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Penrose structures: Gap labeling and geometry
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The electronic eigenvalues and eigenstates of finite parts of Penrose structures are studied on the basis of a
recently proposed three-dimensional solvable mgdePhys. A30, 7831(1997)]. This model allows to take
explicitely into account the geometry in three-dimensional space and involves no assumptions such as only
nearest neighboring atoms coupling. For finite parts of a Penrose tiling, it is shown that the positions of some
of the gaps in the integrated density of states are directly related to the geometry of the systems. As a result,
the explicit expressions for ten gaps relative to infinite tilings are obtained from the known frequencies of
vertex stars of Penrose tilings.
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I. INTRODUCTION S(r'—r)
(r'fr,lmy=———Y"(r"). (4)
Atoms located at vertices of a Penrose tifirmge models r
for two-dimensional quasicrystals. The study of energy The interaction is the sum of identical interactions each
levels of these aperiodic structures has been the subject 6entered at the Penrose vertices. The interaction at center
intensive work$.~>” Only three years after the publication of characterized by the vector positi@p is a separable one,
the experimental discovery of quasicrystais 1984, impor- ~ with |r,0,0)=|r,I=0m=0) an eigenvector of the squared
tant reprints concerning electronic, phonon, and magnetiorbital angular momentum with eigenvall@ +1), an ei-
properties of quasicrystals were already collected in Chap. @envector of the componemt, of the orbital angular mo-
of Ref. 39. At the end of the introductory remarks for this mentum with eigenvalue, and a generalized eigenvector of
chapter, we quote “it is our opinion that essentially nothingthe radial position operator with generalized eigenvalue
is known except special solutions for rather special models.Exact solutions for the energy eigenvalues and normalized
Since that time, significant progress has been made, althougtigenvectors can be obtained after numerical determination
some points remain controversialNevertheless, concern- of the zeros of a determinant of M order matrix (N is the
ing electronic spectrum for Penrose tilings, the quasitotalitytotal number of verticesvhose elements are simple analytic
of subsequent works up to present day is based on tighfunctions. The procedure for calculating these solutions is
binding HamiltonianH = 3;&;[i)(i|+ =; ;t;;|i)(j| where the  described in details in Refs. 42,41, and 40, and will not be
geometryof the positions of the atoms in three-dimensionalrepeated here.
physical space is taken into account indirectly and not ex- The first results based on this model obtained in Ref. 40
plicitly. Most of the works with these tight-binding Hamilto- for finite subsystems of a Penrose tiling clearly exhibit gaps
nians consider the case where only nearest neighboring at the integrated density of statéd®OS) but no theoretical
oms are coupled. interpretations were given.

It is my opinion that these aperiodic model Hamiltonians The purpose of the present work is to show that these
indeed present a great mathematical and physical interest. gaps are directly related to the geometry. As a result, the
is also my opinion that results obtained with other modelsmain gaps for infinite Penrose tilings are obtained analyti-
are necessary to help distinguish the properties that are geally by extrapolation of results pertaining to finite sub-
neric from those which are not. systems.

In a recent work? the spectrum of finite subsystems of a It is very important to realize from start that this extrapo-
Penrose tiling was considered on the basis of a madll  lation procedure refers to thmint spectrumOnefirst con-
geometry in real three-dimensional space taken into accourgiders a finite system with boundary conditions correspond-
explicitly, and without any assumption of nearest neighbor-ing to wave functions exponentially decreasiag infinity,
ing atoms coupling This model was previously used for andthenone considers the limit where the size of the system
study of periodié! structures and is a particular case of atends to infinity in all directions. It is recalled thabelongs
more general exactly solvable mod&The Hamiltonian is  to the point spectrum if the operataz{ H) has no inverse,
the sum of kinetic and interaction terms for an electron into the continuous spectrum if the operata@—(H) has an

three-dimensional physical space, inverse not bounded with dense domain, and to the residual
p2 N spectrum if the operatorz(- H) has an inverse with domain
H= ﬁ*.z )\|§j><§j|, ) not dense. see, e.g., Ref. 43. This procedure is clearly rel-
i=1 evant to the study of real physical systems. It avoids the
|&)=exp(—ig;- p)r¥r,0,0), (2)  introduction of periodic boundary conditions, or of periodic
) approximants that, in my opinion, may be useful, but can be
(e ) = o(r'=r) P 3 avoided as shown by the present work. In particular, a wave
[ L] - 5 _01'9nm

r? vectork is essentially a label for one irreducible representa-
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FIG. 2. The three prototiles for type I tilings.
tiling, is given in the Appendix. This appendix also contains
some definitions and results that will be used here.

A word of caution: the wordtar alone refers to one of the
three above prototiles, and should not be confused with the
word star in the expressiorertex star(at p) which refers to
e usual definition given in the Appendix.

