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Band structure of a periodic quantum wire array
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The electron energy spectrum of a quantum-wire array consisting of an interface-corrugated quantum well is
studied. It is calculated for actual structures with periodic well-width variation by the numerical diagonaliza-
tion of the Hamiltonian matrix. Then a one-dimensional effective-potential model is developed, which can
reproduce the energy spectrum almost exactly even when the quantum well becomes very thin. A self-
consistent calculation shows that the Coulomb potential has only a trivial influence on the band structure. In the
absence of a magnetic field, the subband structure, Fermi surface geometry, density of states, and the cyclotron
effective mass are obtained. In a high magnetic field a magnetic miniband structure is present but its width is
negligibly small near the Fermi level in systems currently accessible experimentally.
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[. INTRODUCTION independent of thg coordinate. The single-electron Hamil-
tonian in the effective-mass approximation is written as
Recently, a periodic quantum-wire arrd@WA) was
formed during growth of a GaAs/AlAs heterointerface on a p?
GaAs(775B substrate by molecular beam epitdxy.Under H=——+V(x,2), (1)
suitable growth conditions, a zigzag heterointerface comes 2m
into being instead of a flat plane. The periodic unit cell of - . ) )
this QWA is illustrated in Fig. 1. It is considered as an idealWherep=—i#zV, m* is the effective mass of the bulk ma-
structure for the study of transport properties of the periodi{erial comprising a QWAGaAs in the present casend we
cally modulated two-dimension&eD) electron gas, since it i9nore the mismatch of the effective mass between the well
possesses a good interface quality and a period much shortapd barrier materlal_s. T_he periodic potential in the region 0
than conventional lateral superlattices. Transport experi=X<a and O<z<d is given by
ments were started quite recemtfThe purpose of this pa-
per is to calculate the subband structure of such QWA sys- V(x,2)=Vo{0(—2)+ [ z—w(x)]}, 2
tems.
The spatial modulation of the heterointerface gives rise tgvith
an additional subband structure which provides the possibil-
ity that electronic properties differ from those of a uniform

X
2D system. Therefore, a quantitative knowledge on the sub- d1+Aa_1' O=x<a,

band structure of such systems is highly desirable. In the w(x)= _ 3
present paper, we calculate the electron energy spectra of d1+Aa X a;<x<a,

QWA's by a numerical diagonalization of the Hamiltonian a

matrix in both cases with and without a magnetic field. In
addition, we establish a 1D effective potential which canWhereé(t)=1 for t=0 and 0 fort<0, anda andd are the
reproduce the electron energy spectrum. On the basis of thRerod in thex andz directions, respectively.
model electronic states can be understood more intuitively, 1he wave function for the electron motion along the
The paper is organized as follows: In Sec. Il the formula-direction is given by a plane wae/ L, whereq, is the
tion to calculate the subband structure is described and a 1D
effective-potential model is developed to simulate the peri-
odic variation of the well width. In Sec. Il the numerical
results are presented. Some discussion on relevant experi-

ments is given in Sec. IV. In Sec. V the main results are d
summarized. B :
dz | Vixy)=0 i TZ_) q
GaAs (775)B X 1
Il. FORMULATION aq a
A. Case without magnetic field a

The periodic unit cell of a QWA is illustrated in Fig. 1,  FIG. 1. A schematic illustration of a periodic unit cell of QWA's
where the structure parameters used in the calculation ansisting of a GaAs/AlAs heterostructure. The structure param-
described. The axis is chosen in the direction of the growth eters concerned are explained graphically. The quantum wires are
direction, and the well width varies in thedirection and is  along they direction.
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wave vector and., is the linear dimension in thedirection. (i) Whenm=0 andn+0,
Thus the Schidinger equation and the energy spectrum can

be expressed as V(n,O):VOé( 2 a? 1—exp( _ 2ming
. d\27n/ a;a, a
~p 11
S (P24 B2 HV(X,2) i (%,2) = (K i (X,2) D
(4) (iil) Whenn=m=0,
and Vo A
V0,0 =-|d=di=5]. (12
’q;
En(ki Gy) = en(ky) + m*y, (5)

