially large impact in the field of heuristic optimization P) while reducing at the same time the quantum fluctuation
algorithms, is if, and how, it could be possible to implementparameted”.
QA on a computer to obtain a more efficient optimization  Although many possible variations or hybrid algorithms
algorithm for more general hard problems. We have recentlgombining thermal and quantum annealing are conceivable,
addressed the first questioh@entifying the main element it appears that a detailed analysis of the ingredients entering
of real-time QA in the form of a cascade of Landau-Zener@ plain PIQA, with constant Trotter numbBrand constant
tunneling events connected with titavoided level cross- low temperatureT, would be at this point very desirable,
ings which the instantaneous ground state undergo&siss €specially in the design and control of more sophisticated
reduced. For the spin-glass case, it was moreover suggestt&fhniques. The present work aims at filling this gap.
that the final energyEq,q/(7) in QA should approach the In Ref. 7 we compared the efficiency of such a fixed
exact ground-state energgcs in a logarithmically slow PIQA with that of standard CA by studying the dependence
manner, €od7)=Efina(7)—Ees~(In7) %4 essentially ©f the final residual energy,e(7) on the annealing time
similar to CA/ However, contrary to CA wheré<2, QA  for LXL 2D samples of an Ising spin glass uplte-80. In
may possess a generally larger exponggt which makes it this work, using the same test system, we explor.e PIQA in
quantitatively bettef. more detail, by studying systematically the annealing perfor-
The present paper is devoted to the second class of quediance for different values dP and T. As a result of this
tions, dealing with the more technical aspects for the effianalysis we derive useful guidelines for a suitable practical
cient implementation of QA as a numerical optimization al-implementation of the PIQA procedure, of hopefully more
gorithm, using the two-dimension&2D) Ising spin glass as 9general validity.
a benchmark example, and Monte CafldC) as the tech- The paper is organized as follows. In Sec. Il we describe
nique of choice. In fact, although one could, in principle, the model used as our test case, and sketch its path-integral
conceive a real-time QA algorithm based on numerical intefepresentation. In Sec. Il we describe in some detail the MC
gration of the time-dependent ScHinger equation, such an implementation of the PIQA technique. Section IV is de-
approach is presently extremely demanding on computer réLo_ted to the discussion of the results of PIQA and CA simu-
sources and as such it is not feasible except for very smal@tions. Finally, in Sec. V we draw our conclusions and sug-
size system&7° For the larger systems of real interest it is 9€St possible directions for future improvements. Technical
mandatory to resort to stochastic methods, which include &etails about the path-integral representation are included in
variety of quantum Monte Carl@MC) techniques. An early the Appendix for the reader’s convenience.
study on the optimal configuration of small Lennard-Jones

clusters—where the standard kinetic energy#2/2M)V? II. THE MODEL AND THE PATH-INTEGRAL

with variable masdM plays the role of the quantum term—  REPRESENTATION OF THE PARTITION FUNCTION

used diffusion Monte Carlo to propagate the initial wave i i
function of the system inimaginary time (at zero Our test complex system will be the 2D random Ising

temperaturg® Another standard QMC technique, the path_model, a Ch_oice dictated by several reasons. First we were
integral Monte CarldPIMC), allows instead the simulation directly inspired by Brooket al's experimental system, also

of a quantum system at a finite temperature. Working at & disordered Ising magneA second and main reason is that,
sufficiently low but finite temperatur and slowly decreas- 2lthough technically a polynomial probléﬁanq not a spin

ing the strength of the quantum kinetic term, it is possible tod!ass at anyr=0, the 2D random Ising model is nonetheless
use PIMC as a QA method to approach the ground $tte. of proh|b|t|vely_ Igrge complexity, with a large continuum of
Presently, a variant of this method is also being applied t(metaigabk_e minima above the ground state as in a true
Lennard-Jones clustets.An alternative quantum Monte glass.” A fmgl reason is that thg exact class_lcal ground state
Carlo scheme, essentially a ground-state path integral, is di&nergy of this model is numerically accessible, for an arbi-
cussed in Ref. 10, where applications to small 16-city in-trary rseahzatlon of random couplings, via the spin-glass
stances of the traveling salesman problem are also providea?r\{eil up to sufficiently large lattice sizes 100x 100, per-

