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Band structure of a periodic quantum wire array
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The electron energy spectrum of a quantum-wire array consisting of an interface-corrugated quantum well is
studied. It is calculated for actual structures with periodic well-width variation by the numerical diagonaliza-
tion of the Hamiltonian matrix. Then a one-dimensional effective-potential model is developed, which can
reproduce the energy spectrum almost exactly even when the quantum well becomes very thin. A self-
consistent calculation shows that the Coulomb potential has only a trivial influence on the band structure. In the
absence of a magnetic field, the subband structure, Fermi surface geometry, density of states, and the cyclotron
effective mass are obtained. In a high magnetic field a magnetic miniband structure is present but its width is
negligibly small near the Fermi level in systems currently accessible experimentally.
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I. INTRODUCTION

Recently, a periodic quantum-wire array~QWA! was
formed during growth of a GaAs/AlAs heterointerface on
GaAs~775!B substrate by molecular beam epitaxy.1–5 Under
suitable growth conditions, a zigzag heterointerface com
into being instead of a flat plane. The periodic unit cell
this QWA is illustrated in Fig. 1. It is considered as an ide
structure for the study of transport properties of the perio
cally modulated two-dimensional~2D! electron gas, since i
possesses a good interface quality and a period much sh
than conventional lateral superlattices. Transport exp
ments were started quite recently.5,6 The purpose of this pa
per is to calculate the subband structure of such QWA s
tems.

The spatial modulation of the heterointerface gives rise
an additional subband structure which provides the poss
ity that electronic properties differ from those of a unifor
2D system. Therefore, a quantitative knowledge on the s
band structure of such systems is highly desirable. In
present paper, we calculate the electron energy spectr
QWA’s by a numerical diagonalization of the Hamiltonia
matrix in both cases with and without a magnetic field.
addition, we establish a 1D effective potential which c
reproduce the electron energy spectrum. On the basis of
model electronic states can be understood more intuitive

The paper is organized as follows: In Sec. II the formu
tion to calculate the subband structure is described and a
effective-potential model is developed to simulate the p
odic variation of the well width. In Sec. III the numerica
results are presented. Some discussion on relevant ex
ments is given in Sec. IV. In Sec. V the main results a
summarized.

II. FORMULATION

A. Case without magnetic field

The periodic unit cell of a QWA is illustrated in Fig. 1
where the structure parameters used in the calculation
described. Thez axis is chosen in the direction of the grow
direction, and the well width varies in thex direction and is
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independent of they coordinate. The single-electron Hami
tonian in the effective-mass approximation is written as

H5
p̂2

2m*
1V~x,z!, ~1!

wherep̂52 i\¹W , m* is the effective mass of the bulk ma
terial comprising a QWA~GaAs in the present case!, and we
ignore the mismatch of the effective mass between the w
and barrier materials. The periodic potential in the region
<x,a and 0<z,d is given by

V~x,z!5V0$u~2z!1u@z2w~x!#%, ~2!

with

w~x!5H d11D
x

a1
, 0<x,a1

d11D
a2x

a2
, a1<x,a,

~3!

whereu(t)51 for t>0 and 0 fort,0, anda andd are the
period in thex andz directions, respectively.

The wave function for the electron motion along they
direction is given by a plane waveeiqyy/ALy, whereqy is the

FIG. 1. A schematic illustration of a periodic unit cell of QWA’
consisting of a GaAs/AlAs heterostructure. The structure para
eters concerned are explained graphically. The quantum wires
along they direction.
©2002 The American Physical Society28-1
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wave vector andLy is the linear dimension in they direction.
Thus the Schro¨dinger equation and the energy spectrum c
be expressed as

F 1

2m* ~ p̂x
21 p̂z

2!1V~x,z!Gckx ,kz
~x,z!5«n~kx!ckx ,kz

~x,z!