In the simplest Hartree approximation, the influence of

wheree (k,) is the subband energy withdenoting the sub- fthe Coulomb pote_ntial of electrons themsglves can l_)e taken

band index. The wave vectéy, is confined in the first Bril-  iNto account by incorporating the following term in the

louin zone, i.e.~ m/la<k,</a. In the following we take a Hamiltonian:

large value ford dependmg on the barrier height to eliminate

coupling between adjacent wells and chokse 0. p(r’)
The wave function can be expanded in terms of a set of ol ):f

plane waves as

dr’, (13
elr—r’|

wheree is the dielectric constant of the GaAs material. The
lﬂkx,kz(x,z)= 2 Cnx,nz(kwkz)lnkax;nzvkz>a (6) local electron density(r) at the positiorr=(x,y,z) is given

Ny.Nz by
with
p(N=2 2 2 2lih i (%2)|0Er—Eq(ky,ay)],
1 ) 27Ny nody kaokg
|nx,kx;nz,kz):\/TXex i| ket | | (14
whereEg is the Fermi energy, and the factor 2 denotes the
1 i 2mn, spin degeneracy. Then the matrix element of the Coulomb
x\/Tex ket =]z, (D potential takes the form
z
wheren, andn, are arbitrary integers, ard, andL, are the 4me?.
linear dimension in thex and z direction, respectively. Ve(G)= G2 p(G), (15

The Hamiltonian matrix element is given by
whereG is the 2D reciprocal-lattice vector and the compo-

(g kg ing ke[ HIny Ky ng k) nentG=0 should be excluded in E(L5) since it cancels the
52 2n\ 2 2. 2 potential of the uniform positive charge background exactly
= omr Kk, + a X) + ( k,+ TZ) }5nx,n>’(5nz,n£ in the case of uniform doping. The Fourier compongr(ts)

can be extracted from Eq14) if the plane-wave expansion
X 8¢ kO FV(Ny—nL N,—N) 8 ¢ kr, (8 of the wave function is substituted int_o it. Thus the subband
Xrxo etz Xx T2z structure can be calculated self-consistently.
with We can work out the density of states from the resulting
subband structure. From the primary definition of the density
of states,

V(x,2)= >, V(n,,n,)ex

Ny ,Nz

2mny, 2N,
X+i d z|. (9

It can be seen that the Hamiltonian is diagonal with respect D(e)=
to k, andk,. The matrix element of the potential takes dif- KAy

#0,

En(kx,ay)], (16)

Vo 1 2mimd, D(e)= / f &n(kyo] a7
V<”'m>:‘m[5n° 2 exp( d ( 2 W
[a, A aA -1 where the spin degeneracy is included. In addition, it can
X|1—exg —2mi| —=n+ am) n+ ﬁm) readily be proved that the cyclotron effective mas$ is
! associated with the density of states through
aA !
g™ ” (10 mf = mh?D(e). (18)
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B. Case in a magnetic field

When a magnetic fiel® is applied along the direction,
i.e., B=(0,0B), the single electron Hamiltonian has the
same form as Eq1) except that the momentum operafos
replaced by|EhL eAlc, with A=(0Bx,0) in the Landau
gauge. When the periodic potentisli(x,z) is absent, the
eigenenergy and the wave function are given as

11292

0 = R
En(qz)_ 2m* (19)

1
n+ E)ﬁwc-i-

and

1
Un,g, .q,(1) = ==eXplidyy+i0,2) ¢n(X+150y),
y+d \/E y z4) Pn y
(20
with

1

NI
XH[(x+15a,)/10],

where the magnetic length is defined las= JAc/eB, the
cyclotron frequency isv.=eB/m*c, andH(t) is the Her-
mite polynomial.

When the periodic potentia¥(x,z) is incorporated, the
wave vectorq, should be folded into the Brillouin zone by a
relation likeq,=k,+2m/d. Thus the wave function shown
by Eq. (20) can be denoted d%,q,;m,k,), which is em-
ployed as the basis set for the expansion in the presence o
magnetic field. Then the Hamiltonian matrix can be ex-
pressed as

bn(x+150y) = exd — (x+15a,)4/213]

(21)

(n'.qy:m’.k;|H[n,gy:m,k,)
= Eg(Qz) 5nn’ 5qu}’, mm’ 5ka;

+<nr’q)',;mf’k;|V(x,z)|n,qy;m,kz>5qu;5kzk£. (22

f

PHYSICAL REVIEW B56, 085328 (2002

andqy, satisfyinglga, =159, +Na with N an arbitrary inte-

ger, possess the same matrix element of the potential. There-
fore, the eigen energy is a periodic function of wave vector
Qy., i.e.,

En(dy) =Eq(dy+ Na/lg). (24)
The perioda/l% is dependent on the magnetic field, and
therefore the band structure in a magnetic field is called the
magnetic miniband. By using Fourier expansi@h the ma-

trix element of the potential is evaluated as

(n',ay;n; .k |V(x,2)[n,qy;n;,k;)

N,

2
:nE V(nXiné_nz)‘]nn’(_

I
.

wheren; =maxn,n’), n,=min(n,n’), andL "’ (t) is the asso-
ciated Laguerre polynomial.

