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Incommensurate and superconducting phases in an exactly solvable model
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An integrable lattice model of strongly interacted electrons with nearest-neighbor and next-nearest-neighbor
hoppings is proposed and investigated. The exact ground-state phase diagram is calculated as a function of an
on-site interaction, a value of the hopping integral between next-nearest-neighbor lattice sites and a band filling
(the nearest-neighbor hopping integral is chosen equal to)ufihe model describes incommensurate and
superconducting phases which are realized simultaneously in a definite region of interaction parameters and a
band filling. The long-distance asymptotics of the density-density and one-particle correlation functions are
calculated in the incommensurate phase.
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We consider incommensurate and superconducting phasegere the Hubbard operato)(f1|D describe all possible con-
arising in quantum one-dimension@dD) models of strongly  figurations of electrons at given lattice sjtha)j=xf"‘°|0)(a
correlated electrons with correlated hopping or the bond—:0T 1,2); here, |0) denotes the Fock va{cuumj
charge interactioh.We propose a lattice integrable model, :1’2’ ' L L is’ the total number of lattice sitesy
which describes the phenomenon of 1D incommensurability, =7’ - ™’ . s o\ .
and we show that the incommensurate and superconducting |+ 1 iS the spin label(ij) and (ij))(i<k<j) denote
phases exist simultaneously. The modified anisotropi¢€ighboring and next-neighboring sites, respectively, and the
Heisenberg model exhibits a ferrimagnetic order, incommenhopping integralst; andt, describe hoppings of electrons
surate with the lattic.The chiral Potts integrable lattice along the chain. The last term in E@) is the most impor-
modef demonstrates the phenomenon of incommensurabitant term for the Hubbard model; the on-site Coulomb repul-
ity: in the incommensurate phase the ground-state momersion U separates the energies of single- and two-electron
tum is not equal to zero, but in the commensurate phase it istates. We shall adopt for the chain periodic boundary con-
equal to zero. Incommensurability in the one-dimensionajitions. The Hamiltonian™{ conserves not only the total
sine-Gordon, WL) Thirring and Wess-Zumino-Novikov-  nymper of electrondl and also the number of single elec-

Witten models has been studied in Ref. 4. . : _vL yoo
The family of the models of strongly correlated electronsTO"'S With spina, Ny, =2, X", and the number of elec

with a bond-charge interaction provides particularly simplelon pairs,N,= =, X2 In the case,=0 the Hamiltonian
examp|es of superconducting syste{'—fﬁgphase diagrams as is reduced to that of Ref. 6. The kinetic terms of the Hamil-
a function of an on-site interaction and the density of electonian’{ (which are proportional to the hopping integréds
trons have the similar forms: they find four phases, two ofandt,) are an electron-hole invariant: indeed applying this
them exhibit off—diagonal Iong—range_ ordé®DLRO). One ~ transformation XI0= X2 X270 xJQU, X7T= X777,

of these phases is a superconducting phase; another is §g|j22ﬂxjoo to Eq. (1) we obtain H(t;,t,,U)=H(t;,t,,U)
insulator phase. '_rhe_ superc_ond_uctlng phase is rea_ll!zed if the U(L—N). Under the combined electron-hole symmetry
value of an on-site interaction is less than the critical one 90, (—1)IX 792 X270 (—1)IX07, XTT=X ) X0
Other phases characterized by single occupied and empx 1.0 [ ! L
lattice sites exist in the so-calldd— o Hubbard state.

We consider a modification of a 1D model of strongly

X the hopping integral; changes the sign and the Cou-
lomb interaction transforms to the similar form

correlated electrons proposed and investigated in Refs. 6 a (.t{[’tz’u)zH.g_tlt’.tz’Ut) ﬂ:rl;J(L—ii)s. LHen((:jet W>eoca?hre-
7 The model Hamiltonian takes into account hoppings ofoHic 'Ii)ur_ considera 'fn 0 'the tﬁa - an dl ' I €
single carriers between nearest-neighbor and next—neareéi'—am' onian commutes - wi € spin and so-called

. > BE . . i tors?
neighbor lattice sites with arbitrary hopping integrals. TheOPera . .
nearest-neighbor and next-nearest-neighbor hoppings We consider the 1D case which can be treated exactly.

