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Fate of the superradiant mode in a resonant Bragg reflector

Tomoe Ikawa* and Kikuo Cho†
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~Received 23 October 2001; revised manuscript received 07 March 2002; published 30 August 2002!

Based on the first-principles theory of radiative correction, it is demonstrated that the well-known superra-
diant ~SR! mode in a resonant Bragg reflector consisting ofN layers loses its meaning when the frequency
dependence of its radiative width becomes no longer negligible within its spectral width in the course of
increasingN. Beyond this range ofN, it evolves, together with a part of subradiant modes, into the states
forming the light-reflecting photonic gap. On the other hand, the rest of the subradiant modes form very narrow
light-transmitting modes in the gap region. This conclusion is reached by calculating theN dependence of the
reflectance in frequency and time domains with the explicit consideration of a frequency-dependent radiative
shift and width. The intrinsic limit of the speedup effect of the radiative decay of the SR mode is given for
various cases.
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I. INTRODUCTION

The radiation-matter interaction is generally enhanced
a resonant condition where the light frequency is in re
nance with an excitation energy of the matter. For an arra
Nr units of a resonant matter in a space smaller than
resonant wavelength, there is an additional enhanceme
the coupling with light for a mode which almost monop
lizes the coupling strength. Such a mode is possible fo
one-dimensional~1D! chain and a 2D plane and called ‘‘su
perradiant’’~SR!.1–3 The oscillator strength of this mode
propotional toNr , as long as the linear extension of the arr
is smaller than the resonant wavelength. For a chain o
plane with infinite extension, there is a group of radiati
modes which arises from the saturated SR mode. The ra
tive modes have lateral wave numberki<v/c, and, on av-
erage, each one of them has the coupling strength with l
(l r/2b)D times that of a single resonant unit. Here,b is the
lattice constant of the arrays~chain or plane! andD51 and
2 for the chain and plane, respectively. This enhanced c
pling strength corresponds to the saturation value of the
mode as one increases the size ofNr beyond the resonan
wavelength.3

There is a different way to enhance the radiation-ma
interaction. Namely, let us consider a set of identicalN
planes, each of which contains radiative modes~saturated SR
modes! as mentioned above, and make an equidistant
array of them with lattice period5l r/2, which is a Bragg
condition for resonant light. This kind of system is called
resonant Bragg reflector, where a further increase in the c
pling strength occurs for a special combination of ‘‘satura
SR modes.’’ Noting that a saturated SR mode is already
hanced by the factorFsat5(l r/2b)2, we might better call the
new combination of the saturated SR modes~for N>2)
something like the ‘‘super SR’’ mode. This naming will mak
sense to stress that it is the consequence of the two inde
dent mechanisms of enhancement. However, we will use
terminology ‘‘SR mode’’ in the following, considering that
is widely used in the literature.

The observable feature of the enhanced interaction w
light is either the enhanced radiative decay rate of the exc
0163-1829/2002/66~8!/085338~13!/$20.00 66 0853
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level or the large radiative width in the frequency doma
The former was discovered in the nuclear Bragg reflection
a speedup effect of the decay rate of the excited57Fe in
enriched FeBO3 by using synchrotron radiation for Mo¨ss-
bauer spectroscopy.4 Later the experiments on multiple~N!
quantum wells~QW’s! showed the enhanced decay rate
superradiance by the factor ofN in the time domain5,6 or the
N-linear broadening of reflectance spectrum in the freque
domain.7–9

Theoretical studies showed that, in multiple-quantum-w
systems, strong light-induced interwell coupling occurs wh
the QW’s are arranged with a spacing which satisfies
Bragg condition.10,11 The enhancement factor for the S
mode was studied by Ivchenkoet al. for a system ofN QW’s
~Ref. 10! by means of the transfer matrix method. The r
flection amplitude for frequencyv was shown to ber N(v)
52 iNG0 /@\v02\v2 i (G1NG0)#, where G0 and G are
the radiative and nonradiative widths, respectively, of
single QW. This expression shows that the whole syst
looks like a single oscillator with the radiative widthNG0.
Namely, the SR mode completely monopolizes the coupl
with the radiation field. All the other modes have no coupli
with light.

In the case of a QW system, we can experimentally stu
the dependence of the radiative width~or decay rate! on the
size of the system, i.e., the numberN of QW’s forming the
Bragg reflector. The theory by Ivchenkoet al. indicates that
the radiative width of the superradiant mode increases
early with N without limit. Though the linear increase in th
small-N region is reasonable, the absence of the growth li
is of course unphysical, because an excited state of a m
with infinite radiative width would mean an indefinite lev
position. Moreover, the system with infinitely largeN would
correspond to a photonic crystal with the photonic gap at
very position of the resonant level, where a mode with
infinitely large radiative width cannot be located. Though t
model with a single resonance treated by Ivchenkoet al. is
very much simplified, the consistency of quantum mechan
should lead to a more reasonable result about theN depen-
dence. In spite of the strong interest in QW systems in rec
publications, no work has clarified the fate of the superra
©2002 The American Physical Society38-1
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ant mode as one increasesN, and a consistent picture of thi
evolution with photonic band formation has not been o
tained. The purpose of this paper is to examine this v
fundamental point of the problem, though the current inter
in the study of QW systems seems to be attracted to
effects of inhomogeneity.12–14.

The specific feature of the present study is that we ca
late the radiative correction of the superradiant mode dire
from first principles as a function of frequency. The expli
definition and evaluation of the radiative correction is a c
tral point of the nonlocal theory of optical response,15 which
is applicable to arbitrary systems from an atom to bulk m
terials. This scheme is a generalization of the one for s
geometry16 to arbitary systems of size and shape, and
been applied to studies of the size dependence of the op
response of mesoscopic systems beyond the long-wavele
approximation.3,17,18Similar schemes to describe the optic
response in terms of the radiative correction were adop
later by Andreaniet al.20 and Citrin21 for the study of
single-QW systems. The radiative self-energy used by Ci
for a QW system is a special case of the radiative correc
term given below.

