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Penrose structures: Gap labeling and geometry

E. de Prunele´
Laboratoire de Physique Mole´culaire, UMR CNRS 6624, Universite´ de Franche Comte´, 16 Route de Gray, La Bouloie,

25030 Besanc¸on Cedex, France
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The electronic eigenvalues and eigenstates of finite parts of Penrose structures are studied on the basis of a
recently proposed three-dimensional solvable model@J. Phys. A30, 7831~1997!#. This model allows to take
explicitely into account the geometry in three-dimensional space and involves no assumptions such as only
nearest neighboring atoms coupling. For finite parts of a Penrose tiling, it is shown that the positions of some
of the gaps in the integrated density of states are directly related to the geometry of the systems. As a result,
the explicit expressions for ten gaps relative to infinite tilings are obtained from the known frequencies of
vertex stars of Penrose tilings.
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I. INTRODUCTION

Atoms located at vertices of a Penrose tiling1 are models
for two-dimensional quasicrystals.2,3 The study of energy
levels of these aperiodic structures has been the subje
intensive works.4–37 Only three years after the publication o
the experimental discovery of quasicrystals38 in 1984, impor-
tant reprints concerning electronic, phonon, and magn
properties of quasicrystals were already collected in Cha
of Ref. 39. At the end of the introductory remarks for th
chapter, we quote ‘‘it is our opinion that essentially nothi
is known except special solutions for rather special mode
Since that time, significant progress has been made, altho
some points remain controversial.35 Nevertheless, concern
ing electronic spectrum for Penrose tilings, the quasitota
of subsequent works up to present day is based on ti
binding HamiltoniansH5( i« i u i &^ i u1( i , j t i j u i &^ j u where the
geometryof the positions of the atoms in three-dimension
physical space is taken into account indirectly and not
plicitly. Most of the works with these tight-binding Hamilto
nians consider the case where only nearest neighboring
oms are coupled.

It is my opinion that these aperiodic model Hamiltonia
indeed present a great mathematical and physical intere
is also my opinion that results obtained with other mod
are necessary to help distinguish the properties that are
neric from those which are not.

In a recent work,40 the spectrum of finite subsystems of
Penrose tiling was considered on the basis of a modelwith
geometry in real three-dimensional space taken into acco
explicitly, and without any assumption of nearest neighbo
ing atoms coupling. This model was previously used fo
study of periodic41 structures and is a particular case of
more general exactly solvable model.42 The Hamiltonian is
the sum of kinetic and interaction terms for an electron
three-dimensional physical space,
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The interaction is the sum of identical interactions ea
centered at the Penrose vertices. The interaction at ce
characterized by the vector positionaj is a separable one
with ur ,0,0&[ur ,l 50,m50& an eigenvector of the square
orbital angular momentum with eigenvaluel ( l 11), an ei-
genvector of the componentLz of the orbital angular mo-
mentum with eigenvaluem, and a generalized eigenvector
the radial position operator with generalized eigenvaluer.
Exact solutions for the energy eigenvalues and normali
eigenvectors can be obtained after numerical determina
of the zeros of a determinant of aN order matrix (N is the
total number of vertices! whose elements are simple analyt
functions. The procedure for calculating these solutions
described in details in Refs. 42,41, and 40, and will not
repeated here.

The first results based on this model obtained in Ref.
for finite subsystems of a Penrose tiling clearly exhibit ga
in the integrated density of states~IDOS! but no theoretical
interpretations were given.

The purpose of the present work is to show that th
gaps are directly related to the geometry. As a result,
main gaps for infinite Penrose tilings are obtained anal
cally by extrapolation of results pertaining to finite su
systems.

It is very important to realize from start that this extrap
lation procedure refers to thepoint spectrum. Onefirst con-
siders a finite system with boundary conditions correspo
ing to wave functions exponentially decreasingat infinity,
andthenone considers the limit where the size of the syst
tends to infinity in all directions. It is recalled thatz belongs
to the point spectrum if the operator (z2H) has no inverse,
to the continuous spectrum if the operator (z2H) has an
inverse not bounded with dense domain, and to the resid
spectrum if the operator (z2H) has an inverse with domain
not dense. see, e.g., Ref. 43. This procedure is clearly
evant to the study of real physical systems. It avoids
introduction of periodic boundary conditions, or of period
approximants that, in my opinion, may be useful, but can
avoided as shown by the present work. In particular, a w
vectorkW is essentially a label for one irreducible represen
©2002 The American Physical Society02-1
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tion of a translation group, and therefore the consideration
these wave vectorskW is intrinsically related to the use o
periodic approximants and is not an unavoidable tool
analyzing infinite systems that are not periodic.