It is well known that the Coulomb interaction plays an
essential role in the magnetotransport of a 2D system in high
magnetic fields, and leads to the fractional quantum Hall
effect. In quantum wires, a self-consistency between the
electron density distribution and the potential is known to
sBmetimes lead to the formation of compressible and incom-
pressible strip&7° This strip formation is quite sensitive to
the detail of the confinement potential and also to
temperaturé! The self-consistent calculation in such high
magnetic fields is out of the scope of this paper and will be
left for a future study.

,I%qy). (25)

R

(26)

with

1,G

2

1,G

V2

n,!
n,!

JnN(GJ)=ex%—4Gt—(

(10G)?

(ng—ny)
X
L“z [ 2

C. One-dimensional effective-potential model

In the following we establish a one-dimensional effective-

It can be seen that the Hamiltonian matrix is diagona.l W|thpotent|a| model to simulate the energy Spectrum by treating

respect taj, andk,. The matrix element of the potential can
be calculated by the following integral:

(n",q,;m’" k| V(x,2)|n,qy;m,k,)

= f:dx¢n<x+Iéqy>¢nf<x+léqy>

i

Because of the periodicity of the potenti®l(x,z), it

1

d ) ,2m
xa zexpgi(m—m )TZ

V(X,z). (23

the periodic well-width variation in a manner similar to that
of interface roughnes<:*3The periodic potential can be ex-
pressed as

V(x,2)=Vob[ —z]+Vot{z—d’ —[w(x)—d']}, (27)

where d’ is the average width of a quantum well given
by

du:%(d1+d2y (28)

can be deduced that the second integral on the right sid&/henw(x)—d’ is smaller thard’, we can expand the sec-

of Eqg. (23) gives a periodic function ofx with period
of a. With this result, for a fixed magnetic fieH it can be
readily found that two different states with wave vectqys

ond term of the right side of Eq27) in terms ofw(x)—d’
and only retain the linear term. Then we obtain an approxi-
mate expression of the periodic potential as
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V(X,2)~Vo0(—2)+Vy6(z—d')—VyS(z—d")[w(x)—d'].
(29
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In the limit of an infinitely high barrier, i.eYq—o, we

have Bgy~vy2/d’ and cosQd/2)~e,/V, with &,
~ m?h2/2m* d’'2. Therefore, we have

Then the one-dimensional effective potential takes the

form

Ver(X) = = Vol £(d")[A[w(x)—d], (30

whereé(z) is the wave function of the quantum-well ground

state, given by

BocogQ7'), 7=~

Bocos( %) ex;{ -Q’ (

with z’=z—d’/2 and

§(2)=

1/2

Bo:{ . 2Q
Qd’ +sin(Qd’)+(2Q/Q’)coF(Qd'/2)

[2m* e, [2m* (Vo—e,)
Q= R Q'= B (32

The ground state energy of the quantum wegllis deter-
mined by

d’ VO_ g, 1/2
tan Q—|= (33
2 o
Finally the effective potential evolves into
dl
Vi X) = —VOBSCO§(QT) [w(x)—d']. (34)

Va0= 7 2 g an.
X)=— —| —[w(x)—d"].
e 2m* \d') o

In the case of an infinite-potential well, for a fixedthe
energy of the electron motion in thedirection is simply
given by

Es (38)

h? a \?
Sz[W(X)]=W<—) :
By expanding Eq(38) with respect tow(x)—d’ and just
retaining the linear term, we can obtain E®7), as ex-
pected. We shall see in the following that this infinite-
potential approximation is very poor in the present GaAs/
AlAs system.

