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Ideal strength of bcc molybdenum and niobium
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The behavior of bcc Mo and Nb under large strain was investigated usinghthiitio pseudopotential
density-functional method. We calculated the ideal shear strength fof2th®(111) and {01L(111) slip
systems and the ideal tensile strength in{th@0 direction, which are believed to provide the minimum shear
and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free
tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to
this tetragonal “saddle-point” structure sets the ideal shear strength. When either material is strained in tension
along(100, it initially follows the tetragonal, “Bain,” path toward a stress-free fcc structure. However, before
the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it
evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs
after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc
extremum as in W. However, a Nb crystal strained 100 becomes orthorhombic at tensile stress below the
ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by
failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths7f Mo (
=711/G111:=0.12,0* = 0,,/E195=0.078) are essentially identical to those previously calculated for W. Nb is
anomalous. Its dimensionless shear strength is unusually High0.15, even though the saddle-point struc-
ture that causes it is similar to that in Mo and W, while its dimensionless tensile strerigt).079, is almost
the same as that of Mo and W, even though the saddle-point structure is quite different.
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[. INTRODUCTION lattice becomes unstable. This stress is the ideal strength. At
its ideal strength the crystal necessarily fails, either by break-
The ideal strength is the stress required to yield or break @ng (fracture, shearing into a deformed replica of itsgifas-
perfect crystal:? The most important feature of the ideal tic deformation, or shearing into some new crystal structure
strength is that it sets an upper bound on the attainable stregsnartensitic transformationThe specific mode of failure is
Mobile dislocations, grain boundaries, cracks, and other mia complex problem in molecular dynamics, since it depends
crostructural features may significantly change the strengtbn precisely how the lattice atoms move once the instability
of a real crystal, but they can never raise it above its ideahas set them free. However, assuming that we can ignore
value. phonon-induced instabilities, the elastic stability limit is a
The upper limit of strength is of obvious interest in ma- problem in lattice statics that can be attacked with available
terials science, and theorists have attempted to compute tiheoretical tools.
from atomic models since at least the 19284 These early Even in the quasistatic case the meaning of the ideal
models assumed simple analytic forms for the stress-straistrength has subtle featur€sThree are particularly impor-
relation at large strains that made it possible to express th@nt. The first concerns the boundary condition assumed for
ideal strength in terms of experimental values of the elastithe problem. As Hill has pointed otif;*® the conditions of
moduli. Later, in the 1970s and 1980s, semiempirical pairelastic stability for a material under load are sensitive to the
potential and embedded atom models were used to study theehavior of the loading mechanism. This problem can be
large strain behavior of bcc and fcc materi@léThese stud- — avoided by controlling the displacement, rather than the load,
ies helped to clarify the generic behavior of materials undeand defining the ideal strength as the load that produces the
large strain, but because the models used are based on fitsditical displacement at which the crystal becomes unstable
small strain behaviofe.g., the elastic constaitsheir quan-  with respect to internal displacements. The second concerns
titative accuracy at large strains is uncertain. Recematty, the direction of the instability. It sometimes happens that a
initio methods have been used to calculate large strain bejiven displacementfor example, an uniaxial tensiprrig-
havior. These methods are not based on experimental megers elastic instability with respect to a very different dis-
surements. They are equally valid at all strains and havelacement(for example, a orthogonal sheatt follows that
proven successful in computing the ideal strefigtf. all possible responses must be considered to identify the
The more sophisticated computations of the ideal strengthimit of strength. Third, the ideal strength is a highly aniso-
have been accompanied kgnd have contributed Yoa  tropic function of the displacement. It is significantly differ-
clearer understanding of the meaning of the t&tW/hen an  ent for tension and shear and, ordinarily, depends strongly on
infinite, perfect crystal is subjected to an increasing stress ithe particular direction of tension or plane and direction of
responds elastically until the stress becomes so great that tisbear.
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Many of the salient features of the ideal strength, includ-vestigate the saddle-point structures that are responsible for
ing its anisotropy, can be understood from symmetry considthe elastic instabilities that set the ideal strength. This re-
erations. Finite strain can transform a crystal structure intsearch on Mo and Nb continues our exploration of the ideal
itself or into an alternate symmetric structure. In bcc, forstrengths of bcc metals such as the prior work o(R&f. 19
example, a homogeneous shear in the sysédr}{100 and concurrent work on F&ef. 20. Both Mo and Nb have
periodically regenerates bce, while a homogeneous strain i@ bcc crystal structure and are similar in many of their
relaxed tension alongL00) creates a tetragonal structure that Physical properties, but there are intriguing differences in
may eventually become face-centered culféx), then te- their elastic properties. .In particular, the rat|o_of the shgar
tragonal again. It follows that the plot of energy as a function2nd bulk moduli in Nb is much smaller than in Mo. This
of the six-dimensional strain is corrugated and punctuatedifference suggests that Nb is more likely than Mo to fail in
with minima. The most favorable strain path that connectSn€ar ralth_er than cleavage when stressed to the limit of its
the starting structure to a nearby minimum necessarily patssecére”gtﬁ (in fact, qualitative models suggest that Nb may
through a state of maximum energy at a saddle poiun- have the best inherent ductility of all the bcc transition met-
tain pass on the energy surface. The relaxed, minimum-al,s)- It follows that Nb an.d Mo may have very different
energy structure sits in a valley on the energy surface that i&ilure modes at large strain.