In the scheme of the nonlocal response,15 the finite exten-
sion of the matter wave functions, being the source of n
locality, is explicitly taken into account, and the respon
field and the induced polarization are determined s
consistently for a given initial condition of matter and rad
tion. In doing so, the interaction among the components
induced polarization via a transverse electromagnetic~EM!
field is explicitly taken into account. This is the retard
interaction, or radiative correction, among the induced po
izations, through which the matter excitation energies
quire radiative shifts and widths in optical response spec
The radiative correction in this framework is defined in
straightforward way. Namely, it is the interaction energy b
tween the components of the induced current density~or po-
larization! via a transverse~i.e., vacuum! EM field. Because
the interaction is mediated by photons, it isfrequency depen
dentby definition.

Usually, the radiative correction is a small effect, so th
its frequency dependence is safely neglected, which all
us to assign its real and imaginary parts to the radiative s
and width, respectively, of the relevant transition ener
However, a resonant Bragg reflector with arbitrary sizeN is
an exceptionaloptical medium, in the sense that it contai
an automatic mechanism to break the frequency indep
dence of the radiative correction. Namely, the radiative c
rection grows so much withN that its frequency dependenc
can eventually no longer be negligible within its spect
width. Though the frequency dependence of the radia
correction may be encountered in various other problems
present example will be a most dramatic one. This is
reason why we concentrate our discussion on this partic
example. The importance of the frequency dependence
noted in our previous study of resonant Bragg reflector22

and this paper gives a full description of this subject. A br
report of this work was given in a conference proceeding23

If one considers the frequency dependence in the tran
matrix method correctly, the calculated reflectance cu
08533
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with a Lorentzian shape for smallN ~SR mode behavior!
evolves into a silk-hat shape~photonic band behavior! asN
increases. However, this does not mean that the phys
meaning of the evolution is understood. This is because
transfer matrix method is just a mathematical tool applica
to many different physical problems. On the other hand,
scheme of the microscopic nonlocal response describes
cal processes in terms of the quantities with clear phys
meaning such as resonant energies, current density, radi
shift and width, etc. This allows us an appropriate interp
tation of the spectral evolution from the SR mode to pho
nic band behavior as due to the fact that the frequency
pendence of the radiative correction, negligible for smallN,
becomes too large to be neglected asN gets larger. The two
approaches give the same spectral behavior, but the phy
meaning is more easily obtained by one of them. On
other hand, we can compare the two schemes, not num
cally, but analytically. Starting from the solution of a singl
layer problem in the nonlocal scheme to fix the elements
the transfer matrix, we try to rewrite the field equations
the transfer matrix method for theN-layer problem into those
of the nonlocal scheme. We have been able to demons
the analytical equivalence in this manner. But the trans
matrix elements we obtained are somewhat different fr
those of Ivchenkoet al.10 The difference is negligible if the
thickness of the resonant layer is much less than the reso
wavelength. This result will be published elsewhere.24

In terms of the frequency dependence of the radiative c
rection, we can establish a consistent picture of ‘‘the evo
tion from the SR mode for smallN to the photonic gap for
large N’’ within a single theoretical framework. The evolu
tion appears in the reflectivity spectrum as that from
Lorentzian to a silk-hat form and also in the temporal dec
of the reflected light for a short-pulse incidence. The expl
evaluation of the radiative correction for the SR mode sho
the importance of the frequency dependence beyond a ce
range ofN, where the optical response is no longer rep
sented solely by the SR mode. It should be noted that
spite of the drastic spectral evolution, the strongly ligh
reflecting character of the system is kept preserved, indi
ing the strong coupling of the Bragg arrangement of the re
nant levels. On the other hand, a tiny left over of t
monopolized radiation-matter coupling due to the SR mo
is distributed among the non radiant modes. These mo
show themselves in the reflectance spectrum as very
dips in the total reflection range for a finite-N system. This
group of levels evolves into the gap mode branch in the li
of the photonic crystal (N5`).

The criterion for the existence of the SR mode is t
negligibility of the frequency dependence of the radiati
correction of this mode. The dependence will be shown
plicitly, but a rough criterion for the linear growth of th
radiative width of the SR mode will be that the width
much less than the photonic gapEgap. This criterion will be
tested later for some model systems with reasonable suc

This evolution requires a corresponding change in
concept of the coupled modes of a radiation-matter syst
When the radiative correction is frequency independent,
coupled modes are the modified matter excitations corre
8-2
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FATE OF THE SUPERRADIANT MODE IN A RESONANT . . . PHYSICAL REVIEW B 66, 085338 ~2002!
with a certain radiative width and shift. As for the number
the degrees of freedom, only those of the matter excitati
are relevant as coupled modes. When the frequency de
dence of the radiative correction is important, however,
radiation degrees of freedom become also important in
scribing the eigenmodes of the coupled radiation-matter
tem. This is typically exemplified by the eigenmodes of t
N→` limit of a resonant Bragg reflector, where the eige
modes are the photonic band states.25–27

In connection with the fate of the SR mode for increas
N, there is an additional problem about the photonic ba
dispersion for N→`: A commonly accepted dispersio
equation in the literature,28–30 obtained from a Kronig-
Penny-type treatment, has the following form for the fr
quencyv and wave numberk:

coskd5cosqd2G0

sinqd

v02v2 ig
, ~1!

whereq5v/c, v0 is the resonant frequency,g the nonradi-
ative decay constant, andG0 the radiative width of a single
QW. In the neighborhood of the lowest photonic gap, t
equation has three branches in general, which contain a
band representing the resonant levels. At the exact Br
conditionv05pc/d and for vanishingg, however, the reso
nant~gap! mode arising from the energy denominator disa
pears. This is because sinqd/(v02v)5sin@p(v02v)/v0#/(v0
2v) does not contain resonant character any more. This
sult is not physically reasonable, because the nonradia
damping may affect the form but not thenumberof disper-
sion curves. Namely, the gap mode should exist even in
idealized situation of vanishing nonradiative damping. Th
the question is why the above equation leads to such a re
and how one can obtain more reasonable dispersion cur