FIG. 1. The five system&ot to scalg

tion of a translation group, and therefore the consideration orth .
S The contours of these three prototiles have been under-
these wave vectork is intrinsically related to the use of |

periodic approximants and is not an unavoidable tool forined in Fig. 1 for the sake of simplifying the interpretation
A T of the spectra. The Penrose vertices internal to these three
analyzing infinite systems that are not periodic. . . . . :
prototiles will be calledinternal vertices the vertices of
these three prototilesthe other Penrose vertigewill be
calledexternal verticeslt should be noted that the method of
projection from a higher dimensional lattice naturally distin-
The finite systems that will be considered here are numguishes external from internal vertic€sn important prop-
bered 0,1,2,3,4Fig. 1). The systeni+ 1 is obtained by de- erty is that the external vertices of a Penrose tilhgre the
flating the system and then rescaling it by multiplying all internal vertices of the deflated tilif3(P) (See Appendix
distances by the golden ratio= (1+/5)/2 [symbolicallyi For the discussion in this paragraph, the units of distance
+1=7D(i)]. Thus all the five systems have the same lengthwill be taken to be the common lengttgiven by Eq.(7) for
for an edge of a rhombus in the forthcoming calculations ofall edges of all rhombi of all systems. With this choice of
the spectrum. The total numbers of vertidésfor each sys- units, Eq.(7) readsc=1.
tem is Ng=16, N;=36, N,=76, N3=186, N;=476. For It is very important for the sequel to notice from the start
comparison with the results obtained in Ref. 40, the samé#hat, for an infinite tiling the short diagonal@ength 1f) of
values of the interaction parameters have been chosen, a thin rhombus always appear inside a cigar or a boat. They
always appear with a common vertex in a cigar, whereas they

Il. GEOMETRICAL INTERPRETATION
OF THE MAIN GAPS

A=-0.398909 a.u., (5) always appear isolated in a boat. This is important because
the distance between twwearest neighborsertices is either
r=1.8176943 a.u., (6) 1 or 1/r. Two vertices separated by the shortest distance 1/
thus are always inside or on the boundary of a cigar or a
c=6.0816 a.u., ) boat. Hereafter, a vertex with a neighboring vertex at dis-

tance 1f will be called a vertex of type A, a vertex with a

c is the common length of the edge of Penrose rhombi. Tha@earest neighboring vertex at distance 1 will be called a ver-
original choice for these values was motivated by the detex of type B. To distinguish between the vertices of type A
scription of band structure of lithium crystdiput these val-  which belong to a cigar and those which belong to a boat, we
ues are not critical and some calculations made with otheadd a subscript: Afor cigar, A, for boat.
values lead to the same conclusions that are presented below. The five exact point spectra computed numerically are

The system 0 has been chosen because its form, a regulaported in Fig. 3 in the form of unnormalized integrated
decagon, has a low perimeter to surface ratio, in order talensity of statesUIDOS) plots. Specifically, the energy ei-
minimize boundary effects. The five systems have a verticajjlenvalues are numbered in increasing order starting with
axis as symmetry axis to be called thexis in the following.  unity. The horizontal axis is the energy, the vertical one re-

Figure 1 describes the systems 0,1,2@vith an arbitrary  ports the running number of the eigenvalues. The total num-
scaling for each systemThe edges are drawn for better ber of linearly independent states is equal to the total number
visualization, but the eigenvalues and eigenvectors of thef vertices and to the total number of energy eigenvalues as
Hamiltonian depends only on the vertices positions. It can b&o degeneracy occurs. It is seen by comparison with Ref. 40
shown that the Penrose two prototiles tilings are in bijectivethat the behavior of the UIDOS is the same that was found in
correspondence with the tilings, thereafter to be denoted typRef. 40 for different geometrical systems. This fact, together
| tilings, constructed from three prototiles depicted in Fig. 2with the consideration of much larger systems in the present
and called the “star,” the “boat,” and the “cigar.” A direct paper is a first indication that finite-boundary effects seem
proof, based on the listing of all the vertex stars of a Penrosaot to play an essential role.
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A. Analysis of the contour plots for the system 0 nals inside the cigar The wave function of state 15 is sym-

The contour plots for all the wave functions evaluated inMetric with respect to thg axis, the one of state 16 antisym-
etric.

the plane of the systems, associated with these energy eigeW— .
values have been drawn and analyzed for most of all the Second, the foII(_)wmg state of onvest enelgyate 3.) has
wave function with important weights on the vertices be-

eigenstates of the five systems. This analysis gives the k : X . ; A
for the interpretation of the gaps in the DOS. Of course, wﬁ nging to an isolated short diagonal. This wave function is

cannot report all these contour plots, but Fig. 4 displays all
contourplots for the system 0.