connected to other valleys by paths that pass through saddle AS We shall show below, there are only two relevant
points of this type. saddle-point structures in Nb and Mand, by inference, in

The structures of the states at the saddle poitte other bcc structurgsthe face-centered cubic str.ucture, and a
“saddle-point structures’ are particularly instructive in un- Pody-centered tetragonabcy) structure. The ideal shear
derstanding the ideal strength for simple load configuration§trengths for the slip systems commonly found in bce metals:
such as uniaxial tension or sh@ar®%When a perfect crys- 1215(111) and{011(111), are nearly the same and are due
tal is loaded in uniaxial tension or balanced shear under did® Shear instabilities associated with the bct saddle-point
placement control, one strain is controlled while the otheStructure. The ideal tensile strength for the weak direction
five independent strains adjust to minimize the energy. Thé100) in bec is the result of a competition between the in-
strain path naturally evolves toward a saddle point in theStabilities aSSOCIaFed Wlth the bct and fcq saddle-point struc-
energy surface. The stress that is associated with a particules. both of which lie on the100 tensile path. The fcc
strain is proportional to the derivative of the energy with saddle-point governs the tensile strength of Mo, as it does for
strain. It follows that as a crystal is deformed from its equi-Other common bce metals such as(Ref. 15 and Fe(Ref.
librium structure toward a saddle-point in the energy surface® and appears to be the source of {ti60 cleavage that is
the stress increases, passes through a maximum, and retufifgnmon in bee. However, the bet saddle point governs the
to zero when the saddle-point structure is reached. The maxi100 tensile strength of Nb. The associated failure mode is
mum stress is the ideal strength, and is associated with tr& elastic instability with respect to shear on the system
inflection point in the curve of energy as a function of strain{211(111). This result suggests that Nb, unlike other com-
along the strain path toward the saddle pdint. mon bcc metals, is inherently ductile when pulled in uniaxial

Note that, unless the crystal is artificially constrained, theSt'€ss.
saddle-point structure is never reached. The crystal becomes
elastically unstable and fails at its ideal strength, at roughly Il. METHOD
one-half the saddle-point strain. However, the saddle-point '
structure strongly affects the strain path and strongly influ- In the present paper, we use thle initio pseudopotential
ences the ideal strength. In fact, in most of the cases studiedknsity-functional method as employed in Refs. 11 and 15.
to date?*>?°the ideal shear and or tensile strength can beThe ideal strength is calculated by straining the crystal incre-
approximated rather well by assuming a sinusoidal stresgnentally. At each step, the crystal is relaxed until all of the
strain relation that has the initial slope set by the appropriatstresses orthogonal to the applied strées both shear and
elastic constant and returns to zero at the appropriate saddlensile stregsare reduced to zero. This produces a curve of
point strain. energy versus strain, and a related curve of stress versus

In general, there are very few stress-free structures thattrain. The first maximum in the stress-strain curve is the
can serve as saddle points, and most of these are determinigial strength for this strain path provided no other instabili-
by symmetry. Examples include the cubic structures, whicHies occur before reaching it. The first zero reached along the
are stress-free in simple crystals. Also, there is ordinarily onetress-strain curve is the first maximum in the energy-strain
stress-free body-centerédr, equivalently, face-centergte-  relation along the relaxe@minimum-energy path, and is,
tragonal structuré® Because there are so few stress-freehence, a saddle point in the hypersurface of energy as a
structures, the deformation paths generated by geometricalfynction of strain. The associated structure is the “saddle-
different stress states often pass through the same saddieint structure” that governs the ideal strength.
point. Thus, an understanding of the few available stress-free The total energy is computed as a function of strain using
states can provide a very general picture of the sources of tithe local-density approximationLDA) pseudopotential
ideal strength. total-energy scheme with a plane-wave basis*séb. We