~4!

and

En~kx ,qy!5«n~kx!1
\2qy

2

2m*
, ~5!

where«n(kx) is the subband energy withn denoting the sub-
band index. The wave vectorkx is confined in the first Bril-
louin zone, i.e.,2p/a<kx,p/a. In the following we take a
large value ford depending on the barrier height to elimina
coupling between adjacent wells and choosekz50.

The wave function can be expanded in terms of a se
plane waves as

ckx ,kz
~x,z!5 (

nx ,nz

Cnx ,nz
~kx ,kz!unx ,kx ;nz ,kz&, ~6!

with

unx ,kx ;nz ,kz&5
1

ALx

expF i S kx1
2pnx

a D xG
3

1

ALz

expF i S kz1
2pnz

d D zG , ~7!

wherenx andnz are arbitrary integers, andLx andLz are the
linear dimension in thex andz direction, respectively.

The Hamiltonian matrix element is given by

^nx8 ,kx8 ;nz8 ,kz8uHunx ,kx ;nz ,kz&

5
\2

2m* F S kx1
2pnx

a D 2

1S kz1
2pnz

d D 2Gdnx ,n
x8
dnz ,n

z8

3dkx ,k
x8
dkz ,k

z8
1V~nx2nx8 ,nz2nz8!dkx ,k

x8
dkz ,k

z8
, ~8!

with

V~x,z!5 (
nx ,nz

V~nx ,nz!expS i
2pnx

a
x1 i

2pnz

d
zD . ~9!

It can be seen that the Hamiltonian is diagonal with resp
to kx andkz . The matrix element of the potential takes d
ferent forms according to the following cases:~i! When m
Þ0,

V~n,m!52
V0

2p im H dn02
1

2p i
expS 2

2p imd1

d D
3F12expF22p i S a1

a
n1

D

d
mD G GF S n1

aD

a1d
mD 21

2S n2
aD

a2d
mD 21G J . ~10!
08532
n
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~ii ! Whenm50 andnÞ0,

V~n,0!5V0

D

d S 1

2pnD 2 a2

a1a2
F12expS 2

2p ina1

a D G .
~11!

~iii ! Whenn5m50,

V~0,0!5
V0

d S d2d12
D

2 D . ~12!

In the simplest Hartree approximation, the influence
the Coulomb potential of electrons themselves can be ta
into account by incorporating the following term in th
Hamiltonian:

Vc~r!5E r~r8!

eur2r 8u
dr 8, ~13!

wheree is the dielectric constant of the GaAs material. T
local electron densityr(r) at the positionr5(x,y,z) is given
by

r~r!5(
n

(
qy

(
kx ,kz

2uckx ,kz
~x,z!u2u@EF2En~kx ,qy!#,

~14!

whereEF is the Fermi energy, and the factor 2 denotes
spin degeneracy. Then the matrix element of the Coulo
potential takes the form

Vc~G!5
4pe2

eG2 r̃~G!, ~15!

whereG is the 2D reciprocal-lattice vector and the comp
nentG50 should be excluded in Eq.~15! since it cancels the
potential of the uniform positive charge background exac
in the case of uniform doping. The Fourier componentsr̃(G)
can be extracted from Eq.~14! if the plane-wave expansion
of the wave function is substituted into it. Thus the subba
structure can be calculated self-consistently.

We can work out the density of states from the result
subband structure. From the primary definition of the dens
of states,

D~«!5
2

LxLy
(

n
(

kx ,qy

d@«2En~kx ,qy!#, ~16!

through a straightforward evaluation, we have

D~«!5A 2m*

2p2\(
n
E dkx

u@«2«n~kx!#

A«2«n~kx!
, ~17!

where the spin degeneracy is included. In addition, it c
readily be proved that the cyclotron effective massmc* is
associated with the density of states through

mc* 5p\2D~«!. ~18!
8-2
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B. Case in a magnetic field

When a magnetic fieldB is applied along thez direction,
i.e., B5(0,0,B), the single electron Hamiltonian has th
same form as Eq.~1! except that the momentum operatorp̂ is
replaced by p̂1eA/c, with A5(0,Bx,0) in the Landau
gauge. When the periodic potentialV(x,z) is absent, the
eigenenergy and the wave function are given as