In PIMC, besides the temperatuf§ one must also Mitting an absolutely precise measure of the residual energy
specify the imaginary-time slice numb@frotter numberp,  after every annealing protocol, which in turn provides the
counting the coupled classical replicas of the physical systerfUperior accuracy needed to study the asymptotic behavior.
used to represent the quantum system. The optimal choice of The Edwards-Anderson model Hamiltonian of the Ising
T andP for QA is nota priori obvious. In some path-integral SPin glass is
QA (PIQA) studies conducted so féapplied to a small pro-
tein folding problem?*3 both parameters were changed dur- Hoe =S 3 1
ing the annealing. In Ref. 12 the strategy adopted was to AT INER @
combine QA with CA by starting at a high temperature and
gradually decreasing to zero, while performing, at each Here Ising spins §=*1) occupy the sites of a
temperature step, a PIMC QA. The Trotter numBewas  d-dimensional cubic lattice, antj; are the random couplings
also decreased dswas lowered so that &t=0 a classical between nearest-neighbor sites drawn from some prescribed
system withP=1 was recovered. In Ref. 13 a Migdal- distribution. When the couplingg; fluctuate randomly with-
Kadanoff renormalization scheme was used, consisting of aut a definite sign, the Hamiltonigtl) describes a frustrated
progressive decimation of Trotter slicése., a decrease of and disordered system. The task of finding its ground state is
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a hard computational problem. It is known in three dimen- P

sions to beNP complete***’ the ground state cannot be Hos1=— 2, | X Jijsisi+34 > sks* |, (5)
systematically attained with an algorithm whose time in- k=111 !

creases as any finite power with the size of the system. WhilghereN is the number of lattice sites in thebdimensional
in two dimensions that is strictly speaking not the case—attice, and

there is also no true spin-glass phase at fiitgRef. 15—

the annealing problem is in practice still prohibitive, thus . PT r
providing a suitable testing ground. J*=——Intanf52>0, (6)
Adding a magnetic field orthogonal to the Ising axis one

obtains the Hamiltonian of the Ising spin glass in transverse 12
field C= Linies

; = Esth_T .

H=— 2 JijUiZUjZ—FZ ¥, ®) Zp is the partition function of a classicatl (- 1)-dimensional
I

anisotropiclsing system at temperatufeT, with couplings

. ) ) ) _Jj; along the originald-dimensional lattice bond&ame for
whereoy, of are Pauli matrices corresponding to the spin ong|| Trotter slice, andJ* (ferromagnetic and uniform, i.e.,
lattice sitei. Model (2) is directly inspired by the experimen- the same for all site§ along the extra dimension, where the
tal system of Brooket al’® Physically, the transverse field  system has a finite leng® It follows from the properties of
represents a kinetic energy which does not commute with thghe trace that periodic boundary conditions have to be taken
classical Ising term, inducing transitions betweenfttend | along this dimension, i.e.s?*'=s!. This well-known
sf[ates of each single spin, thus turning the model from clasmappind® of the d-dimensional quantum Ising system onto a
sical to quantum. (d+1)-dimensional classical Ising system allows simulation

In order to derive a path-integral representation for thepf the quantum system by a standard classical Monte Carlo
quantum Ising spin-glass mod@) we apply to its canonical sampling.

partition function the standard path-integral technitflid/e
write

i)

Ill. MONTE CARLO IMPLEMENTATION

H=U+K, Since we are interested in annealing, that is, approaching
as closely as possible the classical ground state, rather than
reproducing the exact quantum averages, we do not neces-