II. GEOMETRICAL INTERPRETATION
OF THE MAIN GAPS

The finite systems that will be considered here are nu
bered 0,1,2,3,4~Fig. 1!. The systemi 11 is obtained by de-
flating the systemi and then rescaling it by multiplying al
distances by the golden ratiot5(11A5)/2 @symbolically i
115tD( i )#. Thus all the five systems have the same len
for an edge of a rhombus in the forthcoming calculations
the spectrum. The total numbers of verticesNi for each sys-
tem is N0516, N1536, N2576, N35186, N45476. For
comparison with the results obtained in Ref. 40, the sa
values of the interaction parameters have been chosen,

l520.398 909 a.u., ~5!

r 51.817 6943 a.u., ~6!

c56.0816 a.u., ~7!

c is the common length of the edge of Penrose rhombi. T
original choice for these values was motivated by the
scription of band structure of lithium crystal,41 but these val-
ues are not critical and some calculations made with o
values lead to the same conclusions that are presented b

The system 0 has been chosen because its form, a re
decagon, has a low perimeter to surface ratio, in orde
minimize boundary effects. The five systems have a vert
axis as symmetry axis to be called they axis in the following.

Figure 1 describes the systems 0,1,2,3,4~with an arbitrary
scaling for each system!. The edges are drawn for bette
visualization, but the eigenvalues and eigenvectors of
Hamiltonian depends only on the vertices positions. It can
shown that the Penrose two prototiles tilings are in biject
correspondence with the tilings, thereafter to be denoted
I tilings, constructed from three prototiles depicted in Fig
and called the ‘‘star,’’ the ‘‘boat,’’ and the ‘‘cigar.’’ A direct
proof, based on the listing of all the vertex stars of a Penr

FIG. 1. The five systems~not to scale!.
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tiling, is given in the Appendix. This appendix also contai
some definitions and results that will be used here.

A word of caution: the wordstar alone refers to one of the
three above prototiles, and should not be confused with
word star in the expressionvertex star(at p) which refers to
the usual definition given in the Appendix.

The contours of these three prototiles have been un
lined in Fig. 1 for the sake of simplifying the interpretatio
of the spectra. The Penrose vertices internal to these t
prototiles will be calledinternal vertices, the vertices of
these three prototiles~the other Penrose vertices! will be
calledexternal vertices. It should be noted that the method o
projection from a higher dimensional lattice naturally disti
guishes external from internal vertices.44 An important prop-
erty is that the external vertices of a Penrose tilingP are the
internal vertices of the deflated tilingD(P) ~See Appendix!.

For the discussion in this paragraph, the units of dista
will be taken to be the common lengthc given by Eq.~7! for
all edges of all rhombi of all systems. With this choice
units, Eq.~7! readsc51.

It is very important for the sequel to notice from the sta
that, for an infinite tiling, the short diagonals~length 1/t) of
a thin rhombus always appear inside a cigar or a boat. T
always appear with a common vertex in a cigar, whereas t
always appear isolated in a boat. This is important beca
the distance between twonearest neighborsvertices is either
1 or 1/t. Two vertices separated by the shortest distancet
thus are always inside or on the boundary of a cigar o
boat. Hereafter, a vertex with a neighboring vertex at d
tance 1/t will be called a vertex of type A, a vertex with
nearest neighboring vertex at distance 1 will be called a v
tex of type B. To distinguish between the vertices of type
which belong to a cigar and those which belong to a boat,
add a subscript: Ac for cigar, Ab for boat.

The five exact point spectra computed numerically
reported in Fig. 3 in the form of unnormalized integrat
density of states~UIDOS! plots. Specifically, the energy ei
genvalues are numbered in increasing order starting w
unity. The horizontal axis is the energy, the vertical one
ports the running number of the eigenvalues. The total nu
ber of linearly independent states is equal to the total num
of vertices and to the total number of energy eigenvalues
no degeneracy occurs. It is seen by comparison with Ref
that the behavior of the UIDOS is the same that was found
Ref. 40 for different geometrical systems. This fact, toget
with the consideration of much larger systems in the pres
paper is a first indication that finite-boundary effects se
not to play an essential role.

FIG. 2. The three prototiles for type I tilings.
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FIG. 3. Unnormalized integrated density o
states for the five systems. The last graph is
enlarged view of part of the last but one. Th
abscissa axis represents the energy. The ordin
axis represents the running numbers of states
dered according to increasing energy~see text!.
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A. Analysis of the contour plots for the system 0

The contour plots for all the wave functions evaluated
the plane of the systems, associated with these energy e
values have been drawn and analyzed for most of all
eigenstates of the five systems. This analysis gives the
for the interpretation of the gaps in the DOS. Of course,
cannot report all these contour plots, but Fig. 4 displays
contourplots for the system 0.