D. Numerical calculation

In accordance with a typical experimental sanfplee
take the values of the structure parametersaaasl2 nm,
a;=4 nm, andA=1.2 nm, and use two typical valueg
=5 and 2 nm for the well thickness. The band offset is
chosen asvVy=1 eV at thel' point for the GaAs/AlAs
heterostructuré*®"The superlattice period is chosends
=20 nm, for which the energy becomes independeri,of
The dielectric constant and the effective mass take the values
of the GaAs materiat= 13 andm* =0.067n, wherem, is
the free-electron mas&.In actual numerical calculations the
Hamiltonian matrix is truncated ab,|<10 and|n,|<20 in
the absence of a magnetic field ang <50 and/m|<20 in
the presence of a magnetic field, by which the steady numeri-
cal results are guaranteed. In a magnetic field the spin split-
ting is completely neglected because it only gives a very

This 1D effective potential possesses a linear dependencgnall splitting to the energy spectruth.
on the x coordinate as is clear in the above equation. It

has the maxima at=x; with w(x;)=d; and the minima
at x=x, with w(x,)=d,. The amplitude of the potential

becomes

Qd’

AV=Vi(X1) — Veir(X2) = VoB3A cog T) (35)

IIl. NUMERICAL RESULTS

A. Subband in the absence of a magnetic field

In Fig. 2 the calculated lowest two subbands are shown as
a function ofk, for both cases ofl;=5 and 2 nm. The
parabolic dispersion relation of the free electron motion,
folded into the Brillouin zone, is also plotted for comparison.

Now we have separated the electron motion into thredt can be seen that the subband structure deviates from the
parts; freely moving along thg direction, confined in a parabolic dispersion whek, approaches the boundary of the
guantum well with widthd’ in the z direction, and moving Brillouin zone, where a band gap is formed. Such a feature is
along thex direction subject to the effective potential. Then exhibited more remarkably in the case @f=2 nm, be-

the energy spectrum can be expressed as

2q2
En(kx’Qy):gz"' Rg"_sn(kx): (36)

cause of the relatively stronger modulation of the periodic
potential than the case af;=5 nm. The Fermi energies
denoted by the horizontal lines correspond to a typical ex-
perimental value of the electron number derfsity=3.9

X 10' cm™2. It can be seen that only the first subband is

wheree,(k,) is the one-dimensional energy spectrum of thepartially occupied and only in the case df=2 nm the

effective-potential model along the direction. It will be

subband structure deviates from the parabolic dispersion sig-

demonstrated in Sec. Il that the model can reproduce thaificantly around the Fermi level.
electron energy spectrum almost exactly even when the In Fig. 3 the density of states is shown in the energy range

guantum well becomes very thin.

covering two lowest subbands. The sharp peaks indicate the
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FIG. 2. The two lowest subbands as functions of the wave vec- FIG. 3. The density of states fg) d;=5 nm and(b) d;
tor k, for (@ d;=5 nm and(b) d;=2 nm. The parabolic disper- =2 nm, in units ofm* /%2, the density of states in a uniform 2D
sion relation for the free electron, folded into the Brillouin zone, is system. The solid lines show the result in which the contributions of
shown by dashed lines for comparison. The Fermi energy positioithe two lowest subbands are taken into account and the dashed lines
denoted by the horizontal lines corresponds m@=3.9 thatin which only the contribution of the first subband is included.

1 —2
X10° em % the first peak, the first subband is fully occupied and the
corresponding density of states has a 1D behavior as de-

Van Hove singularities ak,=* m/a andqg,=0 in the first  creases with the energy.
subband and,=0 andg, =0 in the second subband. In the  Figure 4 shows the Fermi lines correspondingite- 3.9
case ofd;=5 nm, the density of states agrees with/ %2 X 10 cm™2. The Fermi energies are 125 me¥4 meV
very well almost in the whole energy range. A notable devia-measured from the bottom of the subband at 111 jie‘he
tion is present in the case aff=2 nm, especially in the case ofd;=5 nm and 322 meV11 meV measured from the
energy range of the first subband, which is consistent witlbottom of the subband at 311 mg\ih the case ofd;
the subband structure shown in Fig. 2. The dashed lines show2 nm. The circular Fermi lines of the uniform 2D system
the density of states with only the contribution of the firstare also shown for comparison. The difference is significant
subband included. When the energy exceeds the position @hly in the case ofl;=2.
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0.8
(a) d,=5nm, a=12nm, a =4nm, A=1.2nm, d=20nm
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FIG. 4. The Fermi lingsolid line with the Fermi energy and FIG. 5. The local electron density fde) d;=5 nm and(b)
d; equal to(a) 125 meV and 5 nm an¢b) 322 meV and 2 nm, d;=2 nm in units of 18® cm 3. The other parameters take the
respectively. The dashed lines show the circular Fermi line of thezalues aa=12 nm,a;=4 nm,A=1.2 nm,d=20 nm, andn,
uniform 2D Sys[em for the same Fermi energy. =3.9X 1011 Cmiz. The thick Straight lines in the upper region de-
note the corrugated interface.

