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Self-consistent random-phase approximation for interacting electrons in quantum wells
and intersubband absorption
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For electrons with Coulomb interaction confined in a quantum well, we have developed an approach based
on the Kadanoff-Baym-Keldysh technique to calculate equilibrium Green’s functions. This approach is based
on iterative numerical computation of the retarded self-energy in the self-consistent random-phase approxima-
tion. For two subbands, at zero temperature, we have computed spectral functions, electron distributions,
quasiparticle spectra, and the current-current correlation function that determines the intersubband absorption
coefficient. Our computations of the optical absorption take into account the depolarization shift and vertex
corrections. Apart from direct applications of this theory to the physics of semiconductor quantum well
devices, the Green’s functions obtained may also serve as self-consistent initial conditions for quantum kinetics
problems in quantum wells.
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I. INTRODUCTION much less appreciated that the equilibrium Green’s-function
method may also not be applicable to the interaction of light
Intersubband absorption of electrons in quantum wells isvith many-body systems, because this method is based on an
among the most important properties from both fundamentahdiabatic switching-on the interactions, while, in contrast,
and applied positions. In particular, one of the most develthe light field is rapidly oscillating. Therefore, even for the
oped and frequently used applications of quantum wells igontinuous-wavedcw) excitation of many-electron systems,
guantum-well infrared photodetectoisee, e.g., Refs. 13 the nonequilibrium KBK approach may be necessary. The
For this application, and many others, electron densities arKBK method also has an added advantage that the initial
high enough in order to yield sufficiently high responses.(equilibrium) electron system can be conveniently treated at
Consequently, significant effects of many-body electron-a given finite temperature.
electron interaction are present in the intersubband absorp- It is necessary to mention that there has been a significant
tion (see, e.g., Sec. 2.7.2 in Ref. 1 and Chap. 4 in Ref. 2 amount of work done in the field of interacting electrons
The intersubband absorption is also of high significance fousing the well-known semiconductor Bloch equations
another important application of quantum wells, namely,(SBE’s) (see, e.g., Ref. 19In contrast to the two-time KBK
quantum cascade lasérin this paper, we develop a theory equations, the SBE’s are single-time equations that can be
of intersubband absorption based on the fully self-consisterdbtained from the KBK equations by using additional ap-
random-phase approximatidialso known as thé&sW ap-  proximations. In particular, they can be derived from the
proximatior), and apply it to intersubband absorption in spe-KBK equations using the generalized Kadanoff-Baym ansatz
cific quantum-well infrared photodetectors. (see, e.g., Ref. 20nhose accuracy is not quite controllable.
Another perspective application of the present results ighis ansatz cannot be derived consistently microscopically
the description of an initial correlated electron state for ul-and expressed as a result of a summation of some subset of
trafast physics. Stimulated by the development of ultrashorcontributions (diagram$. Some additional approximations
laser pulses, theoretical and experimental studies of ultrafastuch as use of the zero-order retarded and advanced Green'’s
kinetics of interacting electrons in semiconductors have exfunctions also are invoked.
perienced rapid development. This problem is very interest- In the present paper, we consider intersubband optical ab-
ing and theoretically complicated due to the fact thetny-  sorption for the electrons in the conduction band of a quan-
body Coulomb interaction on a very short time scale is nottum well. As the necessary first stage of this project and of
efficiently screened and therefore is very strdnt). From  separate interest, we find equilibrium many-body Green's
the applied point of view, the research on the ultrafast kinetfunctions of the electrons in the quantum well, taking into
ics promises important contributions to the physics of ul-account the two lowest subbands. The KBK technique used
trafast electronic and optoelectronic devices. Significant theby us provides a unified and powerful method of solving
oretical progress in this field has recently been obtained oboth these problems, equilibrium and nonequilibriopti-
the basis of the nonequilibrium Green’s-function method bycal). As we already mentioned above, the equilibrium
Kadanoff and Bayrf and Keldysht> This method has been Green’s functions of the KBK theory, that we have deter-
further developed by Langréthand Rammer and SmitH. mined in this research, can also be used as initial conditions
It is widely recognized that the conventional equilibrium in the future studies on ultrafast intersubband kinetics of in-
field-theoretical techniquédescribed, e.g., in Ref. 18 not  teracting electrons in quantum wells.
applicable to the ultrafast kinetic problems where the Because it is impossible to exactly solve the many-
Kadanoff-Baym-Keldysh KBK) method of nonequilibrium electron Coulomb-interaction problem, one has to resort to
Green’s-functions is valid and should be used. However, it ispproximations. The random phase approximatieRA) is
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the most widely used and realistic approximation for many-
body electron problems. Of principal importance is that for ~ H=2, (Ei(,op)_ﬂ)aiT,pai,p
the quantum kinetics problems and, generally, for optical ex- bP
citation problems, the RPA shouldecessarily be self- 1
consistentSC), otherwise the local conservation laws for the + 25 > V”-k|(q)a{mqa;p_qak,p,a,,p, ()]
electron density and energy-momentum density are i,ikla,pp’
V|0Iate,d.21 The self-consistency of the RPA means that, ,o.oqis the area of the quantum wel, is the chemical
Green'’s functions that are employed to calculate the polar- tential- , d 2D ¢ ¢ in th
ization operator in the “bubble” approximatidd = GG and potential, p, p-, andg are L momentum vectors In the
the self-energy in th&&W approximationS =GW are the plane of the well, indexes,j,k,1=1,2 d_enote the subband
final Green's functions that satisfy the Dyson equation with(€Nvelope states whose wave functions a(z) and
self-energy>.. Note that the theories such as SCRPA that are?2(2), with zas th((eo)grovgth d'reCt'O'('(b?" thze norm{z\(l))to the
compatible with the exact conservation laws are callegVell plane; and Ejj=p</2m and E; j=p/2m+E}; are
conserving® In this respect we note that some theories doone-particle energies, whek is the bare energy gap and
not employ a completely self-consistent approximation andm is the bare effective mass of the electron. The original
therefore, are not necessarily conserving. As an example, w@nscreenedCoulomb potential is given by the usual expres-
mention Ref. 22 by Barth and Holm, which i<GW, theory,  sion
which means that the self-energdy is calculated with the
final Green’s functionss, but the screenedrenormalized N . , ,
interaction is calculated with the non-self-consistent Green’s Viikl(Q):J’ dzdZ ¢ (2) ¢} (2")v(0,2—2") (Z') hi(2),
functionsGy. In contrast, a later papéry the same authors 2
was the first, to our knowledge, example of the application of
a fully self-consistent RPAGW approximation, which is ~ Where
conserving, to a 3D electron gas.

