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Fate of the superradiant mode in a resonant Bragg reflector
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Based on the first-principles theory of radiative correction, it is demonstrated that the well-known superra-
diant (SR) mode in a resonant Bragg reflector consisting\ofayers loses its meaning when the frequency
dependence of its radiative width becomes no longer negligible within its spectral width in the course of
increasingN. Beyond this range oN, it evolves, together with a part of subradiant modes, into the states
forming the light-reflecting photonic gap. On the other hand, the rest of the subradiant modes form very narrow
light-transmitting modes in the gap region. This conclusion is reached by calculatihNgdependence of the
reflectance in frequency and time domains with the explicit consideration of a frequency-dependent radiative
shift and width. The intrinsic limit of the speedup effect of the radiative decay of the SR mode is given for
various cases.
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[. INTRODUCTION level or the large radiative width in the frequency domain.
The former was discovered in the nuclear Bragg reflection as

The radiation-matter interaction is generally enhanced ira speedup effect of the decay rate of the excitége in
a resonant condition where the light frequency is in resoenriched FeB@ by using synchrotron radiation for \de-
nance with an excitation energy of the matter. For an array obauer spectroscopyLater the experiments on multipiéN)

N, units of a resonant matter in a space smaller than thquantum wells(QW’s) showed the enhanced decay rate of
resonant wavelength, there is an additional enhancement gfiperradiance by the factor bfin the time domain® or the

the coupling with light for a mode which almost monopo- N-linear broadening of reflectance spectrum in the frequency
lizes the coupling strength. Such a mode is possible for @omain’~°

one-dimensiona(1D) chain and a 2D plane and called “su-  Theoretical studies showed that, in multiple-quantum-well
perradiant”(SR).*~3 The oscillator strength of this mode is systems, strong light-induced interwell coupling occurs when
propotional toN,, as long as the linear extension of the arraythe QW's are arranged with a spacing which satisfies the
is smaller than the resonant wavelength. For a chain or 8ragg condition®! The enhancement factor for the SR
plane with infinite extension, there is a group of radiativemode was studied by Ivchenled al. for a system ofN QW'’s
modes which arises from the saturated SR mode. The radigRef. 10 by means of the transfer matrix method. The re-
tive modes have lateral wave numbersw/c, and, on av- flection amplitude for frequency was shown to bey(w)
erage, each one of them has the coupling strength with light —iNT' /[ wy—Ahw—i(T'+NI'g)], whereT'y andT" are
(\/2b)P times that of a single resonant unit. Hebeis the  the radiative and nonradiative widths, respectively, of a
lattice constant of the arrayshain or planeandD=1 and single QW. This expression shows that the whole system
2 for the chain and plane, respectively. This enhanced coueoks like a single oscillator with the radiative widtl .
pling strength corresponds to the saturation value of the SRlamely, the SR mode completely monopolizes the coupling
mode as one increases the sizeNyfbeyond the resonant with the radiation field. All the other modes have no coupling
wavelength’ with light.

There is a different way to enhance the radiation-matter In the case of a QW system, we can experimentally study
interaction. Namely, let us consider a set of identidal the dependence of the radiative widthr decay ratgon the
planes, each of which contains radiative motkegurated SR size of the system, i.e., the numkérof QW’s forming the
mode$ as mentioned above, and make an equidistant 1MBragg reflector. The theory by Ivchenlet al. indicates that
array of them with lattice perioé=\,/2, which is a Bragg the radiative width of the superradiant mode increases lin-
condition for resonant light. This kind of system is called aearly with N without limit. Though the linear increase in the
resonant Bragg reflector, where a further increase in the cowsmallN region is reasonable, the absence of the growth limit
pling strength occurs for a special combination of “saturateds of course unphysical, because an excited state of a matter
SR modes.” Noting that a saturated SR mode is already enwith infinite radiative width would mean an indefinite level
hanced by the factdF .= (\,/2b)?, we might better call the position. Moreover, the system with infinitely laréewould
new combination of the saturated SR modéx N=2) correspond to a photonic crystal with the photonic gap at the
something like the “super SR” mode. This naming will make very position of the resonant level, where a mode with an
sense to stress that it is the consequence of the two indepeinfinitely large radiative width cannot be located. Though the
dent mechanisms of enhancement. However, we will use thmodel with a single resonance treated by Ivcheekal. is
terminology “SR mode” in the following, considering that it very much simplified, the consistency of quantum mechanics
is widely used in the literature. should lead to a more reasonable result aboutNtoepen-

The observable feature of the enhanced interaction witlilence. In spite of the strong interest in QW systems in recent
light is either the enhanced radiative decay rate of the excitegdublications, no work has clarified the fate of the superradi-

0163-1829/2002/68)/08533813)/$20.00 66 085338-1 ©2002 The American Physical Society



