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Hexagonal and tetragonal states of magnesium by first principles

F. Jona and P. M. Marcus
Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794-2275

~Received 15 April 2002; published 9 September 2002!

First-principles total-energy calculations on hexagonal-close-packed~hcp! and body-centered-tetragonal
~bct! states of bulk elemental magnesium have been made with a full-potential electronic structure program
with both the local-density approximation and the generalized gradient approximation. The unique paths
@called epitaxial Bain paths~EBP’s!# through hexagonal or tetragonal states produced by epitaxial strain on
equilibrium states have been found. The hexagonal EBP reveals the existence of an hcp phase with axial ratio
c/a;0.72 and about 20 mRy/atom higher energy than the hcp ground state. Structure parameters and elastic
constants of both the ground state and the higher-energy state are determined, and the ground-state values are
compared to experiment. Tests of the stability of the hcp phase atc/a;0.72 show that this phase is unstable.
The tests for stability require calculations of the elastic constants, which in the case of hcp crystals are
composed of a homogeneous and an inhomogeneous contribution. We describe a considerably simplified
calculation of the inhomogeneous contribution obtained by using a symmetrical orientation of the unit cell and
finding all the elastic constants with symmetrical strains. The tetragonal EBP shows the existence of a face-
centered-cubic phase of Mg with about 1 mRy/atom higher energy than the hcp ground state. The elastic
constants of this phase satisfy the stability conditions: hence, this phase is metastable.

DOI: 10.1103/PhysRevB.66.094104 PACS number~s!: 68.55.Nq, 64.60.My, 61.66.Bi
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I. INTRODUCTION

In our ongoing search for metastable phases of meta
elements we have undertaken a study of hexagonal-cl
packed~hcp! structures and of body-centered-tetragonal~bct!
structures@which include both body-centered-cubic~bcc!
and face-centered-cubic~fcc! structures# of magnesium, and
we report here the results of that study. Our goals are~1! to
find new crystalline phases, which correspond to minima
the total energy for particular values of the lattice para
eters, and~2! to determine whether such phases are sta
metastable, or unstable.

The first goal is achieved by calculating the so-called
itaxial Bain path1,2 ~EBP! for both hcp and bct Mg. The EBP
is a path through hexagonal~tetragonal! states which passe
through all hexagonal~tetragonal! equilibrium states, where
the energy is a local minimum, and through hexagonal~te-
tragonal! states produced by epitaxial or biaxial strain of t
equilibrium states. The lowest-energy minimum is usua
the ground state; higher-energy minima define possible m
stable states. The procedure for the calculation of the tet
onal EBP has been described before;3–5 that for the calcula-
tion of the hexagonal EBP is similar and will be describ
below. We show that the hexagonal EBP reveals the e
tence of an hcp phase of Mg with energy about 20 mRy/a
higher than the ground state, while the tetragonal EBP sh
the presence of an fcc phase of Mg with energy only abo
mRy/atom higher than the hcp ground state.

The second goal is achieved by calculating the ela
constants of each phase and then testing whether the sta
conditions for its structure are fulfilled. The stability cond
tions arise from the requirement that the quadratic form
the strain energy for small strains be positive definite, i
greater than zero for all real nonzero values of the stra
~Ref. 6, p. 142!. A complication for hcp crystals, common t
all noncentrosymmetric structures, is that the elastic c
0163-1829/2002/66~9!/094104~8!/$20.00 66 0941
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stants comprise two contributions, a homogeneous and
inhomogeneous one. The inhomogeneous contribution ar
from an internal relaxation, due to the fact that the unit c
contains an extra atom, which has a different environm
from the atom at the origin, and can move independen
when strains are applied. Thus the calculations of hcp ela
constants are done in two steps: first, by determining
response of the crystal when a uniform~homogeneous! strain
is applied and, second, by allowing the extra atom to cha
position in order to lower the energy~called an internal re-
laxation!. Internal relaxation can reduce the values of so
elastic constants substantially. The calculation procedur
described in detail below.

