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Incommensurate and superconducting phases in an exactly solvable model

Igor N. Karnaukhov*
Max-Planck Institut fu¨r Physik Komplexer Systeme, No¨tnizer Straße 38, D-01187 Dresden, Germany

~Received 19 April 2002; published 26 September 2002!

An integrable lattice model of strongly interacted electrons with nearest-neighbor and next-nearest-neighbor
hoppings is proposed and investigated. The exact ground-state phase diagram is calculated as a function of an
on-site interaction, a value of the hopping integral between next-nearest-neighbor lattice sites and a band filling
~the nearest-neighbor hopping integral is chosen equal to unity!. The model describes incommensurate and
superconducting phases which are realized simultaneously in a definite region of interaction parameters and a
band filling. The long-distance asymptotics of the density-density and one-particle correlation functions are
calculated in the incommensurate phase.
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We consider incommensurate and superconducting ph
arising in quantum one-dimensional~1D! models of strongly
correlated electrons with correlated hopping or the bo
charge interaction.1 We propose a lattice integrable mode
which describes the phenomenon of 1D incommensurab
and we show that the incommensurate and supercondu
phases exist simultaneously. The modified anisotro
Heisenberg model exhibits a ferrimagnetic order, incomm
surate with the lattice.2 The chiral Potts integrable lattic
model3 demonstrates the phenomenon of incommensura
ity: in the incommensurate phase the ground-state mom
tum is not equal to zero, but in the commensurate phase
equal to zero. Incommensurability in the one-dimensio
sine-Gordon, U~1! Thirring and Wess-Zumino-Novikov
Witten models has been studied in Ref. 4.

The family of the models of strongly correlated electro
with a bond-charge interaction provides particularly sim
examples of superconducting systems.5,6,9 Phase diagrams a
a function of an on-site interaction and the density of el
trons have the similar forms: they find four phases, two
them exhibit off-diagonal long-range order~ODLRO!. One
of these phases is a superconducting phase; another
insulator phase. The superconducting phase is realized i
value of an on-site interaction is less than the critical o
Other phases characterized by single occupied and em
lattice sites exist in the so-calledU→` Hubbard state.

We consider a modification of a 1D model of strong
correlated electrons proposed and investigated in Refs. 6
7 The model Hamiltonian takes into account hoppings
single carriers between nearest-neighbor and next-nea
neighbor lattice sites with arbitrary hopping integrals. T
nearest-neighbor and next-nearest-neighbor hoppings
competing interactions forming an incommensurate phase
terms of the Hubbard operators the Hamiltonian has the
lowing form

H52t1 (
^ i j &s5↑,↓

~Xi
s0Xj

0s1Xi
s2Xj

2s!

2t2 (
^̂ i j &&s,s85↑,↓
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0s1Xi
s2Xj
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where the Hubbard operatorsXj
ab describe all possible con

figurations of electrons at given lattice sitej ua& j5Xj
a0u0&(a

50,↑,↓,2); here, u0& denotes the Fock vacuum,j
51,2, . . . ,L, L is the total number of lattice sites,s
P$↑,↓% is the spin label,̂ i j & and ^̂ i j &&( i ,k, j ) denote
neighboring and next-neighboring sites, respectively, and
hopping integralst1 and t2 describe hoppings of electron
along the chain. The last term in Eq.~1! is the most impor-
tant term for the Hubbard model; the on-site Coulomb rep
sion U separates the energies of single- and two-elect
states. We shall adopt for the chain periodic boundary c
ditions. The HamiltonianH conserves not only the tota
number of electronsN and also the number of single ele
trons with spins, N1s5( j 51

L Xj
ss , and the number of elec

tron pairs,N25( j 51
L Xj

22. In the caset250 the Hamiltonian
is reduced to that of Ref. 6. The kinetic terms of the Ham
tonianH ~which are proportional to the hopping integralst1

and t2) are an electron-hole invariant: indeed applying th
transformation Xj

s0⇒Xj
2s2 ,Xj

22s⇒ Xj
0s , Xj

ss⇒Xj
2s2s ,

Xj
22⇒Xj

00 to Eq. ~1! we obtain H(t1 ,t2 ,U)⇒H(t1 ,t2 ,U)
1U(L2N). Under the combined electron-hole symmet
Xj

s0⇒(21) jXj
2s2 ,Xj

22s⇒(21) jXj
0s , Xj

ss⇒Xj
2s2s , Xj

00

⇒Xj
22 the hopping integralt1 changes the sign and the Co

lomb interaction transforms to the similar form
H(t1 ,t2 ,U)⇒H(2t1 ,t2 ,U)1U(L2N). Hence we can re-
strict our consideration to the caseN<L and t1.0. The
Hamiltonian commutes with the spin and so-calledh
operators.10