Here also the nonlocal framework works well as an a
propriate tool. Applying it to an arbitrary periodic system, w
obtain a dispersion equation of the coupled radiation-ma
system from the condition for the existence of a nontriv
solution in the absence of an external field. This is a gen
alized polariton dispersion equation including the effect
Bragg scattering,25 or it is an advanced version of the x-ra
dynamical scattering scheme31 including the effect of reso-
nant levels. Using this scheme for the 1D resonant Br
reflector with a single resonant level, we obtain a sim
dispersion equation for the photonic bands. This equa
leads to the three branch dispersion curves in the lowest
region.32 Two of them are the usual branches of photo
bands on both sides of the gap, and the very flat third bra
in the gap is the mode due to the resonant levels of
matter. All of them have real wave number for real fr
quency. As evidence of this mode, we have found a serie
ultrasharp dips in the total reflection range of the reflecta
spectrum of finite-N systems. The positions of these dips
within the dispersion of the gap mode, and the induced
ternal fields at these frequencies have standing-wave
terns, reflecting the propagating wave nature of the
mode.
08533
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II. RADIATIVE WIDTH AND SHIFT

First of all, let us define the matter and EM field precise
We take the Coulomb gauge and include the full Coulo
interaction among the charged particles in the matter Ham
tonian, leaving only the transverse modes as the radia
field.

According to the nonlocal response theory, the matte
represented by various components of the induced cur
density, interacting with the vector potential of the EM fiel
Each component of the current density is an electric osc
tor with its specific spatial extension. Its eigenfrequency c
responds to a transition energy of the matter system, wh
may contain a nonradiative width. When these oscillat
interact with the EM field, they undergo forced oscillation
This produces an additional radiation field, which further
teracts with the oscillators, and so on. In this way, the os
lators interact with one another via the radiation fie
through which their eigenfrequencies get shifted and bro
ened.

The radiative correction is the interaction among the co
ponents of the induced current density~or polarization! via
the transverse EM field. Its matrix element between the t
components of the current density associated with the t
sitionsm→n ands→t is given as

Ãmn,ts~v!52
1

cE drI mn~r!•Ats~r,v!, ~2!

whereAts(r,v) is the vector potential atr produced by the
~source! curent densityI ts via the EM field with frequency
v. This induced field is obtained from the Maxwell equatio
as

Ats~r,v!5
1

cE dr8G̃q~r,r8;v!•I ts~r8! S q5
v

c D . ~3!

The transverse EM Green’s functionG̃q is given in Fourier
representation as

G̃q~r,r8,v!5
1

2p2E dk
eik•(r2r8)

k22~q1 i01!2
~12êkêk!, ~4!

where êk is the unit vector in the direction ofk. Thus the
radiative correction can be written as

Ãmn,ts~v!52
1

2p2c2E dk
1

k22~q1 i01!2

3 Ĩmn~2k!•~12êkêk!• Ĩ ts~k!, ~5!

where

Ĩ ts~k!5E dr e2 ik•rI ts~r!. ~6!

For each given model, we only need to evaluate the cur
density and carry out the integration.

In the framework of nonlocal response theory, the rad
tive correctionÃmn,ts plays an essential role in determinin
8-3



o
be
b
a
a

ls

s

to

-

de

to
he
en

o
f
at

of

tte
o
es
le

e
he

ra-

ex-

tral
be
nic

lcu-
SS

e
se

ec-

ith
f

re-

and
ing

l
es

s,
he
in

dic
a

or

TOMOE IKAWA AND KIKUO CHO PHYSICAL REVIEW B 66, 085338 ~2002!
the response of matter and field. The part of the framew
relevant to this work is the linear response of a small num
of resonant levels. The effect of nonresonant levels will
taken into account as background susceptibility, if necess
The resonant part of the induced current density is given

J~r,v!5
1

c (
n

8 gn~v!Fn0~v!I0n~r!, ~7!

where the summation overn is restricted to resonant leve
and the factor$gn% is defined as

gn5
1

En02\v2 i01
. ~8!

HereEn0 is thenth excitation energy of the matter from it
ground state. The factors

Fn0~v!5E drI n0~r!•A~r,v! ~9!

contain the vector potential to be determined. The vec
potential produced byJ(r,v) is calculated via Eq.~3! above
by replacingI ts(r8) by J(r8,v). In the Fourier representa
tion, we have

A~r,v!5A0~r,v!1
1

2p2c2E dk
gn~v!Fn0~v! Ĩ0n~2k!eik•r

k22~q1 i01!2
,

~10!

whereA0 represents the incident field. The equations to
termine$Fm0% self-consistently are15,17 ~Ref. 33!

Fm0
(0)5(

n
$~En02\v!dmn1Ãm0,0n%gnFn0 , ~11!

where Fm0
(0) is defined as Eq.~9! with A replaced with the

incident fieldA0. Equation~11! may be written in the form
of a matrix equation

SX5F(0), ~12!

whereXm5gmFm0 andS is the coefficient matrix.
Without the radiative correction, the solution is justFm0

5Fm0
(0) . Namely, all the oscillators respond independently

the incident EM field. The radiative correction terms mix t
oscillator states in such a way that they acquire differ
resonance energies and also radiative widths.

The radiative correction is a general measure of the c
pling strength.27 If it is small compared with the interval o
the matter excitation energies, as in atoms, we may tre
perturbationally. Namely, for each resonance atEn0 ,
Ãn0,0n(v) is replaced byÃn0,0n(v5En0 /\), the real and
imaginary parts of which give the radiative shift and width
the excitation energyEn0.

In mesoscopic systems, the energy separation of ma
excited states becomes small and can be comparable t
radiative shift or width, so that a careful treatment is nec
sary about the radiative correction. We should not neg
either the off-diagonal elements or thev dependence. The
08533
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case of a SR mode is rather extreme in the sense that thv

dependenc ofÃ can change the qualitative structure of t
problem as will be discussed below.