The ground state of hcp Mg has been the object o
number of theoretical studies published in the literature;7–13

some of them include calculations of elastic constants,
only a few take internal relaxation into account.8,9,13 Our
results compare well with both experimental values and t
oretical literature data.

For the hcp phase with 20 mRy/atom higher energy th
the ground state the elastic constants show that phase t
unstable. For the fcc phase, the elastic constants satisfy
stability conditions: hence, that phase is metastable.

We describe the procedures followed for the calculatio
in Sec. II, with Sec. II A devoted to determination of th
EBP’s and Secs. II B and II C concerned with the calcu
tions of elastic constants of hcp and bct phases, respecti
The results are reported in Sec. III A for the hcp phase an
Sec. III B for the tetragonal phases. A brief discussion of
results is then presented in Sec. IV.

II. CALCULATIONS

The total-energy calculations were done with theWIEN97
program developed by Blaha and co-workers.14 This pro-
gram uses the full-potential linearized augmented pla
©2002 The American Physical Society04-1
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F. JONA AND P. M. MARCUS PHYSICAL REVIEW B66, 094104 ~2002!
wave~FLAPW! method and can calculate total energies fo
variety of crystal structures and space groups with a cho
of nonrelativistic~NREL! or relativistic~RELA! calculations
in either the local-density approximation~LDA ! or the gen-
eralized gradient approximation~GGA!. The program was
implemented and executed on a LINUX-based desktop
All calculations discussed in this paper were done twi
once with the NREL-LDA and once with the RELA-GG
formulation.

A. Epitaxial Bain path

The structures considered in the present calculations
either hcp, for the construction of the hexagonal EBP, or b
for the construction of the tetragonal EBP. In either case
parameters of the unit cell area ~the edge of the primitive
rhombus with angleg5120° for hcp cells or the edge of th
primitive square base for bct cells! andc ~the height of the
cell!. A value of a is chosen and several calculations of t
total energy per atom are done for a series of values ofc. A
least-squares fit of a cubic polynomial to the calculated
ergy values then gives the minimum energy and the valu
c5cmin that corresponds to the minimum energy. Thus a p
of values~a andc! are found which define an hcp or bct sta
on the EBP. The procedure is then repeated for a diffe
choice of a to produce a new pair ofa and c parameters.
About 20–25 such pairs are determined to cover the rang
c/a values from 0.5 to 2.1 for hcp Mg and from 0.8 to 1.6 f
bct Mg. These pairs of values trace out the EBP.

The EBP is generally presented in three ways:~1! a plot
of c versusc/a, ~2! a plot of total energy per atom versu
c/a, and ~3! a plot of normalized volume per atom vers
c/a. The energy plot reveals minima at certain values ofc/a,
corresponding to as many crystalline phases, the lowes
which can be the ground state. The other energy min
identify phases which may be metastable or unstable,
pending on whether the stability conditions are satisfied
not. Testing the stability conditions requires determination
the elastic constants of the phase under scrutiny. We des
next how such a determination is made for both hexago
and tetragonal phases.

B. Elastic constants of hexagonal phases

Hexagonal crystals have five independent elastic c
stants~Ref. 6, p. 141! c11, c12, c13, c33, andc445c55. A
sixth nonindependent constant isc665(c112c12)/2. With the
simplifying assumption that bothc12 andc33 are positive, the
stability conditions are~Ref. 6, p. 142!

c665
c112c12

2
.0, ~1a!

c111c122
2c13

2

c33
.0, ~1b!

c44.0. ~1c!

The general procedure for the determination of ela
constants is to apply suitable small strains to the unit c
09410
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calculate the total energy per atom, and then find the sec
derivative of the energy with respect to the strain. This p
cedure produces a homogeneous strain of the lattice, w
is sufficient for crystals with Bravais lattices. Hexagona
close-packed crystals, however, have a nonprimitive u
cell: there is an additional nonequivalent atom in the c
which is free to move away from the position imposed by t
homogeneous strain. Therefore the extra atom must be i
pendently relaxed, a behavior called internal relaxati
which makes the strain inhomogeneous. Hence for hcp c
tals it is important to distinguish between the elastic co
stants determined with homogenous strains, which we r
to asunrelaxed, and those determined with inhomogeneo
strains, which we callrelaxed.

