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Perturbative expansion of the magnetization in the out-of-equilibrium Kondo model
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This paper is concerned with the out-of-equilibrium two-lead Kondo model, considered as a model of a
quantum dot in the Kondo regime. We revisit the perturbative expansion of the dot’s magnetization, and
conclude that, even at order 0 in the Kondo interactions, the magnetization is not given by the usual equilib-
rium result. We use the Schwinger-Keldysh method to derive a Dyson equation describing the steady state
induced by the voltage between the two leads, and thus present the correct procedure for calculating pertur-
bative expansions of steady-state properties of the system.
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I. INTRODUCTION

In recent years, much experimental and theoretical w
has been devoted to exploring the properties of so-ca
‘‘quantum dots.’’1 These are mesoscopic devices in which
‘‘dot’’ containing a small number of electrons is isolate
from two macroscopic leads~denoted ‘‘left’’ and ‘‘right’’ ! by
potential barriers, through which tunneling processes t
place. Experimentally, these systems are small devices fa
cated using a two-dimensional electron gas2–5 or carbon
nanotubes.6 The number of electrons on the dot,N, is con-
trolled by a gate voltageVg . From the experimental point o
view, one is primarily interested in the current flowin
through the dot as a function ofVg and of the potential
differenceV between the two leads. When tunneling is we
enough, the Coulomb blockade phenomenon appears:1 the
conductance through the dot is essentially zero except in
vicinity of certain special values ofVg , where the energy
difference between the ground states of the dot withN and
N11 electrons vanishes. At these points, conductance p
are observed.

A simple model for such a system is the Anderson mod
where the localized level represents the dot and the hop
term describes its hybridization with the leads. In this pap
we shall restrict ourselves to the regime where the occu
tion of the dot is not fluctuating, and where naı¨ve application
of Coulomb blockade ideas would predict a strongly su
pressed conductance. However, whenN is odd there is ex-
actly one unpaired spin, which is coupled to the leads vi
Kondo interaction. In this case, in the linear response regi
spin physics opens up a new transmission channel via
Kondo effect. Although the occupancy of the dot rema
fixed, spin-flip interactions permit the formation of stron
dot-lead hybridization for temperaturesT,TK , whereTK is
the Kondo temperature. As the temperature approaches
this leads to unitary limit conductance (G5G0[2e2/h) via
a sharp resonance at the Fermi surface—the Abrikosov-S
resonance. This effect was predicted in the context of qu
tum dots fourteen years ago,7,8 and was recently observed i
a series of experiments.2–6

By contrast, in the large-voltage regime, full nonequili
rium calculations are required, and much less is known t
0163-1829/2002/66~8!/085315~14!/$20.00 66 0853
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close to equilibrium. The out-of-equilibrium Anderson an
Kondo models have been studied by various methods in
last decade. Much of this work9–11 has concentrated on th
noncrossing approximation approach, which adopts a sla
boson description of the problem, and then renders it tr
table by neglecting certain vertex corrections. This yield
picture in which the Kondo resonance in the density of sta
is both split and broadened as the voltageV between the
leads is increased. Recent work12 has explored a new ap
proach, where one attempts to use the Bethe ansatz re
for the Anderson model to construct a Landauer-type pict
of transport through the dot. This approach also involv
approximation, when one comes to construct the ‘‘in’’ a
‘‘out’’ scattering states from the dressed excitations of t
model. Another thread13,14 has involved studying the Ander
son model via perturbation theory in the on-site Coulom
repulsionU. While these works provide approximate info
mation on the behavior of the current-voltage characteris
they shed little light on the nature of the many-body state
the system whenV.TK .