The eigenmodes of the system in the presence of the
diative corection are derived from the condition detuSu50.
Since these are nontrivial solutions in the absence of an
ternal field, we may call them self-sustaining~SS! modes.
This equation is quite useful to see the detailed spec
structure of any coupled radiation-matter system. It will
used later to derive the dispersion equation of the photo
crystal.

Though the above scheme can always be used for ca
lation of the optical response, the characterization of the
modes is strongly affected by thev dependence ofÃ. If one
can neglect thev dependence, we obtainN8 SS modes for a
set of N8 excited states of matter, because detuSu50 is a
polynomial equation of theN8th order. However, if thev
dependence ofÃ is important, detuSu50 is no longer a poly-
nomial equation of theN8th order. Then, the physical pictur
of its solution is no longer simple. This situation is the ca
in the evolution of the resonant Bragg reflector for largerN.

III. MODEL AND NUMERICAL CALCULATION

We consider two models of the 1D resonant Bragg refl
tor, i.e., the regular arrays in thez direction of ~A! N single
planes of H atoms and~B! N quantum wells, with lattice
constantd equal to one-half the resonant wavelengthl r ~Fig.
1!. The atomic plane is assumed to be a square lattice w
lattice constantb. Both b and the lateral lattice constant o
the QW are assumed to be much smaller thand. Then, the
Bragg scattering of near-resonant light involves only the
ciprocal lattice vectors in the normal~z! direction. The inci-
dent field is assumed to be normal to the atomic planes
QW’s. Then, we only need to consider states with vanish
lateral wave vector (ki50) for both matter and field.

Model ~A! is a fictitious one consisting of single two-leve
atoms, to which the framework of Sec. II directly appli
with the restriction of the level indices (0,n) to those of the
two-levels (1s and 2p). We neglect all nonresonant level
which may contribute to the background polarization. T
effect of background polarization is taken into account
model~B!, as well as the resonant polarization. The perio
array of QW’s is buried in a semi-infinite medium with

FIG. 1. Geometry of light reflection for the two models. F
model ~A!, «b51, d5l r /2.
8-4
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FATE OF THE SUPERRADIANT MODE IN A RESONANT . . . PHYSICAL REVIEW B 66, 085338 ~2002!
background dielectric constanteb . The difference of the
background dielectric constant between the QW and ba
region is neglected. The effect of the background dielec
on the resonant current density is taken into account b
renormalized radiation Green’s function~see the Appendix!
as mentioned below.

In order to apply the scheme in Sec. II to the pres
models, we need to evaluate the resonant energyEn0 and
radative correctionÃm0,0n for the matter excitation withki
50. Because of the large distance between neighboring
ers, the electronic interaction between the layers is sa
neglected. In model~A!, En05E2p,1s , i.e., is the 1s-2p ex-
citation energy corrected by the dipole-dipole interaction
ergy, and in model~B!, it is the lowest QW exciton energ
EQW allowed for the lateral polarization. For the evaluati
of the dipole-dipole interaction energy and the radiative c
rection, it is enough to have knowledge of the induced c
rent densities for the excitations of each model system.

The induced current density in the unit cell to be used
model ~A! is

I 2p,1s
(x) ~r!5^f2pu Î x~r!uf1s&, ~13!

wheref2p andf1s are the hydrogen 2p and 1s eigenfunc-
tions and Î x(r) is the x component of the current densit
operator. For a single quantum well of model~B!, the current
density in the unit cell associated with the excitation of t
QW exciton is given as

I x,0
(x)~r!5AQW

2a0

LQW
sin2S pz

LQW
D I 0 , ~14!

I 052
e

mV2EV
dr̄uv,k0

~ r̄!@pxuc,k0
* ~ r̄!#, ~15!

whereAQW represents the amplitude of the exciton relat
motion atrei5rhi in the lateral direction, normalized by th
same quantity in the absence of the exciton effect,V is the
volume of the crystal unit cell, sin2(pz/LQW) represents the
envelope functions of the electron and hole for the low
quantized states,a0 is the size of the crystal unit cell in th
normal direction of QW,LQW is the thickness of a QW, an
uj ,k0

is the periodic part of the Bloch function of thej th band

at the band edge. We treatAQW as a parameter to describe th
intensity of the exciton transition@see Eq.~29!#. In terms of
these expressions of the current density, we can give
analytic expressions of the current densities.

For the evaluation ofÃm0,0n for models~A! and ~B!, it
will be more appropriate, rather than to use the general
pressions~2! or ~5!, to employ the following expression with
explicit consideration of the translational symmetry in t
lateral direction. The radiative correction is nonzero on
among the excitations$m→n,s→t% with the same latera
wave vectork̄i , and it has the expression as

Ãmn,ts5(
Gi

Bmn,ts~ k̄i1Gi ,v!, ~16!
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Bmn,ts~ki ,v!5
21

c2s
E E dz dz8 G(1D)~z,z8;q̄!

3 Ĩmn~2ki ,z!•~12êkêk!• Ĩ ts~ki ,z8!,

~17!

with k5(ki ,q̄), s is the area of the lateral unit cell,Gi the
2D reciprocal lattice vector, andq̄5Aq22ki

2. ~For q2,ki
2 ,

the branch with Im@ q̄#.0 should be chosen.! The lateral
Fourier component of the current density is defined as

Ĩ ts~ki ,z!5E dri exp~2 iki•ri!I ts~ri ,z!, ~18!

and the one-dimensional radiation Green’s function

G(1D)~z,z8;q̄!5
22p i

q̄
exp~ i q̄uz2z8u! ~19!

is the solution of the equation

2S d2

dz2
1q̄2D G(1D)~z,z8;q̄!54pd~z2z8!. ~20!

This form of radiative correction is convenient to take t
background dielectric into account for model~B!. We simply
need to replaceG(1D)(z,z8;q̄) with the appropriate one
renormalizing the effect of the background dielectric,
shown below.

