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Self-consistent random-phase approximation for interacting electrons in quantum wells
and intersubband absorption
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For electrons with Coulomb interaction confined in a quantum well, we have developed an approach based
on the Kadanoff-Baym-Keldysh technique to calculate equilibrium Green’s functions. This approach is based
on iterative numerical computation of the retarded self-energy in the self-consistent random-phase approxima-
tion. For two subbands, at zero temperature, we have computed spectral functions, electron distributions,
quasiparticle spectra, and the current-current correlation function that determines the intersubband absorption
coefficient. Our computations of the optical absorption take into account the depolarization shift and vertex
corrections. Apart from direct applications of this theory to the physics of semiconductor quantum well
devices, the Green’s functions obtained may also serve as self-consistent initial conditions for quantum kinetics
problems in quantum wells.
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I. INTRODUCTION

Intersubband absorption of electrons in quantum well
among the most important properties from both fundame
and applied positions. In particular, one of the most dev
oped and frequently used applications of quantum wells
quantum-well infrared photodetectors~see, e.g., Refs. 1–3!.
For this application, and many others, electron densities
high enough in order to yield sufficiently high respons
Consequently, significant effects of many-body electro
electron interaction are present in the intersubband abs
tion ~see, e.g., Sec. 2.7.2 in Ref. 1 and Chap. 4 in Ref.!.
The intersubband absorption is also of high significance
another important application of quantum wells, name
quantum cascade lasers.4 In this paper, we develop a theor
of intersubband absorption based on the fully self-consis
random-phase approximation~also known as theGW ap-
proximation!, and apply it to intersubband absorption in sp
cific quantum-well infrared photodetectors.

Another perspective application of the present results
the description of an initial correlated electron state for
trafast physics. Stimulated by the development of ultrash
laser pulses, theoretical and experimental studies of ultra
kinetics of interacting electrons in semiconductors have
perienced rapid development. This problem is very intere
ing and theoretically complicated due to the fact thatmany-
body Coulomb interaction on a very short time scale is n
efficiently screened and therefore is very strong.5–13 From
the applied point of view, the research on the ultrafast kin
ics promises important contributions to the physics of
trafast electronic and optoelectronic devices. Significant t
oretical progress in this field has recently been obtained
the basis of the nonequilibrium Green’s-function method
Kadanoff and Baym14 and Keldysh.15 This method has bee
further developed by Langreth16 and Rammer and Smith.17

It is widely recognized that the conventional equilibriu
field-theoretical technique~described, e.g., in Ref. 18! is not
applicable to the ultrafast kinetic problems where t
Kadanoff-Baym-Keldysh~KBK ! method of nonequilibrium
Green’s-functions is valid and should be used. However,
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much less appreciated that the equilibrium Green’s-funct
method may also not be applicable to the interaction of li
with many-body systems, because this method is based o
adiabatic switching-on the interactions, while, in contra
the light field is rapidly oscillating. Therefore, even for th
continuous-wave~cw! excitation of many-electron system
the nonequilibrium KBK approach may be necessary. T
KBK method also has an added advantage that the in
~equilibrium! electron system can be conveniently treated
a given finite temperature.

It is necessary to mention that there has been a signifi
amount of work done in the field of interacting electro
using the well-known semiconductor Bloch equatio
~SBE’s! ~see, e.g., Ref. 19!. In contrast to the two-time KBK
equations, the SBE’s are single-time equations that can
obtained from the KBK equations by using additional a
proximations. In particular, they can be derived from t
KBK equations using the generalized Kadanoff-Baym ans
~see, e.g., Ref. 20! whose accuracy is not quite controllabl
This ansatz cannot be derived consistently microscopic
and expressed as a result of a summation of some subs
contributions ~diagrams!. Some additional approximation
such as use of the zero-order retarded and advanced Gr
functions also are invoked.20

In the present paper, we consider intersubband optical
sorption for the electrons in the conduction band of a qu
tum well. As the necessary first stage of this project and
separate interest, we find equilibrium many-body Gree
functions of the electrons in the quantum well, taking in
account the two lowest subbands. The KBK technique u
by us provides a unified and powerful method of solvi
both these problems, equilibrium and nonequilibrium~opti-
cal!. As we already mentioned above, the equilibriu
Green’s functions of the KBK theory, that we have det
mined in this research, can also be used as initial conditi
in the future studies on ultrafast intersubband kinetics of
teracting electrons in quantum wells.

Because it is impossible to exactly solve the man
electron Coulomb-interaction problem, one has to resor
approximations. The random phase approximation~RPA! is
©2002 The American Physical Society18-1
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SERGEY V. FALEEV AND MARK I. STOCKMAN PHYSICAL REVIEW B66, 085318 ~2002!
the most widely used and realistic approximation for ma
body electron problems. Of principal importance is that
the quantum kinetics problems and, generally, for optical
citation problems, the RPA shouldnecessarily be self-
consistent~SC!, otherwise the local conservation laws for th
electron density and energy-momentum density
violated.21 The self-consistency of the RPA means th
Green’s functions that are employed to calculate the po
ization operator in the ‘‘bubble’’ approximationP5GG and
the self-energy in theGW approximationS5GW are the
final Green’s functions that satisfy the Dyson equation w
self-energyS. Note that the theories such as SCRPA that
compatible with the exact conservation laws are cal
conserving.21 In this respect we note that some theories
not employ a completely self-consistent approximation a
therefore, are not necessarily conserving. As an example
mention Ref. 22 by Barth and Holm, which is aGW0 theory,
which means that the self-energyS is calculated with the
final Green’s functionsG, but the screened~renormalized!
interaction is calculated with the non-self-consistent Gree
functionsG0. In contrast, a later paper23 by the same author
was the first, to our knowledge, example of the application
a fully self-consistent RPA (GW approximation!, which is
conserving, to a 3D electron gas.