There are ten equally spaced contours between the e
trema values, and, for each of the 16 graphs, the shadin{®
corresponding to nearly zero values of the wave function is
the one present at the corndrghere the wave function is
exponentially decreasing The verticesi where the wave
function ¥ has the most important weights;|¥) will be
characterized explicitly in the text below.

Much can be learned from the contour plots of Fig. 4.

First, the states of lowest enerdstates 1,2) have a wave
function with important weights on the vertices belonging to
the two short diagonals inside a cigar. These wave functions
are approximately locally completely symmetiice., they
have a constant sign on each of the two short diagonals o&2
the cigar, and this sign is the sam&he wave function of
state 1(ground statghas a constant sign, the one of state 2 13

is antisymmetric with respect to the axis. The states of ‘% 4D

e 4&’«)

)

y Wi
Y

&P
¢

highest energystates 15,16) have also a wave function with %;/\
important weights on the vertices belonging to the two short &;“’@;
diagonals inside a cigar. These wave functionsapproxi- S®Y

mately locally completely antisymmetrice., they change
signs inside each of the two thin rhombi of a cigar, the lines FIG. 4. Contour plots of the 16 eigenfunctions for the
of nodes being roughly perpendicular to the two short diagosystem 0.
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approximately locally symmetri@.e., has a constant sign on significantly to states with energy not in the two extrema
the short diagonal inside the bpafhe preceding state of regions. The spectrum associated with the system consisting
highest energystate 14) has also a wave function with im- of only three vertices disposed at the verticgsoA a cigar
portant weights on the vertices belonging to an isolated shofias three eigenvalues, the lowest one yielding a state having
diagonal. This wave function iapproximately locally anti- the local symmetry of states 1,2, the highest one yielding a
symmetridi.e., it changes sign inside the thin rhombus of thestate having the local symmetry of states 15,16, the middle
boa. one having a line of nodes separating the two external verti-

Third, the following state of lowest energstate 4) has a c_es(the internal one is the vertex _shared by the two short
wave function with important weights centered on the verti-diagonals. These two external vertices are separated by a
ces, which form the region of highest concentration of verti-distance greater than one. Thus, to interpret the whole spec-
ces of type B(four vertices near the top of the systerfihis ~ trum, one can proceed as follows. o
wave function isapproximately locally completely symmetric  One first considers the subsystem consisting of only ver-
(ie., has a constant sign in a region surrounding the foufices of type A. One requires that the three vertices of type
verticeg. The preceding state of highest enefstate 13) has Ac Of a cigar contribute only to states having no nodes in the
also a wave function with important weights centered on théniddle region separating the two external vertices. One thus
vertices, which form the region of highest concentration ofinterprets the two extrema regions of the spectrum
vertices of type B. This wave function @pproximately lo- (1,2,15,16). One then considers the subsystem consisting
cally completely antisymmetri.e., has alternating sign be- only of vertices of type 4. One thus interprets the last but
tween two consecutive vertices. From geometrical consideione extremity region of the spectrum (3,14). One finally
ations, this is possible only if the weight on one of the fourconsiders the subsystem consisting only of vertices of type B
vertices is close to zero, which is indeed the gase and A;, but one requires that the three vertices of typeoA

It remains to discuss the eight middle energy state@ Cigar contribute only to states having a line of nodes in the
5,6, ...,12. It can be seen that states 5 to 9 are locally symmiddle region separating the two external vertices. One thus
metric (i.e., there are two vertices of type B separated by uniinterprets the middle region of the spectrum (4,5.,13).
distance where the wave function has important weights, and
the wave function does not change sign between these two
verticeg. The state 8 is included here somewhat arbitrarily
since there are no two vertices of type B separated by unit Let us call the normalized integrated density of stéids
distance where the wave function has important weightsDOS) the IDOS which takes the value unity when the energy
Then follow the states 10 to 12: they are locally antisymmetdis greater than or equal to the largest energy eigenvalue, and
ric (i.e. there do not exist two vertices of type B separated bytakes the value zero when the energy is lower than the lowest
unit distance where the wave function has important weightsgnergy eigenvalue. If we apply the conclusions of the pre-
and the wave function does not change sign between thesgding analysis to the five systems, the four main gaps in the
two vertices. NIDOS should be given by the geometrical ratios reported in

Finally, a last comment. The six vertices of type l&ad  the first line of Eq.(8), whereN is the total number of ver-
only to four states (1,2,15,16) located at both the extremitiesices,n, is number of pairs of short diagonals sharing a com-
of the spectrum. Two vertices of type.Ahus contribute mon vertex,n, is the number of isolated short diagonals.