competing interactions forming an incommensurate phase. | e mode1) is exactly solvable and the exact ground-state

e phase diagram may be presented. The behavior of single
terms of the Hubbard operators the Hamiltonian has the fo'electrons ‘s described in the framework of the Hubbard

lowing form model with an infiniteU. Below we present the exact solu-
0u00 - o220 tion of the model(1) obtained by the Bethe ansatz. The two-
H= _t1<ij>o=T . (XX +X7XG7) particle wave function for single\lffrl(,z(xl,xz) and triplet
3 \Pglvz(xl,xz) states of single electrons are similar, because
“t, X [(X{’OX?"nL X{’ZXJ-Z")( 1- Exg"") they satisfy the conditionsV , (x1,%)=W{ , (X1,X)
(iidowo’=1.1 ) =0 at X;=Xp: \Iff,lgz(xl,xz)=A§2[exp6k1x1+ik2x2)
_ EX""’(X»"OXQ"’ +X9227) |+ U x22 (1) —explkox; ko) |, qiglo'z(xl X2) = AT explkyxg +ikoxo)
2 k : ! : ! j=1 e —eXka2X1+ik1X2)] for X1<X2 and \I,(STJ_O'Z(X:L’XZ)
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=A% [ explkyxy +ikoxo) —expikox, +ikix)], ‘Pglaz(xlyxz) &
= — AJ[ explkoxs+ikoxo) —explkoxy +ikyx)]  for  x;>Xy;
here,k,,k, andx,, X, are the momenta and coordinates of
single carriers, and 1 and 2 are their spin indexes. The am-
plitudes A3 and A3[" are relatedA},= —A3;, AL=AJ,,
which follow from the symmetry of the wave function. The

similar solution for the two particle wave function has been RS SSISS RS
used first by Wiegmann for an exactly solution of the Kondo ;‘ :‘::::isgsgig“
problem*! The Bethe function takes a traditional form ittt
‘ XX < R
\Pol,oz ..... O'N(Xl’X27 vXN)

2
where theP summation extends over all the permutation of
the momentdk;}, andQ={Qy, ... ,Qy} is the permutation FIG. 1. The spectrum of single carriez¢k) as a function ofr

of the N particles such that coordinates satisfy<f,;  and k. The incommensurate phase is realized, upper and lower
<Xg2<---<Xgn=L. The coefficients A(P/Q) arising planes detailed.

from the different permutations Q are connected via the spin

permutation operatoP;; A* 7% =P A% cally arranged around the extremuk¥ +Q [Q=arccos
...PiPj... ...PjPi... " . . .
The Bethe function is the éaigenfunction of the Hamil- (—1/47)]. In the case of a strong interaction four Fermi

tonian (1) for arbitrary hoppings of single carriers and the Momenta are realized at a small electron dersity n, . for
spectngn: of system i)é giv%Fr)w b%/ g 7<—1; [here n_lczllrrarccos(— 1-1/27)] and at a high
electron density ny,,<n;<1 for 7>7. [here ny.
L =1/mrarccos(t 1/27)]. In the first case the Fermi momenta
E({n1;N)= 2> (t;cosk +t,c0s k)NF+UN,, (3) are kp==(Q+p1), ke=%2(Q—py) and ny=(p,
=1 +py)/m if ng<ny or key=+(Q+p,) andny=Kkg, /7 if
n;>ny; in the second case these values are defined as

1
where{n;} are the quantum number valued 0 or 1 that de key= -+ py andn;— ke, /7 if n,<ny. and if key— + p; and

scribes states of single carrigds=>_, n', the wave vec- B e S T :
torsk=2x1/L (I=1,2,...L). The model is reduced to the k<Fr2;_<i1p[2wi$rF1)1a<r\2§dFi)t2i())nZIngoggiint(c?rf th%l);:d Fl>f \;ZIC—
spinless fermionic one with the nearest- and next—nearesu—es1 (key)=2(ke)]. The corresponding Fermi \2/elocit
neighbor hoppings. The ground state is obtained by minimiz= > . Fli E18F2 .I lated P di 9 Eq4) v(K y
ing the ground-state energy per site E/L for a fixed total vr12=0(Ke1g) IS calculated according to Ed4) v(k)

densitv of electronsn=NJ/L. clearlvn=n.+2n.: here.n =2 sink+47sin X, for the values ok defined above.
y o yn=m 2 L We have focused on the calculation of the exact ground-
=2,-1,,N1,/L is the density of single carriers, ant,

=N,/L is the density of electron pairs. We chose the hop state phase diagram in theu-7 plane, as a rulft,|<t,, and

g intearalt. equal to unitv. Then the coulin constants_so we restrict our consideration to the case<1. We find
ping ntegrait, €q Y. ping four different phases which will be discussed separately. The
are dimesionless, and hereinafter=U/t; and 7=t,/t;.

When the ratior is small enough the ground state coincidesIower phase that arrangements below a lower plase Fig.

