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Hexagonal and tetragonal states of magnesium by first principles
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First-principles total-energy calculations on hexagonal-close-pa¢heg and body-centered-tetragonal
(bct) states of bulk elemental magnesium have been made with a full-potential electronic structure program
with both the local-density approximation and the generalized gradient approximation. The unique paths
[called epitaxial Bain pathéEBP’9)] through hexagonal or tetragonal states produced by epitaxial strain on
equilibrium states have been found. The hexagonal EBP reveals the existence of an hcp phase with axial ratio
c/a~0.72 and about 20 mRy/atom higher energy than the hcp ground state. Structure parameters and elastic
constants of both the ground state and the higher-energy state are determined, and the ground-state values are
compared to experiment. Tests of the stability of the hcp phasfaat0.72 show that this phase is unstable.
The tests for stability require calculations of the elastic constants, which in the case of hcp crystals are
composed of a homogeneous and an inhomogeneous contribution. We describe a considerably simplified
calculation of the inhomogeneous contribution obtained by using a symmetrical orientation of the unit cell and
finding all the elastic constants with symmetrical strains. The tetragonal EBP shows the existence of a face-
centered-cubic phase of Mg with about 1 mRy/atom higher energy than the hcp ground state. The elastic
constants of this phase satisfy the stability conditions: hence, this phase is metastable.
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[. INTRODUCTION stants comprise two contributions, a homogeneous and an
inhomogeneous one. The inhomogeneous contribution arises
In our ongoing search for metastable phases of metallifrom an internal relaxation, due to the fact that the unit cell
elements we have undertaken a study of hexagonal-closgontains an extra atom, which has a different environment
packed(hcp) structures and of body-centered-tetragdbat) ~ from the atom at the origin, and can move independently
structures[which include both body-centered-cubibco when strains are appl_ied. Thus the cglculations of hpp elastic
and face-centered-cubifcc) structure$ of magnesium, and constants are done in two steps: first, by determining the
we report here the results of that study. Our goals(ydéo  response of the crystal when a unifothomogeneoysstrain
find new crystalline phases, which correspond to minima ofS @pplied and, second, by allowing the extra atom to change
the total energy for particular values of the lattice param-Position in order to lower the enerdgalled an internal re-
eters, and2) to determine whether such phases are stabldaxation. Internal relaxation can reduce the values of some
metastable, or unstable. elastic constants substantially. The calculation procedure is
The first goal is achieved by calculating the so-called epdescribed in detail below.
itaxial Bain patti? (EBP) for both hcp and bct Mg. The EBP~ The ground state of hcp Mg has been the object of a
is a path through hexagonabtragonaﬂ states which passes number of theoretical studies pUbllShed in the IItera‘ZlIIIé,
through all hexagonaltetragonal equilibrium states, where Some of them include calculations of elastic constants, but
the energy is a local minimum, and through hexagdte!  Only a few take internal relaxation into accodiit-> Our
tragona) states produced by epitaxial or biaxial strain of theresults compare well with both experimental values and the-
equilibrium states. The lowest-energy minimum is usuallyoretical literature data.
the ground state; higher-energy minima define possible meta- For the hcp phase with 20 mRy/atom higher energy than
stable states. The procedure for the calculation of the tetragh€ ground state the elastic constants show that phase to be
onal EBP has been described befdréthat for the calcula- Unstable. For the fcc phase, the elastic constants satisfy the
tion of the hexagonal EBP is similar and will be describedstability conditions: hence, that phase is metastable.
below. We show that the hexagonal EBP reveals the exis- We describe the procedures followed for the calculations
tence of an hcp phase of Mg with energy about 20 mRy/atonl'n Sec. I, with Sec. Il A devoted to determination of the
higher than the ground state, while the tetragonal EBP showsBP’s and Secs. 1B and Il C concerned with the calcula-
the presence of an fcc phase of Mg with energy only about ions of elastic constants of hcp and bct phases, respective]y.
mRy/atom higher than the hcp ground state. The results are reported in Sec. Ill A for t.he h_cp phgse and in
The second goal is achieved by calculating the elastiS€c ins for the tetragona}l phases. A brief discussion of the
constants of each phase and then testing whether the stabilf§sults is then presented in Sec. V.
conditions for its structure are fulfilled. The stability condi-
tions arise from the requirement that the quadratic form of
the strain energy for small strains be positive definite, i.e.,
greater than zero for all real nonzero values of the strains The total-energy calculations were done with then97
(Ref. 6, p. 142 A complication for hcp crystals, common to program developed by Blaha and co-workérshis pro-
all noncentrosymmetric structures, is that the elastic congram uses the full-potential linearized augmented plane-