B. Geometrical interpretation of the four main gaps for the
five systems and extrapolation to infinite systems

System ne N—n, n.+ny N—n.—ny
N N N N
2 1 16-2 7 2+1 3 16-2—-1 13
0 16 8 16 8 16 16 16 16
L 5 36-5 31 545 5 36-5-5 13
36 36 36 36 18 36 18
5 76-5 71 5+15 5 76-5-15 14
2 76 76 76 76 19 76 19
25 186-25 161  25+15 20 186-25-15 73 ®
3 186 186 186 186 93 186 93
65 476-65 411  65+45 55 476-65-45 183
4 176 476 476 476 238 476 238
4 1—-74 A4 70 1—74-775
=5—-37 =—4+37 =—-3+27 =4-27
o0
~0.145898 =0.854102 ~0.236068 ~0.763932
A D B C
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FIG. 6. An ubiquitous pattern for type | tilings.
FIG. 5. The eight vertex stars of a Penrose tiling. We shall determine gaps relative to infinite system with

_ ~the help of the gap relative to system 4. The UIDOS for this
If we now compare these values deduced from Fig. 1, i.eyegion is enlarged in the last graph of Fig.I8.this energy

from pure geometry, to thg gap values deduced from th(?egion, the number of linearly independent states is equal to
energies reported in Fig. 3, i.e., from exact quantum compu;

; . ; e the number of short isolated diagonals. We have seen that a
tations, one obtaingerfect agreemen(This may be difficult oat is in bijective correspondence with an isolated short
to see from the only Fig. 3 but we stress that the agreemelﬁ J P

is exact for all the twenty numbey&his leads us to extrapo- mgona} for infinite Penrose tiling. It has also be.seen in_ the
late to infinity with confidence and the results of this ex-~\PPendix that a boat always meets a star according to Fig. 6.

trapolation are reported in the last line of E8). The values It can then be shown_ that the isolated short diagonals can be
in the last line of Eq(8) are obtained by noting that, for an grouped to form the figures of a star surrounded by 5, 3, or 1
infinite tiling, n./N is the frequency of vertex star of type 3, Poats(to be denoted,s, Sys, Spa). Specifically, a star with
ny/N is the frequency of vertex star of type(8ee Fig. 5. inner vertexp of tiling P gives forD?(P) a star with inner
The frequencies of these vertex stars are known and are dgertexp surrounded by five boats, a boat with inner verpex
rived in the Appendixsee Eq.(A1)] for the sake of com- of tiling P gives forD?(P) a star with inner vertex sur-

pleteness. rounded by three boats, a cigar with inner venpef tiling P
These main gaps will be called A, B, C, D in order of gives forD?(P) a star with inner vertep surrounded by one
increasing energy from now on. boat. For an illustration, see Fig. 7, where the system 2 and

the systemD?2(2) (system 4 without rescaling by?) are
displayed togethefwithout inner vertices

Ill. GEOMETRICAL INTERPRETATION AND To follow the deduction, it is important now to localize in
DETERMINATION OF OTHER GAPS FOR INFINITE the last graph of Fig. 1 or in Fig. 7, the three stars surrounded
SYSTEMS by five boats, the five stars surrounded by three boats, the

The success of the previous geometrical interpretation fofive stars surrounded by one boat, and finally the ten isolated
the first four main gaps encourages further geometrical gaphort diagonals on the boundary. This gives a total &f53
determinations. We presently have not determined a general 5 3+ 5+ 10=45 isolated short diagonals that have to be

formula for all the gaps. The purpose of this paragraph is tqe|ated to the 45 linearly independent states 66 to (0
determine geometrically some of them whose interpretation, ,-se not a direct correspondence

is particularly simple. The interest is to illustrate the impor- .
tance of what could be called a renormalization procedure, The locally totally symmetric states & should then

_4 .
whose quantitative implementation relies upon the inflation9/Ve @ gap atr “+x wherex is the frequency of a star
deflation properties of Penrose tilings. surrounded by five boats. This frequengycan be deter-

mined, for example, by noting that it is equal to the fre-
quency of the inner verticels [Eq (A2)] divided by 7° since
the inner vertices oP are the centers of stars surrounded by

Let us first consider the states situated between the firsfives boats 0D*(P) (see Appendix One thus predicts a gap
74 and secondr~ 4+ 7%, main gaps A and B. at 74+ (3—7)/57%=(148-917)/5=0.151 781.

A. Secondary gaps between gaps A and B
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Similarly, the next five states 69, 70, 71, 72, and 73 have
wave functions with dominant weight on the vertices of the
short diagonals belonging to the five stars surrounded by
three boats of system 4. The locally totally symmetric states
of Sy3 should then give a gap at (14®17)/5+ a(7?
+1)/7°=(—127+797)/5=0.164 937.