In the present paper, we use thie initio pseudopotential relax the structures using a quasi-Newton methoal mini-
density-functional method to calculate the ideal tensile ananize the energy. A plane-wave energy cutoff of 60 Ry is
shear strengths of Mo and Nb in tension and shear, and irchosen, with & grid of 16xX16X16 points in the full Bril-
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TABLE |. The calculated ideal shear strength of Mo and Nb.
The values for{211(111) shear strength an¢011}(111) shear
strength are similar.

Mo Nb
Tm{zu}(GPa) 15.8 6.4
Tm{Oll}(GPa) 161 76
Gy14(GPa) 136 42 @xpt)?’
Tm!G111 0.116, 0.118 0.15, 0.18 PN

B *
<001> <110 c
louin zone. Using these parameters, we obtain equilibrium <010>
lattice constants for Mo and Nb of 3.17 and 3.30 A, which <100> B
are within 1% of the experimental values. The calculated <HI>
bulk moduli are 283 and 195 GPa, respectively, which are
around 10% greater than the experimental values of 264 and FIG- 1. The{211(111) shear in the bcc structuréa) the bce
170 GP&’ This result is typical of the LDA, which tends to cubic cell showing the (10) plane(dotted ling and (112) plane
overbind. For the Young’s modulus in tHd00) direction  (dot-dashed ling (b) the atomic configuration in the (D) plane;
and the shear modulus relevant to shear in(thEl) direc-  and (c) the atomic configuration in the () plane. The circles
tion, we obtain agreement with experiment better than 8%mark atom positions within the plane and the diamonds show posi-
with the exception of the shear modulus of Nb. Our calcula-tions above the plane. The solid black symbols and solid lines are
tion of the shear modulus of Nb is 30% lower than the ex-the initial atom positions and cell edges. The solid gray symbols are
perimental value, so we use the experimental modulus whethe atom positions after shear has returned the structure to bcc. The
calculating the dimensionless shear strength of Nb, as indiollow symbols and dashed lines show the tetragonal saddle-point
cated in Table I. structure.

For finite deformation, there is some ambiguity in the

definition of the strain. For the tensile strain, we find it con-cated by the hollow symbols has the same symmetric relation
venient to use the engineering strainfor which the tensile  to the initial and final bce structures. It follows that the shear

stresso is stress vanishes for this state. If all other stresses are also
relaxed, this is the configuration of the saddle poinfbt1)
1+e dE shear. If there were no relaxation, the shear strain to the
Trensile™ \/(¢) de’ @D saddle point would bey,=/2/4~0.35 (as discussed previ-

. . . ously in Refs. 21 and 15, on the basis of a slightly different
whereE is the strain energy anif(e) is the volume at a  geometric argumentThe stress-free saddle-point structure is
given engineering strain. For the shear strain, it is conveniens;.
to use the true strain, as defined in Ref. 11. This strain is 1o fix the actual configuration of the saddle-point struc-
numerically very similar to the engineering strain, but hasyyre, note that the intermediate tetragonal structure has two
the advantage that one can calculate the shear striesn  gegrees of freedom; it can differ from the bce parent in both
the energy versus strain curve via the equation volume and tetragonalitas given by the axial ratic/a).