1. Determination of unrelaxed elastic constants

The conventional unit cell of hcp crystals has the angleg
between thea and theb5a axes equal to 120°~with a5b
590°) and the extra atom in position (a/3,2a/3,c/2). This
notation says that the components of the position vecto
the extra atom along the lattice vectors have lengthsa/3,
2a/3, andc/2. But for the study of internal relaxation it i
more convenient to consider the unconventional unit c
with g560° and to rotate the unit cell by 15° around thec
axis, so as to have the basal rhombus symmetrically orien
with respect to the Cartesian axesx1 andx2 , as indicated in
Fig. 1 ~solid lines!. In this unit cell the extra atom has com
ponents (a/3,a/3,c/2). The advantage of this choice is th
when symmetrical strains are applied the extra atom is
pected to move onlywithin the bisecting plane ofg, which is
at 45° to thex1 andx2 axes.

Since the hexagonal EBP was calculated for the conv
tional cell (g5120°), we tested that the use of the unco
ventional cell (g560°) would produce the same energy va

FIG. 1. The basal plane of the undistorted unit cell of hcp M
axesa andb at 60° to one another, is drawn with solid lines~atoms
as solid circles!. The rhombus has been rotated by 15° around thc
axis ~perpendicular to the page! in order to be symmetric with re-
spect to the Cartesian axesx1 andx2 . A 10% homogeneous shea
deforms the 60° rhombus into the dotted 55.2° rhombus, axesa8,
b8, atoms as open circles. Internal relaxation moves the extra a
back to almost the original position~open square!.
4-2
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HEXAGONAL AND TETRAGONAL STATES OF . . . PHYSICAL REVIEW B 66, 094104 ~2002!
ues. We found this to be the case to within less than
mRy/atom, thus in acceptable agreement.

Strains are defined in terms of Cartesian coordinates
when a strain is applied to a hexagonal cell, it is necessar
consider the Cartesian components of the lattice vector
strain changes the lengths of the lattice vectors and
angles between them, which are the quantities needed a
puts to theWIEN97 program. To find these quantities w
adopt and modify the matrix procedure outlined by F
et al.10 We define a lattice matrix

R5S ax bx cx dx

ay by cy dy

az bz cz dz

D , ~2!

whose elements are the Cartesian componentsax , bx , cx ,
ay , by ,..., cz of the hexagonal lattice vectorsa, b, and c,
respectively, to which we have added the componentsdx ,
dy , dz of the vectord from the origin to the extra atom in th
unit cell. To find the strained lattice vectors we multiply th
matrix R with the strain matrix

E5S 11e11 e12 e13

e12 11e22 e23

e13 e23 11e33

D , ~3!

where thee i j ’s are the strains as defined, e.g., in Ref. 6~p.
99!.

The result of this product is a matrixR8 whose elements
are the Cartesian componentsax8 , bx8 ,..., dz8 of the strained
hexagonal lattice vectorsa8, b8, c8, andd8. We need to find
the componentsda8

8 , db8
8 , dc8

8 of thed8 vector along thea8,
b8, andc8 axes. If we rewrite the vector equation

d85da8
8

a8

a8
1db8

8
b8

b8
1dc8

c8
c8

, ~4!

in terms of thex,y,zcomponents of each vector~components
which are known from theR8 matrix!, we get three simulta-
neous equations for the componentsda8

8 , db8
8 , dc8

8 along the
hexagonal axes.