The next six states, 74 to 79, and the last six states 105 to
110 have wave functions with dominant weights on the ver-
tices of the short diagonals belonging to the three stars sur-
rounded by five boats. A star surrounded by five boats has
the local symmetry grous, whose inequivalent irreduc-
ible representations are of dimension 1 or 2. On the other
hand, a star surrounded by five boats should give five lin-
early independent states that are locally symmetric on the
short diagonals. One has already been taken into ac¢thant
locally totally symmetric state 0$;5). There remain four,
which we attribute to irreducible representations of dimen-
sion 2. One therefore has a gap at {27+ 797)/5+2(3
—7)/57°=(119-737)/5=0.176 704 and another one at

This result can be obtained in another way by noting that—*+ 7~ °—2(3— 7)/57%=[9(— 29+ 18r) ]/5=0.224 301.
the relative frequencies ofS,5, S,3, S,1 are given by Eq. The five states 100 to 104 have wave functions with
(A3) in that order due to the relation betweBrand D?(P), dominant weights on the vertices of the short diagonals be-
which has been discussed above. The locally totally symmetenging to the five stars surrounded by three boats. One thus
ric states 0fS,s should then give agap at “+ a7 *witha  expects a gap af9(— 29+ 187))/5— a(72+1)/7°=(9
solution of (—29+187))/5— (18— 117)/5(— 11+ 77)=(2(7—47))/5

=0.21146.
5 5 Among the 5<3=15 linearly independent states related
Tt o to the five stars surrounded by three boats,25have been
™ 7 attributed. It remains (110-66)+1]—(3+5+6+6+5)
=20 states unattributed, i.e., the states numbered 80 to 99.

The left-hand side represents the variation range of the NITN€se states either have wave functions with dominant
DOS in the energy region considered, the right-hand sigdveights on the vertices of the short diagonals belonging to

represents the number of short isolated diagonals. As th&e five stars surrounded by three boats, or wave functions
solution isa= (18— 117)/5, onethus recovers the gap value With dominant weights on the vertices of the short diagonals
(148-917)/5. belonging to the five stars surrounded by one boat, or domi-

This interpretation is confirmed, for example, by a closerM@nt weights on the vertices of the ten isolated short diago-

look at the spectrum of system 4 in the concerned energ)@!S located at the boundary. There is no a clear ordering
range. System 4 has three stars surrounded by five boafd€tween states with wave functions with dominant weights

One sees in Fig3 a gap after three leve{with numbers 66, ©ON the vertices of the short diagonals belonging to the five

67, 68). The corresponding three states have strong comp8tars surrounded by three boats and the other ones in this
nents on the vertices of the isolated short diagonals of th@nergy region probably due to the boundary effects, i.e., due
threeS,s. Figure 8 shows a countour plot of the wave func-t0 the presence of the ten isolated short diagonals at the
tions of these states. The conventions for contour levels angoundary. So we shall consider these 20 states globally and
shading are the same as the ones for Fig. 4. The wave funéhall not try to determine the position of the gap between

tions indeed take most significant values in the regions of théhem.

stars surrounded by five boat€ompare Fig. 8 with the last To summarize, five gaps between gap A and B of system

graph of Fig. 1) 4 have been extrapolated for infinite tiling as follows.

A

U
By
7N
Y

1Y)

,/‘\\
2.

FIG. 7. Two Penrose deflations of type | tiling.

7 %=a| 57 %+3

66 67 68

B
L
93

FIG. 8. Contour plots for wave functions
66,67,68 ofsystem 4.

7
?,
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FIG. 9. Contour plots for wave functions
111,112,113 obystem 4.

73 79 99 104
System4 _—— — _— == i
76 476 476 476 476
148-91r —127+79r 119-73r 2(7—47) 9(—29+187) 9)
5 5 5 5 5
0
=0.151781 =0.164937 =0.176704 =0.211146 =0.224301

B. First secondary gap after B 4 after this four main gap D. It is seen on this figure that this
aghergy region appeasspriori more difficult to interpret, but
(—2+47)/5X476=425.747 in quite compatible with, for
example, a gap at 430 or 427 for the finite system 4.

The present gap determinations were done in a logical,

The states between gaps B and C are all those that h
no predominant weights on the two vertices of a short diag
onal (isolated or not It is therefore expected that the wave

functions of the Iowest_ energy states are concentre}tgd N€8t rather pedestrian, way. Other particular geometrical gap
the greatest local density of vertices separated by (ints Eﬁ/eterminations could be performed along the same way, but

the length edge of a rhombus, 6.0816 a.u. in the nUMericaj, are presently looking for a more systematic way, and for
application). These greatest local density of vertices are CeNyeneral formula.

tered on verticep with Penrose vertex star @t of type 4 The guiding principles should be the following.