Taking into account the above-discussed compelling ar
ments, we earlier employed the SCRPA in the framework
the KBK approach to find the Green’s function and vario
observable quantities, such as the momentum distribut
one-electron energy, spectral function, etc., of a tw
dimensional ~2D! electron gas at the zero and fini
temperatures.24,25 In the present study, we generalize this a
proach to describe the state and optical absorption of e
trons in the conduction subband of a quantum well. Pre
ously, a significant number of theoretical papers w
devoted to a computation of the intersubband absorp
~see, e.g., Refs. 26–29!. These theories are based on differe
versions of the RPA, but none of them, distinct from t
present theory, is a SCRPA. In qualitative agreement w
previous results,26,27 we found a significant depolarizatio
blueshift of the absorption spectrum maximum. Howev
quantitatively, the self-consistency of the RPA leads to
increase of the total blueshift compared with the usual~non-
self-consistent! RPA. We have also evaluated the vertex c
rections in the current-current correlation function using
ladder approximation. These corrections result in a small
crease of the magnitude of the absorption peak, with an
most nondistinguishable redshift in the peak position.

This paper is organized in the following way. In Sec.
we present general equations and their solutions for Gre
functions and optical absorption. Numerical procedures
described in Sec. III. The results of numerical computatio
are presented in Sec. IV. Finally, concluding remarks
given in Sec. V.

II. THEORY AND BASIC EQUATIONS

A. Green’s functions

We consider an electron system with the Coulomb int
action confined in quantum well with two subband stat
The positive ions are described by a jellium model. T
Hamiltonian of the system is
08531
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H5(
i ,p

~Ei ,p
(0)2m!ai ,p

† ai ,p

1
1

2S (
i , j ,k,l ,q,p,p8

Vi jkl ~q!ai ,p1q
† aj ,p82q

† ak,p8al ,p , ~1!

whereS is the area of the quantum well,m is the chemical
potential; p, p8, and q are 2D momentum vectors in th
plane of the well, indexesi , j ,k,l 51,2 denote the subban
~envelope! states whose wave functions aref1(z) and
f2(z), with z as the growth direction~i.e., the normal to the
well plane!; and E1,p

(0)5p2/2m and E2,p
(0)5p2/2m1E12

(0) are
one-particle energies, whereE12

(0) is the bare energy gap an
m is the bare effective mass of the electron. The origi
~unscreened! Coulomb potential is given by the usual expre
sion

Vi jkl ~q!5E dzdz8f i* ~z!f j* ~z8!v~q,z2z8!fk~z8!f l~z!,

~2!

where

v~q,z!5E d2reiqr
e2

ebAr21z2
5

2pe2

ebq
e2quzu.

eb is the background dielectric constant, ande is the electron
charge.

The subband wave functions in the absence of a magn
field can be chosen real, so the potentialVi jkl of Eq. ~2! has
the following permutation symmetry:Vi jkl 5Vl jki 5Vik jl
5Vjilk . In the following we assume that the well is symme
ric with respect to its middle (z50); therefore the wave
functions have a definite parity:f1(2z)5f1(z) and f2
(2z)52f2(z). In this case, only four independent matr
elements ofVi jkl do not vanish, which we denoteV1(q)
[V1111(q), V2(q)[V2222(q), Vc(q)[V1221(q), and Vx(q)
[V1212(q).

The Kadanoff-Baym~KB! equations are formulated for
set of four Green’s functions: greaterG., lesserG,, re-
tardedGr , and advancedGa. Similar notations are used fo
the components of other field-theoretical objects, such as
self-energy S, polarization operator P, dynamically-
screened interactionW, etc.

We deal with equilibrium uniform systems where th
Green’s functions depend only on a conserving momentup
and time differencet, and are defined in the momentum-tim
representation as

Gi
,~p,t !5 i ^ai ,p

† ~0!ai ,p~ t !&,

Gi
.~p,t !52 i ^ai ,p~ t !ai ,p

† ~0!&, ~3!

where the angular brackets denote quantum-mechanica
eragingand averaging over the Gibbs ensemble; we do n
show the spin indices over which all objects are diagon
Also, the equilibrium Green’s functions are diagonal ov
subband indexes due to conserved parity in the absenc
external electrical field.
8-2
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SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW B66, 085318 ~2002!
For any objectA of the theory~the Green’s functionG,
self-energyS, dynamically screened potentialW, polariza-
tion operatorP, etc.!, the corresponding retarded~r! and
advanced~a! components are expressed as

Ar ,a~p,t !56u~6t !@A.~p,t !2A,~p,t !#1d~ t !As, ~4!

where the second~singular in time! term d(t)As is not re-
lated toA.,,, and appears due to concatenation of regu
objects with time-singular quantities such as potentials
do not include retardation@see, e.g., the second integral
the right-hand side of Eq.~23!#. From the four types~com-
ponents! of each quantity, only three are independent due
an identity

Ar2Aa5A.2A,. ~5!

In a stationary case, there is a symmetry relation betw
the advanced and retarded components of an object in
momentum-frequency representation:

Aa* ~p,v!5Ar~p,v!. ~6!

Also, the well known Kubo-Martin-Schwinger bounda
condition is valid,17

Gi
.~p,v!52exp~bv!Gi

,~p,v!, ~7!

whereb51/T and T is temperature in energy units. Usin
this relation, the number of independent components can
reduced to only one. We chooseGr as such an independen
component, and the other three are expressed as

Gi
a~p,v!5Gi

r* ~p,v!

Gi
,~p,v!52 i2nvIm@Gi

r~p,v!#,

Gi
.~p,v!52 i2~nv21!Im@Gi

r~p,v!#, ~8!

wherenv5@exp(v/T)11#21 is the Fermi factor, and we use
system of units where\51.

We use an iterative process to find Green’s functionGr

numerically. As the result of an iterative step, we obtain
retarded self-energyS i

r(p,v). The following is a description
of the next iterative step.

Using the Dyson equation for the retarded Green’s fu
tion, we find

Gi
r~p,v!5

1

v2j i ,p2S i
r~p,v!