B. Hartree potential Figure 6 shows a comparison of the subband structure
Figure 5 shows examples of local electron density obwith and without the Coulomb potential incorporatftie
tained self-consistently fan,=3.9x10'* cm™2. For a uni-  energy origin is chosen at the bottom of the conduction band
form quantum well, the density is independent of #heor-  at r=(0,0,0) in Fig. 1. It can be found that the Coulomb
dinate and its maximum occurs at the center of the quanturpotential gives rise to a small parallel shift of the subbands as
well if only the lowest subband is occupied. From Figa)5 well as a trivial correction on the subband gapg%). This
we can see that such a feature remains approximately exceigttrue even in the case of, =2 nm for which the density
for a weak localization in the wide quantum-well region for shows a strong localization as shown in Fi¢h)5 Therefore,
the case od;=5 nm. On the other hand, in Fig(l§ the  the Coulomb potential can be ignored in the calculation of
density shows notable spatial variation along thdirection  the subband structure in the range of the electron density
in the case ofl;=2 nm. accessible experimentally.
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miniband at the Fermi level remains almost negligible. In the
case ofd;=2 nm the miniband width at the Fermi level
becomes quite remarkable as shown in Figl).7

From Fig. 2 we can find that the lowest Landau levels are
located at the vicinity of the bottom of the first subband
where the modulation of the periodic potential does not play
an important role and the electron motion is described by the
simple parabolic dispersion relation. Consequently, the
broadening is extremely small in the lowest magnetic mini-
band. Contrarily, at positions of higher Landau levels, where
significant deviation of the subband structure from the para-
bolicity occurs, the modulation gives rise to notable
magnetic-miniband broadening.

The magnetic minibands have a 1D characteristic, which
is manifested by singularities of the density of states as
shown in Fig. 8. Because the Landau-level picture is not
wholly destroyed, the occupation of the magnetic minibands
can be estimated by the degeneracy of the individual Landau
level of the uniform 2D system. Each Landau level possesses
the degeneracy of 1482; thereby we can estimate, for ex-
ample, that the first miniband is totally occupied and the
second miniband is partially occupied fong,=3.9
x 10 cm™2 in the field given byhw.=10 meV.

D. One-dimensional effective potential

In Fig. 9 the amplitude of the 1D effective potentiaV
defined in Eq(35) is shown as a function af, for cases of
both finite and infinite barriers. They are quite different when
d;=<5 nm, which implies that the infinite-barrier model is
still inappropriate even foKy=1 eV in the present GaAs/
AlAs QWA.

Our calculation indicates that the finite-barrier effective
potential model can reproduce the electron spectra almost
exactly both in the presence and absence of a magnetic field,
except for a slight parallel shift which can safely be ignored.
In Fig. 9 a comparison is made for the subband gap between
the first and second subbands calculated by different
schemes. It can be found that the gap calculated by the ef-
fective potential agrees with the exact one very well, even
when the parameteat; becomes as small as 2 nm.

Figure 10 shows the gap as a function\gf obtained by

FIG. 6. A comparison of the subband structure between the casésing different schemes. The effective potential works quite

in which the electron Coulomb potential is includésblid lines
self-consistently and that in which it is excludé&thshed linesfor
(@ d;=5 nm and(b) d;=2 nm. The origin of the energy is cho-
sen at the conduction-band bottom of GaAsatD. The numbers
near the subband bottoms denote the subband shifts.

C. Subband in a magnetic field

well in the whole range o¥,. With the decrease d¥, the
gap becomes smaller rapidly. This implies that the deviation
of the subband structure from parabolic dispersion relation is
negligible in GaAs/A|Ga, _,As quantum-wire arrays inde-
pendent of the Al concentratior except in systems with
very high electron concentrations.