En
0~qz!5S n1

1

2D\vc1
\2qz

2

2m*
~19!

and

cn,qy ,qz
~r!5

1

ALyLz

exp~ iqyy1 iqzz!fn~x1 l 0
2qy!,

~20!

with

fn~x1 l 0
2qy!5

1

A2nn! l 0Ap
exp@2~x1 l 0

2qy!2/2l 0
2#

3Hn@~x1 l 0
2qy!/ l 0#, ~21!

where the magnetic length is defined asl 05A\c/eB, the
cyclotron frequency isvc5eB/m* c, andHn(t) is the Her-
mite polynomial.

When the periodic potentialV(x,z) is incorporated, the
wave vectorqz should be folded into the Brillouin zone by
relation likeqz5kz12mp/d. Thus the wave function show
by Eq. ~20! can be denoted asun,qy ;m,kz&, which is em-
ployed as the basis set for the expansion in the presence
magnetic field. Then the Hamiltonian matrix can be e
pressed as

^n8,qy8 ;m8,kz8uHun,qy ;m,kz&

5En
0~qz!dnn8dqyq

y8
dmm8dkzkz8

1^n8,qy8 ;m8,kz8uV~x,z!un,qy ;m,kz&dqyq
y8
dkzkz8

. ~22!

It can be seen that the Hamiltonian matrix is diagonal w
respect toqy andkz . The matrix element of the potential ca
be calculated by the following integral:

^n8,qy ;m8,kzuV~x,z!un,qy ;m,kz&

5E
2`

`

dxfn~x1 l 0
2qy!fn8~x1 l 0

2qy!

3
1

dE0

d

dzexpF i ~m2m8!
2p

d
zGV~x,z!. ~23!

Because of the periodicity of the potentialV(x,z), it
can be deduced that the second integral on the right
of Eq. ~23! gives a periodic function ofx with period
of a. With this result, for a fixed magnetic fieldB it can be
readily found that two different states with wave vectorsqy
08532
f a
-

de

andqy8 , satisfyingl 0
2qy5 l 0

2qy81Na with N an arbitrary inte-
ger, possess the same matrix element of the potential. Th
fore, the eigen energy is a periodic function of wave vec
qy , i.e.,

En~qy!5En~qy1Na/ l 0
2!. ~24!

The perioda/ l 0
2 is dependent on the magnetic field, an

therefore the band structure in a magnetic field is called
magnetic miniband. By using Fourier expansion~9!, the ma-
trix element of the potential is evaluated as7

^n8,qy ;nz8 ,kzuV~x,z!un,qy ;nz ,kz&

5(
nx

V~nx ,nz82nz!Jnn8S 2pnx

a
,l 0

2qyD , ~25!

with

Jnn8~G,t !5expF2 iGt2S l 0G

2 D 2G S i
l 0G

A2
D n12n2S n2!

n1! D
1/2

3Ln2

(n12n2)F ~ l 0G!2

2 G , ~26!

wheren15max(n,n8), n25min(n,n8), andLn
(r )(t) is the asso-

ciated Laguerre polynomial.
It is well known that the Coulomb interaction plays a

essential role in the magnetotransport of a 2D system in h
magnetic fields, and leads to the fractional quantum H
effect. In quantum wires, a self-consistency between
electron density distribution and the potential is known
sometimes lead to the formation of compressible and inco
pressible strips.8–10 This strip formation is quite sensitive t
the detail of the confinement potential and also
temperature.11 The self-consistent calculation in such hig
magnetic fields is out of the scope of this paper and will
left for a future study.

C. One-dimensional effective-potential model

In the following we establish a one-dimensional effectiv
potential model to simulate the energy spectrum by trea
the periodic well-width variation in a manner similar to th
of interface roughness.12,13The periodic potential can be ex
pressed as

V~x,z!5V0u@2z#1V0u$z2d82@w~x!2d8#%, ~27!

where d8 is the average width of a quantum well give
by

d85
1

2
~d11d2!. ~28!