, ~9!

wherej i ,p5Ei ,p
(0)2m, and i 51,2. From this, using Eqs.~8!,

we findG.,,. This allows us to obtain the electron polariz
tion operator in the RPA~bubble! approximationP5GG, or
in the detailed form

P i j
,~p,v!522i E dv8d2k

~2p!3
Gi

,~k,v8!Gj
.~k2p,v82v!,

~10!
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where we used the known Langreth rules for the concate
tion of two Green’s functions.16 From this, using Eqs.~5! and
~6! and the symmetry relation

P i j
.~p,v!5P j i

,~p,2v!, ~11!

we compute the imaginary part of the retarded polarizat
operator:

ImP i j
r ~p,v!5

1

2i
@P j i

,~p,2v!2P i j
,~p,v!#. ~12!

BecauseP i j
r (p,v) as a function ofv is analytical and has no

singularities in the upper half plane, and it tends to zero
v→`, the conventional Kramers-Kronig relation allows on
to restore its real part,

ReP i j
r ~p,v!5

1

p
PE dv8

ImP i j
r ~p,v8!

v82v
, ~13!

where P denotes the principal value of the integral.
Having found the retarded components of the polarizat

operator, we write down the system of Dyson equations
the retarded dynamically screened potentialsW1(p,v),
W2(p,v), Wc(p,v), andWx(p,v):

W1
r 5V11V1P11

r W1
r 1VcP22

r Wc
r ,

W2
r 5V21V2P22

r W2
r 1VcP11

r Wc
r ,

Wc
r 5Vc1V1P11

r Wc
r 1VcP22

r W2
r ,

Wx
r 5Vx1Vx~P12

r 1P21
r !Wx

r . ~14!

These Dyson equations describe the ‘‘dressing’’ of the b
potentialsV1(p), V2(p), Vc(p), andVx(p) by the chains of
corresponding polarization operators. Here and below,
use the known Langreth rules16 that allow one to find com-
ponents of the product of two objectsA andB;

~AB!r ,a5A r ,aBr ,a, ~AB!.,,5A .,,Ba1ArB .,,.
~15!

The solutions of Eqs.~14! are

W1
r 5FV11

Vc
2P2

r

~12V1P1
r !~12V2P2

r !2Vc
2P1

r P2
r G 1

12V1P1
r ,

W2
r 5FV21

Vc
2P1

r

~12V1P1
r !~12V2P2

r !2Vc
2P1

r P2
r G 1

12V2P2
r ,

Wc
r 5

Vc

~12V1P1
r !~12V2P2

r !2Vc
2P1

r P2
r ,

Wx
r 5

Vx

12Vx~P12
r 1P21

r !
, ~16!

where we used notationsP1[P11 andP2[P22 for brevity.
8-3
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SERGEY V. FALEEV AND MARK I. STOCKMAN PHYSICAL REVIEW B66, 085318 ~2002!
Using Eqs.~7! and~10!, one can derive a relation for th
greater and lesser components of the polarization opera
analogous to the relation for Green’s functions~7!:

P i j
.~p,v!5exp~bv!P i j

,~p,v!. ~17!

In general, this relation can be proved in the same way as
Kubo-Martin-Schwinger boundary condition.17 Using this
and applying the Langreth rules@Eq. ~15# to the lesser and
greater components of the renormalized potentialW that is
built from the multiple products of the polarization operato
one can derive that a similar relation is valid for each of
potentialsW1 , W2 , Wc , andWx :

W.~p,v!5exp~bv!W,~p,v!. ~18!

Combining Eqs.~5! and ~6! for the renormalized Cou
lomb potential and using relation~18!, we obtain the expres
sion for the lesser component of the potential,

W,~p,v!5
2i

ebv21
Im Wr~p,v!, ~19!

whereWr is given by Eq.~16!. The greater component of th
dynamically screened potentialW can be obtained from sym
metry relations

W.~p,v!5W,~p,2v!, Wa~p,v!5Wr~p,2v!.
~20!

To complete the current iteration step, we compute
lesser and greater self-energies in the SCRPA~the GW ap-
proximation! as

S i
.,,~p,v!5 i E dv8d2k

~2p!3
@Wi

.,,~k,v8!Gi
.,,~p2k,v2v8!

1Wx
.,,~k,v8!G32 i

.,,~p2k,v2v8!#. ~21!

Taking into account Eqs.~5! and ~6!, we can express the
imaginary part of the retarded self-energy as

ImS i
r~p,v!5

1

2i
@S i

.~p,v!2S i
,~p,v!#. ~22!

Finally, ReS i
r is found from a dispersion relation

ReS i
r~p,v!5

1

p
PE dv8

ImS i
r~p,v8!

v82v

2E d2k

~2p!2
@Vi~k!ni~pÀk!

1Vx~k!n32 i~pÀk!#, ~23!

where the momentum distribution functionni(p) for each
subband is expressed as

ni~p!52 i E dv

2p
Gi

,~v,p!. ~24!
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The last integral in the right-hand side of Eq.~23! is the
exchange diagram that isv independent, yielding a correc
asymptotic behavior of ReS i

r(p,v) for v→`.
Concluding this subsection, we have started withS i

r @see
the paragraph preceding, Eq.~9!# and finished with the next-
iteration S i

r @Eqs. ~22! and ~23!#. This closes the iterative
procedure. All the necessary Green’s function are s
consistently found within the current iteration@Eqs. ~8! and
~9!#.

B. Intersubband linear absorption spectrum

The linear absorption coefficienta(v) is related by the
Kubo formula to the imaginary part of retarded curren
current correlation functionp r(v),32

a~v!52
4p

AebVv
Im p r~v!, ~25!

where V is the 3D volume of the system. This retarde
current-current correlation function is given by

p r~v!5upzu2S
P21

r ~q50,v!

12Vx~q50!P21
r ~q50,v!

, ~26!

where pz5(e/m)*dzf2(z)(d/dz)f1(z) is the matrix ele-
ment of the current between the two subbands, where
assume that the exciting light is linearly polarized in t
growth ~z! direction of the quantum well. In Eq.~26!, we
neglect the smallP12 polarization operator and retain onl
the P21 polarization operator that describes the resonant
sorption of the light when an electron undergoes the tra
tion from subband 1 to subband 2, which is the well-know
resonant or rotating-wave approximation. In the SCP
~‘‘bubble’’ approximation!, the polarization operatorP21

r is
given by Eqs.~10!–~13!. Note that Eq.~26! is applicable to
both single and multiple quantum wells, where in the lat
caseV is the system’s volume per one quantum well.