TOMOE IKAWA AND KIKUO CHO PHYSICAL REVIEW B 66, 085338 (2002

ant mode as one increasdsand a consistent picture of this with a Lorentzian shape for smal (SR mode behavigr
evolution with photonic band formation has not been ob-evolves into a silk-hat shap@hotonic band behavipasN
tained. The purpose of this paper is to examine this veryncreases. However, this does not mean that the physical
fundamental point of the problem, though the current interesteaning of the evolution is understood. This is because the
in the study of QW systems seems to be attracted to theransfer matrix method is just a mathematical tool applicable
effects of inhomogeneityf—24 to many different physical problems. On the other hand, the
The specific feature of the present study is that we calcuscheme of the microscopic nonlocal response describes opti-
late the radiative correction of the superradiant mode directlgal processes in terms of the quantities with clear physical
from first principles as a function of frequency. The explicit meaning such as resonant energies, current density, radiative
definition and evaluation of the radiative correction is a cen-shift and width, etc. This allows us an appropriate interpre-
tral point of the nonlocal theory of optical resportSeyhich  tation of the spectral evolution from the SR mode to photo-
is applicable to arbitrary systems from an atom to bulk mafic band behavior as due to the fact that the frequency de-
terials. This scheme is a generalization of the one for slalpendence of the radiative correction, negligible for srll
geometry® to arbitary systems of size and shape, and havecomes too large to be neglected\agets larger. The two
been applied to studies of the size dependence of the opticapproaches give the same spectral behavior, but the physical
response of mesoscopic systems beyond the long-wavelengtheaning is more easily obtained by one of them. On the
approximatior'*”*® Similar schemes to describe the optical other hand, we can compare the two schemes, not numeri-
response in terms of the radiative correction were adoptedally, but analytically. Starting from the solution of a single-
later by Andreaniet al®® and Citrirf* for the study of layer problem in the nonlocal scheme to fix the elements of
single-QW systems. The radiative self-energy used by Citrithe transfer matrix, we try to rewrite the field equations of
for a QW system is a special case of the radiative correctiothe transfer matrix method for thé-layer problem into those
term given below. of the nonlocal scheme. We have been able to demonstrate
In the scheme of the nonlocal respofi3éhe finite exten-  the analytical equivalence in this manner. But the transfer
sion of the matter wave functions, being the source of nonmatrix elements we obtained are somewhat different from
locality, is explicitly taken into account, and the responsethose of Ivchenket al'® The difference is negligible if the
field and the induced polarization are determined selfthickness of the resonant layer is much less than the resonant
consistently for a given initial condition of matter and radia- wavelength. This result will be published elsewh&fe.
tion. In doing so, the interaction among the components of In terms of the frequency dependence of the radiative cor-
induced polarization via a transverse electromagni@id) rection, we can establish a consistent picture of “the evolu-
field is explicitly taken into account. This is the retardedtion from the SR mode for small to the photonic gap for
interaction, or radiative correction, among the induced polartarge N” within a single theoretical framework. The evolu-
izations, through which the matter excitation energies action appears in the reflectivity spectrum as that from a
quire radiative shifts and widths in optical response spectrd.orentzian to a silk-hat form and also in the temporal decay
The radiative correction in this framework is defined in aof the reflected light for a short-pulse incidence. The explicit
straightforward way. Namely, it is the interaction energy be-evaluation of the radiative correction for the SR mode shows
tween the components of the induced current derfsitpo-  the importance of the frequency dependence beyond a certain
larization via a transversé.e., vacuum EM field. Because range ofN, where the optical response is no longer repre-
the interaction is mediated by photons, ifisquency depen- sented solely by the SR mode. It should be noted that, in
dentby definition. spite of the drastic spectral evolution, the strongly light-
Usually, the radiative correction is a small effect, so thatreflecting character of the system is kept preserved, indicat-
its frequency dependence is safely neglected, which allowig the strong coupling of the Bragg arrangement of the reso-
us to assign its real and imaginary parts to the radiative shiflant levels. On the other hand, a tiny left over of the
and width, respectively, of the relevant transition energymonopolized radiation-matter coupling due to the SR mode
However, a resonant Bragg reflector with arbitrary dites  is distributed among the non radiant modes. These modes
an exceptionaloptical medium, in the sense that it contains show themselves in the reflectance spectrum as very thin
an automatic mechanism to break the frequency indeperdhips in the total reflection range for a finii-system. This
dence of the radiative correction. Namely, the radiative corgroup of levels evolves into the gap mode branch in the limit
rection grows so much witNl that its frequency dependence of the photonic crystalN=<).
can eventually no longer be negligible within its spectral The criterion for the existence of the SR mode is the
width. Though the frequency dependence of the radiativenegligibility of the frequency dependence of the radiative
correction may be encountered in various other problems, theorrection of this mode. The dependence will be shown ex-
present example will be a most dramatic one. This is theplicitly, but a rough criterion for the linear growth of the
reason why we concentrate our discussion on this particulaiadiative width of the SR mode will be that the width is
example. The importance of the frequency dependence wasuch less than the photonic g&g,,. This criterion will be
noted in our previous study of resonant Bragg reflectors, tested later for some model systems with reasonable success.
and this paper gives a full description of this subject. A brief  This evolution requires a corresponding change in the
report of this work was given in a conference proceedfrigs. concept of the coupled modes of a radiation-matter system.
If one considers the frequency dependence in the transfé/hen the radiative correction is frequency independent, the
matrix method correctly, the calculated reflectance curvecoupled modes are the modified matter excitations corrected
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with a certain radiative width and shift. As for the number of Il. RADIATIVE WIDTH AND SHIFT
the degrees of freedom, only those of the matter excitations

are relevant as coupled modes. When the frequency depewe take the Coulomb gauge and include the full Coulomb

dence of the radiative correction is important, however, th§y. 4 ction among the charged particles in the matter Hamil-

rad_|a_t|on de@'fees of freedom become also_ Important in Olet'onian, leaving only the transverse modes as the radiation
scribing the eigenmodes of the coupled radiation-matter SYSield

tem. This is typically exemplified by the eigenmodes of the

N—oo limit of a resonant Bragg reflector, where the eigen- : .
modes are the photonic band stéeg’ represented by various components of the induced current

In connection with the fate of the SR mode for increasin density, interacting with the vector potential of the EM field.
N. there is an additional broblem about the bhotonic banngaCh component of the current density is an electric oscilla-
di,spersion for Nsoo: A c?ommonly accepteoﬁ) dispersion or with its specific spatial extension. Its eigenfrequency cor-
—so0r e .
equation in the literatur@=3° obtained from a Kronig- responds to a transition energy of the matter system, which

Pennv-tvpe treatment. has the followina form for the fre may contain a nonradiative width. When these oscillators
y-typ » Nas wing “interact with the EM field, they undergo forced oscillations.
guencyw and wave numbek:

This produces an additional radiation field, which further in-

teracts with the oscillators, and so on. In this way, the oscil-

, lators interact with one another via the radiation field,
coskd=cosqd—T squ. ’ (1)  through which their eigenfrequencies get shifted and broad-

wog—w—ly ened.
The radiative correction is the interaction among the com-
) _ponents of the induced current density polarization via
whereq=w/c, w, is the resonant frequency, the nonradi-  the transverse EM field. Its matrix element between the two

ative decay constant, arld, the radiative width of a single components of the current density associated with the tran-
QW. In the neighborhood of the lowest photonic gap, thissjtions ;,— » ando— 7 is given as

equation has three branches in general, which contain a flat-
band representing the resonant levels. At the exact Bragg - 1
conditionwy= 7rc/d and for vanishingy, however, the reso- Ay ro(@)=— Ef drl ,,(r)-A(r,w), (2
nant(gap mode arising from the energy denominator disap-
pears. This is because §jd/(wy—w)=siN m(wy—w)/wg]/(wg ~ WhereA_,(r,w) is the vector potential at produced by the
—w) does not contain resonant character any more. This regsource curent densityl ., via the EM field with frequency
sult is not physically reasonable, because the nonradiative. This induced field is obtained from the Maxwell equation
damping may affect the form but not tmeimberof disper- as
sion curves. Namely, the gap mode should exist even in an
idealized situation of vanishing nonradiative damping. Thus )= . , w
the question is why the abovegequation leads to sﬂcr?a result Aol @)= EJ dr'Gq(r.r'i)-1,(r') <q= E)' @)
and how one can obtain more reasonable dispersion curves. _

Here also the nonlocal framework works well as an ap-The transverse EM Green’s functi@y, is given in Fourier
propriate tool. Applying it to an arbitrary periodic system, we representation as
obtain a dispersion equation of the coupled radiation-matter
system from the condition for the existence of a nontrivial ~ , e A
solution in the absence of an external field. This is a gener- ~ Ca(l,I", @)= 2_772J dkm(l_ &8, (4)
alized polariton dispersion equation including the effect of
Bragg scattering; or it is an advanced version of the x-ray whereg, is the unit vector in the direction df. Thus the
dynamical Scattering scheﬁjleincluding the effect of reso- radiative correction can be written as
nant levels. Using this scheme for the 1D resonant Bragg
reflector with a single resonant level, we obtain a simple ~
dispersion equation for the photonic bands. This equation Ay ro(@)=— 5 2[
leads IS% the three branch dispersion curves in the lowest-gap 2mc
region Two of them are the usual branches of photonic ~ An
bands on both sides of the gap, and the very flat third branch X =K) - (1=8@) -1 7(K), ®)
in the gap is the mode due to the resonant levels of thghere
matter. All of them have real wave number for real fre-
guency. As evidence of this mode, we have found a series of ~ iy
ultrasharp dips in the total reflection range of the reflectance oK)= f dre”""l,(r). (6)
spectrum of finiteN systems. The positions of these dips lie
within the dispersion of the gap mode, and the induced inFor each given model, we only need to evaluate the current
ternal fields at these frequencies have standing-wave pafensity and carry out the integration.
terns, reflecting the propagating wave nature of the gap Inthe framgwork of nonlocal response theory, the radia-
mode. tive correctionA,,, ,, plays an essential role in determining

First of all, let us define the matter and EM field precisely.

According to the nonlocal response theory, the matter is

ik-(r—r")

1
k
k?—(q+i0")?
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the response of matter and field. The part of the framework resonant medium
relevant to this work is the linear response of a small number .
of resonant levels. The effect of nonresonant levels will be
taken into account as background susceptibility, if necessary background | | background | | background | | background

The resonant part of the induced current density is given as h"’. € & € & |

1o, —
@)= ¢ 2 gu()Fo(@)lo)r), Y & i

where the summation over is restricted to resonant levels
and the facto{g,} is defined as z=0 Z, Z, Z

1 FIG. 1. Geometry of light reflection for the two models. For
(8) model (A), ep,=1, d=\,/2.

9 o0

HereE,, is the vth excitation energy of the matter from its case of a SR mode is rather extreme in the sense thab the

ground state. The factors dependenc ofd can change the qualitative structure of the
problem as will be discussed below.
The eigenmodes of the system in the presence of the ra-
Fvo(w):f drl () - A(r, @) (9 diative corection are derived from the condition |@¢0.
Since these are nontrivial solutions in the absence of an ex-
contain the vector potential to be determined. The vectofernal field, we may call them self-sustainift§S modes.
potential produced by(r,w) is calculated via Eq(3) above  This equation is quite useful to see the detailed spectral
by replacingl ,,(r') by J(r',®). In the Fourier representa- structure of any coupled radiation-matter system. It will be

tion, we have used later to derive the dispersion equation of the photonic
_ _ crystal.

A A 9,(@)F o(@)Tg,(— ke " Though the above scheme can always be used for calcu-

(@) =A(r,w)+ 27202 K2—(q+i0")2 ' lation of the optical response, the characterization of the SS

(10) modes is strongly affected by the dependence afl. If one
can neglect the dependence, we obtaht’ SS modes for a
set of N’ excited states of matter, because|get0 is a
polynomial equation of thé\’th order. However, if thew
_ dependence afl is important, ddS| =0 is no longer a poly-
FQ=2> {(E,o—h®)8,,+Au00}9,F0. (1D nomial equation of thé’th order. Then, the physical picture
g of its solution is no longer simple. This situation is the case
where F(9 is defined as Eq(9) with A replaced with the in the evolution of the resonant Bragg reflector for lartyer

whereA, represents the incident field. The equations to de
termine{F ,o} self-consistently aré'’ (Ref. 33

w0
incident fieldA,. Equation(11) may be written in the form
of a matrix equation l1l. MODEL AND NUMERICAL CALCULATION
SX=F©), (12 We consider two models of the 1D resonant Bragg reflec-