Taking into account the above-discussed compelling argu- . 2me?
ments, we earlier employed the SCRPA in the framework of U(q,Z):J d’re' o e e 94,
the KBK approach to find the Green’s function and various €N t2z bd

observable quantities, such as the momentum distribution, s the background dielectric constant, anis the electron
one-electron energy, spectral function, etc., of a tWO'charge.

?émggf;ﬂﬁaléfg)m (tarﬁcgroegeg?:tugil ;{/Ug géﬁ:aoraliazr:adth]iclsng[e)- . The subband wave functions in the absence of a magnetic
proach to describe the state and optical absorption of elec%:a Id ;:a}ln be chosen real, so the poten‘ﬂ\?l(l, o_f\l;q (_Z)Vhas
trons in the conduction subband of a quantum well. Previ-'¢ T0lOWINg permutation symmetry Vi = Viji = Vik;
ously, a significant number of theoretical papers were_ Viik - In the following we assume that the well is symmet-
devoted to a computation of the intersubband absorptiofiC With respect to its middle =0); therefore the wave
(see, e.g., Refs. 26— hese theories are based on differentfunctions have a definite parityp;(—2)=¢1(z) and ¢,
versions of the RPA, but none of them, distinct from the(—2)=—¢2(2). In this case, only four independent matrix
present theory, is a SCRPA. In qualitative agreement witielements ofVy;, do not vanish, which we denote;(q)
previous result8®?” we found a significant depolarization =V1111(0), V2(A)=V22240), V() =V122(0), andV,(q)
blueshift of the absorption spectrum maximum. However,=V12140)-
quantitatively, the self-consistency of the RPA leads to an The Kadanoff-BaymKB) equations are formulated for a
increase of the total blueshift compared with the ugnah- ~ Set of four Green’s functions: great@&~, lesserG™~, re-
self-consistentRPA. We have also evaluated the vertex cor-tardedG', and advance@®. Similar notations are used for
rections in the current-current correlation function using thethe components of other field-theoretical objects, such as the
ladder approximation. These corrections result in a small inself-energy X, polarization operatorIl, dynamically-
crease of the magnitude of the absorption peak, with an ascreened interactiow, etc.
most nondistinguishable redshift in the peak position. We deal with equilibrium uniform systems where the
This paper is organized in the following way. In Sec. Il Green’s functions depend only on a conserving momergum
we present general equations and their solutions for Greengnd time difference, and are defined in the momentum-time
functions and optical absorption. Numerical procedures aréepresentation as
described in Sec. lll. The results of numerical computations
are presented in Sec. IV. Finally, concluding remarks are G (p.h)=i(a] ,(0)a; 4(1)),
given in Sec. V.

2

G (p.t)=—i(a p(taf (0)), &)

where the angular brackets denote quantum-mechanical av-
eragingand averaging over the Gibbs ensemble; we do not

We consider an electron system with the Coulomb intershow the spin indices over which all objects are diagonal.
action confined in quantum well with two subband statesAlso, the equilibrium Green’s functions are diagonal over
The positive ions are described by a jellium model. Thesubband indexes due to conserved parity in the absence of
Hamiltonian of the system is external electrical field.

II. THEORY AND BASIC EQUATIONS

A. Green'’s functions
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For any objectA of the theory(the Green’s functiorG, = where we used the known Langreth rules for the concatena-
self-energy,, dynamically screened potentisV, polariza-  tion of two Green’s function$® From this, using Eqg5) and
tion operatorIl, etc), the corresponding retardgd) and  (6) and the symmetry relation

advanceda) components are expressed as - _
Hlj(prw):H“(p!_w)! (11)

r,a — 4+ + > _g< s
AP == 8=DA™(P.H = AP+ AOA, () we compute the imaginary part of the retarded polarization
where the secon¢singular in time term §(t).A° is not re-  operator:
lated to.4”'<, and appears due to concatenation of regular
objects with time-singular quantities such as potentials that
do not include retardatiofsee, e.g., the second integral in
the right-hand side of Eq23)]. From the four typegcom-

ponents of each quantity, only three are independent due td3€causdlj;(p, ) as a function ofv is analytical and has no
an identity singularities in the upper half plane, and it tends to zero for

w—, the conventional Kramers-Kronig relation allows one
A = A= A" - A", (5)  to restore its real part,

1
ImIL(p, o) = E[H,—T(D,— o)~ (p,w)]. (12

In a stationary case, there is a symmetry relation between 1 f g ,ImH{j(p,w’) 13
W,

the advanced and retarded components of an object in the RelTj(p,w)= —P T
momentum-frequency representation: w e
ax , where P denotes the principal value of the integral.
A (p,w)=A'(p,w). (6) Having found the retarded components of the polarization
operator, we write down the system of Dyson equations for
the retarded dynamically screened potentidlg(p,w),

Wz(p,w), Wc(p,w), andWX(piw):

Also, the well known Kubo-Martin-Schwinger boundary
condition is valid!’