In particular, a basic question recently debated11,15 is
whether the Kondo problem has a strong coupling regime
low temperature and high voltage. In discussing this poin
previous paper15 used a second-order perturbative express
for the magnetic susceptibility in the out-of-equilibrium
steady state induced byV. This putative result was howeve
incorrect, even at order 0 inJ, the strength of the Kondo
couplings; in this paper, we correct this result at order
discuss the related physics and present a systematic me
for calculating higher-order corrections inJ. Our main con-
clusion is that, even at order 0 inJ, the Keldysh function of
the spin deviates from its equilibrium value and therefore
steady-state magnetization of the dot is not given byMeq
[ 1

2 tanh(B/2T). Rather, it must be computed by solving
transport equation. We emphasize that this issue is not
rectly related to the so called ‘‘decoherence time’’11 but is a
basic point about perturbation theory to be addressed be
discussing out-of-equilibrium renormalization group equ
tions and the existence of a strong coupling regime at la
voltage. In particular, it has ramifications for other physic
quantities, e.g., the current and the current-current corr
tion function in a magnetic field~see Sec. III C 2!.
©2002 The American Physical Society15-1
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The paper is organized as follows. In Sec. II, we pres
the model, our main result@the magnetization at order
given by Eq.~4!#, and the associated physical discussion.
Sec. III, we present a detailed pedagogical derivation of
~4! using the Keldysh method. Finally, in Appendix D, w
present more details about the computation presented in
15, and explain why it was incorrect.

II. RESULTS AND DISCUSSION

Our starting point is the Hamiltonian of the two-lea
Kondo model. For a discussion of the modeling of the qu
tum dot, and for a derivation of this model from the Ande
son model via an out-of-equilibrium Schrieffer-Wolff tran
formation, we refer the reader to the literature, in particu
Ref. 16 and references therein. The Hamiltonian is

H5(
aks

~«k1ma!caks
† caks1H refl1H trans

2BsSz2Bc(
aks

scaks
† caks ,

H refl5S JR (
k,k8,s,s8

~cRks
† sW ss8cRk8s8!S

W D 1~R↔L !,

H trans5S JRL (
k,k8,s,s8

~cRks
† sW ss8cLk8s8!S

W D 1~R↔L !,

~1!

wherecaks
† creates an electron in leadaP$L,R% with mo-

mentum k and spins, and JL , JR and JLR5(JRL)* are
Kondo coupling constants between the electrons and the
of the dotSW . The first term inH describes the electrons in th
leads, with«k being the bare energy of an electron of m
mentumk at zero voltage~the same for each lead! andma is
the potential in the leada. Each lead consists of a free ele
tron gas with a density of statesr(e) of bandwidthD: ulti-
mately, we will be interested in the result in the large ban
width (D→`) limit, but the computations are firs
performed for finiteD. We will make the physical assump
tion that the leads are in thermal equilibrium at a tempera
T. The voltage is applied by taking the chemical potentials
the two leads to be different,mL2mR5V. H refl describes
regular Kondo processes, where an electron from a gi
lead is spin-flip scattered back into thesamelead;H trans de-
scribes ‘‘spin-flip cotunneling,’’ where an electron from on
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lead is spin-flip scattered into theother lead. If the model~1!
is derived from the Anderson model, one finds thatJRJL
5uJRLu2. In this paper, however, we relax this relation b
tween the coupling constants and treat them as indepen
parameters. Finally, the last terms represent the couplin
the magnetic field. We allow two different magnetic field
Bs for the spin andBc for the lead electrons; this permits th
calculation of the total and local spin susceptibilities with
the same computation.

In this paper, we shall be interested in the values taken
the following quantities in the nonequilibrium steady sta
induced by the voltageV: the dot magnetizationMdot, the
magnetization of the leadsM leads, the total magnetization
M tot , and the total and local susceptibilities. These are gi
by

Mdot~Bs ,Bc!5^Sz&, ~2a!

M leads~Bs ,Bc!5K (
aks

scaks
† caksL , ~2b!

M tot~B!5Mdot~B,B!1M leads~B,B!2MPauli, ~2c!

x tot5
]M tot~B!

]B U
B50

, ~2d!

x loc5
]Mdot~Bs ,Bc50!

]Bs
U

Bs50

, ~2e!

where angular-bracketŝ•••& denote an expectation valu
taken in the steady~i.e., long-time! state of the system.MPauli
is simply the Pauli paramagnetic contribution from the le
electrons which would be present even in the absence of
impurity, and which we therefore exclude fromM tot . We
consider the perturbative expansions of these steady
quantities; more precisely, we define

JR[uRJ, JL[uLJ, JRL[uRLJ ~3!

and we letJ go to zero while keeping the coefficientsuR ,
uL , anduRL fixed. In the following, the expression ‘‘orde
n’’ refers to the ordern of this expansion inJ.