. L . tor, i.e., the regular arrays in thedirection of (A) N single

whereX,=g,F 0 andSis the coefficient matrix. planes of H atoms an@B) N quantum wells, with lattice

V\chOUt the radiative correction, the solution is jWsfo  constand equal to one-half the resonant wavelength(Fig.
=F(3J. Namely, all the oscillators respond independently to1) The atomic plane is assumed to be a square lattice with
the incident EM field. The radiative correction terms mix the|attice Constanb_ Both b and the |atera| |attice constant Of
oscillator states in such a way that they acquire differentpe QW are assumed to be much smaller tdaifhen, the
resonance energies and also radiative widths. Bragg scattering of near-resonant light involves only the re-

The radiative correction is a general measure of the cougiprocal lattice vectors in the norméd) direction. The inci-
pling strengttt” If it is small compared with the interval of dent field is assumed to be normal to the atomic planes and
the matter excitation energies, as in atoms, we may treat thyw’s. Then, we only need to consider states with vanishing

perturbationally. Namely, for each resonance Bfo, |ateral wave vectorkj=0) for both matter and field.
A00(w) is replaced byA,qq(w=E, /%), the real and Model (A) is a fictitious one consisting of single two-level
imaginary parts of which give the radiative shift and width of atoms, to which the framework of Sec. Il directly applies
the excitation energg . with the restriction of the level indices (), to those of the

In mesoscopic systems, the energy separation of mattetwo-levels (Is and 2). We neglect all nonresonant levels,
excited states becomes small and can be comparable to théich may contribute to the background polarization. The
radiative shift or width, so that a careful treatment is neceseffect of background polarization is taken into account in
sary about the radiative correction. We should not neglectnodel(B), as well as the resonant polarization. The periodic
either the off-diagonal elements or tlke dependence. The array of QW's is buried in a semi-infinite medium with a
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background dielectric constars,. The difference of the where

background dielectric constant between the QW and barrier

region is neglected. The effect of the background dielectric -1 _
on the resonant current density is taken into account by a By, -0(K| ""):TJ f dzdZz G"P)(z,z';q)
renormalized radiation Green'’s functigeee the Appendix cs
as mentioned below. ¥ AT /

In order to apply the scheme in Sec. Il to the present =k 2)- (1= 88 170 (K;.2'),

models, we need to evaluate the resonant ené&rgyand 17)

radative correction?luo,oy for the matter excitation witlk; e T e .
=0. Because of the large distance between neighboring la vylth k=(kj, ). sis the area of the lateral unit celfy the

ers, the electronic interaction between the layers is safelgD reciprocal lattice vector, angl= Vo? k. (For g*<kf,
neglected. In modelA), E,g=Ejp 15, i.€., is the 5-2p ex-  the branch with Irhq]>0 should be chosenThe lateral
citation energy corrected by the dipole-dipole interaction enfourier component of the current density is defined as
ergy, and in mode(B), it is the lowest QW exciton energy
Eoqw allowed for the lateral polarization. For the evaluation
of the dipole-dipole interaction energy and the radiative cor-
rection, it is enough to have knowledge of the induced cur- . . L ) .
rent densities for the excitations of each model system. and the one-dimensional radiation Green’s function
The induced current density in the unit cell to be used in

- . _2 [ -
model (A) is GIP)(z,z';q)= il expliqlz—2'|) (19
q

Tm(kH,z):f drj exp(—iky-rpl,,(ry,2), (18)

199 150 = { b2plTx(N)| 1), (13)

where ¢, and ¢, are the hydrogen 2 and 1s eigenfunc-

tions andTX(r) is the x component of the current density
operator. For a single quantum well of mo¢B), the current
density in the unit cell associated with the excitation of the
QW exciton is given as

is the solution of the equation

dz —
Equ2 G0 (z,z';q)=4m8(z—2'). (20

This form of radiative correction is convenient to take the
) background dielectric into account for modBl). We simply
lo,

(14) need to replaceG*P)(z,z’;q) with the appropriate one,
renormalizing the effect of the background dielectric, as
shown below.

B e — — . =~ A change necessary in applying the nonlocal framework
lo=— @J'eruvvko(r)[pxuc,ko(r)]' (19 in sec. Il to modelB) is the definition ofA, and the use of
the renormalized radiation Green'’s function in evaluating the
whereAqyy represents the amplitude of the exciton relativeradiative correction. This can be seen from the following
motion atrg =ry in the lateral direction, normalized by the argument. Since we consider only the=0 state in each
same quantity in the absence of the exciton effecis the ~QW, the Maxwell equations are reduced to the one-
volume of the crystal unit cell, s?(nrz/LQW) represents the dimensional equation as
envelope functions of the electron and hole for the lowest

2a Tz
M) ()= S0l 12
1531 AQWLQWsmz( Cow

guantized states is the size of the crystal unit cell in the d? ) A )
normal direction of QWL oy is the thickness of a QW, and 7+q {1+4mx,0p(2)} |A(Z,0) =~ < W(z0),
Uj k, is the periodic part of the Bloch function of thith band (21)

at the band edge. We tredgy as a parameter to describe the

intensity of the exciton transitiofsee Eq.(29)]. In terms of

these expressions of the current density, we can give the J(X)(Z,w)zf dz' xM(z2,2';0) A7, 0), (22
analytic expressions of the current densities.