G (p,w)=—ex G (p,w), 7
i (p,w) pBw) i (p,w) (7) Wr1:V1+VlHr11Wr1+VcHr22W::v
where 8=1/T and T is temperature in energy units. Using
this relation, the number of independent components can be W, =V, + VoIT5 Wy + VTG W,
reduced to only one. We choo&? as such an independent
component, and the other three are expressed as W=V + VI Wi+ V IT5W,
Gl(p,w)=G{*(p,w) W=V, + V(T + T ) WE (14)
G (p,w)=—i2n,IMG(p,w)], These Dyson equations describe the “dressing” of the bare
: ¢ ! potentialsV,(p), V,(p), Vc(p), andV,(p) by the chains of
. corresponding polarization operators. Here and below, we
G (p.w)=—i2(n,~DIMGI(p.w)], (8 o L e

use the known Langreth rufsthat allow one to find com-
wheren,,=[exp@/T)+1] tis the Fermi factor, and we use a Ponents of the product of two objects and 5;

system of units wheré=1. fa_ Arampra S A <pay ATR>.<
We use an iterative process to find Green’s funct@n (AB) "= AL, (AB)T " =A" "B+ AB™.

numerically. As the result of an iterative step, we obtain the (19
retarded self-energ¥(p,w). The following is a description The solutions of Eqs(14) are
of the next iterative step.
Using the Dyson equation for the retarded Green’s func- VﬁH’Z 1
ti fi =Vt
lon, we find W= Va (1—le;)(1—v2H;)—v§HgH;}1—v1Hfl’
1 21yr
Gi(p,w)= : , 9 Velly 1
_& 3T W,=|V,+
0 & 2i(Pe) 2| VT VAT (1= VTG — VAITITG [ 1= VI
where&; ,=E)— ., andi=1,2. From this, using Eq$8),
we findG~=. This allows us to obtain the electron polariza- W= Ve
tion operator in the RPAbubble approximationlI=GG, or © (1 V,ITh)(1— V,IT5) — VAT T,
in the detailed form
r VX
o' d%k W, = (16)

1V (I, + 115y

d
Hﬁ(p,w)Z—Zif (2m)? Gi<(k,w')Gj>(k—p,w’—w),

(100  where we used notatiod$,=11,; andI1,=II,, for brevity.
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Using Eqgs.(7) and(10), one can derive a relation for the The last integral in the right-hand side of E@3) is the
greater and lesser components of the polarization operatorsxchange diagram that is independent, yielding a correct

analogous to the relation for Green’s functigis.

11 (p, @) =exp Bw) 1T} (P, w).

17

asymptotic behavior of R (p,w) for w—o.
Concluding this subsection, we have started l¥ifh[see
the paragraph preceding, E®)] and finished with the next-

In general, this relation can be proved in the same way as thieration 3 [Egs. (22) and (23)]. This closes the iterative

Kubo-Martin-Schwinger boundary conditidh.Using this

procedure. All the necessary Green’s function are self-

and applying the Langreth rulg&q. (15] to the lesser and consistently found within the current iteratipgs. (8) and

greater components of the renormalized potentiathat is
built from the multiple products of the polarization operators,

9]

one can derive that a similar relation is valid for each of the B. Intersubband linear absorption spectrum

potentialswW;, W,, W;, andW,:

W~ (p,w)=exp Bo)W=(p,w).

Combining Egs.(5) and (6) for the renormalized Cou-
lomb potential and using relatidii8), we obtain the expres-

sion for the lesser component of the potential,

W=(p,w)= Im W'(p,w),

efo—1

whereW' is given by Eq(16). The greater component of the
dynamically screened potentil can be obtained from sym-

metry relations

W~ (p,w)=W=(p,— ), W3(p,w)=W'(p,—w).

(18

(19

(20

The linear absorption coefficienri(w) is related by the
Kubo formula to the imaginary part of retarded current-
current correlation functionr’(w),*?

a(w)=— Im 7" (), (25

4
VepVo
where V is the 3D volume of the system. This retarded
current-current correlation function is given by

Hr21(q: O,(,())
1-V(q=0)IT5(q=0,w)

where p,= (e/m) [dz¢,(z)(d/d2) $,(2) is the matrix ele-
ment of the current between the two subbands, where we
assume that the exciting light is linearly polarized in the
growth (2) direction of the quantum well. In Eq26), we

(26)

m(w)= | pz|2S

To complete the current iteration step, we compute théreglect the smalll,, polarization operator and retain only

lesser and greater self-energies in the SCRIR& GW ap-

proximatior) as
dw'd?
Ei>’<(p,w)=if

(2m)®

+W (k0" )GS T (p—K,o—w')].

Taking into account Egs(5) and (6), we can express the

imaginary part of the retarded self-energy as

1
IM2{(p,w)= 537 (p.w) =37 (p,0)].
Finally, R& is found from a dispersion relation

1 Im{(p,0’
Rez{(p,w)ngf dw'pr)

o' —w

_ fﬂ[v(k)n.( 1
(277)2 I I p

+ Vi(K)ng_i(p—k)],

where the momentum distribution function(p) for each

subband is expressed as

[ do __
ni(p)=—|f56i (,p).

(W= (k,0" )G~ (p—kw—w')

(21)

(22

(23

(29)

theIl,; polarization operator that describes the resonant ab-
sorption of the light when an electron undergoes the transi-
tion from subband 1 to subband 2, which is the well-known
resonant or rotating-wave approximation. In the SCPRA
(“bubble” approximation, the polarization operatdil}, is
given by Egs.(10)—(13). Note that Eq(26) is applicable to
both single and multiple quantum wells, where in the latter
caseV is the system’s volume per one quantum well.