U=-2 Jjolof, K=-T> of, sarily have to work in the large Trotter numberlimit, or

i perform extrapolations t&®—«. For the same reason, we
where, as previously mentioned, the terigpotential en- ~ could, in principle, relax the boundary conditions along the
ergy) and K (kinetic energy do not commute[K,U]#0.  imaginary-time direction, required to be periodic by the trace
Defining, as usualg=1/kgT, wherekg is the Boltzmann (_;ondltlon. In the present benchmark study, however, we de-
constant which we set henceforth to 1, the partition functiorlioerately retained the standard PIMC boundary conditions

Z at a temperatur@ can be written as which are periodic along the imaginary-time direction, as
well as along the spatial directions.
Z=Tre AH The results presented in this paper concern a single real-
ization of the 2D Edwards-Anderson model with random
=Tr(e AH/P)P couplings on a 8880 sample with periodic boundary con-
ditions. The random couplings were distributed according to
=Tr(e‘ﬁ(K+U)’P)P=E . 2 <Sl|e—ﬁ(K+U)/P|52> a uniform distribution on the interval<2;2). Wenote that
Sl P we performed similar simulations with several realizations of

random couplings on systems 332 and 4% 48 and ob-
tained in all cases very similar results. Thus, the results for
the 80x 80 system can be regarded as typical.

We start by discussing the initialization of the PIQA pro-
cedure. It follows from the mapping that at the beginning of
PIQA, when the transverse field is large, the coupling*

(6) between the neighboring slices is very small and there-

andU,8 obtaining an approximatiodp to Z whose error is fore the (2r1)D system behaves like a coIIection.of n.or.1in-

proportional to the square of the Trotter breakup tikie tgractmg 2D systt_ams attemperati@. An approprlate Ink-
tial configuration is thus to set all Trotter slices equal to one

= f3/P. The final expression, after simple algebra which Weanother, with a spin configuration corresponding to the equi-
reproduce in the Appendix for the reader's convenience, ISIibrium Boltzmann distribution at temperatur@T. This
choice does, however, assume the ability to achieve a ther-
Z~ZP=CNP2 .., e Har1/PT (4) mal equilibrium distribution with temperatuf@T, which is
st sP possible in practice only iPT is not too small, i.e., larger

X(s?|e AKTUIP _ |gPy(sPle BK+WIP|gly (3

Heres={sK} denotes a configuration of all the spins in the
kth Trotter slice, and the last equality follows from insertions
of the identity operatofl== «|s¥)(s¥|. Thus far everything

is exact. Now we apply the Trotter breakup formula
e AlKTU)< e BKe=BY  which neglects commutators df
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than the corresponding glass transition temperalyjgss. ~ with randomly chosen spins and the temperailingas lin-
Specifically, one should guarantee tiRaf=|J|, where|J| is  early decreased from the initial value @=23.0 to zero,
a typical scale of the couplings. Since our couplings have aperforming at each temperature step one MCS resulting in a
average magnitude ¢8|~1, our PT should not be smaller total of 7 MCS’s. Also for CA, we always averaged the final
than 1; we used here values BfT ranging from 1 to 2 energies ovelN=45 searches, each search starting from a
(PT=1,15,2). In all these cases we prepared the initial condifferent random configuration.
figuration by performing a classical preannealing that con-
sisted of(i) starting from a completely random spin configu-
ration at a sufficiently large initial temperaturef=3, and
(i) decreasing the temperature in stepadf= 0.05 down to We first characterize the efficiency of both the PIQA and
the desired value d? T performing 100 MC steps per spin at CA methods, by studying the cooling rate dependence of
each temperature step. This annealing rate turned out to kg.4(7) upon varying the annealing time over as many
sufficient for our case. decades as possibléBesides a quantitative comparison be-
Next, we need to choose an initial vallig of the trans- tween CA and PIQA, which is not our main scope here, this
verse field. In CA the choice of the initial temperature is notwill lead to a discussion of the behavior of PIQA Monte
critical provided the value is high enough for the system toCarlo data as a function of the simulation parameffeasid T
be able to reach thermal equilibrium. In PIQA, on the otherand provide an interpretation in terms of different regimes of
hand, ifI" is too large, the Trotter slices are practically de-freezing during the PIQA procedure. We stress that, for the
coupled. Although initialized to the same configuration, afterlarge system studied here, it is impossible to characterize the
evolution in the decoupled regime for too long they will efficiency of an algorithm through the “probability of getting
become uncorrelated, which is bad in view of the subsequerihe actual GS” during the simulatiorRg7), as done in
introduction of interslice correlations upon decreasing Refs. 8—10, sinc®g4 7) is vanishingly small.
Conversely, an excessively small initiBl, value can also
have an adverse effect since now the slices do not have
enough time to build proper correlations between them. For
this reason a moderate initial valuelo§ is best. The optimal As previously mentioned, the produefl” determines the
value of I'y was determined by testing several values forcouplings both between the spin replicas in neighboring
eachP andT using a short annea”ng time ForPT=1 the Trotter SliCES(fOf a given value Of) and between the Spins