Whenw(x)2d8 is smaller thand8, we can expand the sec
ond term of the right side of Eq.~27! in terms ofw(x)2d8
and only retain the linear term. Then we obtain an appro
mate expression of the periodic potential as
8-3
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YISONG ZHENG AND TSUNEYA ANDO PHYSICAL REVIEW B66, 085328 ~2002!
V~x,z!'V0u~2z!1V0u~z2d8!2V0d~z2d8!@w~x!2d8#.
~29!

Then the one-dimensional effective potential takes
form

Veff~x!52V0uj~d8!u2@w~x!2d8#, ~30!

wherej(z) is the wave function of the quantum-well groun
state, given by

j~z!5H B0cos~Qz8!, uz8u<
d8

2

B0cosS Qd8

2 DexpF2Q8S Uz8U2 d8

2 D G , uz8u.
d8

2
,

~31!

with z85z2d8/2 and

B05F 2Q

Qd81sin~Qd8!1~2Q/Q8!cos2~Qd8/2!
G 1/2

,

Q5A2m* «z

\2 , Q85A2m* ~V02«z!

\2 . ~32!

The ground state energy of the quantum well«z is deter-
mined by

tanS Q
d8

2 D5FV02«z

«z
G1/2

. ~33!

Finally the effective potential evolves into

Veff~x!52V0B0
2cos2S Qd8

2 D @w~x!2d8#. ~34!

This 1D effective potential possesses a linear depende
on the x coordinate as is clear in the above equation.
has the maxima atx5x1 with w(x1)5d1 and the minima
at x5x2 with w(x2)5d2. The amplitude of the potentia
becomes

DV[Veff~x1!2Veff~x2!5V0B0
2D cos2S Qd8

2 D . ~35!

Now we have separated the electron motion into th
parts; freely moving along they direction, confined in a
quantum well with widthd8 in the z direction, and moving
along thex direction subject to the effective potential. The
the energy spectrum can be expressed as

En~kx ,qy!5«z1
\2qy

2

2m*
1«n~kx!, ~36!

where«n(kx) is the one-dimensional energy spectrum of t
effective-potential model along thex direction. It will be
demonstrated in Sec. III that the model can reproduce
electron energy spectrum almost exactly even when
quantum well becomes very thin.
08532
e
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In the limit of an infinitely high barrier, i.e.,V0→`, we
have B0'A2/d8 and cos(Qd8/2)'A«z /V0 with «z
'p2\2/2m* d82. Therefore, we have

Veff~x!52
\2

2m*
S p

d8
D 2

2

d8
@w~x!2d8#. ~37!

In the case of an infinite-potential well, for a fixedx the
energy of the electron motion in thez direction is simply
given by

«z@w~x!#5
\2

2m* S p

w~x! D
2

. ~38!

By expanding Eq.~38! with respect tow(x)2d8 and just
retaining the linear term, we can obtain Eq.~37!, as ex-
pected. We shall see in the following that this infinit
potential approximation is very poor in the present GaA
AlAs system.

D. Numerical calculation

In accordance with a typical experimental sample,6 we
take the values of the structure parameters asa512 nm,
a154 nm, andD51.2 nm, and use two typical valuesd1
55 and 2 nm for the well thickness. The band offset
chosen asV051 eV at the G point for the GaAs/AlAs
heterostructure.14,16,17The superlattice period is chosen asd
520 nm, for which the energy becomes independent ofkz .
The dielectric constant and the effective mass take the va
of the GaAs materiale513 andm* 50.067me whereme is
the free-electron mass.18 In actual numerical calculations th
Hamiltonian matrix is truncated atunxu<10 andunzu<20 in
the absence of a magnetic field and 0<n<50 andumu<20 in
the presence of a magnetic field, by which the steady num
cal results are guaranteed. In a magnetic field the spin s
ting is completely neglected because it only gives a v
small splitting to the energy spectrum.19