To go beyond the “bubble” approximation, we need to
calculate corrections to the vertéXp,»'). We use the lad-
der approximation which is the most common approximation
for the vertex corrections. To study the vertex corrections to
the polarization operator, we present this operator as the con-
catenation of the intersubbaridondiagonal over subband
indices Green'’s functionG,; in the presence of an electro-
magnetic field with frequency,

w'd’p
(2m)°

Her(q:O,w):_2|f G;l(paw"_(l),,w,),
(27)

where this intersubband Green functi@n, is related to the
vertexI" as

Go(pwt o' 0 )=Gyp,o+o ) (potow o)
XGy(p,w’). (28

We exclude the matrix element of the current from the ver-
tex, so the pure SCRPA correspondd’te 1. In Eq.(27), the
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retardedcomponent of the polarization operator is related to ¢ (z)=\/2/d cogwz/d), ¢,(z)=+/2/d sin(27z/d),
the lessercomponent of the intersubband Green'’s function (32)

because the Langreth rifefor the retarded component of where the widthd of the well is related to the bare intersub-

two operators concatenated into a loop are exactly the same (0) — 3I2mEY) .
as for the lesser component of product of these two operato and gapEi; asd=y3/(2mE;y). Using these wave func-

in Eq. (15). tions, the integrals of Eq2) are easily calculated analyti-

. . ) . ally.
We use an iterative process to find the intersubband . . .
. . . The final electron density of th mi ntroll
Green'’s functionG,,(p,w’) numerically for each light fre- e final electron density of the system is controlled by

) ) . the chemical potentigl.. One can convince oneself that all
quencyw independently. As the result of an iterative step, Wegimensionless quantities of the theory depend only on two
obtain three components of the vertex funCt'ondimensionIess paramete‘r%ez\/W/(eb/,L) andE(loz)/|/!«|-

<,r,a ! H i H 1 . . . . .
I'="%(p,w’). The following is the description of the next note that for interacting electrons, the chemical potential is

iterative step. not necessarily positive. Alternatively, it is convenient to
Using the Langreth rules of Eqel5) and (28), we can  present the results as functions of two “dressed” dimension-
determine the components of t@; functions less parameters: a conventional density parantétat is the
relative distance between electrpng and a relative bare
Gyr=GyT"*G1?, intersubband gap=E{9/e-. For a 2D electron gag;s
=meé?/ ep\/mn, wheren= 23, n;(p)d?p/(27)? is the elec-
G5=GLI'GT + G5 =G+ G, T3G2. (290  tron density. The Fermi energy: is conventionally related

to the Fermi momentumg at which the discontinuity in the
Note that in contrast to Eq6), the retarded and advanced electron momentum distribution occuks:=p2/(2m).
components of the Green’s functid@b,; are not related by In the numerical integrations in Eq4.0), (13), (21), (23,
complex conjugatiorin fact, (G},)* =G3,]. and (24), the integration over the momentum variables has
To complete the iteration cycle, we calculate the vertexbeen truncated at the maximum momentpiy, that is(de-
functionT" in the ladder approximation, where it satisfies thepending on the'?) from 6—10 times the Fermi momentum
equations pe. The frequency(energy integrations were carried out
within the region| | <pZ,,/m.
I~(po+to’ o) We ran the iterative procedure described above in Sec.
. I A until the self-energies.| (p,w) convergeduniformly in
:iJ do"d kG<(k 0+ 0" 0" YW (p—k,0' — o) p and ) within <1% mismatch. This requires about 15
(2m)3 ’ ¢ ' " iterations and takes- 100 h of CPU time on an SGI Origin
2000 workstation. This iterative procedure has been well-
— converging and stable. We found earlier for a 2D electron
Fr'a(p,w-i-w’,w’):l—l—if—[Grz'la(k,w-l-w”,w”) gag*? that such an iterative procedure converged rfgr
)3 =<2.62; the values used in this paper are well within this
- , - range. As the initial self-energy we have used either the
XWe (p=k 0" =0")+Ga(k,0 result* of a pure 2D case with the same value rdf for
+ 0", 0" )WL (p—k,0'—0")], (30 31(p,w) and a small constant value f&%(p,w), or the
result of a previous SCRPA run with a different valuer Bf
where we used the relations of H&O) for the greater com- There was no appreciable dependence of the final results on

ponent of the potentialv™. the initial value of%{(p,w), implying a good convergence.
Integrating over the angle betweprandk and overw’,
IIl. NUMERICAL PROCEDURES we divided the integration interval into 20—-40 segments to

take advantage of the smooth behavior of the integrands in

A. Numerical procedures for Green'’s functions in equilibrium some Segments_ The number of Segments was chosen to op-

We have numerically solved the equations for the Green'éimize the computational efficiency. The adaptive Romberg
function in equilibrium using the iterative procedure de-integration of fifth-order accuracy was used to integrate over
scribed above in Sec. Il A. Though these equations are vali§ach of these segments. This method allowed us to achieve a
for arbitrary temperatures, in this paper we have performedelative error of integration of less than 10 We computed
computations foff = 0. Our motivation for this choice is that the self-energies and polarization operators in 200—-400
we intend to concentrate on effects of Coulomb interactiorP0ints in their argumentsandw. We verified that the results
for electrons in a quantum well with two subbands taken intgPbtained are stable and do not depend appreciably on any of
account. A finite temperature will bring about additional ef-the computational parameters mentioned above within their
fects that will be considered elsewhere. Also, the previougndicated range.
RPA calculations for intersubband absorption spetfa,
with which we compare, were carried out &t 0.

We choose the confining well potential to be zero in the
well region,ze (—d/2,d/2), and infinite elsewhere. Thus the  In the integrals in Eqs(30), a numerical integration was
ground-state and first-exited-state wave functions are performed following a numerical procedure similar to that

B. Numerical procedures for optical absorption including
vertex corrections
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rge=0.7, p=1.35 re=1.06, p=3.13
31 — Ei/er - 61 — Ei/er
2t - E/ep.-_ 41 - Ep/gp -~ 77
1 -7 @ 207777 O
o~ Py B

Pr J—"O"S/ Pr
_1M. 1.5 2 : 1. 1.5

FIG. 1. Electron momentum distributions for the first and sec-

ond subbands);(p) andn,(p), calculated in the SCRPA approxi- ro=1.69, 0=7.85 re=2.17, 0=3.46
mation. Curves 1-4 correspond to the pairs of paramefegsp} 15 T Ei/er 8 — Ei/€p
={0.7,1.3%, {1.06,3.13, {1.69,7.85, and{2.17,3.46. 1o o Eeler j Ey/€n _ -~~~