(See F|g 5 They COI’I’eSpond to the intersection of five ci- (l) Local approximated Symmetry and local approximated
gars at a common vertex. There are three such configuratiogsthogonality of states.

in system 4 and there are indeed three states after gap B and (2) Renormalization procedure: The states characterized
before the first secondary gap after(fBis secondary gap is by the same local properti¢sharacteristic length and given
almost visible on graph 4 of Fig.)3The contourplots of local (at this characteristic lengtisymmetry have to be con-
these states, within the same conventions as for Fig. 4 ansldered(for the purpose of counting only, not for the deter-
Fig. 8, are reported in Fig. 9. These locally symmetric statesnination of energy or eigenfunctionsndependent of the
have dominant weights on the three groups of six verticestates characterized by a different local property, and then
consisting of the central Penrose vertex of type 4 surroundeg@iroup together in “packets” of different symmetries and the
by five vertices at units distance of this central vert@om-  Procedure is repeated at the scale of these packets. The quan-

pare Fig. 9 with the last graph of Fig). s the frequency of titative exploitation of this renormalization procedure relies
Penrose vertex stars @t of type 4 is r 5/(7%—1)=(47  Upon the inflation-deflation properties of Penrose tilings. The

—297)/5, the position of the secondary gap is 4+ 75 difficulties stem from the fact that the centers of these pack-

+ 15— 1)= ets may not form the vertices of a Penrose tiling but be only

32—-19r 470 . $°

g —=0.251471. (10) d

460 g?
K3
IV. CONCLUSION aso} 2 ¢
This work has provided clear evidence that gap labeling asoh ..

should be related to geometry only. We have obtained ter 2 ¢
explicit expressions for positions of gapsee Eqs(8), (9), sa3f) "
and (10)]. The reason for the choice for these ten particular o
gaps is simply that they appear to us as the easiest ones 1 f.f azol
determine. To my knowledge, only one gap position has beer s
previously published® (—2+47)/5=0.894427 in the -

-0.042 -0.038 -0.036 -0.034

framework of tight-binding Hamiltonians. This gap is after
the four main gap D we have found at-27 [see Eq.8)]. FIG. 10. Enlarged view of the highest energy region of the
Figure 10 shows an enlarged view of the UIDOS for systenUIDOS of system 4see Fig. 3.
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proper subsets, for example, the internal or external vertices. Definition 1 Let T be a tiling. Thevertex star Wv) at a

Difficulties could also arise because the same region of envertexv of T is the set of all tiles ifT that meety.

ergy could accidentally involve states of different local prop- A second definition relative to Penrose tilings with rhombi

erties. will be needed. First, we precise what we mean by the term
A justification of these guiding principles from first prin- angle: two edges meeting at a vertex deterntime (posi-

ciples of quantum mechanics should be based on the twge) angles(whose sum is ).

general results: variational principle and orthogonality of pefinition 2 An angle between two single-arrow edges

states belonging to different eigenvalues of an Hermitiarh“,_}eting at a vertex, with no single-arrow edgewith vertex

Hamiltonian. . v) interior to this angle will be called single-arrow angleat
If a geometrical procedure analogous to the one we hav at vertex

described in this paper can indeed be repeated indefinitely in The Fig. 5 presents the atlas of globally legal vertex stars

all energy ranges, we reach two general conclusions. 0

A wave function on dinfinite) Penrose tilings could not of Penrose tilings(See, eg., .Ref. )2 her_eafter rgferreq as
be localized in a finite volumé.e., its modulus cannot al- Vertex stars of types 1 to 8. Five properties are immediate by
ways decrease exponentially outside a finite volume Inspection.

The geometrical determination of the positions of the gaps Property 1 Only vertex stars of types 1,2,3 have the fol-
leads to expression of the foran+ b~ with a andb rationals. ~ 10Wing properties: only single-arrow edges on their bound-
(The present results are of the form«{mzs)/5 with n,m  ary, and no single-arrow edge in their interior.
integers Property 2 All the vertex star&V(v) of types 4,5,6,7,8 do

To recast our results concerning wave functions within thenot have two double-arrow edges meeting atith an angle
usual terminology used in the studies based on a tightof 27/5.
binding Hamiltonian, we would qualify the wave functions  Property 3 All the vertex star$V(v) of types 4,5,6,7,8 do
ascritical: localized at distinct local patterns, but extendednot have two double-arrow edges meeting atith an angle
over the whole lattic® No evidence for the existence of of 47/5 and no single-arrow edgéwith vertex v) in the
strong confined states has been found. interior of this angle.