To go beyond the ‘‘bubble’’ approximation, we need
calculate corrections to the vertexG(p,v8). We use the lad-
der approximation which is the most common approximat
for the vertex corrections. To study the vertex corrections
the polarization operator, we present this operator as the
catenation of the intersubband~nondiagonal over subban
indices! Green’s functionG21 in the presence of an electro
magnetic field with frequencyv,

P21
r ~q50,v!522i E dv8d2p

~2p!3
G21

, ~p,v1v8,v8!,

~27!

where this intersubband Green functionG21 is related to the
vertexG as

G21~p,v1v8,v8!5G2~p,v1v8!G~p,v1v8,v8!

3G1~p,v8!. ~28!

We exclude the matrix element of the current from the v
tex, so the pure SCRPA corresponds toG51. In Eq.~27!, the
8-4
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SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW B66, 085318 ~2002!
retardedcomponent of the polarization operator is related
the lessercomponent of the intersubband Green’s functi
because the Langreth rule16 for the retarded component o
two operators concatenated into a loop are exactly the s
as for the lesser component of product of these two opera
in Eq. ~15!.

We use an iterative process to find the intersubb
Green’s functionG21(p,v8) numerically for each light fre-
quencyv independently. As the result of an iterative step,
obtain three components of the vertex functi
G,,r ,a(p,v8). The following is the description of the nex
iterative step.

Using the Langreth rules of Eqs.~15! and ~28!, we can
determine the components of theG21 functions

G21
r ,a5G2

r ,aG r ,aG1
r ,a ,

G21
, 5G2

r G rG1
,1G2

r G,G1
a1G2

,GaG1
a . ~29!

Note that in contrast to Eq.~6!, the retarded and advance
components of the Green’s functionG21 are not related by
complex conjugation@in fact, (G12

r )* 5G21
a #.

To complete the iteration cycle, we calculate the ver
functionG in the ladder approximation, where it satisfies t
equations

G,~p,v1v8,v8!

5 i E dv9d2k

~2p!3
G21

, ~k,v1v9,v9!Wc
,~p2k,v82v9!,

G r ,a~p,v1v8,v8!511 i E dv9d2k

~2p!3
@G21

r ,a~k,v1v9,v9!

3Wc
,~p2k,v92v8!1G21

, ~k,v

1v9,v9!Wc
r ,a~p2k,v82v9!#, ~30!

where we used the relations of Eq.~20! for the greater com-
ponent of the potentialW..

III. NUMERICAL PROCEDURES

A. Numerical procedures for Green’s functions in equilibrium

We have numerically solved the equations for the Gree
function in equilibrium using the iterative procedure d
scribed above in Sec. II A. Though these equations are v
for arbitrary temperatures, in this paper we have perform
computations forT50. Our motivation for this choice is tha
we intend to concentrate on effects of Coulomb interact
for electrons in a quantum well with two subbands taken i
account. A finite temperature will bring about additional e
fects that will be considered elsewhere. Also, the previ
RPA calculations for intersubband absorption spectra,26,27

with which we compare, were carried out atT50.
We choose the confining well potential to be zero in t

well region,zP(2d/2,d/2), and infinite elsewhere. Thus th
ground-state and first-exited-state wave functions are
08531
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f1~z!5A2/d cos~pz/d!, f2~z!5A2/d sin~2pz/d!,
~31!

where the widthd of the well is related to the bare intersub
band gapE12

(0) as d5A3/(2mE12
(0)). Using these wave func

tions, the integrals of Eq.~2! are easily calculated analyti
cally.

The final electron density of the system is controlled
the chemical potentialm. One can convince oneself that a
dimensionless quantities of the theory depend only on
dimensionless parametersr s

0[e2Amumu/(ebm) andE12
(0)/umu.

Note that for interacting electrons, the chemical potentia
not necessarily positive. Alternatively, it is convenient
present the results as functions of two ‘‘dressed’’ dimensi
less parameters: a conventional density parameter~that is the
relative distance between electrons! r s and a relative bare
intersubband gapr5E12

(0)/«F . For a 2D electron gas,r s

[me2/ebApn, wheren52( i*ni(p)d2p/(2p)2 is the elec-
tron density. The Fermi energy«F is conventionally related
to the Fermi momentumpF at which the discontinuity in the
electron momentum distribution occurs:«F[pF

2/(2m).
In the numerical integrations in Eqs.~10!, ~13!, ~21!, ~23!,

and ~24!, the integration over the momentum variables h
been truncated at the maximum momentumpmax that is~de-
pending on ther s

0) from 6–10 times the Fermi momentum
pF . The frequency~energy! integrations were carried ou
within the regionuvu,pmax

2 /m.
We ran the iterative procedure described above in S

II A until the self-energiesS i
r(p,v) converged~uniformly in

p and v) within <1% mismatch. This requires about 1
iterations and takes'100 h of CPU time on an SGI Origin
2000 workstation. This iterative procedure has been w
converging and stable. We found earlier for a 2D electr
gas24,25 that such an iterative procedure converged forr s
<2.62; the values used in this paper are well within th
range. As the initial self-energy we have used either
result24 of a pure 2D case with the same value ofr s

0 for
S1

r (p,v) and a small constant value forS2
r (p,v), or the

result of a previous SCRPA run with a different value ofr s
0 .

There was no appreciable dependence of the final result
the initial value ofS i

r(p,v), implying a good convergence
Integrating over the angle betweenp andk and overv8,

we divided the integration interval into 20–40 segments
take advantage of the smooth behavior of the integrand
some segments. The number of segments was chosen t
timize the computational efficiency. The adaptive Romb
integration of fifth-order accuracy was used to integrate o
each of these segments. This method allowed us to achie
relative error of integration of less than 1024. We computed
the self-energies and polarization operators in 200–
points in their argumentsp andv. We verified that the results
obtained are stable and do not depend appreciably on an
the computational parameters mentioned above within t
indicated range.