1 dE These parameters have values that minimize the energy. Our
Tehea= — —— 2) calculations show that the volume change is about 2% for
V(y) dy both materials: 2.1% for Mo and 1.9% for Nb. The tetrago-
epalities c/a) with respect to the bcc ground state are, re-
spectively, 1.73 for Mo and 1.81 for Nb.
The {011(111) shear differs from th¢211(111) shear
in that the lattice relaxes significantly during shear. This re-
ll. RESULTS laxation is necessary in order to return to the bcc structure at
A. Ideal shear strength a strain of y~0.60. It also has the consequence that the
. N . _ {011 shear path passes through the same tetragonal saddle-
The {211L(111) shear is shown in Fig. 1. Figurdalis @ 5int structure that is reached by shear{@l). The evolu-
drawing of the cubic cell in the bcc structure with the ()1 tion of the structure during shear is illustrated in Fig&a) 2
and (112) planes shown. The initidlinshearedatomic con- and 2b). The initial configuration is indicated by the solid
figurations in these planes are given by the solid symbols iblack symbols. The gray symbols show the configuration af-
Figs. 1b) and Xc), respectively. The circles give the atom ter the shear has carried the crystal into a rotated bcc struc-
positions in the plane while the diamonds label positiongure, a process that is accompanied by a substantial relax-
above the plane. Thel11] direction of shear is to the right. ation in the slip plane. The saddle-point structure is marked
When the atom represented by the solid diamond moves orgy the hollow symbols. This structure is tetragonal, and is
third of the edge length to the position of the gray diamondjdentical to that shown for th¢211}(111) shear in Fig. 1.
the structure returns to bcc. The intermediate structure indiNote that the{011} plane shown in Fig. 2 is also @11

wherey now represents the true shear strain, while the oth
symbols are as defined above.
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X FIG. 4. Shear stress as a function of strain for Mo and Nb. The
1 diamonds indicate the results for shear on {&l} plane, and the
circles indicate the results for shear on {241} plane.
FIG. 2. The{011}(111) shear in the bce structuréa) the atomic 10 EQ. (2). The maximum in the shear stress-strain curve is
configuration in to the (112plane andb) the atomic configuration (N ideal shear strength provided no other instabilities occur
in to the (710) plane. The circles label atom positions within the before reaching it; a perfect crystal is unstable with respect to

plane and the diamonds show the positions above the plane. Thqeelformatloln In S?eﬁr Wr?en this Stl’iSS IS eXC(Iaeded'. Theblcal-
solid black symbols and solid lines are the initial atom positions andY ated values of the shear strength are tabulated in Table I.

cell edges. The solid gray symbols are the atom positions after shear | N€ Stress-strain curves for the two slip systems coincide

has returned the structure to bce. The hollow symbols and dashdl the small strain limit, since their slopes are determined by
lines show the tetragonal saddle-point structure. the shear modulus, which can be expressed in terms of elas-

tic constantsC;;

plane in the bct saddle-point structure. However, ¢h#&1)
direction in the parent bec is(@00) direction in the bt cell. G G ~ 3Cu(C1y—Cyo) 3
Figure 3 shows the energy as a function of strain for the {013y = HAKUD T G — C1,+4Cy,”
{211(111) and{011}(111) shears in the two materials. The
maximum energy for both slip systems is the energy of theHowever, they differ at larger strains, and between materials.
tetragonal saddle-point structure and is, therefore, the samghe stress-strain curve fd211} shear in Mo is almost a
for both slip systems: 0.35 eV for Mo and 0.15 eV for Nb. perfect sinusoid, with a critical straip, near 0.17& v,/2).
However, the shear strai, required to reach the saddle- The ideal shear strength,=15.8 GPa&0.12 G,;. The
point is somewhat different for the two systems because oftress-strain curve foj011} shear in Mo deviates from the
their different relaxations. Fof211} slip, the saddle-point sinusoidal form, but the deviation only becomes significant
strain is very close to the unrelaxed value 0.35, buf®dd}  after the shear instability has been passed. The ideal shear
slip the saddle point is reached sooneryat 0.30 for both  strength for this system is,,=16.1 GPa, which is almost
Mo and Nb. identical to that 0o{211}. The Nb stress-strain curves are less
Figure 4 shows the shear stress-strain curves, which argmple. In the{211}(111) system, the shear stress-strain
obtained by differentiating the energy strain curves accordingurve of Nb is skewed from the sinusoidal shape toward
higher strain, and does not reach its peak upti-0.2. The

0.4 —— shear strength,,= 6.4 GPa0.15 G;;; Nb has a higher di-

03 [o §21}§:}1}:§2§§: . o | mensionless shear strength than Mo, though its actual
< onl o ®] strength is lower. Also, the stress-strain behavior of Nb on
L ool P ] {011} is more obviously different from that di211} than was
g 0 000 . . . , Mo 4 the case for Mo. In Nb, the shear stress-strain curve for the
© 020 005 01 015 02 025 03 035 04 {011} plane begins to deviate from t§211} curve before the
S le  (oin<ttt>shear peak stress is reached, and rises to a higher strength
’g 015 o {211}<111> shear 8O0 =7.6 GPa=0.18 G, at a slightly higher instability strain
m ' ] ye~0.22.