We consider the 1D case which can be treated exac
The model~1! is exactly solvable and the exact ground-sta
phase diagram may be presented. The behavior of si
electrons is described in the framework of the Hubba
model with an infiniteU. Below we present the exact solu
tion of the model~1! obtained by the Bethe ansatz. The tw
particle wave function for singletCs1s2

s (x1 ,x2) and triplet

Cs1s2

tr (x1 ,x2) states of single electrons are similar, becau

they satisfy the conditionsCs1s2

s (x1 ,x2)5Cs1s2

tr (x1 ,x2)

50 at x15x2 : Cs1s2

s (x1 ,x2)5A12
s @exp(ik1x11ik2x2)

2exp(ik2x11ik1x2)#, Cs1s2

tr (x1 ,x2)5A12
tr @exp(ik1x11ik2x2)

2exp(ik2x11ik1x2)# for x1,x2 and Cs1s2

s (x1 ,x2)
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5A21
s @exp(ik1x11ik2x2)2exp(ik2x11ik1x2)#, Cs1s2

tr (x1 ,x2)

52A21
tr @exp(ik1x11ik2x2)2exp(ik2x11ik1x2)# for x1.x2;

here,k1 ,k2 andx1 , x2 are the momenta and coordinates
single carriers, and 1 and 2 are their spin indexes. The
plitudes A12

s,tr and A21
s,tr are relatedA12

s 52A21
s , A12

tr 5A21
tr ,

which follow from the symmetry of the wave function. Th
similar solution for the two particle wave function has be
used first by Wiegmann for an exactly solution of the Kon
problem.11 The Bethe function takes a traditional form

Cs1 ,s2 , . . . ,sN
~x1 ,x2 , . . . ,xN!

5(
P

sgn~P!A~P/Q!s1 ,s2 , . . . ,sN
expS i (

j 51

N

kP jxQ jD ,

~2!

where theP summation extends over all the permutation
the momenta$kj%, andQ5$Q1 , . . . ,QN% is the permutation
of the N particles such that coordinates satisfy 1<xQ1
<xQ2<•••<xQN<L. The coefficients A(P/Q) arising
from the different permutations Q are connected via the s
permutation operatorPi j A . . . PiP j . . .

. . . s is j . . .
5Pi j A . . . P jPi . . .

. . . s js i . . . .
The Bethe function is the eigenfunction of the Ham

tonian ~1! for arbitrary hoppings of single carriers and th
spectrum of system is given by

E~$n1%;N!522(
l 51

L

~ t1coskl1t2cos 2kl !nl
11UN2 , ~3!

where$nl
1% are the quantum number valued 0 or 1 that d

scribes states of single carriersN15( l 51
L nl

1 , the wave vec-
torskl52p l /L ( l 51,2, . . . ,L). The model is reduced to th
spinless fermionic one with the nearest- and next-near
neighbor hoppings. The ground state is obtained by minim
ing the ground-state energy per siteE5E/L for a fixed total
density of electrons,n5N/L, clearly n5n112n2; here,n1
5(s5↑,↓N1s /L is the density of single carriers, andn2
5N2 /L is the density of electron pairs. We chose the ho
ping integralt1 equal to unity. Then the coupling constan
are dimesionless, and hereinafteru5U/t1 and t5t2 /t1.
When the ratiot is small enough the ground state coincid
with the ground state of the model6 and the spectrum o
low-lying excitations is always the same. But when the ra
t is sufficiently large new phases are appeared. We cons
in detail some particular model exhibiting incommensur
behavior.