The procedure just described produces the input quant
to theWIEN97 program. In order to determine the five elas
constants of the hexagonal phases we need to apply five
ferent strains. To find which strain to apply it is convenient
start with the expression for the strain energy density
hexagonal structures written in terms of one-index strain

E

V
5

1

2
c11~e1

21e2
2!1c12e1e21c13~e1e31e2e3!1

1

2
c33e3

2

1
1

2
c44~e4

21e5
2!1

1

2
c66e6

2, ~5!

where ~Ref. 6, p. 134! e15e11, e25e22, e35e33, e4
52e23, e552e13, e652e12.

The five strains needed~all of which preserve the reflec
tion symmetry of the bisecting plane! are as follows.
09410
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~i! Choosinge15e25eÞ0, all othere i50, we get

c111c125
1

2V S ]2E

]e2 D
e i50, i 53 – 6

~6!

~ii ! Choosinge35eÞ0, all othere i50, we get

c335
1

V S ]2E

]e2 D
e i50, i 51,2,4,5,6

~7!

~iii ! Choosinge15e25e35eÞ0, all othere i50, we get

c111c1212c131
1

2
c335

1

2V S ]2E

]e2 D
e i50, i 54 – 6

~8!

~iv! Choosinge45e55eÞ0, all othere i50, we get

c445
1

2V S ]2E

]e2 D
e i50, i 51,2,3,6

~9!

~v! Choosinge65eÞ0, all othere i50, we get

c665
1

V S ]2E

]e2 D
e i50, i 51,2,3,4,5

~10!

From Eqs.~6! and ~10! ~since 2c665c112c12) we calcu-
latec11 andc12; then from Eqs.~7! and~8! we calculatec13.
~Note thatc112c12 could also be calculated by choosinge1
52e25eÞ0, all other e i ’s equal to 0, but such a strai
would not be symmetric with respect to the bisecting pla
and the extra atom could move out of the bisecting pla
Similarly, using e4 alone to determinec44 would lose the
symmetry of the bisecting plane.!

2. Determination of relaxed elastic constants

The strains listed above in Eqs.~6!, ~7!, and ~8! change
the lengths of the hexagonal lattice vectors, but maint
hexagonal symmetry: hence, the extra atom is expecte
remain in the position (a8/3,b8/3,c8/2)—no internal relax-
ation occurs. By contrast, the strains listed in Eqs.~9! and
~10! (e45e5 and e6 , respectively! change the anglesa5b
andg, respectively, and thereby change the symmetry to
clinic and orthorhombic, respectively. As a consequence,
extra atom might be expected to move away from the hom
geneous position, but the fact that the strains are symme
will keep the atom in the bisecting plane.

However, in Eq.~9!, for strainse45e5 , the rhombus in
the~001

2! plane is the same as in the basal plane, only shif
so that the extra atom is expected to stay at or close to
homogeneous position. By contrast, in Eq.~10!, for strain
e6 , the 60° rhombus is distorted to a rhombus with the an
gÞ60°: hence, the extra atom is likely to move, althou
the mirror plane at~001

2! will keep it at c/2.
We describe now the procedure followed for the quant

tive determination of the unrelaxed and relaxed elastic c
stantc66 ~the procedure is the same forc44). We apply three
4-3
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F. JONA AND P. M. MARCUS PHYSICAL REVIEW B66, 094104 ~2002!
strainse6510.1, e6510.002, ande6520.1 ~we avoide6
50 in order to keep the same crystallographic symme
i.e., orthorhombic, for all three strains; also, we choose ra
large strains in order to avoid inherent inaccuracies of
relative energies from the computer program at the hundr
of a mRy level!. For each strain we calculate the total ener
with the procedure outlined in the preceding section with
extra atom in the unrelaxed position (a8/3,a8/3,c8/2). The
curvature at the minimum of the curve through the th
energy values allows the calculation of unrelaxedc66 as per
Eq. ~10!.