best value turned out to be about 3.0 while RF=1.5 and  Within slices[Eqs. (4)—(6)]. For a given value oPT, the
PT=2 the value of 2.5 was optimal, found in this way Trotter number itself only determines the size of the lattice

was then used for all values af along the imaginary-time direction. Therefore it seems natu-
We sampled the system by a standard Metropolis algotal to study the PIQA efficiency by varying independently
rithm employing both local and global moves as is commonP T and P. As mentioned in the previous section we used
in PIMC simulations. The local moves attempt independenhere three values dPT=1, 1.5, and 2. FoPT=1.5 and
spin flips at all sites in all Trotter slices. In a global move, PT=2 we used the values d?=30 and P=40, respec-
instead, an attempt is made to flip simultaneously all thdively, corresponding tor=0.05. For the smallest value
replicas of the same spin in all Trotter slices. Clearly, thePT=1 we performed a more detailed study using several
acceptance ratio of the global moves does not depend on th@lues ofP=5, 10, 20, 30, 40, and 50. The values of the
transverse field” since both replicas of the same spin in total annealing time range fromr=60 MCS's to 7
neighboring Trotter slices which interact via (which de- =300000 MCS'’s.
pends orl’) are always flipped at the same time. The results for the residual energy in QA are shown in a
The QA annealing protocol consisted of a linear decreaség-log plot in Fig. 1. There are noticeable differences be-
of the transverse field® from the initial value ofl', to the ~ tween curves corresponding to different valuesPdf. The
final value (close to zero but still finiteof T=10"8 The PT=2 curve, obtained foif =0.05 with P=40, starts for
temperaturél and Trotter numbeP were kept constant dur- low 7 at the highest value of¢s and initially decreases, on
ing the annealing. At each value Bfone MC step per spin increasingr, at the fastest rate untii~ 1000, where it starts
(MCS) is performed. Each MCS consists here of a localto develop a plateau. Further increaserafesults only in a
move followed by a global move and the total number ofvery slow decrease of¢(7) indicating that PIQA in this
MCS'’s performed during the annealingis From this defi- regime is not efficient. Th® T=1.5 curve, corresponding to
nition it follows that the CPU time required for 1 MCS scales the sameél'=0.05 but now forP =30, looks similar in shape
linearly with the Trotter numbeP. At the end of the quan- but develops the plateau around a slightly larger value of
tum annealing we proceeded to identify the Trotter slice with~2000; it also reaches a slightly lower value §fs. For
minimum energy and took that energy Bs,,,;. The search PT=1 andP increasing from 5 to 40 we have a series of
was always repeated =45 times and the final energy was curves which also have shapes similar to the previous ones.
averaged over all searches. We note that each search widswever, in particular the®=20 and P=40 curves now
initialized from a different classically preannealed configura-reach for larger considerably lower values of,.s. More-
tion. over, a comparison of curves with increasifgeveals here
To end this section we briefly mention also the CA an-interesting convergence properties. The remarkable feature is
nealing protocol used. We started from a spin configuratiorthat the curves corresponding to different valuesPofat