. 2) is characterized by, =0; electron pairs and empty sites
with the ground state of the mofeand the spectrum of : 1o :

. L : . are presented in the ground state. In this phase the ground
low-lying excitations is always the same. But when the rat'ostat:|\lf>=(nT)N’2|O> gonsists of the so-cal?leeb pairsl%
7 is sufficiently large new phases are appeared. We ConSid?/vrhere f=s ol (p1=X2). At u<4r+1/2r for <
in detail some particular model exhibiting incommensurate A IR I T ler T
behavior. —7¢, U< —4(1+ 7) for 7> — 1. the ground state consists of

: ) : only localized pairs with the densitp,=n/2 and empty

The spectrum of single-electron carriertk), sites. The pairs are static and in the absence of single elec-

(k)= —2 cosk—27cos %, (4) tron states t_he ground state energy per site is sinﬂ:)_ly_

=un,. In a mixed phase the ground-state includes both finite

depends on the ratio between the hopping integrals; in thdensities of single electrons and electron pairs. Note that the
case of a small interactior| < 7. (herer,=1/4), (k) isa  pairs are not localized due to exchange between single- and
single-valued function ok (for positivek), and in the case double-electron staté€ Both the mixed and lower phases
of a strong interactiofr| > 7., (k) is a many-valued func- have a finite ODLRCS*,i.e.,(niTnj)aaO for |i —j|—o. How-
tion of k. We have two or four Fermi momenta, depending onever, the lower phase is an insulator phase since pairs are
a band fillingn,, symmetrically arranged. Figure 1 illustrates localized in the absence of single-electron pairs. The mixed
this situation, when two planes separate the regions with twphase is a superconducting phase having normal metallic
and four Fermi points. The Fermi momenta are asymmetriDrude weight.
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u u. As we noted an usual situation with the two Fermi mo-
menta in the spectrum of the single carriers is realized for the
parameters considered above.

New solutions fom, corresponding to the minimum &t

1
+ Eu(n—nl),

o 27 . 1 Ny
——?sm(a-rnl)—mco T

are obtained for a strong interaction@at 7., ny,c<n;<1,

1
U+4TCO§’7TI’]1)—T[1TW:0, (6)
and at7<—7;, 0<n;<nq,
1
—u+4rcoqmny) =0. (7)

T 1+ cogmny)]

The last solution corresponds to the minimum of

FIG. 2. Ground-state phase diagram as a function=efJ/t,, o= 2—Tsin(77n )+ 1 tar( Ny
7=t,/t;, and the total density. The mixed phase is a bounded T V5iomr 2
region between two planes.

1
+ Eu(n—nl).

The region kn=<2 is the electron-hole transform of 0

An upper plane in Fig. 2 separates the ground state of th&N=<1. By contrast with the case of a strong interaction,
U—c Hubbard model and mixed phase. ét4(1—7) for ~ Where the bandwidtiD(7)=2+4|7|+1/47] for |7[>7;,
<1, andu>4r+1/2r for 7> 7. the ground state is that of the case of a small interaction is characterized a bandwidth
the U— Hubbard model and consists of singly occupiedW_hiCh. is independent of the value of .the next-nearest hop-
and empty sites; the density of single carrieisis equal to  PiNg integral D(7)=4 for |7|<7. With respect to the
n. The U—c Hubbard phase is a metallic one excluding amodef’ we obtain two main ef_“fects, which are generated by
half-filling. At a half-filling the system is an insulator with a the next-nearest hopping terfii} the phase incommensurate
gap Ae = U—Upay, WhereUnma=4(1—1) for 7<7, and Uy with a lattice;(ii) it stabilizes the superconducting phase at a
—A4r+1/27 for 7> 7. Both finite densities of single carriers Strong interaction. The superconducting phase exists in our
n,>0 and electron paims,>0 (or 0<n,<n) are realized in Model up to the value afina,=47+1/27 (for 7> 7c), which
the case of intermediate values of the interaction parametefQTTe€SPONds to a point of the insulator-superconducting tran-
u and 7 and the total density of electrons, the so-called aition. This value dependsegﬂand is higher than all others
mixed phase. Let us analyze different states of the mixe@f exactly solved modefs>® At a small interaction orr
phase that are described by the stable solutions, ofhere <~ 7c Umax S proportional tor , namely,upq=4—47. The
are three distinct regions ofdefined by the solutions of,.  large value ofup,, provides a temperature stability of the
In the case of a small interactidn|< 7, and an arbitrary Superconducting phase.

total density of electrons the minimum of the density of the  Th€ Io_ng-dis;aance &symptotic of the one-particle correla-
ground-state energy tion function(X“°(x)X"?(0)) shows an oscillatory behavior

at T=0 K in the incommensurate phase,

2 T 1
-t _ ol 1
E= WSII"(WI’]]_) ﬂ_sm(27rn1)+ Zu(n nl) <X(rO(X)X0U(O)>2;COSWI’]]_X/Z)
corresponds to the solution of the equation. cosQ g
X CO$ X arcco cos )] | (8
u+4 cogmn,)+47cog2mwn,)=0. (5)

for 7<—7,,0<n;<ny., and
For |7|< 7., EQ. (5) has only one nontrivial solution for the 1
density of the single carriers, (X7O(x)X°7(0)) = ;sin(wnlx/Z)