There are ten equally spaced contours between the
trema values, and, for each of the 16 graphs, the sha
corresponding to nearly zero values of the wave function
the one present at the corners~where the wave function is
exponentially decreasing!. The verticesi where the wave
function C has the most important weights^j i uC& will be
characterized explicitly in the text below.

Much can be learned from the contour plots of Fig. 4.
First, the states of lowest energy~states 1,2) have a wav

function with important weights on the vertices belonging
the two short diagonals inside a cigar. These wave functi
are approximately locally completely symmetric~i.e., they
have a constant sign on each of the two short diagonal
the cigar, and this sign is the same!. The wave function of
state 1~ground state! has a constant sign, the one of state
is antisymmetric with respect to they axis. The states o
highest energy~states 15,16) have also a wave function w
important weights on the vertices belonging to the two sh
diagonals inside a cigar. These wave functions areapproxi-
mately locally completely antisymmetric~i.e., they change
signs inside each of the two thin rhombi of a cigar, the lin
of nodes being roughly perpendicular to the two short dia
09420
en-
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nals inside the cigar!. The wave function of state 15 is sym
metric with respect to they axis, the one of state 16 antisym
metric.

Second, the following state of lowest energy~state 3) has
a wave function with important weights on the vertices b
longing to an isolated short diagonal. This wave function

FIG. 4. Contour plots of the 16 eigenfunctions for th
system 0.
2-3
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E. DE PRUNELÉ PHYSICAL REVIEW B 66, 094202 ~2002!
approximately locally symmetric~i.e., has a constant sign o
the short diagonal inside the boat!. The preceding state o
highest energy~state 14) has also a wave function with im
portant weights on the vertices belonging to an isolated s
diagonal. This wave function isapproximately locally anti-
symmetric~i.e., it changes sign inside the thin rhombus of t
boat!.

Third, the following state of lowest energy~state 4) has a
wave function with important weights centered on the ve
ces, which form the region of highest concentration of ve
ces of type B~four vertices near the top of the system!. This
wave function isapproximately locally completely symmetr
~i.e., has a constant sign in a region surrounding the f
vertices!. The preceding state of highest energy~state 13) has
also a wave function with important weights centered on
vertices, which form the region of highest concentration
vertices of type B. This wave function isapproximately lo-
cally completely antisymmetric~i.e., has alternating sign be
tween two consecutive vertices. From geometrical consi
ations, this is possible only if the weight on one of the fo
vertices is close to zero, which is indeed the case!.

It remains to discuss the eight middle energy sta
5,6, . . .,12. It can be seen that states 5 to 9 are locally sy
metric~i.e., there are two vertices of type B separated by u
distance where the wave function has important weights,
the wave function does not change sign between these
vertices!. The state 8 is included here somewhat arbitra
since there are no two vertices of type B separated by
distance where the wave function has important weig
Then follow the states 10 to 12: they are locally antisymm
ric ~i.e. there do not exist two vertices of type B separated
unit distance where the wave function has important weig
and the wave function does not change sign between t
two vertices!.

Finally, a last comment. The six vertices of type Ac lead
only to four states (1,2,15,16) located at both the extremi
of the spectrum. Two vertices of type Ac thus contribute
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significantly to states with energy not in the two extrem
regions. The spectrum associated with the system consis
of only three vertices disposed at the vertices Ac of a cigar
has three eigenvalues, the lowest one yielding a state ha
the local symmetry of states 1,2, the highest one yieldin
state having the local symmetry of states 15,16, the mid
one having a line of nodes separating the two external ve
ces ~the internal one is the vertex shared by the two sh
diagonals!. These two external vertices are separated b
distance greater than one. Thus, to interpret the whole s
trum, one can proceed as follows.

One first considers the subsystem consisting of only v
tices of type Ac . One requires that the three vertices of ty
Ac of a cigar contribute only to states having no nodes in
middle region separating the two external vertices. One t
interprets the two extrema regions of the spectr
(1,2,15,16). One then considers the subsystem consis
only of vertices of type Ab . One thus interprets the last bu
one extremity region of the spectrum (3,14). One fina
considers the subsystem consisting only of vertices of typ
and Ac , but one requires that the three vertices of type Ac of
a cigar contribute only to states having a line of nodes in
middle region separating the two external vertices. One t
interprets the middle region of the spectrum (4,5, . . . ,13).