5 (© 2 ()
described in Sec. Il A. We ran the iterations of E(9) and 0 , . 0 < . , , B
(30) until the intersubband Green’s functio®,> ~(p,® 0.5 1. 1.5°F ,F—05 1. 1.5PF

+w',w") converged(uniformly in p and w) within a
<1% mismatch. This convergence is very fast, and it re
quires only from 2—4 iterations to achieve the required ac
curacy. Each iteration takes typicalyl0 h of CPU time on

an SGI Origin 2000 Workst_ation for each p_oint in light fn_a- among them the SCRPAZW approximatio, automatically
quencyw. We have used eight processors in parallel to findgatisty this fundamental relation. Note that the conventional
G2, in different points overs. (non-self-consistenRPA (GyW, approximation is not con-

As the initial I" we used eithed’=1 or the result of @  gerying: it does not conserve the number of parti¢ieshe

previous run with a different value ab. There was no ap- presence of a weak probe figldnd, consequently, does not
preciable dependence of the final results on the initial Va'“e§atisfy this fundamental relatic.

FIG. 2. Quasiparticle dispersion curves for the first and second
‘subbandsE;(p) andE,(p), are plotted for the four different values
‘of pairs{rs,p} indicated in the figure.

of I'"®=(p,w+w’,w"), signifying a good convergence. Another quantity of interest is the quasiparticle spectrum
in each subband. The quasiparticle energy for a subband is
IV. NUMERICAL RESULTS defined as the solution of the equation

A. Equilibrium electron properties 0) r
T . Ei(p)=Ejp—u+Rei[p,E(p)]. (32)
The momentum distributions;(p) for electrons in each

subband i(=1,2) are shown in Fig. 1 as a function pfp,, The quasiparticle dispersion curves for both subbands are
for four different pairs of governing parameters and p.  ghown in Fig. 2 for the four values of the parameter pairs
Here p;,= 2mE is the momentum corresponding to the ysed in the computations, as indicated in the figure. As one
bare intersubband energy g&f) . The values of these gov- can see, these curves for the first and second subbands are
erning parameters in our computations afgs,p}  somewhat nonparallel, reducing the transition energy for
={0.7,1.35, {1.06,3.13, {1.69,7.8%, and {2.17,3.4¢. larger momenta. This effect leads, in particular, to a broad-
These values completely define all dimensionless characteening of the intersubband absorption speétfaSec. IV B.
istics of the system. Note that the first three cases corresporhother interesting effect is the widening of the intersubband
to the same bare intersubband gap, wh&=p/r2  spectral gapE;,=E,(p=0)—E;(p=0) due to the interac-
=const. We have chosep>1 in all four cases, which tion. For the parameters of Figs(a?-2(d), the relative
means that the Fermi level lies below the excited subbandhange ofE;, with respect to the Fermi energy is calculated
(the interaction only increases the final “dressed” intersub-to be E;,— E{9)/er=0.31, 0.59, 1.14, and 1.25. This in-
band gap, as we will see below in Fig. MHence the popu- crease of the relative shift with is an expected conse-
lation of second subband is small at zero temperaturequence of the screening that becomes less efficient at lower
n,(p)~103, as we see in Fig. 1. The dependengép) has  electron densities. A less obvious effect is that &fsolute
an expected shape for a norniaAndau-typg Fermi fluid at  shift still decreases with increase rof (i.e., with decrease of
T=0 with a discontinuity at the Fermi momentuysg and a  the electron densily as one can easily verify.
smooth dependence elsewhere. In contrast, the electron mo- To discuss these dispersion curves, the ground subband
mentum distributions in the excited subband are smooth ewenergy(in the units of the Fermi energ\g,(p)/er atp=0
erywhere, as expected. in Fig. 2 is less than-1 [by conventionE;(pg)=0]. This

The Fermi momentunpe is completely defined by the means that the ground-subband quasiparticle energies inside
position of the discontinuity im,(p) in Fig. 1. On the other the Fermi sphere are lowered relative to those of noninter-
hand, it is an exact statement of the Landau Fermi-liquidacting electrons due to the electron correlations taken into
theory that(in a 2D caspthatn=p2/27. This is a nontrivial account by the SCRPA. This effect is closely related to the
fundamental relation and an independent condition that welecrease of the total energy of the system when the correla-
checked numerically to be valid within the expected accu+tions between the electrons are taken into account. Such a
racy (margin of error less than 1% for dlt,p} considerel  decrease of the total energy when “gooorrelated elec-
This compliance is not accidental: the general theory bytron wave functions are used is expected from the general
Baynt° shows that all so-called conserving approximationsvariational principle. It can also be considered as analogous
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FIG. 3. Scaled spectral functions of the system for the first and ) . )

second subbandsgA;(p,w) andeA,(p, »), found in the SCRPA, FIG. 4. Scaled spectral functions plo_ttec_i against relative fre-

are plotted against the relative frequenay/sr for {rg,p} quencyw/eg for the values of momentum indicated. Curves 1-3

={0.7,1.35 and the values of momentum indicated. Note the are plotted for relative spectral function of the first subband

logarithmic scale. epA(p,w) for three parameter pairs{rg,p}={0.7,1.35,
{1.06,3.13, and{1.69,7.85%, respectively. Curve 4, adopted from

to the decrease of the total energy and lowering of the oneRef. 24 gnd shown for comparison, corresponds to _the scaled spec-

electron energies for occupied orbitals when a molecule i§al functioneeA(p,«) for a pure 2D electron gas with,=1.16.

formed fr_om atoms. The fact that the SCRPA Co.rrec.tly.rEprO'ﬁ-function peak atw=0, while the spectral function for the

duces this lowering of the one-electron energies inside the . . . L
éxcited subband does not havé-function singularity since

Fermi sphere indicates that it better describes the correlate ;
it actually corresponds to electrons above the Fermi surface.