Il. CALCULATIONS
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wave (FLAPW) method and can calculate total energies for a
variety of crystal structures and space groups with a choice
of nonrelativistic(NREL) or relativistic(RELA) calculations

in either the local-density approximatighDA) or the gen-
eralized gradient approximatiofGGA). The program was
implemented and executed on a LINUX-based desktop PC.
All calculations discussed in this paper were done twice,
once with the NREL-LDA and once with the RELA-GGA
formulation.

A. Epitaxial Bain path

The structures considered in the present calculations are
either hcp, for the construction of the hexagonal EBP, or bct,
for the construction of the tetragonal EBP. In either case the
parameters of the unit cell a (the edge of the primitive
rhombus with angley=120° for hcp cells or the edge of the FIG. 1. The basal plane of the undistorted unit cell of hcp Mg,
primitive square base for bct celland c (the height of the axesa andb at 60° to one another, is drawn with solid linggoms
cell). A value ofa is chosen and several calculations of theas solid circles The rhombus has been rotated by 15° arounccthe
total energy per atom are done for a series of values &f  axis (perpendicular to the papén order to be symmetric with re-
least-squares fit of a cubic polynomial to the calculated enspect to the Cartesian axes andx,. A 10% homogeneous shear
ergy values then gives the minimum energy and the value gleforms the 60° rhombus into the dotted 55.2° rhombus, akes
C=Cpi, that corresponds to the minimum energy. Thus a paiP’» &toms as open circles. Internal relaxation moves the extra atom
of values(a andc) are found which define an hcp or bet state Pack to aimost the original positidepen square
on the EBP. The procedure is then repeated for a different
choice ofa to produce a new pair od and c parameters. calculate the total energy per atom, and then find the second
About 20-25 such pairs are determined to cover the range aferivative of the energy with respect to the strain. This pro-
c/a values from 0.5 to 2.1 for hcp Mg and from 0.8 to 1.6 for cedure produces a homogeneous strain of the lattice, which
bct Mg. These pairs of values trace out the EBP. is sufficient for crystals with Bravais lattices. Hexagonal-

The EBP is generally presented in three wails:a plot  close-packed crystals, however, have a nonprimitive unit
of ¢ versusc/a, (2) a plot of total energy per atom versus cell: there is an additional nonequivalent atom in the cell
c/a, and(3) a plot of normalized volume per atom versus which is free to move away from the position imposed by the
c/a. The energy plot reveals minima at certain values/af homogeneous strain. Therefore the extra atom must be inde-
corresponding to as many crystalline phases, the lowest gfendently relaxed, a behavior called internal relaxation,
which can be the ground state. The other energy minimavhich makes the strain inhomogeneous. Hence for hcp crys-
identify phases which may be metastable or unstable, ddals it is important to distinguish between the elastic con-
pending on whether the stability conditions are satisfied ostants determined with homogenous strains, which we refer
not. Testing the stability conditions requires determination ofto asunrelaxed and those determined with inhomogeneous
the elastic constants of the phase under scrutiny. We descrilsérains, which we caltelaxed
next how such a determination is made for both hexagonal
and tetragonal phases. 1. Determination of unrelaxed elastic constants

, The conventional unit cell of hcp crystals has the angle
B. Elastic constants of hexagonal phases between thea and theb=a axes equal to 120(with o=
Hexagonal crystals have five independent elastic con=90°) and the extra atom in positiom/3,2a/3,c/2). This
stants(Ref. 6, p. 14)1 cq;, C42, Cq3, Ca3, aNdcyy=Css. A notation says that the components of the position vector of
sixth nonindependent constantdg=(c11— C12)/2. With the  the extra atom along the lattice vectors have lengtl&
simplifying assumption that botty, andc,; are positive, the 2a/3, andc/2. But for the study of internal relaxation it is
stability conditions aréRef. 6, p. 142 more convenient to consider the unconventional unit cell
with y=60° and to rotate the unit cell by 15° around the

c :Cn— C12>O (13 axis, so as to have the basal rhombus symmetrically oriented
66 2 ' with respect to the Cartesian axesandx,, as indicated in
Fig. 1 (solid lines. In this unit cell the extra atom has com-
2¢2, ponents &/3,a/3,c/2). The advantage of this choice is that
Ca1t Cio— C_33>0’ (1D when symmetrical strains are applied the extra atom is ex-
pected to move onlyithin the bisecting plane of, which is
C4s>0. (1  at 45° to thex; andx, axes.