For the evaluation of4 4, for models(A) and (B), it 1 N |f,x())x(kuzo,zﬂ|(,X>zo(kH:0’Z')

will be more appropriate, rather than to use the general ex- Y (z,2;w)= — 2 ,
pressiong2) or (5), to employ the following expression with CSi=1 Eow—fw—i0"
explicit consideration of the translational symmetry in the (23

lateral direction. The radiative correction is nonzero only
among the excitation$u— v,0— 7} with the same lateral

wave vectoﬂ?u, and it has the expression as

where Eqyy is the energy of the QW excitor, the layer
number, andl |(,Xx)o the x component of the current density
accompanying the excitation on thi layer. The step func-
tion Op(2) is 1 (0) inside (outsidg the QW's. The effect of
Ay ro=2 By rolK+Gy,o), (16)  G#0 terms ony") is neglected. The vector potentiay is

G the solution of Eq(21) in the absence of the resonant current
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density J®(z,»), but in the presence of the background This quantity Aoy is treated as a parameter to fit the imagi-

dielectric. Such a field acts on the resonant current density
the “incident” field.
The analytic expression of the radiative correction for th

x-polarized matter excitation witﬁH=0 is given as follows.
Between the different atomic layekrssm of model (A), we
have

eiq(zl ~Zm)

;‘I(pr,ls),m(ls,ZpX) =i WﬂapWa (24

where thex axis is parallel to an edge of the square lattice,

and

~ 3
2-q21 02 =,
a =q 2ag
~ 2 [1\%V2hre|?
ap_czag B agm ’

with Bohr radiusag. The radiative shift and width of a
single atomic layerl(=m) are given as

ReA, (2p,.19).1(15.2p,)

~ 1 1 3
=—7mAy| =+ + + , 25
ap( % 2a°9° 8a°q* 16a7&2> @9
|m-f~4|(2px,1s),|(1s,2px): Wﬂapﬁ- (26)

The radiative correction of the-polarized QW exciton with

?”=0 is calculated in terms of the renormalized Green’s

function in the Appendix. Its explicit form for a single quan-
tum well (I=m) is

Ay = Aqul32i (€% — 1) + 161 5e?1aLe 2% (X~ 1)?
+ 327X — 2072 X3+ 3X5 {203 (— 42+ X?)},
(27)

[

— — q
X=dLow: d=0qVeé, O0==—,
q+1l

and between théth andmth QW’s (I<m) is

B ijlQWieia(Hm)Le—zix(eix_ 1)2(5+ eziaml_eix)
A —

- G~ 4+ X2)?

I,m ’

(28)

where

(29

e

Fary part of 4, ; to the experimentally observed radiative

width Iy,

Once we have evaluatef,, and :Zl#O,OV, we can solve
SX=F© for a given incident field, Eq.11), to obtainF ,o's,
from which the induced current density, €@), and then the
vector potential, Eq(10) are calculated. As physical quanti-
ties, we calculate the reflection amplitudes in both frequency

and time domains for variou, i.e., ry(w) andry(t), and
also the internal field strength as a function of frequency and
position.

The reflection amplitude in the frequency doma{w) is
obtained from Eq(10). When applied to the modéh) for
x-polarized normally incident light of frequenay, Eq. (9)
gives the vector potentiak(component as

5 [

1

A (2)=Aye' 9%+
X 0 2 72c2 /Noz_jzo

Xeikz(Z’Z')Tff&(kuzo,kz) Fi o
k2—(q+i07)?  Eppis—fiw—i0"’
(30)
whereF ,, the solution of Eq(10), with F{%}, defined as
F{%o=VNFP T (o(kj=0a)Ao. (31)

The contribution off ®(G;#0k,) terms is neglected in Eq.
(28).

The reflection amplitude is the ratidw)=A,/A, in the
regionz<Z,. The integral in Eq(30) can be evaluated by
choosing the appropriate contour in the complexplane.
For z—Z7;<0, which is the region to define the reflection
amplitude, the contribution of the polk,=—q—i0" is
taken into account.

The response field of the multiple QW'’s for normal inci-
dence of light is described in terms of the 1D renormalized
Green'’s function, EqS/A2) and (A3), as

1 ~
Al2)=Rox(2) + _2J dz'Gy(z,2')3%(2',0) (32
c

1 ~
:AO,X(Z)+ WJ dz GS(Z,Z )

II,OX(k”: O,Z,)F|

; (33
T’ Eqw—E—i0"

whereA, is the amplitude of the vector potential induced
by the fieldA;(z, w) incident on a semi-infinitezZ>0) back-
ground medium,

Ag(2)=Ae'9—A e 192

(z<0), (34)

i ei Jepaz

2
Ay(z)= o (z>0). (35)

€p
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The variabled=, are solutions of the coupled equatioii®)
for this model, where(®) has a similar form as Eq31)
with an appropriate change due to E¢34) and (35). The
strength of the response field is defined Ag(z)/A;|?. For

z<0, it is the reflectivity, and for>0, it gives the internal 038}
field, as will be discussed later. The term w2z’ | depen- ;‘
dence inGg(z,z') plays a crucial role in determining the E
peculiar form of the internal field. go6r

The reflection amplitude depends on the number of layers&=
N. ForN=1 we get an analytic expression in the absence ofpz
nonradiative damping¥=0) for model(A) as

04}

- ~iTo
rl(ﬁ))_ Ezpyls_ﬁa)_Ao_irol

(36) 02

0002 0 0002 0004 0006
o — Eqy (V)

0.006 -0.004

assuming that the thickness of the single layer is thin enough
wherel’y and — A, are the radiative width and shift, respec-
tivily, of a single layer in the case ¢f=0. If the » depen-
dence ofl'y and A, is negligible, Eq.(36) gives a simple
Lorentzian curve for the reflectivityr;(w)|?, the peak of
which occurs aE,, 15— A (A<<0) with a half width at half
maximum(HWHM) of I’y (>0).

For largerN, we generally need a numerical calculation to
obtain ry(w). However, if thew dependence ofd(w) is
negligible, i.e., if we can replacel(w) with A(Ezp1s/%),
one can analytically solve the coupled equationXpg, in
general and obtain

()

10

ty

ivi

o
th

e e

£,

Reflect

TSR
AN

Ezp’ls_ﬁw_AO_iNFO.