B. Geometrical interpretation of the four main gaps for the
five systems and extrapolation to infinite systems

Let us call the normalized integrated density of states~NI-
DOS! the IDOS which takes the value unity when the ener
is greater than or equal to the largest energy eigenvalue,
takes the value zero when the energy is lower than the low
energy eigenvalue. If we apply the conclusions of the p
ceding analysis to the five systems, the four main gaps in
NIDOS should be given by the geometrical ratios reported
the first line of Eq.~8!, whereN is the total number of ver-
tices,nc is number of pairs of short diagonals sharing a co
mon vertex,nb is the number of isolated short diagonals.
System
nc

N

N2nc

N

nc1nb

N

N2nc2nb

N

0
2

16
5

1
8

1622
16

5
7
8

211
16

5
3

16
162221

16
5

13
16

1
5

36
3625

36
5

31
36

515
36

5
5

18
362525

36
5

13
18

2
5

76
7625

76
5

71
76

5115
76

5
5

19
7625215

76
5

14
19

3
25

186
186225

186
5

161
186

25115
186

5
20
93

186225215
186

5
73
93

4
65

476
476265

476
5

411
476

65145
476

5
55

238
476265245

476
5

183
238

t24 12t24 t241t25 12t242t25

5523t 52413t 52312t 5422t

`
.0.145898 .0.854102 .0.236068 .0.763932

A D B C

~8!
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PENROSE STRUCTURES: GAP LABELING AND GEOMETRY PHYSICAL REVIEW B66, 094202 ~2002!
If we now compare these values deduced from Fig. 1,
from pure geometry, to the gap values deduced from
energies reported in Fig. 3, i.e., from exact quantum com
tations, one obtainsperfect agreement. ~This may be difficult
to see from the only Fig. 3 but we stress that the agreem
is exact for all the twenty numbers.! This leads us to extrapo
late to infinity with confidence and the results of this e
trapolation are reported in the last line of Eq.~8!. The values
in the last line of Eq.~8! are obtained by noting that, for a
infinite tiling, nc /N is the frequency of vertex star of type 3
nb /N is the frequency of vertex star of type 2~see Fig. 5!.
The frequencies of these vertex stars are known and are
rived in the Appendix@see Eq.~A1!# for the sake of com-
pleteness.

These main gaps will be called A, B, C, D in order
increasing energy from now on.

III. GEOMETRICAL INTERPRETATION AND
DETERMINATION OF OTHER GAPS FOR INFINITE

SYSTEMS

The success of the previous geometrical interpretation
the first four main gaps encourages further geometrical
determinations. We presently have not determined a gen
formula for all the gaps. The purpose of this paragraph is
determine geometrically some of them whose interpreta
is particularly simple. The interest is to illustrate the impo
tance of what could be called a renormalization procedu
whose quantitative implementation relies upon the inflati
deflation properties of Penrose tilings.

A. Secondary gaps between gaps A and B

Let us first consider the states situated between the fi
t24, and second,t241t25, main gaps A and B.

FIG. 5. The eight vertex stars of a Penrose tiling.
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We shall determine gaps relative to infinite system w
the help of the gap relative to system 4. The UIDOS for t
region is enlarged in the last graph of Fig. 3.In this energy
region, the number of linearly independent states is equa
the number of short isolated diagonals. We have seen th
boat is in bijective correspondence with an isolated sh
diagonal for infinite Penrose tiling. It has also be seen in
Appendix that a boat always meets a star according to Fig
It can then be shown that the isolated short diagonals ca
grouped to form the figures of a star surrounded by 5, 3, o
boats~to be denotedSb5 , Sb3 , Sb1). Specifically, a star with
inner vertexp of tiling P gives forD2(P) a star with inner
vertexp surrounded by five boats, a boat with inner vertexp
of tiling P gives for D2(P) a star with inner vertexp sur-
rounded by three boats, a cigar with inner vertexp of tiling P
gives forD2(P) a star with inner vertexp surrounded by one
boat. For an illustration, see Fig. 7, where the system 2
the systemD2(2) ~system 4 without rescaling byt2) are
displayed together~without inner vertices!.

To follow the deduction, it is important now to localize i
the last graph of Fig. 1 or in Fig. 7, the three stars surroun
by five boats, the five stars surrounded by three boats,
five stars surrounded by one boat, and finally the ten isola
short diagonals on the boundary. This gives a total of 335
153315110545 isolated short diagonals that have to
related to the 45 linearly independent states 66 to 110~of
course, not a direct correspondence!.

The locally totally symmetric states ofSb5 should then
give a gap att241x where x is the frequency of a sta
surrounded by five boats. This frequencyx can be deter-
mined, for example, by noting that it is equal to the fr
quency of the inner verticesf i @Eq ~A2!# divided byt8 since
the inner vertices ofP are the centers of stars surrounded
fives boats ofD4(P) ~see Appendix!. One thus predicts a ga
at t241(32t)/5t85(148291t)/5.0.151 781.