III. NUMERICAL RESULTS

A. Subband in the absence of a magnetic field

In Fig. 2 the calculated lowest two subbands are shown
a function of kx for both cases ofd155 and 2 nm. The
parabolic dispersion relation of the free electron motio
folded into the Brillouin zone, is also plotted for compariso
It can be seen that the subband structure deviates from
parabolic dispersion whenkx approaches the boundary of th
Brillouin zone, where a band gap is formed. Such a featur
exhibited more remarkably in the case ofd152 nm, be-
cause of the relatively stronger modulation of the perio
potential than the case ofd155 nm. The Fermi energies
denoted by the horizontal lines correspond to a typical
perimental value of the electron number density6 ne53.9
31011 cm22. It can be seen that only the first subband
partially occupied and only in the case ofd152 nm the
subband structure deviates from the parabolic dispersion
nificantly around the Fermi level.

In Fig. 3 the density of states is shown in the energy ran
covering two lowest subbands. The sharp peaks indicate
8-4
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BAND STRUCTURE OF A PERIODIC QUANTUM WIRE ARRAY PHYSICAL REVIEW B66, 085328 ~2002!
Van Hove singularities atkx56p/a and qy50 in the first
subband andkx50 andqy50 in the second subband. In th
case ofd155 nm, the density of states agrees withm* /p\2

very well almost in the whole energy range. A notable dev
tion is present in the case ofd152 nm, especially in the
energy range of the first subband, which is consistent w
the subband structure shown in Fig. 2. The dashed lines s
the density of states with only the contribution of the fi
subband included. When the energy exceeds the positio

FIG. 2. The two lowest subbands as functions of the wave v
tor kx for ~a! d155 nm and~b! d152 nm. The parabolic disper
sion relation for the free electron, folded into the Brillouin zone,
shown by dashed lines for comparison. The Fermi energy pos
denoted by the horizontal lines corresponds tone53.9
31011 cm22.
08532
-
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t
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the first peak, the first subband is fully occupied and
corresponding density of states has a 1D behavior as
creases with the energy.

Figure 4 shows the Fermi lines corresponding tone53.9
31011 cm22. The Fermi energies are 125 meV~14 meV
measured from the bottom of the subband at 111 meV! in the
case ofd155 nm and 322 meV~11 meV measured from the
bottom of the subband at 311 meV! in the case ofd1
52 nm. The circular Fermi lines of the uniform 2D syste
are also shown for comparison. The difference is signific
only in the case ofd152.

c-

n

FIG. 3. The density of states for~a! d155 nm and ~b! d1

52 nm, in units ofm* /p\2, the density of states in a uniform 2D
system. The solid lines show the result in which the contributions
the two lowest subbands are taken into account and the dashed
that in which only the contribution of the first subband is include
8-5
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B. Hartree potential

Figure 5 shows examples of local electron density
tained self-consistently forne53.931011 cm22. For a uni-
form quantum well, the density is independent of thex coor-
dinate and its maximum occurs at the center of the quan
well if only the lowest subband is occupied. From Fig. 5~a!
we can see that such a feature remains approximately ex
for a weak localization in the wide quantum-well region f
the case ofd155 nm. On the other hand, in Fig. 5~b! the
density shows notable spatial variation along thex direction
in the case ofd152 nm.

FIG. 4. The Fermi line~solid lines! with the Fermi energy and
d1 equal to~a! 125 meV and 5 nm and~b! 322 meV and 2 nm,
respectively. The dashed lines show the circular Fermi line of
uniform 2D system for the same Fermi energy.
08532
-

m

ept

Figure 6 shows a comparison of the subband struc
with and without the Coulomb potential incorporated@the
energy origin is chosen at the bottom of the conduction b
at r5(0,0,0) in Fig. 1#. It can be found that the Coulom
potential gives rise to a small parallel shift of the subbands
well as a trivial correction on the subband gap (;5%).This
is true even in the case ofd152 nm for which the density
shows a strong localization as shown in Fig. 5~b!. Therefore,
the Coulomb potential can be ignored in the calculation
the subband structure in the range of the electron den
accessible experimentally.