0
-0.01

r(w)=

(37) 0.01
This is the same result as that by IvchedRé® Though it
describes th&\-linear growth of the SR mode analytically, its
endless growth is unacceptable as mentioned in detail in the
Introduction. An essentially same argument holds for model o i )
(B) if the background dielectric is assumed to be, not semi- Since the radiative width is related to the decay of the
infinite, but infinite, which is the case treated by Ivchenko. Matter excitation, we have also calculated the temporal re-
Proper consideration of the dependence of the radiative SPonse of thé\-layer system y(t) for an incident Gaussian
correction leads to the reflectivity with reasonabhe  Pulse covering the resonant region,
dependencé The reflectivity spectra for modelB) are
shown in Fig. 2 fota) N=2-100, andb) N=100-500. For
the numerical calculation, we takBqg,=1.5152 eV, ¢,
=12.6, and =0.026 meV. The width of a quantum well is

FIG. 2. Reflectivity of Bragg-arrangetl QW's. (a) For N
2-100, (b) for N=100-500.

2
IN(t)=jdwrN(w)e‘i“’te‘(‘”_”O)z"’z . (39

assumed to begy=8 nm. Due to the interference with the < 0.16
light reflected by the background, the resonant part is slightly & 44 |
. . . . < :
deformed from Lorentzian shape in FigaR For largerN in £ i
Fig. 2(b), the resonant part is obviously different from 2 0.12
Lorentzian shape, but approaches “silk-hat” shape, whichis § 0.1 f
typical for a photonic gap. Since the resonant levels of dif- 3 ¢ |
. . . E *
ferent QW’s are electronically isolated, this spectral evolu- & 0.06 |
tion is entirely caused by the and N dependences of the B
radiative correction, which becomes more and more impor- E 0.04 |
tant asN gets larger. The spectral widtHWHM) extracted % 0.02 |
from the calculated spectrum is plotted as a functiom 0
Figs. 3 and 4 for modelgA) and (B). For smallN, the 0 10 20 30 40 50 60 70 80 90 100

N-linear dependence of the radiative broadening is seen and

it starts to be saturated fo¢~40 for model(A) and forN
~250 for model(B).

085338
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0.0025 — T slower decay for largeN, in addition to the appearance of
s ) S oscillations. The oscillation period reflects the width of the
f 0.002} X silk-hat in the reflectance spectrum. Essentially same behav-
g < ior is obtained for modeglA), too. From theN dependence of
& the reflectivity inw andt domains, we may conclude that the
§ 0.0015 ] SR mode begins to lose its meaning whernbecomes so
é’ large that the reflectivity spectrum begins to be distorted
2 0001f vl . from a Lorentzian shape.
© X

X
2 00005k X ] IV. DISPERSION EQUATION FOR RESONANT
= xxx PHOTONIC CRYSTALS
0.0 Applying the SS mode condition d&=0 to an arbitrary

0 50 100 150 200 250 300 350 400 450 3500 . : e
N 3D crystal with various resonant excitations, one of the
present authors derived a general dispersion equation of the
FIG. 4. The radiative width for modéeB). EM field in such a mediurf® Especially, the equation was
put in a form directly comparable with the scheme of x-ray
In Fig. 5, we plot the time dependence of the reflected inteneynamical scattering: Though this result can be applicable
sity in logarithmic scalglog;gl y(t)] for (&) N=2—100 and to the present problem, we will give a simpler argument here.
(b) N=100—500. In Fig. 8a), except for the initial part due If we consider a periodic matter system with a single reso-
to the quick response of the background dielectric, we seaant level in each unit cell, the eigenstate is characterized by
the linear decay behavior, which shows thdinear growth  the wave vector of the lattice, and for each wave vector there
of the radiative decay rate. Fdr=200, Fig. 8b) shows the is only one eigenstatgThe present system of thi=oo
Bragg reflector is an example of such matter systgfitsen,
(a) detg is factorized into the product of 11 matrices for
0 - - - " " eachk. Thus, the dispersion equation for a givielis

0=E—fiw+ Ay al o), (39)

wherefélko,q((w) is the radiative correction calculated for the
resonant level with the wave vecthr

According to the Fourier representation of the radiative
correction(5), we need to calculate the Fourier transform of
the induced current density of the matter excitation. For the

excitation characterized by the wave veclgrthe Fourier
component of its current density is given as

Te(k) = VNo8c_ ] O (k), (40)

wherej (k) is the Fourier component of the lattice periodic
part of the current density ar@is a reciprocal lattice vector.
The number of the lattice pointdl,, is put—< at the last
stage of the calculation. The two Kronecker delta’s appearing
in the expression of the radiative correcti¢m are rewritten

as

8md _
6ffka§E7ka’:5G,G’_QNO o(k—k—G) (41)

in terms of a delta function and the volunie of the unit
cell. This allows us to rewrite the radiative correction as

4 |S(k+G)|?

. . . . . 0c? G (k+G)2—(q+i0%)?’

00 10 20 30 40 50 60 70  whereS(k) is the transverse componerntK) of the current
t(ps) density] ©(K).