A change necessary in applying the nonlocal framew
in Sec. II to model~B! is the definition ofA0 and the use of
the renormalized radiation Green’s function in evaluating
radiative correction. This can be seen from the followi
argument. Since we consider only theki50 state in each
QW, the Maxwell equations are reduced to the on
dimensional equation as

F d2

dz2
1q2$114pxbQb~z!%GAx~z,v!52

4p

c
J(x)~z,v!,

~21!

J(x)~z,v!5E dz8x (1)~z,z8;v!Ax~z8,v!, ~22!

x (1)~z,z8;v!5
1

cs (
l 51

N I l ,0x
(x) ~ki50,z!I l ,x0

(x) ~ki50,z8!

EQW2\v2 i01
,

~23!

where EQW is the energy of the QW exciton,l the layer
number, andI l ,x0

(x) the x component of the current densit
accompanying the excitation on thel th layer. The step func-
tion Qb(z) is 1 ~0! inside ~outside! the QW’s. The effect of
GiÞ0 terms onx (1) is neglected. The vector potentialA0 is
the solution of Eq.~21! in the absence of the resonant curre
8-5
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density J(x)(z,v), but in the presence of the backgroun
dielectric. Such a field acts on the resonant current densit
the ‘‘incident’’ field.

The analytic expression of the radiative correction for
x-polarized matter excitation withk̄i50 is given as follows.
Between the different atomic layerslÞm of model ~A!, we
have

Ãl (2px,1s),m(1s,2px)5 ipÃap

eiq(Zl2Zm)

qq̃8
, ~24!

where thex axis is parallel to an edge of the square lattic
and

q̃25q21a2, a5
3

2aB
,

Ãap5
2

c2aB
8 S 1

bD 2SA2\e

aBm D 2

,

with Bohr radiusaB . The radiative shift and width of a
single atomic layer (l 5m) are given as

ReÃl (2px,1s),l (1s,2px)

52pÃapS 1

q̃8a
1

1

2a3q̃6
1

3

8a5q̃4
1

5

16a7q̃2D , ~25!

ImÃl (2px,1s),l (1s,2px)5pÃap

1

qq̃8
. ~26!

The radiative correction of thex-polarized QW exciton with
k̄i50 is calculated in terms of the renormalized Gree
function in the Appendix. Its explicit form for a single quan
tum well (l 5m) is

Ãl ,l5ÃQW$32ip4~eiX21!116ip4de2i l q̃ Le22iX~eiX21!2

132p4X220p2X313X5%/$2q̃3~24p21X2!%,

~27!

X5q̄LQW , q̄5qAeb, d5
q̄21

q̄11
,

and between thel th andmth QW’s (l ,m) is

Ãl ,m5
8pÃQWieiq̃( l 1m)Le22iX~eiX21!2~d1e2i q̃mLeiX!

q3̃~24p21X2!2
,

~28!

where

ÃQW5
4pAQW

2 I 0
2SQW

c2LQW
2

. ~29!
08533
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This quantityÃQW is treated as a parameter to fit the imag
nary part of Ãi ,i to the experimentally observed radiativ
width G0.

Once we have evaluatedEn0 and Ãm0,0n , we can solve
SX5F(0) for a given incident field, Eq.~11!, to obtainFm0’s,
from which the induced current density, Eq.~7!, and then the
vector potential, Eq.~10! are calculated. As physical quant
ties, we calculate the reflection amplitudes in both freque
and time domains for variousN, i.e., r N(v) and r̄ N(t), and
also the internal field strength as a function of frequency a
position.

The reflection amplitude in the frequency domainr (v) is
obtained from Eq.~10!. When applied to the model~A! for
x-polarized normally incident light of frequencyv, Eq. ~9!
gives the vector potential (x component! as

Ax~z!5A0eiqz1
1

2p2c2AN0
(2D) S 1

bD 2

(
l
E dkz

3
eikz(z2Zl ) Ĩ l ,0x

(x) ~ki50,kz!

kz
22~q1 i01!2

Fl ,x0

E2p,1s2\v2 i01
,

~30!

whereFl ,x0 the solution of Eq.~10!, with Fl ,x0
(0) defined as

Fl ,x0
(0) 5AN0

(2D)eiqZl Ĩ l ,x0
(x) ~ki50,q!A0 . ~31!

The contribution ofI (x)(GiÞ0,kz) terms is neglected in Eq
~28!.

The reflection amplitude is the ratior (v)5Ax /A0 in the
region z,Z1. The integral in Eq.~30! can be evaluated by
choosing the appropriate contour in the complexkz plane.
For z2Zj,0, which is the region to define the reflectio
amplitude, the contribution of the polekz52q2 i01 is
taken into account.

The response field of the multiple QW’s for normal inc
dence of light is described in terms of the 1D renormaliz
Green’s function, Eqs.~A2! and ~A3!, as

Ax~z!5A0,x~z!1
1

c2E dz8G̃s~z,z8!J(x)~z8,v! ~32!

5A0,x~z!1
1

c2sAN0
(2D)E dz8G̃s~z,z8!

3(
l

I l ,0x~ki50,z8!Fl

EQW2E2 i01
, ~33!

whereA0,x is the amplitude of the vector potential induce
by the fieldAi(z,v) incident on a semi-infinite (z.0) back-
ground medium,

A0~z!5Aie
iqz2Aide2 iqz ~z<0!, ~34!

A0~z!5
2Ai

11Aeb

eiAebqz ~z.0!. ~35!
8-6
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The variablesFl are solutions of the coupled equations~10!
for this model, whereF (0) has a similar form as Eq.~31!
with an appropriate change due to Eqs.~34! and ~35!. The
strength of the response field is defined asuAx(z)/Ai u2. For
z,0, it is the reflectivity, and forz.0, it gives the internal
field, as will be discussed later. The term withuz2z8u depen-
dence inG̃s(z,z8) plays a crucial role in determining th
peculiar form of the internal field.