IV. RESULTS AND DISCUSSION

A. Dependence of quantum annealing o® and T
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FIG: 1. Residual energy per site obtalne_d by PIQA for an _80 FIG. 2. Average number of flipped spins between neighboring
<80 disordered 2D Ising model as a function of total annealingroyer slices in the final configurations at the end of PIQA as a
time 7 for different values of paramet&T and Trotter numbeP.  g,ction of total annealing time for different values of parameter
PT and Trotter numbelP. The same symbols as in Fig. 1 have been

fixed PT=1, coincide up to a certain value ef However, . .
used for the same runs to make comparison easier.

for each value oP there is a characteristic value efwhere
the corresponding curve splits from the bunch and starts tgomes zero and, not surprisingly, this is not an efficient re-
decrease in a much slower fashion for increasinteveling  gime of PIQA. In the alternative case of quantum freezing
off to a plateau. This characteristicincreases with increas- igterent Trotter slices explore and tunnel between different
ing P. While the P=5 curve splits already at~500, the  gnergy valleys until the very end of the annealing, which
P=10 curve does so at~10000 and th&=20 curve splits  makes the annealing more efficient. With larger value® of
only at 7~60000. Overall, the®=40 curve provides the and/or a smaller coupling between the sli¢emaller PT)
best results. the annealing timer required to correlate completely all
These findings can be understood as follows. The PIQArqtier slices, thus reaching the classical freezing regime,

can actually be seen as cooling a classical system from ggyqws, This explains the main features of data shown in Fig.
initial temperaturePT to a final low temperaturd. How- 7 gnq Fig. 2.

ever, unlike CA, where the temperature is straightforwardly
lowered, in PIQAP decoupled replicas of the system are
initially created at a higher temperatUpd and subsequently
gradually forced into the same configuration by increasing For comparison, we performed also a CA cooling rate
the couplingd* as the transverse fiel is reduced to zero. Study on the same sampléor a broad range of ranging
Doing that slowly enough would indeed lead to a classicafrom 60 to 6x 10°. In Fig. 3 we show the CA results together
equilibrium configuration of the system at a low temperaturewith the PIQA results. For a fair comparison of different
T; given not enough time, the system will instead freeze inmethods we multiplied here the values in PIQA by the
the process. There are two essentially different ways the (corresponding Trotter numbé, since performing one MCS
+1)-dimensional path-integral system can freeze dependint) PIQA requires updating replicas of the system, and costs
on whether at the end of the quantum annealingen the thereforeP times more computer time than the correspond-
couplings between the Trotter slices become very laajle  ing classical sweep of the lattice. The results show that PIQA
Trotter slices are in the same configuration. The case wheperforms considerably better than CA, reaching, for the larg-
this is true can be called “classical freezing” and the oppo-€st 7 studied, values o.s smaller by a factor of about 3
site one perhaps “quantum freezing.” compared to CA.

In order to check which of the two scenarios applies we To perform a further quantitative comparison between
calculated the average number of flipped spins betweeRIQA and CAin terms of CPU time required to reach a given
neighboring Trotter sliceransverse field terinin the final ~ value ofe,.s Wwe can make use of the Huse-Fisher theoretical
configurations at the end of PIQA. These results are showfredicton of a logarithmic ~ dependenceees(7)
in Fig. 2 and provide a clue to understanding the data of Fig=A(In y7)~¢, where/<2 . In Ref. 7 we showed that the CA
1. Comparison of the two figures shows that a curve splitslata are, for larger, compatible with this prediction al-
from the bunch when the number of flipped spins at the endhough it is not possible to determine the exact value of the
of annealing goes to zero; in such a case the system undegxponent/. Nevertheless, we can make an estimate assum-
goes a classical freezing at the end of quantum annealing, otg for CA the fastest theoretically allowed decay corre-
even before. The reason for this is that the szef the  sponding to/=2.2 Fitting the CA data in the asymptotic
lattice along the Trotter dimension is too short for the givenregime with such a form we obtained the valués
PT (which determines couplings among the sljcaad 7. =0.9988y=0.0875. The lowest value of,.s reached by
Quantum fluctuations thus disappear before or whebe-  PIQA wase,.,=1.857< 10 3, obtained forPT=1, P=40,