The nature of the spectrum clearly manifests a fractal Property 4 All the vertex star&V(v) of types 4,5,6,7,8 do
structure, at least on some energy ranges, which has to @t have three double-arrow edges meeting.at
related to both local symmetry and Convay thedf®about Property 5 The single-arrow angles at a vertexof a
the infinitely many occurrences of any allowed finite con-vertex star ab necessarily are of one among the following
figurations in an infinite tiling. Our results are compatible five types.
with the prediction of gap labeling ruld&> (1) An angle equal to /5 and no double arrow in its

interior (vertex stars of types 4,5,6,8)
(2) An angle equal to 4/5 and no double arrow in its
ACKNOWLEDGMENTS interior (vertex stars of type 7)

(3) An angle equal to Z/5 and a double arrow in its
interior (vertex stars of types 5,8)

(4) An angle equal to 4/5 and a double arrow in its
interior (vertex stars of type 6)

(5) An angle equal to /5 and a double arrow in its
interior (vertex stars of type 7).

Portions of tilings involving the geometrical shapes of the Now the proof of propositiori.
three prototiles presented in Fig. 2, appear sometimes in the Consider an arbitrary given Penrose tiling. In this tiling,
literature (See, e.g., Refs. 14,4546To my knowledge, no select all vertex stafé/(v) of types 1,2,3. Remove in all the
claim and proof that these three prototiles tile the plane angelected vertex stai®(v) the vertexv and also the double-
tile it only aperiodically, and that there is a bijection betweenarrow edges meeting at The selected vertex stars have thus
the set of such tilings and the set of Penrose tilings by twdeen replaced by one of the three prototiles of Fig. 2. None
rhombit have been published. Although the proof is ratherof these prototiles overlaps because if two of them overlap,
elementary, it is presented in the Appendix for the sake othe single-arrow edge on the boundary of one would be an
completeness and also for introducing some definitions anthner single-arrow edge of the initial Penrose vertex stars
results used in this paper. corresponding to the other, and the selected vertex stars 1,2,3

To distinguish the Penrose tilings constructed from twohave no inner single-arrow edge by property 1. Either the set
rhombi? from the tilings constructed from the three proto- of these three prototiles tile the plane, or not. If they do, the
tiles of Fig. 2, these latter tilings are referred as type | tilings.proposition is true for the tiling considered. If not, there re-

Proposition 1 All the tilings of type | are derived from the mains at least one vertex star at a verggxof type belong-
Penrose tilings with two rhombi simply by selecting the oneing to the set 4,5,6,7,8 and with, not belonging to the
arrow edges of these tilings. boundary of one of the three prototiles of Fig. 2. Then con-

For an illustration, see Figs. 1 or 7. A proof of this propo- sider all the possible single-arrow angles at the vertgx
sition follows after two definitions and five elementary prop- A single-arrow angle of type 1 at the vertey necessarily
erties. The first definition is the usual offéee, e.g., Ref.)2  belongs to a thick rhombus as can be seen by inspection of

The author acknowledges helpful discussions with X.
Bouju.
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the vertex star of types 4,5,6,8 on Fig. 5. The vertex
where the two double-arrow edges of this thick rhombus 4@&%}
meet necessarily has a vertex 3téfv ') atv’ of types 1,2,3 .y‘ mﬂ .y"
by property 2 AR

A single-arrow angle of type 2 at the vertey necessarily ‘m“‘d}“ﬂm\
belongs to a thin rhombus as can be seen by inspection of the ““ﬂy' =' .’ ““ﬂy'
vertex star of type 7 on Fig. 5. The vertex where the two }‘(' “4"4 k{},{’ ‘VA
double-arrow edges of this thin rhombus meet necessarily 4"F>§‘\ﬂ<>“h‘<>
has a vertex staW(v') atv' of types 1,2,3 by property 3. %' .ﬂ AvA “' .ﬂ

X

A single-arrow angle of type 3 at the vertey determines
a vertexv' at the other extremity of the double-arrow edge.
At this vertex, three double-arrow edges meet as seen from
vertex star 8 on Fig. 5. Therefore, by property 4, the vertex
v’ necessarily has a vertex stf(v') atv’ of types 1,2,3.