FIG. 6. An ubiquitous pattern for type I tilings.
2-5
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E. DE PRUNELÉ PHYSICAL REVIEW B 66, 094202 ~2002!
This result can be obtained in another way by noting t
the relative frequencies ofSb5 , Sb3 , Sb1 are given by Eq.
~A3! in that order due to the relation betweenP andD2(P),
which has been discussed above. The locally totally symm
ric states ofSb5 should then give a gap att241at24 with a
solution of

t255aS 5t2413
t211

t5
11

t211

t4 D .

The left-hand side represents the variation range of the
DOS in the energy region considered, the right-hand s
represents the number of short isolated diagonals. As
solution isa5(18211t)/5, onethus recovers the gap valu
(148291t)/5.

This interpretation is confirmed, for example, by a clos
look at the spectrum of system 4 in the concerned ene
range. System 4 has three stars surrounded by five b
One sees in Fig. 3 a gap after three levels~with numbers 66,
67, 68). The corresponding three states have strong com
nents on the vertices of the isolated short diagonals of
threeSb5. Figure 8 shows a countour plot of the wave fun
tions of these states. The conventions for contour levels
shading are the same as the ones for Fig. 4. The wave f
tions indeed take most significant values in the regions of
stars surrounded by five boats.~Compare Fig. 8 with the las
graph of Fig. 1.!

FIG. 7. Two Penrose deflations of type I tiling.
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Similarly, the next five states 69, 70, 71, 72, and 73 ha
wave functions with dominant weight on the vertices of t
short diagonals belonging to the five stars surrounded
three boats of system 4. The locally totally symmetric sta
of Sb3 should then give a gap at (148291t)/51a(t2

11)/t55(2127179t)/5.0.164 937.
The next six states, 74 to 79, and the last six states 10

110 have wave functions with dominant weights on the v
tices of the short diagonals belonging to the three stars
rounded by five boats. A star surrounded by five boats
the local symmetry groupD5h whose inequivalent irreduc
ible representations are of dimension 1 or 2. On the ot
hand, a star surrounded by five boats should give five
early independent states that are locally symmetric on
short diagonals. One has already been taken into account~the
locally totally symmetric state ofSb5). There remain four,
which we attribute to irreducible representations of dime
sion 2. One therefore has a gap at (2127179t)/512(3
2t)/5t85(119273t)/5.0.176 704 and another one a
t241t2522(32t)/5t85@9(229118t)#/5.0.224 301.

The five states 100 to 104 have wave functions w
dominant weights on the vertices of the short diagonals
longing to the five stars surrounded by three boats. One
expects a gap at@9(229118t))/52a(t211)/t55(9
(229118t))/52(18211t)/5(21117t)5(2(724t))/5
.0.211 46.

Among the 533515 linearly independent states relate
to the five stars surrounded by three boats, 532 have been
attributed. It remains@(110266)11#2(315161615)
520 states unattributed, i.e., the states numbered 80 to
These states either have wave functions with domin
weights on the vertices of the short diagonals belonging
the five stars surrounded by three boats, or wave functi
with dominant weights on the vertices of the short diagon
belonging to the five stars surrounded by one boat, or do
nant weights on the vertices of the ten isolated short dia
nals located at the boundary. There is no a clear orde
between states with wave functions with dominant weig
on the vertices of the short diagonals belonging to the fi
stars surrounded by three boats and the other ones in
energy region probably due to the boundary effects, i.e.,
to the presence of the ten isolated short diagonals at
boundary. So we shall consider these 20 states globally
shall not try to determine the position of the gap betwe
them.

To summarize, five gaps between gap A and B of syst
4 have been extrapolated for infinite tiling as follows.
s
FIG. 8. Contour plots for wave function
66,67,68 ofsystem 4.
2-6
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System 4
68

476
73

476
79

476
99
476

104
476

148291t

5
2127179t

5
119273t

5
2(724t)

5
9(229118t)

5
`

.0.151781 .0.164937 .0.176704 .0.211146 .0.224301

~9!

FIG. 9. Contour plots for wave function
111,112,113 ofsystem 4.
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B. First secondary gap after B

The states between gaps B and C are all those that
no predominant weights on the two vertices of a short di
onal ~isolated or not!. It is therefore expected that the wav
functions of the lowest energy states are concentrated
the greatest local density of vertices separated by units~i.e.,
the length edge of a rhombus, 6.0816 a.u. in the numer
application!. These greatest local density of vertices are c
tered on verticesp with Penrose vertex star atp of type 4
~See Fig. 5!. They correspond to the intersection of five c
gars at a common vertex. There are three such configura
in system 4 and there are indeed three states after gap B
before the first secondary gap after B~this secondary gap is
almost visible on graph 4 of Fig. 3!. The contourplots of
these states, within the same conventions as for Fig. 4
Fig. 8, are reported in Fig. 9. These locally symmetric sta
have dominant weights on the three groups of six verti
consisting of the central Penrose vertex of type 4 surroun
by five vertices at units distance of this central vertex.~Com-
pare Fig. 9 with the last graph of Fig. 1!. As the frequency of
Penrose vertex stars atp of type 4 is t25/(t421)5(47
229t)/5, the position of the secondary gap ist241t25

1t25/(t421)5

32219t

5
.0.251 471. ~10!