B. Comparison between CA and QA
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FIG. 3. Comparison of the residual energy per site for an 80 F!CG- 4. Residual energy per site obtained by PIQA for an 80
% 80 disordered 2D Ising model after CA and PIQA. The PIQA data™ 80 d|§ordered 2D Ising model as a fun(_:tlon_of tht_a Trotter r_1umber
are shown folPT=1 and different values of the Trotter number P for different values of the total annealing time Lines are just
For fair comparison, the actual total annealing timesed in the ~ 9uides for the eye.
PIQA has been multiplied b so that points at the samerequire
roughly the same computer time. cooling rate dependence ef.s(7) for PIQA for different

values of P and T. This study enabled us to identify two

and =300 000. According to the fitted logarithmic law, this possible regimes of freezing in PIQA, and to clarify the re-
value would be reached by CA for=1.35x 10'* MCS’s. In  lationship between the parametésand T, the freezing re-
the PIQA simulation we effectively needed a CPU timegime and efficiency of PIQA. For the system studied, PIQA
equivalent toP7=40x300006=1.2x10" MCS’s. Such a appears to be a more efficient method than CA since it ap-
gain in CPU time with respect to CA of about four orders of proaches the ground state considerably faster.
magnitude represents a dramatic difference in efficiency: one Quite clearly, our path-integral Monte Carlo, as well as
can calculate using PIQA in one day what would be obtainedhe corresponding classical Monte Carlo, was based on the

by plain CA in about 30 yr. most simple local moves suggested by the problem: single
spin flips. It is worth noting that much more efficient global
V. GUIDELINES, CONCLUSIONS AND OUTLOOK moves for general spin systems have beep |nt2ré)2dluced, in the
o last decade, through the so-calledp algorithm==“*These
A. Guidelines global moves provide the natural generalization to quantum

Finally we can sum up our analysis of path-integral quan-Spi” systems of the cluster moves .originally introduced by
tum annealing to yield simple guidelines for the choice ofSwendsen and Wang for classical Ising systé%m\ssgccess-
parameters® and T. In order to easily prepare the initial ful application to the two-dimensional random lsing ferro-
configuration for the Trotter slices, one must be able toMagnetin a transverse field is reported in Ref. 23, where the
equilibrate the system at temperatuPel. This places a interesting pOSSIbIhty o_f performing a continuous imaginary-
lower bound onPT requiring it to be at least comparable time sampllng, i.e., without Trotter dlsqretlzatlon error, is
with the couplings] in the system. A reasonable choice thus 8MPhasized. Such approaches are certainly worth pursuing in
is to takePT~J. At fixed PT, QA works progressively bet- (e attempt to improve on our basic scheme. We mention,
ter upon increasing®. However, for fixed total annealing Nowever, the following two caveatt) the application of the
time ~ the residual energy saturates to a limiting value for/©9P @lgorithm or similar cluster moves to a case with genu-
large P, as shown in Fig. 4. Therefore for each valueof ine frustration, like a spin glass, is not completely guaranteeql
there is a value oP beyond which further increasing &fis to be successful, as the use of Swendsen-Wang moves in

useless, and merely consumes computer tifig. 4). Fi- classical spin glasses shows) similar smart global moves
fre generally not available for a generic optimization prob-

nally, in order to achieve a better annealing, a longer annea , _ i e R
ing time 7 is needed, but that in turn requires a larger valu em. In this respect, the S|mple minded “single spin flip
of P for the best possible, .. type of moves we have used is, often, all one can afford.
res
In the future, we plan to apply the methodology we have

presented to a 3D spin-glass case where the problePis
hard. It would also be interesting to elaborate on the optimal