Our main result is the order 0 term of the perturbati
expansion of the magnetization
M tot~B!5Mdot~B,Bc!1O~J!5
1

2
tanhS B

2TD
wS B

TD S 11
uR

21uL
2

2uRL
2 D

1

2 FwS B1V

T D1wS B2V

T D G1
uR

21uL
2

2uRL
2

wS B

TD
1O~J!, ~4!
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wherew is defined by

w~x![
x

tanhS x

2D . ~5!

@At this order, Mdot(B,Bc) does not depend onBc .# As a
result, the magnetic susceptibility at order 0 is

x~T,V!5
1

4T

11
uR

21uL
2

2uRL
2

1

2
wS V

TD1
uR

21uL
2

2uRL
2

1O~J!, ~6!

and in particular foruVu→`,

x~T,V!;

11
uR

21uL
2

2uRL
2

2uVu
. ~7!

A striking feature of Eq.~4! is that the magnetization a
order 0 inJ is not given by the equilibrium expressionMeq
5 1

2 tanh(B/2T). This may seem surprising: since the co
plings to the leads are relaxed to zero, why should we
find Meq, the magnetization of a free spin? Physically, t
answer is thatMeq is not the ‘‘magnetization of a free spin,
but rather the magnetization of a spin weakly coupled to
equilibrium bath. On the other hand, Eq.~4! gives the mag-
netization of a spin weakly coupled, via the Hamiltonian~1!,
to two leads with different chemical potentials. It is simp
an out-of-equilibrium extension of the Curie law. In partic
lar, we emphasize that the finite susceptibility atT50 cannot
be interpreted as a renormalization~or a screening! of the
spin due to the voltage.

At long times, the state of the spin is completely det
mined by the properties of these leads, and hence so i
distribution function, which describes the population of
two states as a function of temperature, voltage, and m
netic field. Since the whole system is not in equilibrium, th
steady state is not described by the Gibbs distribution
particular, the fluctuation-dissipation theorem~FDT! need
not hold. Hence the magnetization need not be~and is not!
Meq at order 0 inJ. Rather it should be computed by solvin
a transport equation in the steady-state regime, i.e., a q
tum Boltzmann equation.~At dominant order this procedur
is equivalent to using a semi-classical master equation;
Appendix A.!

The crucial point is thatJR ,JL ,JRL are relaxed to zero
assuming that they are still bigger than the coupling of t
spin to any other thermal bath. If we were to take into ac-
count such a coupling~denoted byJ0) then the result would
cross over toMeq when JR ,JL ,JRL!J0 ~all the couplings
going to zero while maintaining fixed ratios!. In fact, Eq.~4!
implies that the equilibrium value is only an upper boun
0<M tot(J50)/Meq<1, which follows from the convexity
of w. This bound is saturated only in equilibrium, i.e., f
uRL→0 or V→0.
08531
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Moreover, as expected on physical grounds, the none
librium result is much less universal than the equilibriu
one. In equilibrium, the magnetization of a spin weak
coupled to a bath depends neither on the properties of
bath except the temperatureT nor on the form of the cou-
plings between the spin and the bath. Neither of these st
ments holds true for the nonequilibrium Kondo model:Mdot
~at order 0! depends not only onT but also on the voltageV
and on a ratio involving the parametersuR , uL , and uRL .
ThusMdot is perturbative inJ, but not in the three variable
JR ,JL ,JRL , and in particular it is not analytic inJR ,JL ,JRL
around (0,0,0). One can find such a dependence on the
of couplings even in a simple free model~a single level
coupled to two leads!, as illustrated in Appendix B. Further
more, it should be remembered that we computedMdot with
free leads: introducing interactions in the leads would cha
the functionw ~the important quantity being the electron
electron bubble in the leads!. For example, we expect a dif
ferent result to hold for a spin coupled to Luttinger liquid
even at order 0.

It should be noted that the result~4! gives a nontrivial
expression for the magnetization even at zero temperat
Sincef(x)→uxu as uxu→`, we find that

M tot~B,V!uT50

5
B

2 S 11
uR

21uL
2

2uRL
2

1
2 ~ uB1Vu1uB2Vu!1

uR
21uL

2

2uRL
2

uBu
D 1O~J!.