The reflection amplitude depends on the number of lay
N. For N51 we get an analytic expression in the absence
nonradiative damping (g50) for model~A! as

r 1~v!5
2 iG0

E2p,1s2\v2D02 iG0
, ~36!

assuming that the thickness of the single layer is thin enou
whereG0 and2D0 are the radiative width and shift, respe
tivily, of a single layer in the case ofki50. If the v depen-
dence ofG0 and D0 is negligible, Eq.~36! gives a simple
Lorentzian curve for the reflectivityur 1(v)u2, the peak of
which occurs atE2p,1s2D0 (D0,0) with a half width at half
maximum~HWHM! of G0 (.0).

For largerN, we generally need a numerical calculation
obtain r N(v). However, if thev dependence ofÃ(v) is
negligible, i.e., if we can replaceÃ(v) with Ã(E2p,1s /\),
one can analytically solve the coupled equation forXl ,x0 in
general and obtain

r̃ N~v!5
2 iNG0

E2p,1s2\v2D02 iNG0
. ~37!

This is the same result as that by Ivchenko.10,29 Though it
describes theN-linear growth of the SR mode analytically, it
endless growth is unacceptable as mentioned in detail in
Introduction. An essentially same argument holds for mo
~B! if the background dielectric is assumed to be, not se
infinite, but infinite, which is the case treated by Ivchenk

Proper consideration of thev dependence of the radiativ
correction leads to the reflectivity with reasonableN
dependence.19 The reflectivity spectra for model~B! are
shown in Fig. 2 for~a! N52 –100, and~b! N5100–500. For
the numerical calculation, we takeEQW51.5152 eV, eb
512.6, andG050.026 meV. The width of a quantum well i
assumed to beLQW58 nm. Due to the interference with th
light reflected by the background, the resonant part is slig
deformed from Lorentzian shape in Fig. 2~a!. For largerN in
Fig. 2~b!, the resonant part is obviously different fro
Lorentzian shape, but approaches ‘‘silk-hat’’ shape, which
typical for a photonic gap. Since the resonant levels of d
ferent QW’s are electronically isolated, this spectral evo
tion is entirely caused by thev and N dependences of th
radiative correction, which becomes more and more imp
tant asN gets larger. The spectral width~HWHM! extracted
from the calculated spectrum is plotted as a function ofN in
Figs. 3 and 4 for models~A! and ~B!. For small N, the
N-linear dependence of the radiative broadening is seen
it starts to be saturated forN;40 for model~A! and forN
;250 for model~B!.
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Since the radiative width is related to the decay of t
matter excitation, we have also calculated the temporal
sponse of theN-layer systemI N(t) for an incident Gaussian
pulse covering the resonant region,

I N~ t !5U E dvr N~v!e2 ivte2(v2v0)2/s2U2

. ~38!

FIG. 2. Reflectivity of Bragg-arrangedN QW’s. ~a! For N
52 –100, ~b! for N5100–500.

FIG. 3. The radiative width of the spectra for model~A!.
8-7
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TOMOE IKAWA AND KIKUO CHO PHYSICAL REVIEW B 66, 085338 ~2002!
In Fig. 5, we plot the time dependence of the reflected int
sity in logarithmic scale@ log10I N(t)# for ~a! N52—100 and
~b! N5100—500. In Fig. 5~a!, except for the initial part due
to the quick response of the background dielectric, we
the linear decay behavior, which shows theN-linear growth
of the radiative decay rate. ForN>200, Fig. 5~b! shows the

FIG. 4. The radiative width for model~B!.

FIG. 5. Time-resolved reflection dynamics for a Gaussian pu
of light on the periodic structures containingN QW’s. s53 meV.
~a! For N52; –100, ~b! for N5100; –500.
08533
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slower decay for largerN, in addition to the appearance o
oscillations. The oscillation period reflects the width of t
silk-hat in the reflectance spectrum. Essentially same beh
ior is obtained for model~A!, too. From theN dependence of
the reflectivity inv andt domains, we may conclude that th
SR mode begins to lose its meaning whenN becomes so
large that the reflectivity spectrum begins to be distor
from a Lorentzian shape.

IV. DISPERSION EQUATION FOR RESONANT
PHOTONIC CRYSTALS

Applying the SS mode condition detuSu50 to an arbitrary
3D crystal with various resonant excitations, one of t
present authors derived a general dispersion equation o
EM field in such a medium.25 Especially, the equation wa
put in a form directly comparable with the scheme of x-r
dynamical scattering.31 Though this result can be applicab
to the present problem, we will give a simpler argument he

If we consider a periodic matter system with a single re
nant level in each unit cell, the eigenstate is characterized
the wave vector of the lattice, and for each wave vector th
is only one eigenstate.~The present system of theN5`
Bragg reflector is an example of such matter systems.! Then,
detuSu is factorized into the product of 131 matrices for
eachk. Thus, the dispersion equation for a givenk is

05Ek2\v1Ãk0,0k~v!, ~39!

whereÃk0,0k(v) is the radiative correction calculated for th
resonant level with the wave vectork.

According to the Fourier representation of the radiat
correction~5!, we need to calculate the Fourier transform
the induced current density of the matter excitation. For
excitation characterized by the wave vectork̄, the Fourier
component of its current density is given as

j̃ k̄~k!5AN0d k̄2k2G j̃ (0)~k!, ~40!

where j̃ (0)(k) is the Fourier component of the lattice period
part of the current density andG is a reciprocal lattice vector
The number of the lattice points,N0, is put →` at the last
stage of the calculation. The two Kronecker delta’s appear
in the expression of the radiative correction~5! are rewritten
as

d k̄2k2Gd k̄2k2G85dG,G8

8p3

VN0
d~ k̄2k2G! ~41!

in terms of a delta function and the volumeV of the unit
cell. This allows us to rewrite the radiative correction as

Ãk̄0,0k̄~v!52
4p

Vc2 (
G

uS~ k̄1G!u2

~ k̄1G!22~q1 i01!2
, ~42!

whereS(k) is the transverse component ('k) of the current
density j̃ (0)(k).