Then for each one of the three strains we do two m
energy calculations with the extra atom away from t
homogeneous position, say, at positions (0.293333a8,
0.293333a8,0.5c8) and (0.373333a8,0.373333a8,0.5c8).
The two energy values thus calculated, together with the
ergy for the homogeneous position, define a curve that de
mines at its minimum the relaxed position of the extra at
and the relaxed energy for each strain. Thus each one o
three strains is associated with a minimum energy value:
second derivative of the curve through the three minim
energy values allows then the calculation of the relaxedc66
with Eq. ~10!. An example of this procedure will be give
explicitly below and discussed in Fig. 3, below.

C. Elastic constants of tetragonal phases

The procedure for the calculations of elastic constants
fcc and bct phases was described in Ref. 4, with some m
fications added in Ref. 15, and will not be recounted he
We note only, in contrast to the hcp phase, that while a
phase also has an extra atom in the tetragonal unit cell,
bct phase is a Bravais lattice: hence, the extra atom beh
as the atom at the origin: there is only homogeneous str
no internal reaxation occurs.

III. RESULTS

A. Hexagonal Mg

The results are presented graphically in Fig. 2. The
panel of this figure is a plot ofc versusc/a for both the LDA
and GGA. The middle panel is a plot of the energy per at
versusc/a, relative to the ground state. This plot gives tw
pieces of information:~1! the curves have a deep minimu
at c/a51.629 for the LDA andc/a51.626 for the GGA,
close to the experimental valuec/a51.624, which corre-
sponds to the hcp ground state of Mg. The energy min
are2398.401240 Ry for the LDA and2400.669749 Ry for
the GGA formulation.~2! There is a shallow minimum a
c/a50.725 for LDA and atc/a50.715 for GGA. This mini-
mum is about 20 mRy/atom higher than that of the grou
state and defines a new phase of Mg with hcp structure.

The bottom panel of Fig. 2 is a plot of the relative volum
V/V0 as a function ofc/a: V0 is the theoreticalvalue of the
volume of the ground state~at c/a51.629 for the LDA and
1.626 for the GGA!. The point corresponding to the groun
state is marked with a solid circle. The shaded area, cove
the range of positive slope of theV/V0 curve, indicates a
region in which the strain energy is not positive definite, i.
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a region of states that are intrinsically unstable, here w
respect to deformations that preserve hexagonal symmet1,2

The portion of the EBP on the right of the unstable regi
defines the strained states that can be obtained by pse
morphic epitaxy of the stable phase on substrates that
serve the hcp structure. The portion on the left of the u
stable region serves the same purpose for strained stat
the phase atc/a;0.72.

The results are summarized in Table I which lists the l
tice parameters of the ground state of hcp Mg as calcula
in this work and the corresponding experimental data. T
agreement between theory and experiment is satisfactory
ing about 2.5% for the LDA and 0.4% for the GGA. Th
crystallographic data for the phase atc/a;0.74 do not, of
course, have experimental counterparts.

The table lists also the values of the elastic consta
Some literature data are also listed for comparison. The

FIG. 2. Epitaxial Bain path of hcp Mg: solid curves calculat
with the local-density approximation~LDA !, dashed curves calcu
lated with the generalized-gradient approximation~GGA!. Top
panel: c vs axial ratioc/a. Middle panel: total energy per atom,
referred to the ground state, vs axial ratioc/a. Bottom panel:rela-
tive volume per atomV/V0 vs axial ratioc/a (V0 is the theoretical
atomic volume of the ground state!. The solid circle marks the
relative volume of the ground state. The shaded area covers a re
of intrinsically unstable states.
4-4
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TABLE I. Lattice parameters and elastic constants of hexagonal states of Mg.a0 andc0 are the parameters of the hexagonal unit cell,
Å units; V0 is the volume per atom, in Å3; the ci j are elastic constants, in Mb. The superscriptu in c44

u andc66
u denotesunrelaxedelastic

constants~calculated with homogeneous strain!, while the superscriptr refers torelaxedelastic constants~inhomogeneous-strain considered!.
The calculations were done with theWIEN97 ~FLAPW! program~Ref. 14! both in the nonrelativistic local-density approximation~LDA ! and
in the relativistic generalized-gradient approximation~GGA!. The column headings of the literature data are the initials of the authors o
references cited in the footnotes. the ‘‘higher-E state’’ heading of the two right-hand-side columns refers to the shallow energy minim
c/a;0.72. The experimental data stem from Person~Ref. 17! for the lattice constants~room-temperature values!, and from Simmons and
Wang ~Ref. 18! for the elastic constants~0 K values!.