Since the hexagonal EBP was calculated for the conven-
The general procedure for the determination of elastidional cell (y=120°), we tested that the use of the uncon-
constants is to apply suitable small strains to the unit cellyentional cell (=60°) would produce the same energy val-
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ues. We found this to be the case to within less than 0.1 (i) Choosinge;=e,=€#0, all othere;=0, we get
mRy/atom, thus in acceptable agreement.

Strains are defined in terms of Cartesian coordinates: so
when a strain is applied to a hexagonal cell, it is necessary to
consider the Cartesian components of the lattice vectors. A
strain changes the lengths of the lattice vectors and the
angles between them, which are the quantities needed as in-

PE
Je?

1
Cit C12=5y

(6

)eiO, i=3-6

(i) Choosingez= €+ 0, all othere;=0, we get

puts to thewlieN97 program. To find these quantities we 1/ 5%E
adopt and modify the matrix procedure outlined by Fast c33=—<—2) (7
et all° We define a lattice matrix V€] o 12456

a, by, c, dy (iii) Choosinge; = e,= e3=€#0, all othere;=0, we get
R=|a, by, ¢, dy]|, (2) 1 1 (%€

a; bz C; dz Cll+C12+2C13+5033:E ? o iiae (8)
whose elements are the Cartesian componapisb,, c,, '
ay, by,..., ¢, of the hexagonal lattice vectoes b, andc, (iv) Choosinge,= es=€+0, all othere;=0, we get
respectively, to which we have added the componeiyts
dy, d, of the vectord from the origin to the extra atom in the 1 [ 9%E
unit cell. To find the strained lattice vectors we multiply the C44:W F) 9
matrix R with the strain matrix §=0,1=1236

1+ey € €13 (v) Choosingeg= €+ 0, all othere;=0, we get
E= €17 1+ €22 €23 y (3) 1 (&ZE) (10)
€ € 1+€ Ce6=v/| 5.2
' 2 » VI o 12345

where thee;;’s are the strains as defined, e.g., in Refp6

99).
The result of this product is a matrRR’ whose elements
are the Cartesian componemts, by, ,..., d; of the strained

From Egs.(6) and (10) (since Zgg=C11— C15) We calcu-
latecq;, andcy,; then from Eqgs(7) and(8) we calculatec, 5.
(Note thatc,;,— ¢4, could also be calculated by choosiag

=—e,=€+#0, all othere’s equal to 0, but such a strain
would not be symmetric with respect to the bisecting plane,
and the extra atom could move out of the bisecting plane.
Similarly, using e, alone to determine,, would lose the
symmetry of the bisecting plane.

hexagonal lattice vectos , b’, ¢’, andd’. We need to find

the componentsd,, , d;,, d;, of thed’ vector along the’,

b", andc’ axes. If we rewrite the vector equation

! !

C/
+ d{),w + dé?,

d'=dj,— (@

2. Determination of relaxed elastic constants

in terms of thex,y,zcomponents of each vect@omponents
which are known from th&' matrix), we get three simulta-

The strains listed above in Eq&), (7), and (8) change
the lengths of the hexagonal lattice vectors, but maintain
neous equations for the componedgs, dk’),, dé, along the hexagonal symmetry: hence, the extra atom is expected to
hexagonal axes. remain in the positiond’'/3,b’/3,c’'/2)—no internal relax-
The procedure just described produces the input quantitiegtion occurs. By contrast, the strains listed in E@.and
to thewlEN97 program. In order to determine the five elastic(10) (4= €5 and e, respectively change the angles= 3
constants of the hexagonal phases we need to apply five digndy, respectively, and thereby change the symmetry to tri-
ferent strains. To find which strain to apply it is convenient toclinic and orthorhombic, respectively. As a consequence, the
start with the expression for the strain energy density folextra atom might be expected to move away from the homo-

hexagonal structures written in terms of one-index strains: geneous position, but the fact that the strains are symmetric
will keep the atom in the bisecting plane.