many-electron state. Note that the one-electron energy in thﬁumerically thes-function peak has a very small width in-

excited subband is increased due to the electron correlationts duced for th larizati ired by th ional
as may be deduced from the data of Fig. 2. These eﬂ‘ects[b uced for the regularization required by the computationa
rocedures through a small negative addition t& Infor a

bring about an increase of the intersubband transition energ&arrow reqion around—0
E1x(p)=E»(p) —E1(p), which is one of the causes of the 9 RS

blueshift of the intersubband absorption contésee below Interestl_ng §callng properties of the spectral functions can
in Sec. IV B. be traced in Fig. 4 where we show the scaled spectral func-

The maximum information on one-electron quantities is'uons for the first subbands;eA;(p, ), for three values of

: . : i the parameter pairgrg,p}={0.7,1.35, {1.06,3.13, and
contained in the spectral functions of the systém: 11.69,7.85 (curves 1—3 As curve 4, we show a scaled spec-

Ai(p,w)=—2 Im G'(p,w). (33 tral functioneA(p, ) fqr a2Db electr(_)n gas withg=1.16
adopted from our previous wofk, which formally corre-
These functions satisfy a sum rule sponds tofrg,p}={1.165}. As we see from this figure, in
the vicinity of the quasiparticle peak, the scaled quantity
f d_wA.( )=1 (34) egA; is with a good accuracy aniversalfunction of w/eg .
27 P ' Though this universal behavior is not yet understood analyti-

Thi lei Vil dition th h q cally, it is very pronounced: the curves in Fig. 4 correspond-
Is sum rule Is a nontrivial condition that we have used 104", the samep/pg practically coincide for different

.d;.e%k tht?] nhumerical a;:curacyd_of O-ELJ(E/I'ESU“S. It htasd been Sa'rs,p}. The deviation from this universal behavior is seen
IStied with an €rror not exceeding 1%, as expected. only for far wings where the spectral function itself is small.

_Spectral functionsi;(p, ) and Ay(p,w) are plotted in - Nqte that 4 similar universality for the 2D case was discov-
Fig. 3 against the relative frequency firs,p}={0.7,1.3%5  ,1eq in Ref. 24.

and selected values of momentymAs we can see, these
spectral functions at a givem have sharp peaks at the cor-
responding quasiparticle energi@seasured from the chemi-
cal potential E;(p) defined in Eq.(32). Note that forp We define normalizedimensionlessabsorption function
=pg, the spectral function of the first subbaAg contains a  «(w) by a relation

B. Optical absorption results
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o (w) o (w) TABLE I. Absorption peak positiom,,, its depolarization shift
0.4}, rs=0.7, p=1.35 0.4 rs=1.06, 0=3.13 Aw,,, and the bare intersubband g&f$ in the units of the Fermi
e § n— 1 energyeg . The data are shown for the four cases of parameters
0.21 ., 7 2 (a 0.2t ' 2 (b andp=EQ/er, corresponding to curves 1-4 in Fig. 1; the labels
oo 3 3 RPA and SCRPA indicate the corresponding approximation afzpr
SN W | "N v in the SCRPA, we include the depolarization shift and vertex cor-
2. 3. Er 3.5 4, 4.5 ¢ rections, while in the RPA we use E(R6).
a(w) & (w)
0.4 r.=1.69, p=7.85 0.3 re2.17, pe3.46 RPA SCRPA RPA SCRPA
! 0.2f | — 1 = B om om Aom Ao
N I R [ R ™ e w v w
NS w . N 1 0.70 1.35 1.80 2.15 0.45 0.49
9. 0. °F 5. 6. °F 2 1.06 3.13 361 4.14 0.48 0.43
3

FIG. 5. The normalized intersubband absorption functi¢m) 1.69 785 8.36 9.40 0.50 0.40
4 2.17 3.46 4.36 5.45 0.89 0.73

calculated in the SCRPA approximation plotted as a function of the
relative frequencyw/eg for different values of parameter pairs

{rs,p} indicated. Curve 1 is for both the depolarization effect and )
vertex corrections taken into account, curve 2 includes only thd1=GoGo, the absorption spectrum has the form of a
depolarization effect, and curve 3 is calculated disregarding boti$-function peak. The frequency of the absorption peak in the
the depolarization effect and vertex correctidisge the text for RPA was given by Ando and co-workéfs’ as

details.

8mwe?n (= z 2\ 12
w(w)=a(w)L e, 35 A= Eg(“@f dz f dz' ¢1(2') po(2') ) .
b —® — 0
whereL=V/S is the length(in the growth directionof the a (36)
system per a quantum well. This functian(w) depends
only on the two parameters of the systemandp. The corresponding depolarization shift in the RPA of this

The normalized absorption functio(w) is shown in  Peak isAwi = wfPA-E.

Fig. 5 in three different approximations for different values In Table I we summarize the position of the absorption
of {rs,p} parameters as a function of relative frequencyMaxima,wp, in the SCRPA and RPA along with the corre-
wleg . Curve 1 denotes the complete result with the depolarsPonding shifts of the absorption maximewr,, due to the
ization shift and vertex corrections as given by E2p) and  depolarization effect. For SCRPA this shift is defined as the