In this paper we have explored the applicability of theannealing schedule; it is possible that decreasing transverse
plain path-integral Monte Carlo technique with constantfield I in a nonlinear way could produce even better results.
Trotter numbelP and constant low temperatufeo quantum  Our results suggest that PIQA could indeed be a promising
annealing using a 2D random Ising model as a test exampl@ptimization technique and it seems worthwhile to continue
We discussed issues related to the efficient implementatioto study its applicability also to other kinds of problems of
of the PIQA procedure and performed a detailed study of thghysical and general interest. To do so, however, it is neces-

B. Conclusions and outlook
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sary to construct for each problem under consideration a suit- AT N

able kinetic-energy operator and an appropriate Trotter de- (sk|eﬂK’P|sk“):<sk|exp<— > aix) |kt 1y
coupling, which might not be completely trivial. An extra P =
advantage of PIQA is the fact that it can be easily imple- N AT

mented on a parallel computer, each Trotter slice running on =1] (SHEX[{—Gf |sk*y,
one node, providing a parallel optimization algorithm requir- i=1 P

ing little communication between the nodes. It is also inter-
esting to explore possible connections of the PIQA method t
parallel tempering? a project which we are currently pursu-

ing. (T1e*|1)=(1]e*"( | )=cosha,

‘whereN is the number of lattice sites. From simple sgin-
Qlgebra?® it is easy to show that

ACKNOWLEDGMENTS (11€®x| | y=(1|e?*¥1)=sinha,

This project was sponsored by MIUR Grant No. CO-Wwhich can be written as an Ising-like interaction g now
FIN2001, and by INFM/F, INFM/G, and INFM Iniziativa mean single spins
Trasversale di Calcolo Parallelo. R.M. would like to ac-
knowledge support from the MINOS project of CINECA, (s|e*(s")=CePss
Whic_h also provided computertimg, as weII_as the hospita_tlithith B=—lintanha, and C?=1sinh2 Collecting all
provided by SISSA and ICTP Trieste during collaboratlvepleces together, we get
visits. We are grateful to R. Car, A. Maritan, and R. Zecchina

for helpful discussions. (sK|e™ PKIPgBUIP| gkt 1y
APPENDIX: = CNgU PSS g (1P () dijs(s]
DETAILS OF THE PATH-INTEGRAL DERIVATION where
We include here, for the reader’s convenience, a few tech- PT I
nical details on the path-integral representafiaf the Ising F=—"—"TIn tanl13—>0, (A2)
spin glass used to perform quantum anneali@g.).
Starting from Eq«(3) one applies the Trotter breakup for-
mulae” (KTU)PT<g=KIPTe=U/PT \yhich neglects commuta- c2— 1.
18 .. —_S|nhP_
tors of K and U, obtaining 2 T
The J* term can be seen as a ferromagnetic Ising-like cou-
Z~Zp=2, .-, (sle PK/Pe AUIP|s2) pling between the Trotter replicas of the same spin which are
st s” nearest neighborsk(andk+ 1) along the Trotter dimension.
X(s?| .. e PKIPe=BUIP|gP)(sP|@=ARIPe=BUIP|gLY For the full partition function we thus finally get
with an error proportional to the square of the Trotter NP Hawd/PT
breakup timeQ((8/P)?).18 We need to evaluate the expres- Z~Zp=C 21 - ZP e Tdn (A3)
sion (s¥|e™AX/Pe=BUP|Skt1y " \which is simply reexpressed S s
as

- L kg k+1
<Sk|e—/3K/Pe—BU/P|Sk+1>:<Sk|e—ﬁK/P|Sk+1>e—/3U(sk+1)/P Hava= E E ‘]'JS +J z SiS . (A4

(AL which represents the partition function of a classicdl (
since the potential energy is diagonal in the chosen spin +1)-dimensional anisotropic Ising system at temperature
basis. The only nontrivial term is therefore the average of thé®T. The system has couplingd;; along the original
kinetic term between two Trotter slicegs¥|e #X/P|s**1).  d-dimensional lattice bondsame for all Trotter slicgsand
Since spin operators corresponding to different sites} (same for all sites) along the extra Trotter dimension,
commute?® we can rewrite such a term as where the system has a finite lendth
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