0.05 | ‘ N ]

oo 7005 01 015 02 025 03 035 04 B. Ideal tensile strength

v By symmetry and prior calculation the ideal tensile

FIG. 3. The energy as a function of shear strain for Mo and NbStrength of a bcc metal is expected to have its minimum
The diamonds refer to shear on @41} plane, the circles refer to  value for tension in th¢100) direction. We therefore calcu-
shear or{211}. Since the structure returns to bcc at large strain, thdated the strength of Mo and Nb for this case. The results are

curves are symmetric with respect to their maximum energy pointsshown in Figs. 5 and 6, which are plots of the energy and
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05— TABLE II. The calculated ideal tensile strength and Young’s
04 [ el g@@7%%%%0000 o 1O ] moduli of Mo and Nb. For Nb, the ideal strength of the orthorhom-
< 03¢ °<>° ] bic path is significantly smaller than that of the tetragonal path.
= gf 2 °°e ]
g .0 <’ "" ) ) ) ) ) 0901\. P Mo Nb
T 0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Orthorhombic Tetragonal
% o4 o Iortholrhomlbic ' : I I I INb 1
5 03 o tetragonal oooo 1 on(GPa 28.8 13.1 18.8
G5 o2 - . ®00q.] E100GPa 370 165 165
0.1 %o, ": om!E1oo 0.078 0.079 0.114
I SN

oot . . ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 . . .
€ that fixed the saddle point in shear. But we are now ap-

_ ) , proaching it from states of higher energy, so it provides a
FIG. 5. Energy as a function of relaxed00) tensile strain for ininy m’in the energy along the tensile path. With respect
Mo and Nb. The diamonds indicate the orthorhombic path, and th(f0 the ground bcc state, the tensile strains at which this spe-

C|rcles_ indicate the tetragonal path. The maximum _of the ortho-Cial tetragonal structure appears in Mo and Nb are 0.454 and
rhombic path has the same energy as the local minimum of th

tetragonal path, since they correspond to the same tetragoniolr‘tjg?’(’) T;%the perpt(_anclllcular strains in Mo and Nb are -0.162
saddle-point structure. and -9. » respec |\{e Y. . .
The tetragonal Bain path is the path that was assumed in

prior work on the ideal tensile strength of bce cryst&ls> 2
In the present study, we relaxed that constraint, and found the
equalitative change in high strain behavior that appears in

. Figs. 5 and 6. The path taken during a relaxed tensile strain

The response to tensile stress is also governed by thg the (100) direction branches away from the Bain path

stress-free structures that provide saddle points in the Strairﬂ)’efore the fcc structure is reached. The low-energy branch
energy surface. If we maintain tetragonal symmetry by forc'follows an “orthorhombic” path on which the strained crys-
ing homogeneous deformation in they lattice plane as we

oull in the [001] z direction (the Bain path then the saddle tal has a face-centered orthorhombic structure of the type

oo ; : shown in Fig. Tc). The energy maximum along the ortho-
point is the fcc structure for both materials. Along this path'rhombic path is the saddle point that is reached when the

the lattice IS body-centered tetragofiaty). As shown in Fig. ace-centered orthorhombic structure is strained into a stress-
7(a), the unit cell can b? drawn equally well as face-centere4ree tetragonal structure. This structure is the same tetragonal
tet(agonal(fct). Assuming constant volume, th? stra!n at saddle-point structure that governs the ideal strength in shear
Wh'Ch tr? e bec cell assumes the fec strgct(lhe Ba|_n strail and also appears at large strain along the tetragonal path.
is €5=32-1=0.260. When the cell is constrained to be " after the strained crystal passes through the tetragonal
tetragonal, our calculations show that the volume ch_ange IStructure on the orthorhombic path, its energy decreases
l_lfﬁs ;Tgi]niétf(cvrhl?g?\ ggg :\izsat:(?rlllg?;g&l:s f‘hlgr;gcﬂs"t‘:’ur::?a?monotonicaIIy with increasing tensile strain, reaching a mini-
are, respectively, 0.267 and 0.274, which are remarkabl um at a strain ofe=y2-1=0.414. At this strain, the
close to the value oég for the volume-conserving Bain path.
If the [001] strain is continued past the fcc saddle point,

stress as functions of relaxed tensile str@iniaxial stresp
along[001]. The ideal tensile strengths are tabulated in Tabl

¥%tructure has returned to bcc.