However, in Eq.(9), for strainse,= €5, the rhombus in
the (003) plane is the same as in the basal plane, only shifted,
so that the extra atom is expected to stay at or close to the
homogeneous position. By contrast, in E@0), for strain
€g, the 60° rhombus is distorted to a rhombus with the angle
v#60°: hence, the extra atom is likely to move, although
the mirror plane at003) will keep it atc/2.

We describe now the procedure followed for the quantita-
tive determination of the unrelaxed and relaxed elastic con-
stantcgg (the procedure is the same fog,). We apply three

1
2, 2 2
Cii( €1+ €5) +Cip€1€,+ Crg(€1€31 €2€3) + 5 Caa€3

</m
N -

1
+ —

. )

1
Cas €5+ €5) + 5066621
where (Ref. 6, p. 134 e;=€1;, €= €y, €3=€33, €
=2€23, 6522613, €6=2612.
The five strains neede@ll of which preserve the reflec-
tion symmetry of the bisecting plahare as follows.
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strainseg= +0.1, eg= + 0.002, andeg= — 0.1 (we avoideg
=0 in order to keep the same crystallographic symmetry,
i.e., orthorhombic, for all three strains; also, we choose rather
large strains in order to avoid inherent inaccuracies of the
relative energies from the computer program at the hundreths
of a mRy leve). For each strain we calculate the total energy
with the procedure outlined in the preceding section with the
extra atom in the unrelaxed positioa’(3,a’/3,c'/2). The
curvature at the minimum of the curve through the three
energy values allows the calculation of unrelaxgglas per
Eq. (10).

Then for each one of the three strains we do two more
energy calculations with the extra atom away from the

homogeneous position, say, at positions (0.293333 22007 -
0.293332’,0.5¢') and (0.373338',0.373333',0.5¢c"). £ 504 L
The two energy values thus calculated, together with the en-

ergy for the homogeneous position, define a curve that deter- 10.0 -

mines at its minimum the relaxed position of the extra atom
and the relaxed energy for each strain. Thus each one of the
three strains is associated with a minimum energy value: the 0.0
second derivative of the curve through the three minimum _ L
energy values allows then the calculation of the relazgd
with Eq. (10). An example of this procedure will be given 13-
explicitly below and discussed in Fig. 3, below. o

; 11 -

6.0

C. Elastic constants of tetragonal phases

The procedure for the calculations of elastic constants of 0.9 . |
fcc and bct phases was described in Ref. 4, with some modi- .
fications added in Ref. 15, and will not be recounted here. 07 . : T . T T
We note only, in contrast to the hcp phase, that while a bct 06 07 08 11 13 16 17 18 21
phase also has an extra atom in the tetragonal unit cell, the c/a

bct phase is a Bravais lattice: hence, the extra atom behaves

as the atom at the origin: there is only homogeneous strainvil itr'1: Itct:- 2| Ci?';aeﬂa:thm ?:Ei]mc:tih?fD'\,:g)J: Zgl'ﬂecdur(;friecalgzllssed
no internal reaxation occurs. e locar-density app ° , das S i

lated with the generalized-gradient approximati@@GA). Top
panel: cvs axial ratioc/a. Middle panel:total energy per atom,
Ill. RESULTS referred to the ground state, vs axial rati@. Bottom panelrela-
tive volume per atonV/V, vs axial ratioc/a (V, is the theoretical
atomic volume of the ground stateThe solid circle marks the
The results are presented graphically in Fig. 2. The togelative volume of the ground state. The shaded area covers a region
panel of this figure is a plot af versusc/a for both the LDA  of intrinsically unstable states.
and GGA. The middle panel is a plot of the energy per atom
versusc/a, relative to the ground state. This plot gives two a region of states that are intrinsically unstable, here with
pieces of information(1) the curves have a deep minimum respect to deformations that preserve hexagonal symrmetry.
at c/a=1.629 for the LDA andc/a=1.626 for the GGA, The portion of the EBP on the right of the unstable region
close to the experimental valuga=1.624, which corre- defines the strained states that can be obtained by pseudo-
sponds to the hcp ground state of Mg. The energy minimanorphic epitaxy of the stable phase on substrates that pre-
are —398.401240 Ry for the LDA and-400.669749 Ry for serve the hcp structure. The portion on the left of the un-
the GGA formulation.(2) There is a shallow minimum at stable region serves the same purpose for strained states of
c/a=0.725 for LDA and at/a=0.715 for GGA. This mini- the phase at/a~0.72.
mum is about 20 mRy/atom higher than that of the ground The results are summarized in Table | which lists the lat-
state and defines a new phase of Mg with hcp structure. tice parameters of the ground state of hcp Mg as calculated
The bottom panel of Fig. 2 is a plot of the relative volume in this work and the corresponding experimental data. The
VIV, as a function ott/a: V, is thetheoreticalvalue of the  agreement between theory and experiment is satisfactory, be-
volume of the ground stat@t c/a=1.629 for the LDA and ing about 2.5% for the LDA and 0.4% for the GGA. The
1.626 for the GGA. The point corresponding to the ground crystallographic data for the phase @a~0.74 do not, of
state is marked with a solid circle. The shaded area, coveringourse, have experimental counterparts.
the range of positive slope of thé/V, curve, indicates a The table lists also the values of the elastic constants.
region in which the strain energy is not positive definite, i.e.,Some literature data are also listed for comparison. The un-