~8!

We then have two cases~we can takeB,V.0): for B.V
.0, we obtain the equilibrium resultM tot(B,V)5sgn (B)/2
1O(J), but for 0,B,V, the magnetization is a still a func
tion of B/V,

M totuT50'
B

2 S 11
uR

21uL
2

2uRL
2

uVu1
uR

21uL
2

2uRL
2

uBu
D , ~9!

in agreement with Eq.~7! in the limit uVu@uBu. Physically,
there are two sources of energy available to flip the spin:
thermal fluctuations of both baths~represented byT) and the
fact that an electron can go fromL to R and give to the spin
an energy of orderV. If we decreaseB from high values
(B@T,V), the spin is locked untilB reaches the largest o
these energy scales. Thus the magnetization at zero tem
ture is expected to saturate only forB.V. Similarly, the
susceptibility is in general expected to behave asx;1/E,
whereE is the largest energy available to flip the spin. T
fact that our result is still nontrivial at zero temperature im
plies that it could be seen in numerical computations, suc
the density matrix renormalization group~DMRG! approach
of Cazalilla and Marston.17
5-3
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III. DERIVATION OF Eq. „4…

The purpose of this section is to present the derivation
Eq. ~4! and more generally the procedure for obtaining
perturbative expansion of physical quantities in the ste
state. It is organized as follows: in Sec. III A, we first give
overview of the derivation; full details are given in the fo
lowing sections~Secs. III B and III C! and in the appendixes
including a presentation of the Keldysh method.

A. Overview

When doing perturbation theory in the steady state, th
are two important small couplings:J, the strength of the
Kondo couplings, ands, the small regulator that appears
Green’s functions such as the ‘‘spin’’ retarded function~de-
fined in Sec. III B 3!,

RB
0~v!5

1

v2B1 is
. ~10!

The scales should be thought of as being due to the coupl
to an auxiliary thermal bath, which in the physical syste
would be the substrate. If the impurity is coupled to suc
bath whose density of states isr2 by a couplingg, one finds
s;g2r2 ~in the large bandwidth limit!. In the physical quan-
tum dot system,J@s, meaning that the correct order of lim
its to take iss→0 followed byJ→0, as pointed out in Sec
II.

However, ‘‘straightforward’’ perturbation theory inJ takes
the limit in the opposite order: one first expands inJ while
keepings finite, and only then takess→0 term by term in
the perturbation series. In equilibrium, these two limits co
mute, but out of equilibrium they do not. This is explicit
shown in Sec. III C 1; the out-of-equilibrium Keldys
Green’s function is not analytic around (s,J)5(0,0). This
nonanalytic behavior is quite generic in situations where
impurity is coupled to several leads, and may be seen eve
a simple free model~see Appendix B!. The signature of tha
noncommutativity is that ‘‘straightforward’’ perturbatio
theory fails: its terms@starting atO(J2)] exhibit divergences
of a 1/s form. These are similar to the infrared divergences
equilibrium perturbation theory that signal an incorre
choice of reference state. As shown below, 1/s divergences at
orderJ2 signal an incorrect choice for the Keldysh Green
function at order 0, or equivalently of the distribution fun
tion which describes the nonthermal population of the t
levels of the spin. Consequently, contrary to the claims
Ref. 15 there is no possibility of regulating these 1/s diver-
gences order by order inJ. We discuss the putative regulatio
procedure of Ref. 15 in Appendix D, and explain why it
incorrect.

The solution is to begin with the Dyson equation in t
steady state, considered as a functional equation for the
Green’s functionG, using the skeleton self-energy diagram
~see Appendix E for further details!. After taking thes→0
limit in this equation, a perturbative expansion forG may be
inserted into it, and a solution obtained order by order inJ.
Solving the Keldysh component of this Dyson equation
equivalent to solving the quantum Boltzmann equation;
08531
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shown below, the solution is nonthermal even at order 0 inJ.
Another procedure for solving the problem of 1/s diver-
gences was proposed in Ref. 18 in the context of theU5`
out-of-equilibrium Anderson model: its method was
choose the zeroth-order spin Keldysh function~see Sec.
III B 3 ! in order precisely to cancel the divergences at or
J2. This is completely equivalent to our approach, as
plained in Sec. III C 2.