The spectrum of single-electron carriers«(k),

«~k!522 cosk22t cos 2k, ~4!

depends on the ratio between the hopping integrals; in
case of a small interactionutu,tc ~heretc51/4), «(k) is a
single-valued function ofk ~for positivek), and in the case
of a strong interactionutu.tc , «(k) is a many-valued func-
tion of k. We have two or four Fermi momenta, depending
a band fillingn1, symmetrically arranged. Figure 1 illustrate
this situation, when two planes separate the regions with
and four Fermi points. The Fermi momenta are asymme
09230
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cally arranged around the extremumk56Q @Q5arccos
(21/4t)#. In the case of a strong interaction four Ferm
momenta are realized at a small electron densityn1,n1c for
t,2tc @here n1c51/parccos(2121/2t)] and at a high
electron density n2c,n1,1 for t.tc @here n2c
51/parccos(121/2t)]. In the first case the Fermi moment
are kF156(Q1p1), kF256(Q2p2) and n15(p1
1p2)/p if n1,n1c or kF156(Q1p1) and n15kF1 /p if
n1.n1c ; in the second case these values are defined
kF156p1 andn15kF1 /p if n1,n2c and if kF156p1 and
kF256p2 (p1,Q,p2) and n1512(p22p1)/p if n2c
,n1,1 @with an additional constraint on thep1 andp2 val-
ues «(kF1)5«(kF2)]. The corresponding Fermi velocity
vF1,25v(kF1,2) is calculated according to Eq.~4! v(k)
52 sink14t sin 2k, for the values ofk defined above.

We have focused on the calculation of the exact grou
state phase diagram in then-u-t plane, as a ruleut2u,t1, and
so we restrict our consideration to the caseutu,1. We find
four different phases which will be discussed separately. T
lower phase that arrangements below a lower plane~see Fig.
2! is characterized byn150; electron pairs and empty site
are presented in the ground state. In this phase the gro
state uC&5(h†)N/2u0& consists of the so-calledh pairs,10

where h†5( jh j
† , (h j

†5Xj
20). At u,4t11/2t for t,

2tc , u,24(11t) for t.2tc the ground state consists o
only localized pairs with the densityn25n/2 and empty
sites. The pairs are static and in the absence of single e
tron states the ground state energy per site is simplE
5un2. In a mixed phase the ground-state includes both fin
densities of single electrons and electron pairs. Note that
pairs are not localized due to exchange between single-
double-electron states.7,8 Both the mixed and lower phase
have a finite ODLRO,6 i.e., ^h i

†h j&y0 for u i 2 j u→`. How-
ever, the lower phase is an insulator phase since pairs
localized in the absence of single-electron pairs. The mi
phase is a superconducting phase having normal met
Drude weight.

FIG. 1. The spectrum of single carriers«(k) as a function oft
and k. The incommensurate phase is realized, upper and lo
planes detailed.
4-2
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An upper plane in Fig. 2 separates the ground state of
U→` Hubbard model and mixed phase. Atu.4(12t) for
t,tc andu.4t11/2t for t.tc the ground state is that o
the U→` Hubbard model and consists of singly occupi
and empty sites; the density of single carriersn1 is equal to
n. The U→` Hubbard phase is a metallic one excluding
half-filling. At a half-filling the system is an insulator with
gapD«5u2umax, whereumax54(12t) for t,tc andumax
54t11/2t for t.tc . Both finite densities of single carrier
n1.0 and electron pairsn2.0 ~or 0,n1,n) are realized in
the case of intermediate values of the interaction parame
u and t and the total density of electrons, the so-called
mixed phase. Let us analyze different states of the mi
phase that are described by the stable solutions ofn1. There
are three distinct regions oft defined by the solutions ofn1.
In the case of a small interactionutu,tc and an arbitrary
total density of electrons the minimum of the density of t
ground-state energy

E52
2

p
sin~pn1!2

t

p
sin~2pn1!1

1

2
u~n2n1!

corresponds to the solution of the equation.

u14 cos~pn1!14t cos~2pn1!50. ~5!

For utu,tc , Eq. ~5! has only one nontrivial solution for th
density of the single carriers,

n15
1

p
arccosS 2

1

4t
1

1

4t
A118t222ut D ,

which takes place for24(11t),u,4(12t). This solu-
tion survives in the case of the strong interaction also at
,2tc , n1.n1c , andt.tc , n1,n2c for the same values o

FIG. 2. Ground-state phase diagram as a function ofu5U/t1 ,
t5t2 /t1, and the total densityn. The mixed phase is a bounde
region between two planes.
09230
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u. As we noted an usual situation with the two Fermi m
menta in the spectrum of the single carriers is realized for
parameters considered above.