A. Hexagonal Mg
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TABLE I. Lattice parameters and elastic constants of hexagonal states GMadc, are the parameters of the hexagonal unit cell, in
A units; V, is the volume per atom, in A the c;; are elastic constants, in Mb. The superscrifih c3, and cg; denotesunrelaxedelastic
constantgcalculated with homogeneous straiwhile the superscriptrefers torelaxedelastic constantSnhomogeneous-strain considered
The calculations were done with theen97 (FLAPW) program(Ref. 14 both in the nonrelativistic local-density approximati@DA ) and
in the relativistic generalized-gradient approximati@GA). The column headings of the literature data are the initials of the authors of the
references cited in the footnotes. the “higltestate” heading of the two right-hand-side columns refers to the shallow energy minima at
c/a~0.72. The experimental data stem from Per@Raf. 17 for the lattice constant§oom-temperature valugsand from Simmons and
Wang (Ref. 18 for the elastic constan{® K values.

hcp Mg (ground state HigherE state
Theory Theory
This work Literature data This work
LDA GGA vMS MRBP LAEM Expt. LDA GGA
ao 3.129 3.196 3.206 3.2094 4.384 4.499
Co 5.096 5.196 5.187 5.2105 3.177 3.217
Colag 1.629 1.626 1.623 1.6235 0.725 0.715
Vo 21.60 22.98 23.240 26.44 28.20
C11 0.7473 0.6077 0.607 0.7145% 0.618 0.6348
0.627 0.6738
Cio 0.3575 0.3136 0.295 0.2824 0.259% 0.2594
0.268 0.2336
Ci3 0.1825 0.2097 0.2f9 0.2170
C33 0.7181 0.6535 0.675 0.6645
Cis 0.2077 0.1605 0.371 0.352
Cia 0.2051 0.1532 0.182 0.1842 0.371 0.355
Ces 0.2371 0.1870 0.1695 0.065 0.058
0.238%
r 0.156
Ces 0.1949 0.1737 0.18F 0.18C¢ 0.1877 —-0.115 —0.097

aReference 8, inhomogeneous contribution calculated from the potential defined in Ref. 19.

PReference 8, inhomogeneous contribution calculated from the potential defined in Ref. 7.

‘Reference 12, calculated with pseudopotential defined in Ref. 20.

YReference 12, calculated with pseudopotential defined in Ref. 21.

‘Reference 22, calculated with an empirical EAM potential created by figtin@itio forces and 37 experimental data, among others, the
elastic constants.