IV. CONCLUSION

This work has provided clear evidence that gap label
should be related to geometry only. We have obtained
explicit expressions for positions of gaps@see Eqs.~8!, ~9!,
and ~10!#. The reason for the choice for these ten particu
gaps is simply that they appear to us as the easiest on
determine. To my knowledge, only one gap position has b
previously published,35 (2214t)/5.0.894 427 in the
framework of tight-binding Hamiltonians. This gap is aft
the four main gap D we have found at 422t @see Eq.~8!#.
Figure 10 shows an enlarged view of the UIDOS for syst
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4 after this four main gap D. It is seen on this figure that t
energy region appearsa priori more difficult to interpret, but
(2214t)/53476.425.747 in quite compatible with, fo
example, a gap at 430 or 427 for the finite system 4.

The present gap determinations were done in a logi
but rather pedestrian, way. Other particular geometrical
determinations could be performed along the same way,
we are presently looking for a more systematic way, and
general formula.

The guiding principles should be the following.
~1! Local approximated symmetry and local approximat

orthogonality of states.
~2! Renormalization procedure: The states characteri

by the same local properties@characteristic length and give
local ~at this characteristic length! symmetry# have to be con-
sidered~for the purpose of counting only, not for the dete
mination of energy or eigenfunctions! independent of the
states characterized by a different local property, and t
group together in ‘‘packets’’ of different symmetries and t
procedure is repeated at the scale of these packets. The q
titative exploitation of this renormalization procedure reli
upon the inflation-deflation properties of Penrose tilings. T
difficulties stem from the fact that the centers of these pa
ets may not form the vertices of a Penrose tiling but be o

FIG. 10. Enlarged view of the highest energy region of t
UIDOS of system 4~see Fig. 3!.
2-7



ce
e
p

-
tw
o
ia

av
ly

t
-

ap

th
h
s

ed
f

ta
o

n
le

X

he
t

an
en
tw
e
o

an

wo
o-
gs

ne

o-
p-

bi
rm

es

ars

by

l-
d-

g

g,

-
us
ne

ap,
an

ars
,2,3
set

the
e-

n-

n of
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proper subsets, for example, the internal or external verti
Difficulties could also arise because the same region of
ergy could accidentally involve states of different local pro
erties.

A justification of these guiding principles from first prin
ciples of quantum mechanics should be based on the
general results: variational principle and orthogonality
states belonging to different eigenvalues of an Hermit
Hamiltonian.

If a geometrical procedure analogous to the one we h
described in this paper can indeed be repeated indefinite
all energy ranges, we reach two general conclusions.

A wave function on a~infinite! Penrose tilings could no
be localized in a finite volume~i.e., its modulus cannot al
ways decrease exponentially outside a finite volume!.

The geometrical determination of the positions of the g
leads to expression of the forma1bt with a andb rationals.
~The present results are of the form (n1mt)/5 with n,m
integers!

To recast our results concerning wave functions within
usual terminology used in the studies based on a tig
binding Hamiltonian, we would qualify the wave function
as critical: localized at distinct local patterns, but extend
over the whole lattice.33 No evidence for the existence o
strong confined states has been found.

The nature of the spectrum clearly manifests a frac
structure, at least on some energy ranges, which has t
related to both local symmetry and Convay theorem48 about
the infinitely many occurrences of any allowed finite co
figurations in an infinite tiling. Our results are compatib
with the prediction of gap labeling rules.49,50
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APPENDIX: PENROSE TILINGS AND TYPE I TILINGS

Portions of tilings involving the geometrical shapes of t
three prototiles presented in Fig. 2, appear sometimes in
literature ~See, e.g., Refs. 14,45,46!. To my knowledge, no
claim and proof that these three prototiles tile the plane
tile it only aperiodically, and that there is a bijection betwe
the set of such tilings and the set of Penrose tilings by
rhombi1 have been published. Although the proof is rath
elementary, it is presented in the Appendix for the sake
completeness and also for introducing some definitions
results used in this paper.

To distinguish the Penrose tilings constructed from t
rhombi,1 from the tilings constructed from the three prot
tiles of Fig. 2, these latter tilings are referred as type I tilin

Proposition 1. All the tilings of type I are derived from the
Penrose tilings with two rhombi simply by selecting the o
arrow edges of these tilings.