B. Numerical procedures for optical absorption including
vertex corrections

In the integrals in Eqs.~30!, a numerical integration was
performed following a numerical procedure similar to th
8-5
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SERGEY V. FALEEV AND MARK I. STOCKMAN PHYSICAL REVIEW B66, 085318 ~2002!
described in Sec. III A. We ran the iterations of Eqs.~29! and
~30! until the intersubband Green’s functionsG21

r ,a,,(p,v
1v8,v8) converged ~uniformly in p and v) within a
<1% mismatch. This convergence is very fast, and it
quires only from 2–4 iterations to achieve the required
curacy. Each iteration takes typically'10 h of CPU time on
an SGI Origin 2000 workstation for each point in light fr
quencyv. We have used eight processors in parallel to fi
G21 in different points overv.

As the initial G we used eitherG51 or the result of a
previous run with a different value ofv. There was no ap-
preciable dependence of the final results on the initial val
of G r ,a,,(p,v1v8,v8), signifying a good convergence.

IV. NUMERICAL RESULTS

A. Equilibrium electron properties

The momentum distributionsni(p) for electrons in each
subband (i 51,2) are shown in Fig. 1 as a function ofp/p12
for four different pairs of governing parametersr s and r.
Here p125A2mE12

(0) is the momentum corresponding to th
bare intersubband energy gapE12

(0) . The values of these gov
erning parameters in our computations are$r s ,r%
5$0.7,1.35%, $1.06,3.13%, $1.69,7.85%, and $2.17,3.46%.
These values completely define all dimensionless chara
istics of the system. Note that the first three cases corresp
to the same bare intersubband gap, whereE12

(0)}r/r s
2

5const. We have chosenr.1 in all four cases, which
means that the Fermi level lies below the excited subb
~the interaction only increases the final ‘‘dressed’’ intersu
band gap, as we will see below in Fig. 2!. Hence the popu-
lation of second subband is small at zero temperat
n2(p);1023, as we see in Fig. 1. The dependencen1(p) has
an expected shape for a normal~Landau-type! Fermi fluid at
T50 with a discontinuity at the Fermi momentumpF and a
smooth dependence elsewhere. In contrast, the electron
mentum distributions in the excited subband are smooth
erywhere, as expected.

The Fermi momentumpF is completely defined by the
position of the discontinuity inn1(p) in Fig. 1. On the other
hand, it is an exact statement of the Landau Fermi-liq
theory that~in a 2D case! thatn5pF

2/2p. This is a nontrivial
fundamental relation and an independent condition that
checked numerically to be valid within the expected ac
racy~margin of error less than 1% for all$r s ,r% considered!.
This compliance is not accidental: the general theory
Baym30 shows that all so-called conserving approximatio

FIG. 1. Electron momentum distributions for the first and s
ond subbands,n1(p) andn2(p), calculated in the SCRPA approx
mation. Curves 1–4 correspond to the pairs of parameters:$r s ,r%
5$0.7,1.35%, $1.06,3.13%, $1.69,7.85%, and$2.17,3.46%.
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among them the SCRPA (GW approximation!, automatically
satisfy this fundamental relation. Note that the conventio
~non-self-consistent! RPA (G0W0 approximation! is not con-
serving: it does not conserve the number of particles~in the
presence of a weak probe field! and, consequently, does no
satisfy this fundamental relation.31

Another quantity of interest is the quasiparticle spectr
in each subband. The quasiparticle energy for a subban
defined as the solution of the equation

Ei~p!5Ei ,p
(0)2m1ReS i

r@p,Ei~p!#. ~32!

The quasiparticle dispersion curves for both subbands
shown in Fig. 2 for the four values of the parameter pa
used in the computations, as indicated in the figure. As
can see, these curves for the first and second subband
somewhat nonparallel, reducing the transition energy
larger momenta. This effect leads, in particular, to a bro
ening of the intersubband absorption spectra~cf. Sec. IV B!.
Another interesting effect is the widening of the intersubba
spectral gapE12[E2(p50)2E1(p50) due to the interac-
tion. For the parameters of Figs. 2~a!–2~d!, the relative
change ofE12 with respect to the Fermi energy is calculat
to be (E122E12

(0))/«F50.31, 0.59, 1.14, and 1.25. This in
crease of the relative shift withr s is an expected conse
quence of the screening that becomes less efficient at lo
electron densities. A less obvious effect is that theabsolute
shift still decreases with increase ofr s ~i.e., with decrease of
the electron density!, as one can easily verify.

To discuss these dispersion curves, the ground subb
energy~in the units of the Fermi energy! E1(p)/«F at p50
in Fig. 2 is less than21 @by convention,E1(pF)50#. This
means that the ground-subband quasiparticle energies in
the Fermi sphere are lowered relative to those of nonin
acting electrons due to the electron correlations taken
account by the SCRPA. This effect is closely related to
decrease of the total energy of the system when the corr
tions between the electrons are taken into account. Su
decrease of the total energy when ‘‘good’’~correlated! elec-
tron wave functions are used is expected from the gen
variational principle. It can also be considered as analog

-

FIG. 2. Quasiparticle dispersion curves for the first and sec
subbands,E1(p) andE2(p), are plotted for the four different value
of pairs$r s ,r% indicated in the figure.
8-6
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SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW B66, 085318 ~2002!
to the decrease of the total energy and lowering of the o
electron energies for occupied orbitals when a molecule
formed from atoms. The fact that the SCRPA correctly rep
duces this lowering of the one-electron energies inside
Fermi sphere indicates that it better describes the correl
many-electron state. Note that the one-electron energy in
excited subband is increased due to the electron correlat
as may be deduced from the data of Fig. 2. These eff
bring about an increase of the intersubband transition en
E12(p)5E2(p)2E1(p), which is one of the causes of th
blueshift of the intersubband absorption contour~see below
in Sec. IV B!.

The maximum information on one-electron quantities
contained in the spectral functions of the system:32

Ai~p,v!522 Im Gi
r~p,v!. ~33!

These functions satisfy a sum rule

E dv

2p
Ai~p,v!51. ~34!