Figure 7 shows the calculated magnetic miniband struc-

ture as a function ofj, for d;=5 nm. Figure 7a) shows

that the miniband width is negligible for levels in the vicinity

of the Fermi energy in a weak magnetic field fio,

IV. DISCUSSION

The experimental measurement about the diagonal resis-

=5 meV. It can be found that the width of the magnetictivity showed that the minima corresponding to the odd fill-
miniband is so small that it cannot be observed. When théng factorsy=3 and 5 are invisible and the resistance dip

magnetic field increases fow.=10 meV and further to 20

around v=1 quickly disappears as temperature increases

meV, the magnetic-miniband characteristic comes into beindrom 40 mK to about 300 mK where =2l 2n.. The dip

notably, as shown by Figs(f) and 7c), but the width of the

in the resistivity at odd-integer fillings corresponds to the
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FIG. 7. The magnetic minibands as a function of the wave vegjofor several caseda fiw.=5 meV, B=2.893 T, andd,
=5 nm;(b) w.=10 meV,B=5.785 T, andd;=5 nm;(c) Aw,=20 meV,B=11.57 T, andd;=5 nm; and(d) Aw,=10 meV, B
=5.785 T, andd;=2 nm. The numbers near the minibands denote their widths, and the Fermi level is denoted by arrows.

spin splitting, which has completely been ignored in theband where the Fermi level is located is small and negligible
present calculation. for the densityn,=3.9x 10" cm 2. Therefore, the quench-
In the uniform 2D system the exchange energy is knowring of the odd-integer quantum Hall effect observed
to lead to a drastic enhancement of spin splitting, whichexperimentall§ cannot be explained by the miniband broad-
makes the diagonal resistance minima of odd fillings visibleening due to the periodic interface modulation.
as well as those of even fillingS.The spin gap due to the A high anisotropy of the electron mobility has been
exchange enhancement effect is suppressed when the degebserved:® Experiments show that the longitudinal mobility
eracy of the Landau levels is lifted by a periodic modulationparallel to the quantum-wire direction is much larger than the
potential®! In the QWA structure, the periodically modulated transverse mobility. The present calculation gives an almost
interface can expand Landau levels into magnetic minibandsircular and isotropic Fermi line for the usual electron den-
but our calculation reveals that the broadening of the minisity and therefore shows that Bragg reflection due to the
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FIG. 8. The density of states in a magnetic field. Only the lowest

three magnetic minibands are shown. The parameters take the val- FIG. 10.'The s_ubband gaps as a fur_lctlonv(gfcalculated for
ues asd;=5 nm, a=12 nm, a,=4 nm, A=1.2 nm, andd actual QWAs and in the effective-potential scheme.

=20 nm. The magnetic field strength fsw.=20 meV orB  treating the periodic interface-position modulation as a peri-
=11.57 T. odic interface roughness in such single heterostructdres.
The band offset of the GaAs/Aba, _,As heterointerface de-

periodic variation of the well thickness cannot give rise topends on the Al concentratiox as Vy=0.6X(1.155%
considerable effects on the electron mobility. +0.3%%) eV for x=<0.45Y' Thus the height of

A QWA structure was implemented also in a GaAs/ALGa _,As quantum well is much smaller than that
GaAs/AlLGa, _,As single heterostructure where a large mo-of the GaAs/AlAs quantum well \(,~357 meV for x
bility anisotropy was also observédlt is straightforward to = 0.45). Therefore, the deviation of the band structure from
develop a one-dimensional effective-potential model bythat of the uniform 2D system is expected to be almost neg-
ligible in this system also. The anisotropy of the mobility
cannot be ascribed to band-structure effects and is likely to
1000 £ a=12nm, a,=4nm, A=1.2nm be due to other more significant effects such as possible

; \\ Exact diagonalization inhomogeneity and disorder in the periodic well-width
[\ - - - -Effective potential with V =1eV variation.
100 L AN — — Effective potential with V <

\\ d'=d,+A/2 V. SUMMARY

We have calculated the energy spectrum of a quantum-
wire-array structure. In the absence of a magnetic field, only
the lowest subband is partially occupied at the low-
temperature limit in the case of typical electron density of
experimental samples. Only in a quantum-wire array as thin
as 2 nm, the subband can show a notable deviation from the
parabolic band in the energy range from the subband bottom
to the Fermi energy. In systems as thick as 5(smfar most
experimental samples have thickness close to or larger than 5
nm), such a deviation is negligible. This implies that the
modulation of the periodic potential due to interface corru-

. , . . . , . , . gation does not play an important role in transport properties.
0 10 20 30 40 50 When a high magnetic field is applied, the Landau levels are
d, (hm) expanded into magnetic minibands which are a periodic

function of the wave vectog, . However, the broadening is

FIG. 9. Subband gaps between the first and second subbangéill small and the Landau level picture remains valid under
calculated by different schemes and the amplitude of the effectivéisual experimental circumstances.
potentialAV as functions of the parametds. More importantly, we have developed a one-dimensional

Energy (meV)

01k
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