A single-arrow angle of type 4 at the vertey determines
a vertexv' at the other extremity of the double-arrow edge.
At this vertex, thrge double-arrow edges meet as seen from FIG. 11. One Penrose deflation of system 2, i.e., system 3 un-
vertex star 6 on Fig. 5. Therefore, by property 4, the verteX,.,ieq with respect to system 2.

v’ necessarily has a vertex séf(v’) atv’ of types 1,2,3.
Asingle-arrow angle of type 5 at the vertey determines  from higher dimensional latticé.It can also be obtained,
a vertexv' at the other extremity of the double-arrow edge.together with the relative frequency of the two rhombi, by
At this vertex, three double-arrow edges meet as seen fromonsidering an infinite sequence of deflations, as described in
vertex star 7 on Fig. 5. Therefore, by property 4, the vertexRef. 47. For the sake of self-consistency, this last method is
v’ necessarily has a vertex stf(v') atv’ of types 1,2,3. now rapidly summarized. The two rhombi together with the

Thus, all the above verticas' [which are on the bound- eight vertex stars are considered as ten objects, numbered 1
ary of the vertex staWW(v,) at the vertexvq], have vertex for the thick rhombus, 2 for the thin rhombus, a2 for
starW(v ") of types 1,2,3. As a result, the vertey belongs the vertex stars with) the number reported in Fig. 5. The
to the boundary of one of the three prototiles of Fig. 2, con-vertex stars ap of a Penrose tilind® are also vertex stars at
trary to the initial supposition. This proves that each Penrose of the deflated tilingD(P). There are in addition other
tiling gives a unique type I tiling. It remains to prove that all vertex stars inD(P). Among them, those that are inside a
type |1 tilings can be obtained in this way. Thus consider arthick rhombusT of P are qualified to be generated Gy
arbitrary type 1 tiling. It is clear by considering the Fig. 2 that Those that are not inside a thick rhombLi®f P are neces-
there is one and only one way to add a vertex into the stasarily on an edge shared by a thick rhombus T and are quali-
the boat, and the cigafand double-arrow edges inside thesefied to be generated by, with a factor one half. One then
three prototilesso that the star is transformed into a Penrosehas the substitution matrix
vertex star of type 1, the boat into a Penrose vertex star of
type 2, the cigar into a Penrose vertex star of type 3. This
concludes the proof of proposition 1.

An important property is the composition property: a type
[ tiling can be uniquely inflated and uniquely deflated. This is
illustrated in Fig. 11 for one deflation and in Fig. 7 for two
deflations.

For a better visualization of type I tiling, it is useful to
note that a boat automatically forces the configuration pre-
sented in Fig. 6. This can be proved by successive trials with
the prototiles of Fig. 2. An indirect proof is as follows: Fig. 7
shows that, in a deflation of each of the three prototiles, a
boat always appears with the configuration presented in Fig.
6. By successive deflations, one can thus obtained a con-
nected region with an arbitrary large number of prototiles,
where the boat only appears in the configuration of Fig. 6. I1ffor example, a thick rhombugof P is considered to be the
is a known property of Penrose tiling that every logglb- ~ parent of two thick rhombi oD(P), one thin rhombus of
bally lega) configuration must appear as the number of tilesP(P), one vertex star of type 6, and one vertex star of type
increases. Thus the configuration of Fig. 6 is the only pos< - This gives the first column of the substitution matrix. The
sible one. greatest eigenvalue of this matrix4$, and its column eigen-

vectors are proportional to
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1. Frequencies
4 2 t

The frequency of the eight different vertex stars of a Pen- 55 23 1 .
rose tiling can be determined from the method of projection -1 =1
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The two first components tell us that the frequency of the thick rhombus is equaintes the frequency of the thin rhombus.
It is convenient for the sequel to normalize the frequencies of the vertex starsi.enlyot including the objects rhomhio
unity. This amounts to dividing the eight last componentsrby

1 2 3 4 5 6 7 8

3 - -5 _
T 18—-11r 5 4 T 47—297 R e (A1)
-1 5 -1 5

The vertex star numbers reported in Fig. 5 are in the first line, the sum of the corresponding frequencies in second line is equal

to unity. It will be useful for the sequel to determine the frequency of internal vertices

T73

-1

f;

Note that the three frequencies relative to star, boat, and cigar, normalized so that the sum of the three is unity can also be

easily deduced from the frequency of Penrose vertex stars

Star Boat

+ 7754 4=

3—71
——=0.276 393.

5 (A2)

Cigar

_4_7—47'
T+2

=5-371

T

7_5

?+1 7-4r

?+1

7_4

—11+77 =7—4r (A3)

2. Some geometrical properties related to deflation inflation

Some useful properties whose proof is elementary are the following.

(1) The external vertices d® are the internal vertices @ (P) (for an illustration, see Fig. 31

(2) The two most distant vertices of a cigar are the internal vertices of the st&r§R)f.

(3) The internal vertices oP are the internal vertices of the stars@f(P).

(4) The internal vertices dP are the centers of Penrose vertex stars of tyjstdrs surrounded by fives cigaaf D3(P).

(5) The internal vertices dP are the centers of stars surrounded by fives boals*0P). (These centers are Penrose vertex

stars of type 1 but not all of them.
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