Finally, we note that one may give a simple semiclassi
derivation of the out-of-equilibrium result~4! based on a
master equation. This derivation is due to Glazman a
Kaminski,19 and is presented in Appendix A. The success
such a semiclassical approach~at this lowest order! is related
to the fact that one can compute the equilibrium magnet
tion of a free quantum spin using a classical Ising model
fact, at this order, the semiclassical master equation is str
equivalent to the Keldysh component of the steady-s
Dyson equation, so the two apparently disparate derivati
yield the same result.

B. Technical preliminaries: the Keldysh method

Let us now turn to the technical details. In the followin
for simplicity, we will write some equations for a gener
fermionic fieldc, which will be specialized afterwards to th
fields representing the electrons and the spin.

1. Generalities

The basic idea of the nonequilibrium Keldys
method20–22 consists in taking the system at an initial tim
t50 in an initial state described by a density matrixr0 and
letting the system relax, using the Hamiltonian evoluti
given byH, to a long-time regime. In order to ensure that t
system relaxes, it may be necessary to add some additi
coupling terms to the Hamiltonian, in particular to bre
conservation laws: see the discussion in Appendix E. D
pending on the system, the long-time regime can be an e
librium state, a nonequilibrium steady state, a non-tim
translation-invariant steady state, or even an aging regime~in
glassy systems!. In the quantum dot problem, we assume th
the system reaches at finite voltageV a nonequilibrium
steady state, in which we want to compute physical qua
ties.

A ‘‘Keldysh’’ average of any quantityA is defined by

^A~ t !&K[^eiHtAe2 iHt&0[Tr~r0eiHtAe2 iHt !, ~11!

where ^•••&0 is the average taken using theinitial density
matrix of the system. The steady-state average is given

^A&5 lim
t→`

^A~ t !&K .

Using the usual representation of the evolution opera
e2 iHt as aT-ordered exponential in the interaction pictu
~and the anti-T-ordered one foreiHt), one can obtain an ex
pansion in the coupling constantJ. Following the usual con-
ventions, it is convenient to keep track of the two expone
tials using a closed time contour, running from 0 to1` and
back to 0~Ref. 21!: we denote by1 the upper contour~from
5-4
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0 to `), which arises from expandinge2 iHt , and by2 the
lower contour. In accordance with this notation, we defi
the four Green’s functions,

Gc
11~ t,t8![2 i ^Tc~ t !c†~ t8!&K ,

Gc
21~ t,t8![2 i ^c~ t !c†~ t8!&K ,

Gc
22~ t,t8![2 i ^T̃c~ t !c†~ t8!&K ,

Gc
12~ t,t8![ i ^c†~ t8!c~ t !&K . ~12!

Here T is the time-ordering operator,T̃ the anti-time-
ordering operator, andc is any fermionicfield. The two in-
dices of the matrixG will be called ‘‘indices in Keldysh
space.’’ In the following, Eqs.~12! will be summarized with
the notation

Gc~ t,t8!52 i Š^c~ t !c†~ t8!&‹K ~13!

andG will always denote a 232 Keldysh matrix.
The Green’s functions~12! are not independent but can b

expressed as functions of the retarded, advanced,
Keldysh Green’s functions defined, respectively, by29

Rc~ t,t8![2 iu~ t2t8!^$c~ t !,c†~ t8!%&K ,

Ac~ t,t8![ iu~ t82t !^$c~ t !,c†~ t8!%&K ,

Kc~ t,t8![2 i ^@c~ t !,c†~ t8!#&K , ~14!

as is shown from the transformation22

Gc[S Gc
11 Gc

12

Gc
21 Gc

22D , G̃c[S Rc Kc

0 Ac
D ,

G̃c5
1

2 S 1 1

1 21DGcS 1 1

21 1D . ~15!

We will denote the first set of Green’s functions~12! ‘‘the 6
basis,’’ and the second~14! the ‘‘Larkin-Ovchinnikov ~LO!
basis.’’

There are further relations between these Green’s fu
tions. In general,Rc(t,t8)5@Ac(t8,t)#* . Moreover, in equi-
librium FDT reads:

Kc~v!5heq~v!@Ac~v!2Rc~v!#, heq~v![2tanhS v

2TD ,

~16!

thus the retarded Green’s function is the only remaining
dependent Green’s function, and so contains all the infor
tion about the state of the system. Out of equilibrium, ho
ever, Kc(v) and Rc(v) should be independentl
determined.