e

FIG. 5. The local electron density for~a! d155 nm and~b!
d152 nm in units of 1018 cm23. The other parameters take th
values asa512 nm, a154 nm, D51.2 nm, d520 nm, andne

53.931011 cm22. The thick straight lines in the upper region d
note the corrugated interface.
8-6
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C. Subband in a magnetic field

Figure 7 shows the calculated magnetic miniband str
ture as a function ofqy for d155 nm. Figure 7~a! shows
that the miniband width is negligible for levels in the vicini
of the Fermi energy in a weak magnetic field of\vc
55 meV. It can be found that the width of the magne
miniband is so small that it cannot be observed. When
magnetic field increases to\vc510 meV and further to 20
meV, the magnetic-miniband characteristic comes into be
notably, as shown by Figs. 7~b! and 7~c!, but the width of the

FIG. 6. A comparison of the subband structure between the
in which the electron Coulomb potential is included~solid lines!
self-consistently and that in which it is excluded~dashed lines! for
~a! d155 nm and~b! d152 nm. The origin of the energy is cho
sen at the conduction-band bottom of GaAs atr50. The numbers
near the subband bottoms denote the subband shifts.
08532
-

e

g

miniband at the Fermi level remains almost negligible. In t
case ofd152 nm the miniband width at the Fermi leve
becomes quite remarkable as shown in Fig. 7~d!.

From Fig. 2 we can find that the lowest Landau levels
located at the vicinity of the bottom of the first subba
where the modulation of the periodic potential does not p
an important role and the electron motion is described by
simple parabolic dispersion relation. Consequently,
broadening is extremely small in the lowest magnetic mi
band. Contrarily, at positions of higher Landau levels, wh
significant deviation of the subband structure from the pa
bolicity occurs, the modulation gives rise to notab
magnetic-miniband broadening.

The magnetic minibands have a 1D characteristic, wh
is manifested by singularities of the density of states
shown in Fig. 8. Because the Landau-level picture is
wholly destroyed, the occupation of the magnetic miniban
can be estimated by the degeneracy of the individual Lan
level of the uniform 2D system. Each Landau level posses
the degeneracy of 1/2p l 0

2; thereby we can estimate, for ex
ample, that the first miniband is totally occupied and t
second miniband is partially occupied forne53.9
31011 cm22 in the field given by\vc510 meV.

D. One-dimensional effective potential

In Fig. 9 the amplitude of the 1D effective potentialDV
defined in Eq.~35! is shown as a function ofd1 for cases of
both finite and infinite barriers. They are quite different wh
d1<5 nm, which implies that the infinite-barrier model
still inappropriate even forV051 eV in the present GaAs
AlAs QWA.

Our calculation indicates that the finite-barrier effecti
potential model can reproduce the electron spectra alm
exactly both in the presence and absence of a magnetic fi
except for a slight parallel shift which can safely be ignore
In Fig. 9 a comparison is made for the subband gap betw
the first and second subbands calculated by differ
schemes. It can be found that the gap calculated by the
fective potential agrees with the exact one very well, ev
when the parameterd1 becomes as small as 2 nm.

Figure 10 shows the gap as a function ofV0 obtained by
using different schemes. The effective potential works qu
well in the whole range ofV0. With the decrease ofV0 the
gap becomes smaller rapidly. This implies that the deviat
of the subband structure from parabolic dispersion relatio
negligible in GaAs/AlxGa12xAs quantum-wire arrays inde
pendent of the Al concentrationx except in systems with
very high electron concentrations.

IV. DISCUSSION

The experimental measurement about the diagonal re
tivity showed that the minima corresponding to the odd fi
ing factorsn53 and 5 are invisible and the resistance d
around n51 quickly disappears as temperature increa
from 40 mK to about 300 mK,6 wheren52p l 0

2ne . The dip
in the resistivity at odd-integer fillings corresponds to t

se
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FIG. 7. The magnetic minibands as a function of the wave vectorqy for several cases.~a! \vc55 meV, B52.893 T, andd1

55 nm; ~b! \vc510 meV, B55.785 T, andd155 nm; ~c! \vc520 meV, B511.57 T, andd155 nm; and~d! \vc510 meV, B
55.785 T, andd152 nm. The numbers near the minibands denote their widths, and the Fermi level is denoted by arrows.
he
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the
spin splitting, which has completely been ignored in t
present calculation.