the subsequent equations in Sec. Il B. Curve 2 is computedifference between the coresponding maximum of the ab-
without the vertex corrections, i.e., settilifp,w+ o', w')  SOrption spectrumvy, "™ and the(renormalizedl intersub-
—1 in Eq. (29). Furthermore, curve 3 is calculated without band spectral gapE;, [see below Eg.(32]: wy"™
the vertex corrections or depolarization effect, which addi-= w5;C""—E,,. As we can conclude from this table, there is
tionally implies settingv,(q)=0 in Eq. (26). a blueshift of absorption maximum frequency in RPA with
As one can see from Fig. 5, the depolarization effectrespect to the bare intersubband gap, as is kri§wangd also
which is described by the denominator on the right-hand sida significant further blueshift of the absorption in the SCRPA
of Eq. (26), dramatically affects the absorption functi@ef.  with respect to the RPA. To pinpoint the origin of this blue-
curves 2 and B in its presence, the absorption contour shift, we note from Table | that the depolarization shifts in
(curve 2 is approximately four times lower and significantly the SCRPA and RPA, though significant, do not differ much.
blueshifted compared with that in the absence of the depoFherefore, the blueshift of the SCRPA with respect to the
larization effect(curve 3. The absorption contoycurves 1  RPA is mostly due to the widened intersubband ¢epFig.
and 2 is also significantly broadened due to the depolariza2) and not due to an increase of the depolarization shift in the
tion effect. This broadening can be traced to the finite widthSCRPA.
of the spectral function, and physically is due to electrons off It is of considerable interest to compare our theory with
the Fermi surface that experience efficient Coulomb scattelexperimental data. There exists a significant amount of ex-
ing. We emphasize that this broadening of the absorptioperimental data for the intersubband optical absorption in
contour is obtained self-consistently within the microscopicquantum wells(some of such data is reviewed in Ref.)33
theory and is not introduced phenomenologically. Unlike theHowever, keeping in mind the high application potential of
depolarization effect, the vertex corrections have a small inquantum-well infrared photodetectotQW!IP’s), we have
fluence on the absorptiofef. curves 1 and 2 Note that in  chosen to concentrate on the data of Refs. 34 and 35, where
the absence of the depolarization efféafirve 3, the maxi- QWIP’s were explored. In performing the corresponding cal-
mum of the absorption peak in frequency closely corre-culations, we modified the computational code to take into
sponds to the dressed intersubband separation account the finite heights of the barriers in QWIP’s. Corre-
In the usual(non-self-consistentRPA, where the polar- spondingly, the well energies and wave functions were modi-
ization operator is defined by the bare Green’s functions afied with respect to the infinite-barrier values of Eg1).
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FIG. 6. Optical absorbance spectra of electrons for a QWIP withWi tr'1: Itcr;]é 7éx Cei%péjrf; ?eF:'C:r:s?\ﬁforgf“g% sg)\tle\;:ltlgug; g‘efoggpaéftzn
32 individual quantum wells vs the light wavelength. Solid curve: >XP oponsivity . o
theory: dashed curve: experime(Ref. 34. The computations are the quantltles are plotted_ln arbitrary units and are normalized _to the
done for the experimental conditior{®ef. 39 P polarization at the g:g”ggm value of 1. Solid curve: theory; dashed curve: experiment
Brewster angle. B

ture of the present theory both in the treating of the electron-
electron interactions and the neglect of the electron-phonon
interactions.

The second of the experimental papers with which we

Starting the discussion with the earlier paffthe density
of the electron gascreated by a5 doping of the quantum
wells) n=~9x 10" cm 2, corresponding ta~0.6, is well

within our convergence rangef. Fig. 1 in Ref. 24. The  compare (Ref. 35, dealt with a QWIP consisting of 20 pe-
barrier/well composition is Al,{G& sAs/GaAs, the well  yiggs of GaAs quantum wells of 11.8-nm width, each sepa-

width is 6 nm, and the barrier width is 25 nm. Note that 4iaq by 40-nm AJ,.Ga, sAS barriers. The quantum wells
under these conditions, the first excited one-electron level ig, o doped to the electron density of #.701° cm™2 corre-

at 204 meV, just 15 meV below the barrier top, as deliber-qnonging tor ,~2.6. This value is close to the boundary of

ately designed for the photodetector functioning. the region of convergence of our numerical procedure, but
We have calculated the electron absorption spectrum fogy) is inside that regior(cf. Fig. 1 in Ref. 24. The absorp-

30 individual quantum wells in a multiple-quantum-well het- ;4 spectrum was not explicitly measured in Ref. 35, but we

erostructure for the above indicated parameters of Ref. 34,0\ from Ref. 34 that the line shapes of the optical absorp-
except that we have considered the electron-donor dopants gs,, and the QWIP responsivity are quite similar. Based on
being uniformly distributed inside the quantum well to sim- s i, Fig. 7 we compare our computed absorption spectrum
plify the computations. The obtained result is displayed inyith the responsivity spectrum of Ref. 35. In such an evalu-

Fig. 6 in comparison with the corresponding experimentaliion e are, indeed, able to compare only the correspond-
absorption spectrurtsee Fig. 2 of Ref. 34 Note that both ing lineshapes, but not the magnitudes.

the shape of the absorption contour and the magnitude of the "1, comparison of the computed and experimental curves
absorption have been calculated and should be compared. We kg 7 shows that in this case the computed width of the
emphasize thabur theory does not contain any adjustable 5pq6rption contour is significant, though appreciataliyout
parameters The most important result of our computations yyice) smaller than that of the experimental curve. The shape
is that the calculated absorption spectrum has a significan; the experimental spectrum is significantly different featur-
width, comparable to that of the experimental spectrum. Thlg.ng a dip at~27.8 nm that is attributed to the absorption of

width is due to the electron-electron interactions that are conrq 1A phonons® It is interesting to note that in this case
sistently taken into account in the SCRPBV approxima- e theoretical contour igedshiftedwith respect to the ex-
tion), causing the finite lifetimes of the quasiparticles off theperimental one in contrast to Fig. 6, where there is a blue-

Fermi surface, which is also reflected in the width of theghit Same possible reasons of the distinctions between the

spectral function peakef. Figs. 2 and B In contrast, the a4y and experiment apply as mentioned in the discussion
ordinary RPA G,W, approximation does not result in any ¢ Fig. 6 above.