hcp Mg ~ground state! Higher-E state

Theory Theory

This work Literature data This work

LDA GGA vMS MRBP LAEM Expt. LDA GGA

a0 3.129 3.196 3.206e 3.2094 4.384 4.499
c0 5.096 5.196 5.187e 5.2105 3.177 3.217

c0 /a0 1.629 1.626 1.623e 1.6235 0.725 0.715
V0 21.60 22.98 23.240 26.44 28.20
c11 0.7473 0.6077 0.607a 0.7145c 0.618e 0.6348

0.627b 0.6738d

c12 0.3575 0.3136 0.295a 0.2824c 0.259e 0.2594
0.265b 0.2336d

c13 0.1825 0.2097 0.219e 0.2170
c33 0.7181 0.6535 0.675e 0.6645
c44

u 0.2077 0.1605 0.371 0.352
c44

r 0.2051 0.1532 0.182e 0.1842 0.371 0.355
c66

u 0.2371 0.1870 0.1695c 0.065 0.058
0.2383d

c66
r 0.1949 0.1737

0.156a

0.181c
0.180e 0.1877 20.115 20.097

aReference 8, inhomogeneous contribution calculated from the potential defined in Ref. 19.
bReference 8, inhomogeneous contribution calculated from the potential defined in Ref. 7.
cReference 12, calculated with pseudopotential defined in Ref. 20.
dReference 12, calculated with pseudopotential defined in Ref. 21.
eReference 22, calculated with an empirical EAM potential created by fittingab initio forces and 37 experimental data, among others,
elastic constants.
t

a
m

a

he
o-

i
th
ic

in
to

ut
t

ed
e-
si-

onal
,

gy
w-
ed
ve,

, we
relaxed elastic constants are labeled with the superscripu,
the relaxed ones with the supercriptr. The agreement with
experiment is, as usual, not as good as for the lattice par
eters, but is in the range normally found in this kind of co
parison, averaging 15%–20%.

Some comments on the effect of internal relaxation m
be appropriate. The effect is small forc44, as expected, but is
large forc66, its value being reduced by about 17% for t
LDA and 7% for the GGA. The shift of the extra atom pr
duced by the internal relaxation is presented graphically
Fig. 3. The top panel is a plot of the total energy versus
relative position of the extra atom along the strained latt
vectors for two applied strainse6 . The unrelaxed~homoge-
neous! position is at (a8/3,a8/3,c8/2), marked in the figure
with the vertical dash-dotted line. With a positive 10% stra
~which reducesg! the extra atom moves toward the origin
about (0.317a8,0.317a8,c8/2), while with a negative 10%
strain it moves away from the origin to abo
(0.364a8,0.364a8,c8/2). A graphical description of the effec
of internal relaxation is given in Fig. 1 for the casee6
09410
m-
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y

n
e
e

510.1. The figure shows that the unstrained~solid! 60°
rhombus with axesa, b is distorted bye6 to the ~dotted!
rhombus with axesa8, b8. The extra atom, originally at the
position marked with a solid circle on the bisectrix, is shift
to the position marked with an open circle by the homog
neous strain, but is moved back almost to the original po
tion by the inhomogeneous strain~open square!. The net ef-
fect of thee6 strain ~homogeneous and inhomogeneous! is
therefore to change the shape of the base of the hexag
cell, with very little effect on the position of the extra atom
which practically stays at its original location.

The bottom panel of Fig. 3 shows a plot of the ener
versus thee6 strain, showing that, indeed, the energy is lo
ered by the internal relaxation. The curvature of the relax
energy curve is smaller than that of the unrelaxed cur
which by Eq.~10! reduces the magnitude of thec66 elastic
constant.