This sum rule is a nontrivial condition that we have used
check the numerical accuracy of our results. It has been
isfied with an error not exceeding 1%, as expected.

Spectral functionsA1(p,v) and A2(p,v) are plotted in
Fig. 3 against the relative frequency for$r s ,r%5$0.7,1.35%
and selected values of momentump. As we can see, thes
spectral functions at a givenp have sharp peaks at the co
responding quasiparticle energies~measured from the chem
cal potential! Ei(p) defined in Eq.~32!. Note that for p
5pF , the spectral function of the first subbandA1 contains a

FIG. 3. Scaled spectral functions of the system for the first
second subbands,«FA1(p,v) and«FA2(p,v), found in the SCRPA,
are plotted against the relative frequencyv/«F for $r s ,r%
5$0.7,1.35% and the values of momentump indicated. Note the
logarithmic scale.
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d-function peak atv50, while the spectral function for the
excited subband does not have ad-function singularity since
it actually corresponds to electrons above the Fermi surfa
Numerically, thed-function peak has a very small width in
troduced for the regularization required by the computatio
procedures through a small negative addition to ImS r for a
narrow region aroundv50.

Interesting scaling properties of the spectral functions
be traced in Fig. 4 where we show the scaled spectral fu
tions for the first subband,«FA1(p,v), for three values of
the parameter pairs$r s ,r%5$0.7,1.35%, $1.06,3.13%, and
$1.69,7.85% ~curves 1–3!. As curve 4, we show a scaled spe
tral function«FA(p,v) for a 2D electron gas withr s51.16
adopted from our previous work,24 which formally corre-
sponds to$r s ,r%5$1.16,̀ %. As we see from this figure, in
the vicinity of the quasiparticle peak, the scaled quan
«FA1 is with a good accuracy auniversalfunction ofv/«F .
Though this universal behavior is not yet understood anal
cally, it is very pronounced: the curves in Fig. 4 correspon
ing to the samep/pF practically coincide for different
$r s ,r%. The deviation from this universal behavior is se
only for far wings where the spectral function itself is sma
Note that a similar universality for the 2D case was disco
ered in Ref. 24.

B. Optical absorption results

We define normalized~dimensionless! absorption function
ã(v) by a relation

d
FIG. 4. Scaled spectral functions plotted against relative

quencyv/«F for the values of momentump indicated. Curves 1–3
are plotted for relative spectral function of the first subba
«FA1(p,v) for three parameter pairs$r s ,r%5$0.7,1.35%,
$1.06,3.13%, and $1.69,7.85%, respectively. Curve 4, adopted from
Ref. 24 and shown for comparison, corresponds to the scaled s
tral function«FA(p,v) for a pure 2D electron gas withr s51.16.
8-7
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SERGEY V. FALEEV AND MARK I. STOCKMAN PHYSICAL REVIEW B66, 085318 ~2002!
ã~v!5a~v!LAeb, ~35!

whereL5V/S is the length~in the growth direction! of the
system per a quantum well. This functionã(v) depends
only on the two parameters of the system:r s andr.

The normalized absorption functionã(v) is shown in
Fig. 5 in three different approximations for different valu
of $r s ,r% parameters as a function of relative frequen
v/«F . Curve 1 denotes the complete result with the depo
ization shift and vertex corrections as given by Eq.~25! and
the subsequent equations in Sec. II B. Curve 2 is compu
without the vertex corrections, i.e., settingG(p,v1v8,v8)
51 in Eq. ~28!. Furthermore, curve 3 is calculated witho
the vertex corrections or depolarization effect, which ad
tionally implies settingVx(q)50 in Eq. ~26!.

As one can see from Fig. 5, the depolarization effe
which is described by the denominator on the right-hand s
of Eq. ~26!, dramatically affects the absorption function~cf.
curves 2 and 3!: in its presence, the absorption conto
~curve 2! is approximately four times lower and significant
blueshifted compared with that in the absence of the de
larization effect~curve 3!. The absorption contour~curves 1
and 2! is also significantly broadened due to the depolari
tion effect. This broadening can be traced to the finite wi
of the spectral function, and physically is due to electrons
the Fermi surface that experience efficient Coulomb sca
ing. We emphasize that this broadening of the absorp
contour is obtained self-consistently within the microsco
theory and is not introduced phenomenologically. Unlike
depolarization effect, the vertex corrections have a small
fluence on the absorption~cf. curves 1 and 2!. Note that in
the absence of the depolarization effect~curve 3!, the maxi-
mum of the absorption peak in frequency closely cor
sponds to the dressed intersubband separationE12.

In the usual~non-self-consistent! RPA, where the polar-
ization operator is defined by the bare Green’s functions

FIG. 5. The normalized intersubband absorption functionã(v)
calculated in the SCRPA approximation plotted as a function of
relative frequencyv/«F for different values of parameter pair
$r s ,r% indicated. Curve 1 is for both the depolarization effect a
vertex corrections taken into account, curve 2 includes only
depolarization effect, and curve 3 is calculated disregarding b
the depolarization effect and vertex corrections~see the text for
details!.
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P5G0G0, the absorption spectrum has the form of
d-function peak. The frequency of the absorption peak in
RPA was given by Ando and co-workers26,27 as

vm
RPA5E12

(0)S 11
8pe2n

ebE12
(0)E

2`

`

dzFE
2`

z

dz8f1~z8!f2~z8!G2D1/2

.

~36!

The corresponding depolarization shift in the RPA of th
peak isDvm

RPA5vm
RPA2E12

(0) .
In Table I we summarize the position of the absorpti

maxima,vm , in the SCRPA and RPA along with the corre
sponding shifts of the absorption maxima,Dvm , due to the
depolarization effect. For SCRPA this shift is defined as
difference between the coresponding maximum of the
sorption spectrumvm

SCRPA and the~renormalized! intersub-
band spectral gapE12 @see below Eq. ~32!#: vm

SCRPA

5vm
SCRPA2E12. As we can conclude from this table, there

a blueshift of absorption maximum frequency in RPA wi
respect to the bare intersubband gap, as is known,26 and also
a significant further blueshift of the absorption in the SCR
with respect to the RPA. To pinpoint the origin of this blu
shift, we note from Table I that the depolarization shifts
the SCRPA and RPA, though significant, do not differ muc
Therefore, the blueshift of the SCRPA with respect to t
RPA is mostly due to the widened intersubband gap~cf. Fig.
2! and not due to an increase of the depolarization shift in
SCRPA.