finite spectral widths at zero temperature. Note that the ex-
perimental spectrum is still somewhat wider than the theo-
retical one, which suggests that there are other sources of the
broadening, one of them being the nanoroughness of the We have found equilibrium Green’s functions and related
guantum-well/barrier interface. one-electron properties and the intersubband absorption
Another important characteristic, the magnitude of thefunction for a system of electrons with Coulomb interaction
maximum absorption in Fig. 6, is in an almost perfect agreebound in a quantum well with two subbands. We have em-
ment with the experiment, but we do not want to overemphaployed the self-consistent random phase approximation
size this fact. The position of the calculated spectral maxi{SCRPA in the framework of the Kadanoff-Baym-Keldysh
mum is blueshifted by=12%. The origin of this shift is (KBK) Green’'s-function method. This approach, in principle,
presently not identified. Different factors may contribute toallows one to describe a system at a given arbitrary tempera-
it. One of them is the already mentioned well-interfaceture, though in this paper it has been natural to limit our-
roughness. The second factor may be thedoping of the selves to the case of zero temperatures. We have used an
well, which is difficult to take into account computationally. iterative metho@" of solving the highly nonlinear field-
Yet another factor is our two-subband approximation, whichtheoretical equations, which is stable, convergent, and effi-
is necessary due to the computational complexity. Finally, aient in a wide enough region of electron densities.
factor contributing to this shift may be the approximate na- For the future studies of laser-induced ultrafast kinetics of

V. CONCLUDING REMARKS
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electrons in quantum wells, the present paper is a useful An approach to this general problem was given in Ref.
preliminary investigation where the initial correlated state of21). In the framework of this approach, the Green’s functions
the electron system to be considered kinetically is foundwere obtained in a conserving thed§CRPA, in particular
Note that previous investigations in quantum kinetics ofafter that, a modified Coulomb lin®/(p,w) was calculated
electrons did not use such a microscopically found initialysing these Green's functions by solving the Bethe-Salpeter
state. In the intersubband-transition model, noncorrelate@quation_ Such a quantity will exactly satisfy ttiesum
electrons were used as the initial stafe’® Another yje2l4°However, it is important to bear in mind that such a
approachused relaxation from a uncorrelated, nonstationarymaodified (“improved”) Coulomb line cannot be used as a
state leading to a stationary correlated state that was thedlilding block for the next generation of self-consistent
employed as the initial state for quantum kinetics. A draw-Green's functions, because the resulting theory would not fit
back of this method of preparing a stationary correlated statghe framework of Ref. 21 and therefore generally would not
is the impossibility to obtain a predetermined temperature, irhe conserving.
particular, the zero temperature. We note that there exists a without repeating the detailed discussion of the results
method of imaginary time steppiffgthat also allows one to gptained given in Secs. IV A and IV B, let us briefly mention
build a correlated self-consistent Green’s functions. ThiSyhat we consider to be the main results of the paper. We
method was implemented for nuclear collisions in Ref. 37have generalized the method of Ref. 24 from a 2D electron
using the generalized Kadanoff-Baym ansatz. This imaginaryas to electrons confined in a quantum well with two sub-
time-stepping method requires both iterations to achieve sel ands (potentially, many subbands can be included in the
consistency and a solution of the temporal equations and iyture). The Green's functions found bear the maximum in-
in principle, equivalent to our approach. formation on the one-electron properties of the systaro-
There is also another prospective application of thementum distribution, electron dispersion and lifetimes,)etc.
present theory to ultrafast processes. Tihear reaction of  That has allowed us, in particular, to find the intersubband
any system to an electromagnetic field that has arbitrary temyptical absorption whose spectral contour is significantly
poral dynamics, but is weak in the magnitude, is determineg)|yeshifted with respect to the conventionéhon-self-
through the well-known Kubo theory by the many-body consistent RPA and acquires a finite width due to electron-
Green’s functions of thequilibrium system. In particular, electron scattering. Most of this blueshift is caused by the
the computation of the corresponding ultrafast polarizationsignificant increase of the intersubband separation due to the
will require only a Fourier transform of the corresponding electron correlations. An additional significant blueshift is
current-current correlation function. Such a function is foundcaysed by the depolarization effect. In contrast, the effect of
in the present paper in the self-consistent random-phase apertex corrections in the ladder approximation is small albeit
proximation in Sec. Il B. We will pursue this line of investi- ngticeable.
gation elsewhere. A wide area of applications of the results obtained will be

_ There has been an important discussion regarding the loRhe description of the intersubband optical absorption in nu-
g|tud|nal f-sum rule and Its rela.“on to the |Oca| conservation merous infrared e|ectr0_0ptica| devicesy in particu'ar,

laws for Green’s function®~*°This sum rule is formulated QWIP's3*% The theory of such devices was previously

for the renormalized Coulomb lin&/(p, w) that is a building  mainly based on phenomenological or semiphenomenologi-
block of the theory. It was showththat the SCRPAcalled @ cal formulas. We have shown that the present theory explains
shielded approximation in Ref. 21s a conserving theory most of the spectral width of the optical responses in QWIP’s
where the local conservation lawr current, momentum, gnd gives reasonable results for the positiaith en error
etC.) are satisfied. HOWeVer, it is known thW(p,w) in the ~12-15 %) and Spectral Shapes Of such respomMut
SCRPA doeS not fUlﬁ” tth-Sum rule. It was argUéa that any adjustab|e parameterﬁnother potentia' app"cation
adding Coulomb lines inside the polarization operator wouldyill be the use of the equilibrium Green'’s functions obtained
significantly improve the agreement with tesum rule. jn the present study in the capacity of the initial conditions

However, such a modification brings about a violation of thefor the quantum kinetics problems of electrons in quantum
local conservation law& In particular, such a violation \yelis undergoing intersubband excitation.

would completely preclude the use of the obtained solutions
for the description of the initial state for quantum kinetics

problems. The cause of this violation is that the theory of
Ref. 39 is incompatible with the general method of con-

structing conserving theories by Baym and KadaAbffa This work was supported by the Chemical Sciences, Bio-
this connection, we note that a numerically solvable approxisciences and Geosciences Division of the Office of Basic
mate theory that would simultaneously satisfy the Baym-Energy Sciences, Office of Science, U.S. Department of En-
Kadanoff conservation conditions and theum rule has not ergy. We appreciate useful discussions with S. G. Matsik and
been developed so far. A. G. U. Perera.
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