Table I lists also the results of calculations of thec44 and
c66 constants for the hcp phase atc/a;0.72. Our purpose
was to test whether this phase is stable or unstable: hence
4-5
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F. JONA AND P. M. MARCUS PHYSICAL REVIEW B66, 094104 ~2002!
limited our study to the two shear constants, because
previous experience has shown16 that instabilities of tetrago-
nal phases always come from violation of stability conditio
~1a! or ~1c!. In the present case the interesting result is t
the phase would appear to be stable if only homogene
strain were considered~both c44

u and c66
u are positive!, but

turns out to be clearly unstable when internal relaxation
taken into account (c66

r ,0).

B. Tetragonal Mg

The tetragonal EBP of Mg is depicted in Fig. 4. Th
energy-versus-c/a plot ~middle panel! reveals a deep mini
mum at c/a;&, for both the LDA and GGA and a very
shallow minimum atc/a;0.92. The deep minimum is in
dicative of an fcc phase of Mg that does not seem to h
been reported before. The energy minima for the LDA a
GGA are2398.400173 and2400.668752 Ry, respectively
hence about 1 mRy/atom higher than those of the hcp gro
state. The crystallographic data for the fcc phase are liste
Table II.

In order to find out whether this phase is stable~actually,
metastable, since its energy is higher than that of the grou
state! we have calculated its elastic constants. We recall
fcc crystals have three independent elastic constants:c11,
c12, andc44,6 and the stability conditions are, again assu
ing thatc12.0,

FIG. 3. Top: total energy~LDA ! vs the in-plane component
relative to the strain lattice vectors of the vectord8 from the origin
to the extra atom after application of610% shears. The dash-dotte
vertical line marks the corresponding relative component for hom
geneous strain.Bottom: total energy~LDA ! as a function of shea
«6 for homogeneous~unrelaxed! and inhomogeneous~relaxed!
strain.
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2
.0, ~11a!

c44.0. ~11b!

We also recall that for fcc crystals one calculates first
ci j8 elastic constants, the prime indicating that these are
elastic constants of the bct cell of the fcc lattice, i.e., elas
constants in tetragonal axes,4,15 and then one converts thes
constants to those referred to the conventional fcc a
~unprimed symbols!. This procedure may create some sm
ambiguity for thec44 constant, because this constant can
calculated from theci j8 in two ways:15 an indirect way, giving
c44

ind5c118 2c338 1c668 , and a direct way, yielding c44
dir5c448 .

The two are not always identical, presumably owing to n
merical inaccuracies of the computer program.

-

FIG. 4. Epitaxial Bain path of bct Mg: solid curves calculate
with the local-density approximation~LDA !, dashed curves calcu
lated with the generalized-gradient approximation~GGA!. Top
panel: c vs axial ratioc/a. Middle panel: total energy per atom,
referred to the lowest-energy~fcc! state atc/a;&, vs axial ratio
c/a. Bottom panel:relative volume per atomV/V0 vs axial ratio
c/a (V0 is the theoretical atomic volume of the fcc state!. The solid
circle marks the relative volume of the fcc state. The shaded a
covers a region of intrinsically unstable states.
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TABLE II. Lattice parameters and elastic constants of fcc Mg.a0 andc0 are the parameters of the bc
unit cell, in Å units;V0 is the volume per atom, in Å3; the ci j are elastic constants, in Mb. Two values a
given forc44, designatedc44

ind5c118 2c338 1c668 , andc44
dir5c448 ~theci j8 are elastic constants of the bct cell of th

fcc lattice, i.e., elastic constants in tetragonal axes!. C8[(c112c12)/2 is also listed for convenience. Th
calculations were done with theWIEN97 ~FLAPW! program~Ref. 14! both in the nonrelativistic local-density
approximation~LDA ! and in the relativistic generalized-gradient approximation~GGA!.