Inserting this form ofca l̃A into Eq. ~39!, we obtain the
dispersion equation of this periodic system. This dispers
equation is valid for any dimension, as long as the numbe

e
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the resonant level is 1. For the lattice of model~A! as an
example of a 1D resonant Bragg reflector, which has larg
different lattice constants in the lateral and normal directio
(b!d), we may consider only those reciprocal lattice ve
tors in the normal direction in order to discuss the dispers
curves near the lowest-gap region. Thus we putk̄5( k̄i
50,k) and G5(Gi50,g), whereg5gl52lp/d ( l 50,61,
62,63, . . . ). The k dependence of the resonant ener
E(k), is negligible, so that we putE(k)5\v0. The Bragg
conditiond5l0/2 is rewritten asd5pc/v0 or g1/25v0 /c
(5 the boundary of the first Brillouin zone!.

Denotingv0 /c as q0, we obtain the dispersion equatio
of the resonant photonic crystal as

\c~q02q!5
uS~0!u2

k22q2
1(

l 51

`

uS~2lq0!u2

3H 1

~k12lq0!22q2
1

1

~k22lq0!22q2J .

~43!

The solutionq5q(k) of this equation gives the dispersio
relation of the EM wave in this resonant photonic cryst
The form of this equation allows us to solve it graphically
shown in Fig. 6, where the right- and left-hand sides of E
~43! are drawn as functions ofq(5v/c) in the neighborhood
of the lowest photonic gap. The crossing points~solid circle!
are the solutions with realk and v. Obviously, there are
three real roots in this frequency region. The gap mode h
very weak dispersion, and its frequency is slightly abovev0.

For the lattice of the two-level atoms (1s-2p transition of
hydrogen atoms!, we derive the Fourier coefficients

S~2lq0!5
4p

V0c3 SA2\e

aBm D 2 1

F S 3

2D 2

1aB
2~k12lq0!2G2 ,

~44!

with l 50,61,62, . . . , V05b2d.

FIG. 6. Graphic solution of the dispersion equation for a giv
k. The crossing points of the curves and the straight line gives
eigenfrequencies.
08533
ly
s
-
n

,

.

.

a

Solving Eq. ~43! numerically, we obtain the dispersio
curves near the lowest photonic gap as in Fig. 7, which is
contrast with the result derived from Eq.~1! for g50 and
d5p/q0. Namely, the gap mode with very flat dispersio
appears in the present treatment, while it is missing in
dispersion based on Eq.~1!. The gap mode has a very wea
dispersion and its frequency range is betweenv0 and v0
1uD0u, where\uD0u is the radiative shift of the single-laye
excitation withki50. Since the present method takes co
plete account of radiative interaction, the difference was
lieved to be due to the incompleteness of Eq.~1!. The reason
has turned out24 to be due to the neglect of the radiative sh
term in the denominator of Eq.~1! in discussing the form of
the dispersion curve by the authors of the litereature,28,30

though its presence was formally noted by Ivchenko.10,29

Adding a radiative shift term in the denominator of Eq.~1!,
we could numerically reproduce a very similar gap mo
branch. However, in view of our recent result mentioned
the Introduction24 that Ivchenko’s scheme and ours are an
lytically equivalent only in the limit of thin layers, we will
need a further study to clarify the equivalence with respec
the photonic band dispersion.

The magnitude of the photonic band gap is equal
Egap52A2\v0G0 /p, which is also the case for the dispe

e

FIG. 7. ~a! Dispersion curves obtained from the method of F
6. ~b! The gap mode dispersion in an enlarged scale.
8-9
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TOMOE IKAWA AND KIKUO CHO PHYSICAL REVIEW B 66, 085338 ~2002!
sion relation derived from Eq.~3!.30 This value agrees wel
with the width of the silk-hat in the calculated reflectivi
spectrum for largeN.

V. DISCUSSION AND SUMMARY

A. Contribution of the SR mode alone

Among the various excited states of the atomic layers,
SR mode is the linear combination of single-layer excitatio
with alternating sign from layer to layer, i.e., the state w
kz5p/d. If we neglect all other states in calculating th
optical response, the reflectivity has the forms in Fig. 8
variousN. The evolution from a Lorentzian to silk-hat shap

FIG. 8. Comparison of reflectivity spectra. Dashes lines are
to the SR mode alone. Solid lines contain the effect of all mod
08533
e
s

r

is reproduced, but the width of the silk-hat is smaller than
corresponding curve in Fig. 2, and it tends to be zero aN
→`. This means that the states which form the photonic g
are not simply made of the SR mode. We need the contr
tion of other states withkzÞp/d to realize the full photonic
gap. Thus, in the photonic band regime~large N), all the
excited states of the Bragg reflector are rearranged to f
photonic band states above and below the photonic gap,
the states contributing to the gap mode.

The reflectivity in this case is written as

ur SR
(N)~v!u25U NG0

E02\v1ÃSR
(N)~v!

U2

, ~45!

so that the spectral evolution is solely described by the
diative correctionÃSR

(N)(v). Thev andN dependence of this
quantity is shown in Fig. 9. The crosses in Fig. 9 repres
\v ’s for \v5E06ImÃSR(E0 /\). If a curve is flat enough
between the two crosses, thev dependence ofÃSR(v) may
be negligible. This is the explicit demonstration of our ma
conclusion that thev dependence ofÃSR

(N) determines the
two regimes. Namely, for smallN the v dependence is neg
ligible and ÃSR

(N)(v);ÃSR
(N)(v0)52 iNIm@ÃSR

(1)(v0)#, lead-
ing to the formation of the SR mode. For largeN, the v
dependence is quite important, which leads to the photo
band regime.

B. Evidence of a gap mode

In Sec. IV we have derived a gap mode in the photo
band structure of a resonant Bragg reflector. The gap m
should manifest itself in appropriate measurements. For
ample, the reflectance spectrum of a photonic crystal sho
have a dip in the spectral range of total reflection, in view
the real (k,v) dispersion of the gap mode allowing th
propagation of EM waves in this narrow frequancy range

Evidence of the gap mode can be seen in the nonloc
calculated reflectance spectra of finite-N systems. Figure 10
shows such an example. If we expand the energy scale

e
.