It is of considerable interest to compare our theory w
experimental data. There exists a significant amount of
perimental data for the intersubband optical absorption
quantum wells~some of such data is reviewed in Ref. 33!.
However, keeping in mind the high application potential
quantum-well infrared photodetectors~QWIP’s!, we have
chosen to concentrate on the data of Refs. 34 and 35, w
QWIP’s were explored. In performing the corresponding c
culations, we modified the computational code to take i
account the finite heights of the barriers in QWIP’s. Cor
spondingly, the well energies and wave functions were mo
fied with respect to the infinite-barrier values of Eq.~31!.

e

e
th

TABLE I. Absorption peak positionvm , its depolarization shift
Dvm , and the bare intersubband gapE12

(0) in the units of the Fermi
energy«F . The data are shown for the four cases of parameterr s

and r5E12
(0)/«F , corresponding to curves 1-4 in Fig. 1; the labe

RPA and SCRPA indicate the corresponding approximation. Forvm

in the SCRPA, we include the depolarization shift and vertex c
rections, while in the RPA we use Eq.~36!.

RPA SCRPA RPA SCRPA
r s E12

(0)

«F

vm

«F

vm

«F

Dvm

«F

Dvm

«F

1 0.70 1.35 1.80 2.15 0.45 0.49
2 1.06 3.13 3.61 4.14 0.48 0.43
3 1.69 7.85 8.36 9.40 0.50 0.40
4 2.17 3.46 4.36 5.45 0.89 0.73
8-8
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SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . . . PHYSICAL REVIEW B66, 085318 ~2002!
Starting the discussion with the earlier paper,34 the density
of the electron gas~created by ad doping of the quantum
wells! n'931011 cm22, corresponding tor s'0.6, is well
within our convergence range~cf. Fig. 1 in Ref. 24!. The
barrier/well composition is Al0.27Ga0.73As/GaAs, the well
width is 6 nm, and the barrier width is 25 nm. Note th
under these conditions, the first excited one-electron leve
at 204 meV, just 15 meV below the barrier top, as delib
ately designed for the photodetector functioning.

We have calculated the electron absorption spectrum
30 individual quantum wells in a multiple-quantum-well he
erostructure for the above indicated parameters of Ref.
except that we have considered the electron-donor dopan
being uniformly distributed inside the quantum well to sim
plify the computations. The obtained result is displayed
Fig. 6 in comparison with the corresponding experimen
absorption spectrum~see Fig. 2 of Ref. 34!. Note that both
the shape of the absorption contour and the magnitude o
absorption have been calculated and should be compared
emphasize thatour theory does not contain any adjustab
parameters. The most important result of our computatio
is that the calculated absorption spectrum has a signifi
width, comparable to that of the experimental spectrum. T
width is due to the electron-electron interactions that are c
sistently taken into account in the SCRPA (GW approxima-
tion!, causing the finite lifetimes of the quasiparticles off t
Fermi surface, which is also reflected in the width of t
spectral function peaks~cf. Figs. 2 and 3!. In contrast, the
ordinary RPA (G0W0 approximation! does not result in any
finite spectral widths at zero temperature. Note that the
perimental spectrum is still somewhat wider than the th
retical one, which suggests that there are other sources o
broadening, one of them being the nanoroughness of
quantum-well/barrier interface.

Another important characteristic, the magnitude of t
maximum absorption in Fig. 6, is in an almost perfect agr
ment with the experiment, but we do not want to overemp
size this fact. The position of the calculated spectral ma
mum is blueshifted by'12%. The origin of this shift is
presently not identified. Different factors may contribute
it. One of them is the already mentioned well-interfa
roughness. The second factor may be thed doping of the
well, which is difficult to take into account computationall
Yet another factor is our two-subband approximation, wh
is necessary due to the computational complexity. Finall
factor contributing to this shift may be the approximate n

FIG. 6. Optical absorbance spectra of electrons for a QWIP w
32 individual quantum wells vs the light wavelength. Solid curv
theory; dashed curve: experiment~Ref. 34!. The computations are
done for the experimental conditions:~Ref. 34! P polarization at the
Brewster angle.
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ture of the present theory both in the treating of the electr
electron interactions and the neglect of the electron-pho
interactions.

The second of the experimental papers with which
compare,~Ref. 35!, dealt with a QWIP consisting of 20 pe
riods of GaAs quantum wells of 11.8-nm width, each se
rated by 40-nm Al0.07Ga0.93As barriers. The quantum well
are doped to the electron density of 4.731010 cm22 corre-
sponding tor s'2.6. This value is close to the boundary
the region of convergence of our numerical procedure,
still is inside that region~cf. Fig. 1 in Ref. 24!. The absorp-
tion spectrum was not explicitly measured in Ref. 35, but
know from Ref. 34 that the line shapes of the optical abso
tion and the QWIP responsivity are quite similar. Based
this, in Fig. 7 we compare our computed absorption spect
with the responsivity spectrum of Ref. 35. In such an eva
ation, we are, indeed, able to compare only the correspo
ing lineshapes, but not the magnitudes.

The comparison of the computed and experimental cur
in Fig. 7 shows that in this case the computed width of
absorption contour is significant, though appreciably~about
twice! smaller than that of the experimental curve. The sha
of the experimental spectrum is significantly different feat
ing a dip at'27.8 nm that is attributed to the absorption
TO1TA phonons.35 It is interesting to note that in this cas
the theoretical contour isredshiftedwith respect to the ex-
perimental one in contrast to Fig. 6, where there is a bl
shift. Same possible reasons of the distinctions between
theory and experiment apply as mentioned in the discus
of Fig. 6 above.