a0 c0 c0 /a0 V0 c11 c12 c44
ind c44

dir C8

LDA 3.137 4.435 1.414 21.83 0.481 0.353 0.248 0.267 0.06
GGA 3.204 4.508 1.407 23.14 0.436 0.310 0.242 0.241 0.06
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The calculated elastic constants of fcc Mg are also lis
in Table II. AlthoughC8 is small, it is still positive: hence
the stability conditions are satisfied: fcc Mg is metastable

We have made no effort to test the stability of the high
energy minimum~at c/a;0.92), because it is in fact ver
shallow for the GGA and almost just an inflexion point f
the LDA.

IV. DISCUSSION

For the hcp ground state of Mg satisfactory agreem
was found between calculated and experimental values o
lattice parameters and the elastic constants. We wish to
phasize, in agreement with the explicit statement of van M
den and Sasse8 and the implicit one of Johnson,9 that while
the contribution of internal relaxation to the elastic consta
of hexagonal crystals is frequentlynot taken into account, it
is in fact important and should not be neglected. The con
bution can be as large as 20% and more;8 also it can reveal
the actual instability of a phase that would otherwise be
beled stable, as is the case in this work for the hcp phas
Mg at c/a;0.72.

It is worth pointing out that the unconventional choice
a 60° angle between thea andb axes in the basal plane o
the hexagonal cell is computationally much more conven
for internal relaxations than the conventional 120°, sin
with the 60° angle the extra atom remains within the~110!
bisecting plane, as long as the applied strains are symm
cal. The latter requirement is particularly important for t
c445c55 constant, for which ane13 strain or ane23 strain
alone would not produce a symmetrical deformation of
unit cell, whereas application ofboth strains does. The cal
culation of inner relaxation is also simplified by the use
just the dimensionless fractional components ofd8 along the
lattice vectorsa8 and b8, i.e., varyda8

8 /a85db8
8 /b8 around

1/3 to find the minimum energy; the actual change ofd8 is
not needed, only the energy change from the homogene
strain energy.

For bothc44 and c66, relaxed and unrelaxed, the agre
ment between our results and the theoretical values p
lished in the literature is fair, fluctuating between about 15
and 40%. Greef and Moriarty13 present their results graph
cally, so that numerical comparisons are not precise, bu
quote numbers for the quantity (c112c12)/2—namely, 0.225
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Mb for the unrelaxed and 0.1863 Mb for the relaxed value
good agreement with our unrelaxed 0.2371 and rela
0.1949 LDA values and in fair agreement with unrelax
0.1870 and 0.1737 GGA values. Thus the decrease ofc66 of
17% due to inner relaxation found here from first principl
agrees well with the only other calculation that does not
an empirical potential,13 which found a decrease of 21%
Also the relaxed value ofc66 found here with the LDA is just
3.7% higher than experiment, and the value from Ref. 13
less than 1% low.

The states at the minima of the EBP for both bct and h
structures have been called phases even when they are
stable with respect to shear strains that break the tetrag
or hexagonal symmetry. Since these special equilibri
states may have only partial stability, i.e., just with respec
strains that preserve the symmetry, they can be forced
change by very small shear stresses. Conversely, they ca
stabilized by very small barriers or constraints against th
shear strains, such as could be provided by small impu
concentrations, or by pseudomorphic epitaxy of thin films,
by pressure. The designation of phase for these state
analogous to calling, say, a bcc structure under pressu
phase under pressure, even though stability is only m
tained by the pressure. In fact, in a study of ferromagne
iron under pressure,23 it has been shown that just such a
unstable bct phase comes into existence at 1300 kbar of p
sure and becomes a stable phase at 1825 kbar when thC8
elastic constant becomes positive.

The study of tetragonal states of Mg has produced
interesting result that fcc Mg is metastable. It would the
fore perhaps be possible to stabilize this structure
ultrathin-film form by pseudomorphic epitaxy on a suitab
substrate. Experiments aimed at this stabilization are p
ently in progress.
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