FIG. 5. Time-resolved reflection dynamics for a Gaussian pulse Inserting this form 0fC§1~|A into Eq. (39), we obtain the
of light on the periodic structures containingQW's. =3 meV.  dispersion equation of this periodic system. This dispersion
(@ For N=2~-100, (b) for N=100~-500. equation is valid for any dimension, as long as the number of

Aoadw)=— (42)

085338-8



FATE OF THE SUPERRADIANT MODE IN A RESONAN . ..

e:solution

FIG. 6. Graphic solution of the dispersion equation for a given

k. The crossing points of the curves and the straight line gives th
eigenfrequencies.

the resonant level is 1. For the lattice of modAl as an

example of a 1D resonant Bragg reflector, which has largely

PHYSICAL REVIEW B 66, 085338 (2002

e

02 04 06 08 1

k ()

®

h(t)o n A(()ZD)

different lattice constants in the lateral and normal directions
(b<d), we may consider only those reciprocal lattice vec-
tors in the normal direction in order to discuss the dispersion

curves near the lowest-gap region. Thus we heﬁ(?”
=0k) and G=(G;=0,4), whereg=g,=2l=/d (1=0,£1,

+2,+£3,...). Thek dependence of the resonant energy,

E(k), is negligible, so that we pUE(k) =% wy. The Bragg
conditiond=Ay/2 is rewritten asl= mc/wg Or g1/2=wqy/C
(= the boundary of the first Brillouin zone

Denotingwy/c asqg, we obtain the dispersion equation
of the resonant photonic crystal as

1S(0)]2
ic(do—a)= ——— + >, [S(2lqo)|?
k“—q =1
1 1
+ .
(k+21g9)?—q?  (k—2lgg)?—q?

(43

The solutiong=q(k) of this equation gives the dispersion
relation of the EM wave in this resonant photonic crystal.

The form of this equation allows us to solve it graphically as

shown in Fig. 6, where the right- and left-hand sides of Eq
(43) are drawn as functions @f{ = w/c) in the neighborhood
of the lowest photonic gap. The crossing poifgslid circle
are the solutions with readt and . Obviously, there are
three real roots in this frequency region. The gap mode has
very weak dispersion, and its frequency is slightly abaeye
For the lattice of the two-level atoms ¢22p transition of
hydrogen atoms we derive the Fourier coefficients

J2he
{ 3

4 2

S-loC3

1

S(2lqo) =

2 2
+ad(k+21gg)?

agm
2

(44)
with 1=0,+1,+2, ..., Qu=b2d.

ho,
02

04 o6 08 1
k (7

FIG. 7. (a) Dispersion curves obtained from the method of Fig.
6. (b) The gap mode dispersion in an enlarged scale.

Solving Eq. (43) numerically, we obtain the dispersion
curves near the lowest photonic gap as in Fig. 7, which is in
contrast with the result derived from E¢) for y=0 and
d=m/qy. Namely, the gap mode with very flat dispersion
appears in the present treatment, while it is missing in the
dispersion based on E¢l). The gap mode has a very weak
dispersion and its frequency range is betwegnand wg
+|Aq|, wherefi|A,| is the radiative shift of the single-layer
excitation withkj=0. Since the present method takes com-

plete account of radiative interaction, the difference was be-

lieved to be due to the incompleteness of Bg. The reason
has turned odf to be due to the neglect of the radiative shift
term in the denominator of Eql) in discussing the form of
the dispersion curve by the authors of the litereaffir,
though its presence was formally noted by IvcheHkd.
Adding a radiative shift term in the denominator of Ed)),
we could numerically reproduce a very similar gap mode
branch. However, in view of our recent result mentioned in
the IntroductioR® that Ivchenko’s scheme and ours are ana-
lytically equivalent only in the limit of thin layers, we will
need a further study to clarify the equivalence with respect to
the photonic band dispersion.

The magnitude of the photonic band gap is equal to
Egap=2V2fiwgl'o/7r, which is also the case for the disper-
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1.0

-t N=10

2 |
2
Dos
]
&=
]
(a4

00

0.3 } } ) . 03
1.0

FIG. 9. The o dependence of IMN{w) for N
=2,5,10,20,30,40,50,80. Crosses on each curvecgsefor A w

=Eo*+ImAs(Eo/h).

Reflectivity
o

00 is reproduced, but the width of the silk-hat is smaller than the
o2 02 ot 93 corresponding curve in Fig. 2, and it tends to be zerdNas
—o0, This means that the states which form the photonic gap
. are not simply made of the SR mode. We need the contribu-
‘E tion of other states with,# 7r/d to realize the full photonic
‘= gap. Thus, in the photonic band regirflarge N), all the
8 0.5 excited states of the Bragg reflector are rearranged to form
= photonic band states above and below the photonic gap, and
&) the states contributing to the gap mode.
The reflectivity in this case is written as
%3 03 T 2
1o rdR(w)[2= NFo | (45)

Eo—fiw+ AN (w)|

 N=200

so that the spectral evolution is solely described by the ra-

diative correctiond{}(w). The w andN dependence of this

quantity is shown in Fig. 9. The crosses in Fig. 9 represent

hw's for hw=Ey*+ImAs(Eo/#). If a curve is flat enough

; : between the two crosses, thedependence afisy w) may

Ao L A ] be negligible. This is the explicit demonstration of our main
02 03  conclusion that than dependence ofAY) determines the

-02 -0.1 o 0.1
ho —E, (eV) two regimes. Namely, for smalN the » dependence is neg-
iqi AN () ~ AMN) — _j Q@) .
FIG. 8. Comparison of reflectivity spectra. Dashes lines are duclelglble E;]nd fASR(a.’) AfSRkEwO)R 'Ndlm[;:‘tSR(lwo)], :]ead
to the SR mode alone. Solid lines contain the effect of all modes.'"Y to the or_matlt_)n _O the S mo_ e. For large the w .
dependence is quite important, which leads to the photonic

band regime.