1 1 1
1 11 — cos
nl—wafCCO% 2, Tz V18 —2ur), XCOS{X&FCCO%—Q ” 9

sin(7n./2)

which takes place for-4(1+ r)<u<4(1—r7). This solu- for 7> 7.,n,.<n;<1; herex is the coordinate.
tion survives in the case of the strong interaction alse at  Similarly, we obtain the leading term of the density-
<—17¢, N{>Ny, andm> 7., N;<n,. for the same values of density correlation function
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1 1
(X1(x)X1(0))= ﬁcos( mN1X) (X1(x)X1(0))= ;cos{ernlx).
1 cosQ Comparing these formulas we see the contrast between the
+ ;CO xarcco m) asymptotics of the correlation functions in the incommensu-

rate phase—the period of the oscillations depends on both
c0sQ the density of single ca_r(iensi and vectorQ. . .
—” In summary, a modified Hubbard model with an addi-
cog 7ny/2) tional next-nearest-neighbor hoppings has been proposed and
(10) investigated. The exact ground-state phase diagram in the
u-7-n plane exhibits an unusual phase state in which the

2
+ —ZCOS mN1X) co{ X arcco%
X

for 7<—7;,0<n;<ny., and incommensurate state comes in a superconducting phase. It
L is shown that the incommensurate phase is realized for ratios
- of the next-nearest-neighbor hopping integral greater than
(X100X1(0))= X2C05(7Tnlx) some critical valuer,=1/4 (|t,|>1/4]t;]) in a defined region

of the density of single carriers. The maximum critical value
1 cosQ of on-site Coulomb repulsion,,, realized in the model is
+ ?COE{X arcco% W” higher than all others in exactly solvable mod&i# higher
value of u,., enlarges the region of the coexistence of the
2 cosQ incommensurate state in the superconducting phase. This
- —zcos( 7Tn1X)CO{X arcco% —) } phase has been illustrated by calculations of the asymptotics
X sin(7ny/2) of the density-density and one-particle correlation functions.
(1)  All correlation functions exhibit a power-law decay @t

o =0 and oscillate. The period of the oscillations depends on
for 7>7¢,npc<n; <1; here,X; =X ;X7 , the parameters of interaction.
In the state with two Fermi momenta the long-distance

asymptotics of these correlation functions are the similar to The author would like to thank E.D. Belokolos and A.A.

ones for spinless fermions: Ovchinnikov for valuable discussions. The author wishes to

1 thank the support of the Visitor Program of the Max-Planck-

0 0o = Institut fur Physik Komplexer Systeme, Dresden, Germany.
(XT00X(0)) Xcos( 1), The work is supported under the STCU-2354 project.

*Permanent address: Institute of Metal Physics, Vernadsky A.M. Tsvelik, cond-mat/0011268inpublished

Street 36, 03142 Kiev, Ukraine. SEH.L. Essler, V.E. Korepin, and K. Schoutens, Phys. Rev. Lett.
1E. Dolchini and A. Montorsi, Nucl. Phys. B92, 563(200)); F.C. 68, 2960(1992; 70, 73 (1993.
Alcaraz and R.Z. Bariev, Phys. Rev. B9, 3373 (1999; I.N. 6L. Arrachea and A.A. Aligia, Phys. Rev. Left3, 2240(1994; A.
Karnaukhov, Phys. Rev. Let?.3, 1130(1994; R.Z. Bariev, A. Schadschneider, Phys. Rev.5R, 10 386(1995.
Kllimper, A. Schadschneider, and J. Zittartz, J. Phy36A1249 1. N. Karnaukhov and A. A. Ovchinnikov, Phys. Rev. 5,
(1993. 104518(2002.
2A.M. Tsvelik, Phys. Rev. B42, 779(1990. 8. Arrachea, A.A. Aligia, and E. Gagliano, Phys. Rev. Léat6,

3H. Au-Yang, B.M. McCoy, J.H.H. Perk, and M.L. Yan, Phys. Lett. 4396(1996.
A 123 219 (1987; R. Baxter, J.H.H. Perk, and H. Au-Yang, °F. Dolcini and A. Montorsi, Phys. Rev. B3, 121103R) (2001).
ibid. 128 138 (1988; G. Albertini, B.M. McCoy, and J.H.H. 10C.N. Yang, Phys. Rev. Let63, 2144(1989; C.N. Yang and S.
Perk,ibid. 135 159 (1989; R. Baxter,ibid. 133 185(1988. Zhang, Mod. Phys. Lett. B, 759(1990.

4E. Papa and A.M. Tsvelik, cond-mat/000642anpublishett  'P.B. Wiegmann, J. Phys. T4, 1463(1981).

092304-4