For an illustration, see Figs. 1 or 7. A proof of this prop
sition follows after two definitions and five elementary pro
erties. The first definition is the usual one~See, e.g., Ref. 2!:
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Definition 1. Let T be a tiling. Thevertex star W(v) at a
vertexv of T is the set of all tiles inT that meetv.

A second definition relative to Penrose tilings with rhom
will be needed. First, we precise what we mean by the te
angle: two edges meeting at a vertex determinetwo ~posi-
tive! angles~whose sum is 2p).

Definition 2. An angle between two single-arrow edg
meeting at a vertexv, with no single-arrow edge~with vertex
v) interior to this angle will be calleda single-arrow angleat
that vertex.

The Fig. 5 presents the atlas of globally legal vertex st
of Penrose tilings~See, e.g., Ref. 2!, hereafter referred as
vertex stars of types 1 to 8. Five properties are immediate
inspection.

Property 1. Only vertex stars of types 1,2,3 have the fo
lowing properties: only single-arrow edges on their boun
ary, and no single-arrow edge in their interior.

Property 2. All the vertex starsW(v) of types 4,5,6,7,8 do
not have two double-arrow edges meeting atv with an angle
of 2p/5.

Property 3. All the vertex starsW(v) of types 4,5,6,7,8 do
not have two double-arrow edges meeting atv with an angle
of 4p/5 and no single-arrow edge~with vertex v) in the
interior of this angle.

Property 4. All the vertex starsW(v) of types 4,5,6,7,8 do
not have three double-arrow edges meeting atv.

Property 5. The single-arrow angles at a vertexv of a
vertex star atv necessarily are of one among the followin
five types.

~1! An angle equal to 2p/5 and no double arrow in its
interior ~vertex stars of types 4,5,6,8)

~2! An angle equal to 4p/5 and no double arrow in its
interior ~vertex stars of type 7)

~3! An angle equal to 2p/5 and a double arrow in its
interior ~vertex stars of types 5,8)

~4! An angle equal to 4p/5 and a double arrow in its
interior ~vertex stars of type 6)

~5! An angle equal to 6p/5 and a double arrow in its
interior ~vertex stars of type 7).

Now the proof of proposition1.
Consider an arbitrary given Penrose tiling. In this tilin

select all vertex starsW(v) of types 1,2,3. Remove in all the
selected vertex starsW(v) the vertexv and also the double
arrow edges meeting atv. The selected vertex stars have th
been replaced by one of the three prototiles of Fig. 2. No
of these prototiles overlaps because if two of them overl
the single-arrow edge on the boundary of one would be
inner single-arrow edge of the initial Penrose vertex st
corresponding to the other, and the selected vertex stars 1
have no inner single-arrow edge by property 1. Either the
of these three prototiles tile the plane, or not. If they do,
proposition is true for the tiling considered. If not, there r
mains at least one vertex star at a vertexv0, of type belong-
ing to the set 4,5,6,7,8 and withv0 not belonging to the
boundary of one of the three prototiles of Fig. 2. Then co
sider all the possible single-arrow angles at the vertexv0.

A single-arrow angle of type 1 at the vertexv0 necessarily
belongs to a thick rhombus as can be seen by inspectio
2-8
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the vertex star of types 4,5,6,8 on Fig. 5. The vertexv8
where the two double-arrow edges of this thick rhomb
meet necessarily has a vertex starW(v8) at v8 of types 1,2,3
by property 2.

A single-arrow angle of type 2 at the vertexv0 necessarily
belongs to a thin rhombus as can be seen by inspection o
vertex star of type 7 on Fig. 5. The vertexv8 where the two
double-arrow edges of this thin rhombus meet necessa
has a vertex starW(v8) at v8 of types 1,2,3 by property 3.

A single-arrow angle of type 3 at the vertexv0 determines
a vertexv8 at the other extremity of the double-arrow edg
At this vertex, three double-arrow edges meet as seen f
vertex star 8 on Fig. 5. Therefore, by property 4, the ver
v8 necessarily has a vertex starW(v8) at v8 of types 1,2,3.

A single-arrow angle of type 4 at the vertexv0 determines
a vertexv8 at the other extremity of the double-arrow edg
At this vertex, three double-arrow edges meet as seen f
vertex star 6 on Fig. 5. Therefore, by property 4, the ver
v8 necessarily has a vertex starW(v8) at v8 of types 1,2,3.

A single-arrow angle of type 5 at the vertexv0 determines
a vertexv8 at the other extremity of the double-arrow edg
At this vertex, three double-arrow edges meet as seen f
vertex star 7 on Fig. 5. Therefore, by property 4, the ver
v8 necessarily has a vertex starW(v8) at v8 of types 1,2,3.