Reflectivity
o

e
, O
)
W

sion relation derived from Eq3).%° This value agrees well
with the width of the silk-hat in the calculated reflectivity

spectrum for large\. B. Evidence of a gap mode
In Sec. IV we have derived a gap mode in the photonic
V. DISCUSSION AND SUMMARY band structure of a resonant Bragg reflector. The gap mode

should manifest itself in appropriate measurements. For ex-
ample, the reflectance spectrum of a photonic crystal should
Among the various excited states of the atomic layers, théave a dip in the spectral range of total reflection, in view of
SR mode is the linear combination of single-layer excitationghe real k,o) dispersion of the gap mode allowing the
with alternating sign from layer to layer, i.e., the state with propagation of EM waves in this narrow frequancy range.
k,=/d. If we neglect all other states in calculating the Evidence of the gap mode can be seen in the nonlocally
optical response, the reflectivity has the forms in Fig. 8 forcalculated reflectance spectra of finNesystems. Figure 10
variousN. The evolution from a Lorentzian to silk-hat shape shows such an example. If we expand the energy scale very

A. Contribution of the SR mode alone

085338-10
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d
3)

1 internal field patterns for these particular frequencies. It is
remarkable that they have standing-wave patterns. For fre-
quencies outside the sharp dips, the internal field has a
simple evanescent pattern, reflecting the total reflection
range. Since the calculations of the reflectance spectrum and
internal field patterns are made independently from that of
the photonic band dispersion, the emergence of the sharp
dips and their standing-wave character strongly supports the
existence of the propagating mode in the photonic gap.

0998 1

ity

0.996

0y 2

0994 1

Reflectiv

0992 r

C. Upper limit of the speedup effect

0.99
We have studied the behavior of 1D resonant Bragg re-

flectors as a function of the layer numidérOur results show
that the concept of the SR mode and/or speedup effect, char-
FIG. 10. Evidence of the size-quantized gap modes Nor acterizing the peculiarity of the system for smhl| has a
=101. For anyN(=2), there occur such fine dips in the region of validity limit. The limit can be obtained from the detailed
total reflection. study of A0 (w) as in Fig. 9, but a simple criterion will be
that NI'y should be much smaller than half a photonic gap,
much, we can find very narrow dips on the top pddtal i.e., Eq,/2I'¢>N. In this range ofN, the reflectivity spec-
reflection ranggof the Lorentzian or silk-hat-shaped reflec- trum has a Lorentzian shape with its widdily, and the
tance curves for finiteN. They are, so to speak, the size- decay rate of the reflectivity for an incident Gaussian pulse is
guantized levels of the gap mode or, in other word, the verNI'y/%. The criterion mentioned above is expected to be
weakly optically active non-SR modes of the system buriecapplicable to any resonant Bragg reflectors. Namely, if one

60 7.0 8.0 9.0

ho —E, (neV)

40 50

in the middle of the broad SR mode or developing photonioneasures thbl dependence of reflectivity, its radiative width
gap. Since there are one SR mode aNd-(L) non-SR mode
in a smallN system, the number of such narrow dis ¥ (
—1). In the limit of a photonic crystalN=1), such dips
should merge into a broader dib.
More positive evidence for the gap mode with ré&ais
obtained by calculating the internal field for the frequenciesand (B), respectively. The valu&l.=50 is consistent with
of the very sharp dips mentioned above. Figure 11 shows thiae |r()|? in Ref. 19 or Fig. 3; i.e., the linear growth starts

or the speedup effect of the radiative decay rate begins to be
saturated wherN becomes an appreciable fraction N
= Egap/ZI‘O.

We have estimatedl. for the two models in this paper.
The values ofN, turn out to be 50 and 190 for mod€l8)

%gxzﬁum%”%g“m

FIG. 11. Internal field patterns at the energies of the sharp dips in Fig. 10
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to be saturated @i~ 30 for model(A). The valueN.=190  Ministry of Education, Culture, Sports, Science and Technol-
is consistent with the experiment by bher et al.? where  ogy of Japan.

N-linear growth of the radiative width is confirmed for

samples ofN<100. Their samples belong to the SR mode APPENDIX: RENORMALIZED RADIATION GREEN'S
regime. One needs to use samples wWith-190 to see the FUNCTION

effects of the photonic band regime in this system of multiple  Here we present the explicit form of the renormalized
QW's. The case of’FeBQ; crystal needs an additional con- radiation Green’s function for a semi-infinite medium with
sideration, becaus@) the resonance is not electric dipole dielectric constané,(=1+4my,,). For the normal incidence
type and(ii) the resonant wavelength is smaller than the(||z axis) of a polarized light along th& axis, we only need
lattice constant. Though the upper limit of speedup certainlyto consider thex component of the current densit}¥(z),

exists in this case too, the estimatelgf for a single layer  which depends only om The renormalized Green’s function
needs extra work, which will be published elsewhere. for k=0 is the solution of the equation

D. Conclusion dZGS(Z,Z’)

+0¥{1+47x,0(2))Gu(2,2')=—47wd(z—2'),
In conclusion, we have studied the evolution of the super-  dZz ot mXb0(2)]G(2.2') ol )

radiant mode as a function of si2¢ applying the micro- (A1)

scopic nonlocal t_he_ory, W_hiCh take_s explicit gccou_nt Qf the\Nhere the medium specified by, fills the spacez=0, i.e.,

w-dependent radiative shift and width from first principles,

to the two models of resonant Bragg reflectors. Ratom- 1 (z=0),

parable to or larger thaBy,/2I'y, the w dependence of the 0(2)= 0 (z<0).

radiative width becomes important, invalidating the concept ) ) S . )

of the SR mode and leading to the deformation of the LorentAssuming the source plane in the semi-infinite medium, i.e.,

zian spectrum and the temporal response withNHmear 2’ >0, we obtain the solution of EqAl) as

decay constant. A consistent picture has been provided for .

the evolution from the SR mode regime to the photonic band Gd(2,2')= jieiq_z'e’iqz (z

regime. We have derived the photonic band dispersion for g+q

N—o, y=0, andd= #/qy, which, in contrast to the exist-

ing literature, contains a flat gap mode just abaxg Evi- 217i —, = =

dence of the gap mode has been discussed as very sharp dips  Gs(2.2)= —=[8€'97 €%+ 21]  (z<0), (A3)

in the reflectivity spectrum and their standing-wave patterns q

of internal field. where q=q+/e, and 5=(q—q)/(q+q). In terms of this
G(z,2'), the solution of Eq(21) is given as

=0), (A2)
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