V. CONCLUDING REMARKS

We have found equilibrium Green’s functions and relat
one-electron properties and the intersubband absorp
function for a system of electrons with Coulomb interacti
bound in a quantum well with two subbands. We have e
ployed the self-consistent random phase approxima
~SCRPA! in the framework of the Kadanoff-Baym-Keldys
~KBK ! Green’s-function method. This approach, in princip
allows one to describe a system at a given arbitrary temp
ture, though in this paper it has been natural to limit o
selves to the case of zero temperatures. We have use
iterative method24 of solving the highly nonlinear field-
theoretical equations, which is stable, convergent, and e
cient in a wide enough region of electron densities.

For the future studies of laser-induced ultrafast kinetics

h
:

FIG. 7. Computed optical absorption spectrum in comparis
with the experimental responsivity of the QWIP of Ref. 35. Bo
the quantities are plotted in arbitrary units and are normalized to
maximum value of 1. Solid curve: theory; dashed curve: experim
~Ref. 35!.
8-9



ef
o

nd
o
ia
te

ar
th
w
ta
,
ts

hi
3
a
e

d

th

em
e
y

io
g

n
a

i-

lo
on

ul

h

on
cs
o
n

x
m

ef.
ns

eter

a
a
nt
t fit
ot

ults
n
We
ron
b-

the
in-

c.
nd
tly

n-
the
the
is
t of
eit

be
nu-
ar,
ly
ogi-
ains
P’s

ed
ns
um

io-
sic
En-
and

SERGEY V. FALEEV AND MARK I. STOCKMAN PHYSICAL REVIEW B66, 085318 ~2002!
electrons in quantum wells, the present paper is a us
preliminary investigation where the initial correlated state
the electron system to be considered kinetically is fou
Note that previous investigations in quantum kinetics
electrons did not use such a microscopically found init
state. In the intersubband-transition model, noncorrela
electrons were used as the initial state.5,8–10 Another
approach7 used relaxation from a uncorrelated, nonstation
state leading to a stationary correlated state that was
employed as the initial state for quantum kinetics. A dra
back of this method of preparing a stationary correlated s
is the impossibility to obtain a predetermined temperature
particular, the zero temperature. We note that there exis
method of imaginary time stepping36 that also allows one to
build a correlated self-consistent Green’s functions. T
method was implemented for nuclear collisions in Ref.
using the generalized Kadanoff-Baym ansatz. This imagin
time-stepping method requires both iterations to achieve s
consistency and a solution of the temporal equations an
in principle, equivalent to our approach.

There is also another prospective application of
present theory to ultrafast processes. Thelinear reaction of
any system to an electromagnetic field that has arbitrary t
poral dynamics, but is weak in the magnitude, is determin
through the well-known Kubo theory by the many-bod
Green’s functions of theequilibrium system. In particular,
the computation of the corresponding ultrafast polarizat
will require only a Fourier transform of the correspondin
current-current correlation function. Such a function is fou
in the present paper in the self-consistent random-phase
proximation in Sec. II B. We will pursue this line of invest
gation elsewhere.

There has been an important discussion regarding the
gitudinal f-sum rule and its relation to the local conservati
laws for Green’s functions.38–40This sum rule is formulated
for the renormalized Coulomb lineW(p,v) that is a building
block of the theory. It was shown21 that the SCRPA~called a
shielded approximation in Ref. 21! is a conserving theory
where the local conservation laws~for current, momentum,
etc.! are satisfied. However, it is known thatW(p,v) in the
SCRPA does not fulfill thef-sum rule. It was argued39 that
adding Coulomb lines inside the polarization operator wo
significantly improve the agreement with thef-sum rule.
However, such a modification brings about a violation of t
local conservation laws.40 In particular, such a violation
would completely preclude the use of the obtained soluti
for the description of the initial state for quantum kineti
problems. The cause of this violation is that the theory
Ref. 39 is incompatible with the general method of co
structing conserving theories by Baym and Kadanoff.21 In
this connection, we note that a numerically solvable appro
mate theory that would simultaneously satisfy the Bay
Kadanoff conservation conditions and thef-sum rule has not
been developed so far.
re
a

ng
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An approach to this general problem was given in R
21!. In the framework of this approach, the Green’s functio
were obtained in a conserving theory~SCRPA, in particular!.
After that, a modified Coulomb lineW(p,v) was calculated
using these Green’s functions by solving the Bethe-Salp
equation. Such a quantity will exactly satisfy thef-sum
rule.21,40However, it is important to bear in mind that such
modified ~‘‘improved’’ ! Coulomb line cannot be used as
building block for the next generation of self-consiste
Green’s functions, because the resulting theory would no
the framework of Ref. 21 and therefore generally would n
be conserving.

Without repeating the detailed discussion of the res
obtained given in Secs. IV A and IV B, let us briefly mentio
what we consider to be the main results of the paper.
have generalized the method of Ref. 24 from a 2D elect
gas to electrons confined in a quantum well with two su
bands~potentially, many subbands can be included in
future!. The Green’s functions found bear the maximum
formation on the one-electron properties of the system~mo-
mentum distribution, electron dispersion and lifetimes, et!.
That has allowed us, in particular, to find the intersubba
optical absorption whose spectral contour is significan
blueshifted with respect to the conventional~non-self-
consistent! RPA and acquires a finite width due to electro
electron scattering. Most of this blueshift is caused by
significant increase of the intersubband separation due to
electron correlations. An additional significant blueshift
caused by the depolarization effect. In contrast, the effec
vertex corrections in the ladder approximation is small alb
noticeable.

A wide area of applications of the results obtained will
the description of the intersubband optical absorption in
merous infrared electro-optical devices, in particul
QWIP’s.34,35 The theory of such devices was previous
mainly based on phenomenological or semiphenomenol
cal formulas. We have shown that the present theory expl
most of the spectral width of the optical responses in QWI
and gives reasonable results for the position~with en error
;12–15 %) and spectral shapes of such responseswithout
any adjustable parameters. Another potential application
will be the use of the equilibrium Green’s functions obtain
in the present study in the capacity of the initial conditio
for the quantum kinetics problems of electrons in quant
wells undergoing intersubband excitation.
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