Thus, all the above verticesv8 @which are on the bound
ary of the vertex starW(v0) at the vertexv0#, have vertex
starW(v8) of types 1,2,3. As a result, the vertexv0 belongs
to the boundary of one of the three prototiles of Fig. 2, co
trary to the initial supposition. This proves that each Penr
tiling gives a unique type I tiling. It remains to prove that a
type I tilings can be obtained in this way. Thus consider
arbitrary type I tiling. It is clear by considering the Fig. 2 th
there is one and only one way to add a vertex into the s
the boat, and the cigar,~and double-arrow edges inside the
three prototiles! so that the star is transformed into a Penro
vertex star of type 1, the boat into a Penrose vertex sta
type 2, the cigar into a Penrose vertex star of type 3. T
concludes the proof of proposition 1.

An important property is the composition property: a ty
I tiling can be uniquely inflated and uniquely deflated. This
illustrated in Fig. 11 for one deflation and in Fig. 7 for tw
deflations.

For a better visualization of type I tiling, it is useful t
note that a boat automatically forces the configuration p
sented in Fig. 6. This can be proved by successive trials w
the prototiles of Fig. 2. An indirect proof is as follows: Fig.
shows that, in a deflation of each of the three prototiles
boat always appears with the configuration presented in
6. By successive deflations, one can thus obtained a
nected region with an arbitrary large number of prototil
where the boat only appears in the configuration of Fig. 6
is a known property of Penrose tiling that every local~glo-
bally legal! configuration must appear as the number of ti
increases. Thus the configuration of Fig. 6 is the only p
sible one.

1. Frequencies

The frequency of the eight different vertex stars of a P
rose tiling can be determined from the method of project
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from higher dimensional lattices.44 It can also be obtained
together with the relative frequency of the two rhombi,
considering an infinite sequence of deflations, as describe
Ref. 47. For the sake of self-consistency, this last metho
now rapidly summarized. The two rhombi together with t
eight vertex stars are considered as ten objects, number
for the thick rhombus, 2 for the thin rhombus, andj 12 for
the vertex stars withj the number reported in Fig. 5. Th
vertex stars atp of a Penrose tilingP are also vertex stars a
p of the deflated tilingD(P). There are in addition othe
vertex stars inD(P). Among them, those that are inside
thick rhombusT of P are qualified to be generated byT.
Those that are not inside a thick rhombusT of P are neces-
sarily on an edge shared by a thick rhombus T and are qu
fied to be generated byT, with a factor one half. One then
has the substitution matrix

1
2 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

2 .

For example, a thick rhombusT of P is considered to be the
parent of two thick rhombi ofD(P), one thin rhombus of
D(P), one vertex star of type 6, and one vertex star of ty
7. This gives the first column of the substitution matrix. T
greatest eigenvalue of this matrix ist2, and its column eigen-
vectors are proportional to

S t6t5
t4

t421
t2t3

t2

t421
tt4t51D t

.

FIG. 11. One Penrose deflation of system 2, i.e., system 3
scaled with respect to system 2.
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The two first components tell us that the frequency of the thick rhombus is equal tot times the frequency of the thin rhombu
It is convenient for the sequel to normalize the frequencies of the vertex stars only~i.e., not including the objects rhombi! to
unity. This amounts to dividing the eight last components byt7.

1 2 3 4 5 6 7 8

t23

t421
5

18211t

5
t25 t24 t25

t421
5

47229t

5
t26 t23 t22 t27 ~A1!

The vertex star numbers reported in Fig. 5 are in the first line, the sum of the corresponding frequencies in second line
to unity. It will be useful for the sequel to determine the frequency of internal verticesf i ,

f i5
t23

t421
1t251t245

32t

5
.0.276 393. ~A2!

Note that the three frequencies relative to star, boat, and cigar, normalized so that the sum of the three is unity ca
easily deduced from the frequency of Penrose vertex stars.

Star Boat Cigar

t245
724t

t12
5523t

t211

t5
5

724t

t
521117t

t211

t4
5724t ~A3!

2. Some geometrical properties related to deflation inflation

Some useful properties whose proof is elementary are the following.
~1! The external vertices ofP are the internal vertices ofD(P) ~for an illustration, see Fig. 11!.
~2! The two most distant vertices of a cigar are the internal vertices of the stars ofD(P).
~3! The internal vertices ofP are the internal vertices of the stars ofD2(P).
~4! The internal vertices ofP are the centers of Penrose vertex stars of type 4~stars surrounded by fives cigars! of D3(P).
~5! The internal vertices ofP are the centers of stars surrounded by fives boats ofD4(P). ~These centers are Penrose ver

stars of type 1 but not all of them.!
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