FIG. 9. The v dependence of ImÃSR
N (v) for N

52,5,10,20,30,40,50,80. Crosses on each curve arev ’s for \v

5E06ImÃSR(E0 /\).
8-10
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FATE OF THE SUPERRADIANT MODE IN A RESONANT . . . PHYSICAL REVIEW B 66, 085338 ~2002!
much, we can find very narrow dips on the top part~total
reflection range! of the Lorentzian or silk-hat-shaped refle
tance curves for finiteN. They are, so to speak, the siz
quantized levels of the gap mode or, in other word, the v
weakly optically active non-SR modes of the system bur
in the middle of the broad SR mode or developing photo
gap. Since there are one SR mode and (N21) non-SR mode
in a small-N system, the number of such narrow dis is (N
21). In the limit of a photonic crystal (N5`), such dips
should merge into a broader dip.24

More positive evidence for the gap mode with realk is
obtained by calculating the internal field for the frequenc
of the very sharp dips mentioned above. Figure 11 shows

FIG. 10. Evidence of the size-quantized gap modes forN
5101. For anyN(>2), there occur such fine dips in the region
total reflection.
08533
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internal field patterns for these particular frequencies. I
remarkable that they have standing-wave patterns. For
quencies outside the sharp dips, the internal field ha
simple evanescent pattern, reflecting the total reflect
range. Since the calculations of the reflectance spectrum
internal field patterns are made independently from that
the photonic band dispersion, the emergence of the sh
dips and their standing-wave character strongly supports
existence of the propagating mode in the photonic gap.

C. Upper limit of the speedup effect

We have studied the behavior of 1D resonant Bragg
flectors as a function of the layer numberN. Our results show
that the concept of the SR mode and/or speedup effect, c
acterizing the peculiarity of the system for smallN, has a
validity limit. The limit can be obtained from the detaile
study ofÃSR

(N)(v) as in Fig. 9, but a simple criterion will be
that NG0 should be much smaller than half a photonic ga
i.e., Egap/2G0@N. In this range ofN, the reflectivity spec-
trum has a Lorentzian shape with its widthNG0, and the
decay rate of the reflectivity for an incident Gaussian puls
NG0 /\. The criterion mentioned above is expected to
applicable to any resonant Bragg reflectors. Namely, if o
measures theN dependence of reflectivity, its radiative widt
or the speedup effect of the radiative decay rate begins t
saturated whenN becomes an appreciable fraction ofNc
[Egap/2G0.

We have estimatedNc for the two models in this paper
The values ofNc turn out to be 50 and 190 for models~A!
and ~B!, respectively. The valueNc550 is consistent with
the ur N(v)u2 in Ref. 19 or Fig. 3; i.e., the linear growth star
FIG. 11. Internal field patterns at the energies of the sharp dips in Fig. 10
8-11



r
d

p

le
h
in

e

h
s

e
n

-

r

D
r
a

p

ol-

ed
th

n

.e.,

TOMOE IKAWA AND KIKUO CHO PHYSICAL REVIEW B 66, 085338 ~2002!
to be saturated atN;30 for model~A!. The valueNc5190
is consistent with the experiment by Hu¨bner et al.,8 where
N-linear growth of the radiative width is confirmed fo
samples ofN<100. Their samples belong to the SR mo
regime. One needs to use samples withN>190 to see the
effects of the photonic band regime in this system of multi
QW’s. The case of57FeBO3 crystal needs an additional con
sideration, because~i! the resonance is not electric dipo
type and ~ii ! the resonant wavelength is smaller than t
lattice constant. Though the upper limit of speedup certa
exists in this case too, the estimate ofG0 for a single layer
needs extra work, which will be published elsewhere.

D. Conclusion

In conclusion, we have studied the evolution of the sup
radiant mode as a function of sizeN, applying the micro-
scopic nonlocal theory, which takes explicit account of t
v-dependent radiative shift and width from first principle
to the two models of resonant Bragg reflectors. ForN com-
parable to or larger thanEgap/2G0, thev dependence of the
radiative width becomes important, invalidating the conc
of the SR mode and leading to the deformation of the Lore
zian spectrum and the temporal response with theN-linear
decay constant. A consistent picture has been provided
the evolution from the SR mode regime to the photonic ba
regime. We have derived the photonic band dispersion
N→`, g50, andd5p/q0, which, in contrast to the exist
ing literature, contains a flat gap mode just abovev0. Evi-
dence of the gap mode has been discussed as very sharp
in the reflectivity spectrum and their standing-wave patte
of internal field.
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APPENDIX: RENORMALIZED RADIATION GREEN’S
FUNCTION

Here we present the explicit form of the renormaliz
radiation Green’s function for a semi-infinite medium wi
dielectric constanteb(5114pxb). For the normal incidence
(iz axis! of a polarized light along thex axis, we only need
to consider thex component of the current density,J(x)(z),
which depends only onz. The renormalized Green’s functio
for k̄i50 is the solution of the equation

d2Gs~z,z8!

dz2
1q2$114pxbQ~z!%Gs~z,z8!524pd~z2z8!,

~A1!

where the medium specified byxb fills the spacez>0, i.e.,

Q~z!5H 1 ~z>0!,

0 ~z,0!.

Assuming the source plane in the semi-infinite medium, i
z8.0, we obtain the solution of Eq.~A1! as

Gs~z,z8!5
4p i

q̄1q
eiq̄z8e2 iqz

~z>0!, ~A2!

Gs~z,z8!5
2p i

q̄
@deiq̄z8eiq̄z1eiq̄uz2z8u# ~z,0!, ~A3!

where q̄5qAeb and d5(q̄2q)/(q̄1q). In terms of this
Gs(z,z8), the solution of Eq.~21! is given as

Ax~z!5A0~z!1
1

cE dzGs~z,z8!J(x)~z8,v!, ~A4!

whereA0 is the solution of

d2

dz2
A0~z!1q2$114pxbQ~z!%A0~z!50. ~A5!
,

y

a

.
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