. . . I -
while preserving tetragonal symmetry, it eventually reaches a I <4
stress-free tetragonal structure. This is the same bct structure i

v
.
2
10} S e
0
-10 |
20 ¢  orthorhombic ¢ (a)
—~ -30 f© tetragonal
& -40 : :
[0} 0 0.1 0.2
© [ Nb ®
:.’«-‘ OU:
-10 ¢ orthorhombic ¢ ¢ ¢ ¢ 000 ]
o0 [©  tetragonal ©p00° ] (b)
0 01 02 € 03 04 05 FIG. 7. Configurations along the tetragori&ain) and ortho-

rhombic strain paths for a bcc crystal strained in relaxed tension in
FIG. 6. Stress-strain curves for relaxed tension as a function ofhe [001] direction. (a) The strained configuration shown as a fct
strain for relaxed tension in @00 direction. The diamonds indi- structure with a bct cell embedded in (b) and(c) The atom con-
cate the orthorhombic path, and the circles indicate the tetragondiguration in the basal001) plane when the strain is tetragoria)
path. or orthorhombic(c).
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) /]\ occurs. As shown in Fig. 6, in Mo the deformation adheres to
the tetragonal path until after the ideal strength has been
reached. It follows that the orthorhombic distortion does not
influence the ideal strength, and that Mo will fail in tension
when pulled in the100) direction, at an ideal strengthy,,
=28.8 GP&0.078 Bgg, Where

:(Cll+ 2C1)(C11—Cyp)
100 CutCy

4

<110> is the tensile modulus for a fully relaxed stretch al¢ag0).
In Nb, on the other hand, the branch occurs before the
FIG. 8. The orthorhombic distortion undgd01) tension,(a the  inflection point of the tetragonal deformation curve, and
atomic configuration in thel10) plane, showing the initial bce state  causes a significant decrease in the ideal tensile strength,
in solid black, the bct saddle-point structure in dashed black, anrom o,,= 18.8 GPa=0.114 E, the value predicted from
the final bee state in solid gray, artl) the same picture in a per- the tetragonal path, ter,,=13.1 GPa0.079E,. At the
spective v_iew, showing only the initial bcc structure and the thsame time, the failure mode changes from a tensile stretch to
saddle-point structure. a shear on{211(111). Significantly, the resolved shear
) ) stress on the most favorably orien 11D slip system
The orthorhombic path can be described as follows. Lef,nen Np fails in tension is vyery netfrﬂé.]i(GPl;, thpe ié/eal shear
the height of the orthorhombic cell, along the tensile axis, beyyength for this slip system, reinforcing the conclusion that
h=ao(1+ ¢), wherea, is the edge length of the original bcc he fajlure mode is not a stretch but a shear. Since the ideal
cell, and let the edge lengths of its baselbandl,, as in  ghear strength is affected by the presence of other stresses, to
Fig. 7. The stress-free states along the orthorhombic path aedegree we have not yet explored for this system, we would
not expect the resolved shear stress at failure to be exactly
h=ao, I1=1,=12a, bce, equal to the ideal shear strength.

ap<h=1,<lI; tetragonal saddle point,
IV. DISCUSSION AND CONCLUSION

h=I,= \/fao, l,=a, bcc. The ideal shear and tensile strengths of Mo and Nb are

. . . . . presented in Tables | and Il as well as the dimensionless
While the Bain path is a tensile stretch, the Orthorhomblcgtl’engthSa'*=0‘m/E100 and 7 = 7,,/G,1,. While we know

pgih Claln b?. understoo_lqh.as a Shef%lrl deforn;a_tiog on8 ﬂ}?f no other calculations of the tensile strengths of Mo or Nb
{ .j}< 1) slip system. This point is illustrated in Fig. 8, (giher than our own preliminary results mentioned in Rgf. 2
which shows the initial structure, the structure at the saddl e ideal shear strengths for tH@11(111) system were

point, and the regenerated bcc structure along the Orthorho”&bmputed by Paxtonetall? and by Sderlind and
bic path generated by a relaxed tension(®@0). In each of  yyiary 28 Their calculations neglected relaxation, and gave
these three configurations, the axis perpendicular to the plaqﬁe resultsr, (Mo)=17.8 GPa'? 20.9 GP&® and ,,(Nb)
of the figure is essentially unstrained. Also, by orthorhombic_ - £, Gpalnz’ Because these calculations neglegj[ed relax-