relaxed elastic constants are labeled with the supersgript =+0.1. The figure shows that the unstrain@blid) 60°
the relaxed ones with the supercriptThe agreement with rhombus with axes, b is distorted byeg to the (dotted
experiment is, as usual, not as good as for the lattice paramhombus with axes’, b’. The extra atom, originally at the
eters, but is in the range normally found in this kind of com-position marked with a solid circle on the bisectrix, is shifted
parison, averaging 15%—20%. to the position marked with an open circle by the homoge-
Some comments on the effect of internal relaxation mayneous strain, but is moved back almost to the original posi-
be appropriate. The effect is small foy,, as expected, butis tion by the inhomogeneous straiopen squane The net ef-
large forcgg, its value being reduced by about 17% for the fect of the g strain (homogeneous and inhomogenepiss
LDA and 7% for the GGA. The shift of the extra atom pro- therefore to change the shape of the base of the hexagonal
duced by the internal relaxation is presented graphically ircell, with very little effect on the position of the extra atom,
Fig. 3. The top panel is a plot of the total energy versus thavhich practically stays at its original location.
relative position of the extra atom along the strained lattice The bottom panel of Fig. 3 shows a plot of the energy
vectors for two applied straings. The unrelaxedhomoge-  versus thesg strain, showing that, indeed, the energy is low-
neous position is at &'/3,a’'/3,c’'/2), marked in the figure ered by the internal relaxation. The curvature of the relaxed
with the vertical dash-dotted line. With a positive 10% strainenergy curve is smaller than that of the unrelaxed curve,
(which reducesy) the extra atom moves toward the origin to which by Eq.(10) reduces the magnitude of tlwggs elastic
about (0.31@',0.31&’,c'/2), while with a negative 10% constant.
strain it moves away from the origin to about Table | lists also the results of calculations of thg and
(0.364',0.364',c'/2). A graphical description of the effect cgg constants for the hcp phase @ia~0.72. Our purpose
of internal relaxation is given in Fig. 1 for the cagg  was to test whether this phase is stable or unstable: hence, we
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-0.3994 ' —L 1 ' L
hcp Mg
-0.3996 \ L
I3
= -0.3998 -
@©
&
4 -0.4000 L
w
-0.4002 -
-0.4004 T | T
029 031 033 035 037 039 L L
d,/a
-0.3996 : ‘ ‘ ' B
hep Mg —
— -0.4000 unrelaxed - 'g B
3 £
= w L
¥ -04004- -
™
+ -
I'u b
-0.4008 | r
relaxed T
-0.4012 T T T T T 1024 |
-016 -010 -005 000 005 010 016 -
e 100
. o “\‘
FIG. 3. Top total energy(LDA) vs the in-plane components {0.98— -
relative to the strain lattice vectors of the vectidrfrom the origin >
to the extra atom after application af10% shears. The dash-dotted 0.96 "
vertical line marks the corresponding relative component for homo- 094 B
geneous strainBottom: total energy(LDA) as a function of shear
g for homogeneougunrelaxed and inhomogeneousrelaxed 0.92 T q T T T T T
strain. 08 09 10 11 12 13 14 16 18

c/a

limited our study to the two shear constants, because our rig. 4. Epitaxial Bain path of bct Mg: solid curves calculated
previous experience has shoWthat instabilities of tetrago- ith the local-density approximatiof DA), dashed curves calcu-
nal phases always come from violation of stability conditionsjated with the generalized-gradient approximati6BGA). Top
(13 or (10). In the present case the interesting result is thapanel: cvs axial ratioc/a. Middle panel:total energy per atom,
the phase would appear to be stable if only homogeneougferred to the lowest-enerdjcc) state atc/a~v2, vs axial ratio
strain were consideretboth cy, and cgg are positivg, but  c/a. Bottom panelrelative volume per atonv/V, vs axial ratio

turns out to be clearly unstable when internal relaxation is/a (V, is the theoretical atomic volume of the fcc safEhe solid
taken into accountdgs<0). circle marks the relative volume of the fcc state. The shaded area
covers a region of intrinsically unstable states.

B. Tetragonal Mg

The tetragonal EBP of Mg is depicted in Fig. 4. The ,_ 1" Cw
. - C'= >0, (118
energy-versus/a plot (middle panel reveals a deep mini- 2
mum atc/a~v2, for both the LDA and GGA and a very
shallow minimum atc/a~0.92. The deep minimum is in- C44>0. (11b

dicative of an fcc phase of Mg that does not seem to have _

been reported before. The energy minima for the LDA and We also recall that for fcc crystals one calculates first the

GGA are —398.400173 and-400.668752 Ry, respectively, ci’j elastic constants, the prime indicating that these are the

hence about 1 mRy/atom higher than those of the hcp groun@lastic constants of the bct cell of the fcc lattice, i.e., elastic

state. The crystallographic data for the fcc phase are listed i@onstants in tetragonal axé&’ and then one converts these

Table 1. constants to those referred to the conventional fcc axes
In order to find out whether this phase is stalaetually, ~ (unprimed symbols This procedure may create some small

metastable, since its energy is higher than that of the groun@mbiguity for thec,, constant, because this constant can be

statg we have calculated its elastic constants. We recall thatalculated from the;; in two ways’® anindirectway, giving

fcc crystals 6have three in_d_epende_n_t elastic constants: cM=c1,—c4stchs, and gdirept way, yielding cgl{_z Cha-