New solutions forn1 corresponding to the minimum ofE,

E52
2t

p
sin~pn1!2

1

2pt
cotS pn1

2 D1
1

2
u~n2n1!,

are obtained for a strong interaction att.tc , n2c,n1,1,

u14t cos~pn1!2
1

t@12cos~pn1!#
50, ~6!

and att,2tc , 0,n1,n1c ,

2u14t cos~pn1!1
1

t@11cos~pn1!#
50. ~7!

The last solution corresponds to the minimum of

E5
2t

p
sin~pn1!1

1

2pt
tanS pn1

2 D1
1

2
u~n2n1!.

The region 1<n<2 is the electron-hole transform of 0
<n<1. By contrast with the case of a strong interactio
where the bandwidthD(t)5214utu11/4utu for utu.tc ,
the case of a small interaction is characterized a bandw
which is independent of the value of the next-nearest h
ping integral D(t)54 for utu,tc . With respect to the
model6 we obtain two main effects, which are generated
the next-nearest hopping term:~i! the phase incommensura
with a lattice;~ii ! it stabilizes the superconducting phase a
strong interaction. The superconducting phase exists in
model up to the value ofumax54t11/2t ~for t.tc), which
corresponds to a point of the insulator-superconducting tr
sition. This value depends ont and is higher than all other
of exactly solved models.5,6,9 At a small interaction ort
,2tc umax is proportional tot , namely,umax5424t. The
large value ofumax provides a temperature stability of th
superconducting phase.

The long-distance asymptotic of the one-particle corre
tion function^Xs0(x)X0s(0)& shows an oscillatory behavio
at T50 K in the incommensurate phase,

^Xs0~x!X0s~0!&.
1

x
cos~pn1x/2!

3cosFx arccosS cosQ

cos~pn1/2! D G , ~8!

for t,2tc,0,n1,n1c , and

^Xs0~x!X0s~0!&.
1

x
sin~pn1x/2!

3cosFx arccosS cosQ

sin~pn1/2! D G , ~9!

for t.tc ,n2c,n1,1; here,x is the coordinate.
Similarly, we obtain the leading term of the densit

density correlation function
4-3
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^X1~x!X1~0!&.
1

x2
cos~pn1x!

1
1

x2
cosFx arccosS cosQ

cos~pn1/2! D G
1

2

x2
cos~pn1x!cosFx arccosS cosQ

cos~pn1/2! D G ,
~10!

for t,2tc,0,n1,n1c , and

^X1~x!X1~0!&.2
1

x2
cos~pn1x!

1
1

x2
cosFx arccosS cosQ

sin~pn1/2! D G
2

2

x2
cos~pn1x!cosFx arccosS cosQ

sin~pn1/2! D G ,
~11!

for t.tc ,n2c,n1,1; here,X15(sXss.
In the state with two Fermi momenta the long-distan

asymptotics of these correlation functions are the similar
ones for spinless fermions:

^Xs0~x!X0s~0!&.
1

x
cos~pn1x!,
sk

tt.
,

09230
o

^X1~x!X1~0!&.
1

x2
cos~2pn1x!.

Comparing these formulas we see the contrast between
asymptotics of the correlation functions in the incommen
rate phase—the period of the oscillations depends on b
the density of single carriersn1 and vectorQ.

In summary, a modified Hubbard model with an ad
tional next-nearest-neighbor hoppings has been proposed
investigated. The exact ground-state phase diagram in
u-t-n plane exhibits an unusual phase state in which
incommensurate state comes in a superconducting pha
is shown that the incommensurate phase is realized for ra
of the next-nearest-neighbor hopping integral greater t
some critical valuetc51/4 (ut2u.1/4ut1u) in a defined region
of the density of single carriers. The maximum critical val
of on-site Coulomb repulsionumax realized in the model is
higher than all others in exactly solvable models.6,9 A higher
value of umax enlarges the region of the coexistence of t
incommensurate state in the superconducting phase.
phase has been illustrated by calculations of the asympto
of the density-density and one-particle correlation functio
All correlation functions exhibit a power-law decay atT
50 and oscillate. The period of the oscillations depends
the parameters of interaction.
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