symmetry, there are no shears perpenc_ilcular to the plane %on, the associated paths do not include the stress-free
the figure. It follows that the the strain corresponds 10 &,4qie points. They are therefore expected to predict some-
simple shear on the (IR) plane, which is oriented at 45° t0 \yhat higher ideal strengths, as they do.
the[001] direction in the saddle-point structure. Thus, if fail-  |n dimensionless terms, the tensile and shear strengths of
ure occurs on the orthorhombic branch it is not, s_trictly, aMo are almost identical to those of WRef. 15: o*
tensile failure alond001], but a shear failure on the {2) =0.078 (Mo), 0.071(W); 7*=0.12 (W and M. Both
X[111] system at 45° t¢001]. these numbers are close to the strengths that are inferred
A relaxed tension in §100 direction always takes the from simple models that assume a sinusoidal stress-strain
tetragonal path in the limit of small strain; the two perpen-relation from the bcc starting structure to the appropriate
dicular (100 directions are equivalent by symmetry and, stress-free stafeWe expect, therefore, that these results are
hence, have the same elastic modulus. However, the tetragypical for bcc metals.
onal path (;=1,) is simply a special case of the orthorhom-  While we know of no experimental data on the ideal ten-
bic path (;=I, orl,;#1,). Since the orthorhombic path pro- sile strength of Mo, the ideal shear strength may have been
vides an additional degree of freedom, it is not surprisingmeasured in nanoindentation experiments by Lilleodden and
that is preferred at larger strains. As Fig. 5 shows, in both MdNix.?°~3! Indentation on a sample surface produces a shear
and Nb the deformation starts along the tetragonal Bain pattstress that has its maximum value some distance beneath the
but branches away onto an orthorhombic path before reactsurface that is being indented. In nanoindentation the in-
ing the fcc saddle point. denter is so smal(50-1000 nm that the subvolume that
Whether the branch away from the tetragonal path affectexperiences high shear is likely to be defect free. The maxi-
the ideal tensile strength depends on when that branchingium shear stress at the onset of plastic deformation can be
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computed from the indentation data and, in the case of Mshow the clean ductile-brittle transition v{d00 cleavage
(and W), this shear stress is very close to the computed valuéhat is common to the bcc transition metals. However, it is
of the ideal shear strength. found experimentally that Nb does fail 400 cleavage in
While Mo behaves as expected, the behavior of Nb igracture tests at low temperatuteThe source of this cleav-
anomalous. Its dimensionless shear strength; 0.15is sig-  age is uncertain, but it may reflect the influence of the tri-
nificantly higher than that of W or Mo, even though it is axial crack-tip stress state on the relative stresses for failure

determined by the same stress-free state. Its dimensionlegs 100, tension and211} shear. This issue is under inves-
tensile strengthy™ =0.079 is almost the same as that of W tjgation.

and Mo, even though it is determined by a very different
saddle point. Its strength would be much higher if it followed
the tetragonal path rather than branching off. Moreover, the
stress-strain relations that govern shear and tension along the
tetragonal path show clear deviations from sinusoidal shape; This work was supported by National Science Foundation
in both cases, the maxima in the stress occur at much high&rant No. DMR-9520554, by the Director, Office of Energy
strain than a sinusoidal form would predict. Research, Office of Basic Energy Sciences, Materials Sci-

As we mentioned at the beginning of this paper, one im-ences Division of the U.S. Department of Energy, and by the
petus for studying Nb was the small value of its shear modutaboratory Directed Research and Development Program of
lus G444 relative to its tensile modulus,o,. The small value Lawrence Berkeley National Laboratory under the U.S. De-
of this ratio suggests that an infinite perfect crystal of Nbpartment of Energy. Computational resources have been pro-
would deform in shear before breaking in tension, even whewided by the National Science Foundation at the National
pulled along(100). This is the behavior we actually find. In Center for Supercomputing Applications and by the National
contrast to Mo, which fails in tension under the influence ofEnergy Research Scientific Computing Center, which is sup-
the fcc saddle point, Nb branches to the orthorhombic patiported by the Office of Energy Research of the U.S. Depart-
before failure, and thus fails in shear. Since our solution ianent of Energy. All Department of Energy support was un-
appropriate folT =0 K, this result suggests that Nb may not der Contract No. DE-AC03-76SF00098.
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