C12, andc,,,” and the stability conditions are, again assum-The two are not always identical, presumably owing to nu-

ing thatc,,>0, merical inaccuracies of the computer program.
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TABLE II. Lattice parameters and elastic constants of fcc Mgg andc, are the parameters of the bct
unit cell, in A units; V, is the volume per atom, in & the c;; are elastic constants, in Mb. Two values are
given forc,,, designated;=cf,— cis+ cgg, andciy=cy, (thec); are elastic constants of the bct cell of the
fcc lattice, i.e., elastic constants in tetragonal ax&s=(c,;—C4,)/2 is also listed for convenience. The
calculations were done with theeN97 (FLAPW) program(Ref. 14 both in the nonrelativistic local-density
approximation(LDA) and in the relativistic generalized-gradient approximatiGiGA).

ag Co Colag Vo Cyy Cio cind co c’
LDA 3.137 4.435 1.414 21.83 0.481 0.353 0.248 0.267 0.064
GGA 3.204 4.508 1.407 23.14 0.436 0.310 0.242 0.241 0.063

The calculated elastic constants of fcc Mg are also listedvib for the unrelaxed and 0.1863 Mb for the relaxed value, in
in Table II. AlthoughC' is small, it is still positive: hence, good agreement with our unrelaxed 0.2371 and relaxed
the stability conditions are satisfied: fcc Mg is metastable. 0.1949 LDA values and in fair agreement with unrelaxed

We have made no effort to test the stability of the higher0.1870 and 0.1737 GGA values. Thus the decreasgbf
energy minimum(at c/a~0.92), because it is in fact very 179% due to inner relaxation found here from first principles
shallow for the GGA and almost just an inflexion point for agrees well with the only other calculation that does not use
the LDA. an empirical potential® which found a decrease of 21%.

Also the relaxed value afgg found here with the LDA is just
IV. DISCUSSION 3.7% higher than experiment, and the value from Ref. 13 is

) less than 1% low.
For the hcp ground state of Mg satisfactory agreement the gtates at the minima of the EBP for both bt and hcp

was found between calculated and experimental values of thg, | .+ \res have been called phases even when they are un-

L ; e €Mtable with respect to shear strains that break the tetragonal
phasize, in agreement with the explicit statement of van Mid- P g

den and Sas&and the implicit one of Johnscrthat while or hexagonal symmetry. Since these special equilibrium

the contribution of internal relaxation to the elastic constantss’tates may have only partial stability, i.e., just with respect to

of hexagonal crystals is frequenthpot taken into account, it Strains that preserve the symmetry, they can be forced to

is in fact important and should not be neglected. The contric1ange by very small shear stresses. Conversely, they can be

bution can be as large as 20% and mbedso it can reveal stabilized _by very small barriers or co_nstraints again_st the_se
the actual instability of a phase that would otherwise be laShear strains, such as could be provided by small impurity
beled stable, as is the case in this work for the hcp phase @oncentrations, or by pseudomorphic epitaxy of thin films, or
Mg at c/a~0.72. by pressure. The designation of phase for these states is

It is worth pointing out that the unconventional choice of analogous to calling, say, a bcc structure under pressure a
a 60° angle between treeandb axes in the basal plane of phase under pressure, even though stability is only main-
the hexagonal cell is computationally much more convenientained by the pressure. In fact, in a study of ferromagnetic
for internal relaxations than the conventional 120°, sinceron under pressuré, it has been shown that just such an
with the 60° angle the extra atom remains within th&0) unstable bct phase comes into existence at 1300 kbar of pres-
bisecting plane, as long as the applied strains are symmetrsure and becomes a stable phase at 1825 kbar whe@'the
cal. The latter requirement is particularly important for theelastic constant becomes positive.
C44=Css Cconstant, for which are;; strain or ane,; strain The study of tetragonal states of Mg has produced the
alone would not produce a symmetrical deformation of theinteresting result that fcc Mg is metastable. It would there-
unit CEH, whereas application dfoth strains does. The cal- fore perhaps be possib|e to stabilize this structure in
pulation qf innqr relaxation_is also simplified by the use of |trathin-film form by pseudomorphic epitaxy on a suitable
just the dimensionless fractional componentsioglong the g pstrate. Experiments aimed at this stabilization are pres-
lattice vectorsa’ andb’, i.e., varyd},/a’=d;,/b" around  ently in progress.
1/3 to find the minimum energy; the actual changedbfis
not needed, only the energy change from the homogeneous-
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