In the uniform 2D system the exchange energy is kno
to lead to a drastic enhancement of spin splitting, wh
makes the diagonal resistance minima of odd fillings visi
as well as those of even fillings.20 The spin gap due to the
exchange enhancement effect is suppressed when the d
eracy of the Landau levels is lifted by a periodic modulati
potential.21 In the QWA structure, the periodically modulate
interface can expand Landau levels into magnetic miniban
but our calculation reveals that the broadening of the m
08532
n
h
e

en-

s,
i-

band where the Fermi level is located is small and negligi
for the densityne53.931011 cm22. Therefore, the quench
ing of the odd-integer quantum Hall effect observ
experimentally6 cannot be explained by the miniband broa
ening due to the periodic interface modulation.

A high anisotropy of the electron mobility has bee
observed.5,6 Experiments show that the longitudinal mobilit
parallel to the quantum-wire direction is much larger than
transverse mobility. The present calculation gives an alm
circular and isotropic Fermi line for the usual electron de
sity and therefore shows that Bragg reflection due to
8-8
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periodic variation of the well thickness cannot give rise
considerable effects on the electron mobility.

A QWA structure was implemented also in
GaAs/AlxGa12xAs single heterostructure where a large m
bility anisotropy was also observed.22 It is straightforward to
develop a one-dimensional effective-potential model

FIG. 8. The density of states in a magnetic field. Only the low
three magnetic minibands are shown. The parameters take the
ues asd155 nm, a512 nm, a154 nm, D51.2 nm, andd
520 nm. The magnetic field strength is\vc520 meV or B
511.57 T.

FIG. 9. Subband gaps between the first and second subb
calculated by different schemes and the amplitude of the effec
potentialDV as functions of the parameterd1.
08532
-

y

treating the periodic interface-position modulation as a p
odic interface roughness in such single heterostructure23

The band offset of the GaAs/AlxGa12xAs heterointerface de
pends on the Al concentrationx as V050.63(1.155x
10.37x2) eV for x<0.45.14,15 Thus the height of
GaAs/AlxGa12xAs quantum well is much smaller than th
of the GaAs/AlAs quantum well (V0'357 meV for x
50.45). Therefore, the deviation of the band structure fr
that of the uniform 2D system is expected to be almost n
ligible in this system also. The anisotropy of the mobili
cannot be ascribed to band-structure effects and is likely
be due to other more significant effects such as poss
inhomogeneity and disorder in the periodic well-wid
variation.

V. SUMMARY

We have calculated the energy spectrum of a quant
wire-array structure. In the absence of a magnetic field, o
the lowest subband is partially occupied at the lo
temperature limit in the case of typical electron density
experimental samples. Only in a quantum-wire array as t
as 2 nm, the subband can show a notable deviation from
parabolic band in the energy range from the subband bot
to the Fermi energy. In systems as thick as 5 nm~so far most
experimental samples have thickness close to or larger th
nm!, such a deviation is negligible. This implies that th
modulation of the periodic potential due to interface cor
gation does not play an important role in transport propert
When a high magnetic field is applied, the Landau levels
expanded into magnetic minibands which are a perio
function of the wave vectorqy . However, the broadening i
still small and the Landau level picture remains valid und
usual experimental circumstances.

More importantly, we have developed a one-dimensio

t
al-

ds
e

FIG. 10. The subband gaps as a function ofV0 calculated for
actual QWA’s and in the effective-potential scheme.
8-9
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effective-potential model treating the well-width variation
an interface roughness. This model can well reproduce
energy spectrum in both presence and absence of a mag
field and provides a intuitive and simple picture to und
stand electronic states of a quantum-wire array.
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