In order to write the diagrammatic expansion, we a
define the ‘‘bare’’ counterparts of the Green’s functions
Eqs.~12! and ~14! by

Gc0~ t,t8![2 i Š^c int~ t !c int
† ~ t8!&‹0 ,
08531
e
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where the fieldc int is in the interaction picture. From th
expansions of the evolution operators, we obtain the d
grammatic expansion, provided that^•••&0 satisfies Wick’s
theorem. For the problem at hand, we take as the initial c
dition the density matrix of the model withJR5JL5JRL
50 and for the spin a finites ~arising from the coupling of
the spin to a thermal bath; see Sec. III A!. Going to the long
time limit, every function becomes a function of the diffe
ence of the times, and transforming to Fourier space we
tain standard Feynman rules.

2. Lead electrons

Let us begin with the lead electrons. We care here o
about the local Green’s functions, so we will drop the spa
indices. We denote by (Gc)as,bs8(t,t8) the Green’s function
describing the creation in leadb of an electron with spins8
at time t8, and a corresponding annihilation in leada of an
electron with spins at time t,

~Gc!as,bs8~ t,t8!52 i Š^cas~ t !cbs8
†

~ t8!&‹K . ~17!

~Here the indicesa,bP$L,R%, while s,s851,2, and the
local electron operators are defined bycas}(kcaks .) The
Green’s functionGc is thusa priori a 434 matrix ~in lead-
spin space!, whose entries are themselves 232 Keldysh ma-
trices. In the following, a bold notation with subscriptc al-
ways designates such a 434 matrix. The bare Green’s
functionGc0 is, however, diagonal. The bare~diagonal! den-
sity of states is

~rc 0!as,bs85r~v1sBc2ma!dabdss8

~the energy levels are the same in both leads, but shifted
the Zeeman energy and the voltage!. We assume that the
baths, being much bigger than the impurity, are permane
in thermal equilibrium so that the bare electrons’ functio
read

Rc0~v!5E de
rc0~e!

v2e1 i01
, ~18a!

Kc0~v!52iphc0~v!rc0~v!, ~18b!

~hc0!as,bs8[heq~v2ma!dabdss8 , ~18c!

where the first two equations are matricial, andma is the
potential of the leada5R,L. The voltage difference betwee
the leads is given byV5mL2mR .

3. Spin

Since the spin operator is not appropriate for diagra
matic computations~it does not satisfy Wick’s theorem!, we
represent the spin 1/2 by three Majorana fermionsha,a
P$x,y,z% which satisfy Wick’s theorem and the relations

Sa52
i

2
eabchbhc, ~19a!

~ha!†5ha, ~19b!
5-5
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$ha,hb%5dab. ~19c!

Using Eq. ~19a!, one can easily show thatSW satisfies the
correct commutation relations and thatSW 253/4. Note that
this last constraint isautomaticallysatisfied, unlike in the
case of a Dirac fermion representation, where a Lagra
multiplier would have been required to fix the magnitude
the spin: the Majorana representation therefore makes
computation simpler. In this paper, we consider only s
1/2, but our computations could be extended to higher s
provided that one used another representation forSW .

Let us now discuss the propagatorsGab (a,bP$x,y,z%)
of the h, in the presence of a magnetic fieldBs along thez
direction. The general form is

G5S Gxx Gxy 0

Gyx Gyy 0

0 0 Gzz

D ,

Gab~ t,t8![2 i Š^ha~ t !hb~ t8!&‹K , ~20!

where the elements are 232 Keldysh matrices. IndeedGxz
5Gyz50 by symmetry. To prove this, note that the Ham
tonian is invariant under ap rotation around thez axis,
which is implemented by (hx,hy,hz)→(2hx,2hy,hz) ~and
the corresponding rotation for thec electrons!. Furthermore,
making ap/2 rotation around thez axis, implemented by
(hx,hy,hz)→(hy,2hx,hz), we obtain the relations

Gxy52Gyx , Gxx5Gyy . ~21!

The Hamiltonian is also invariant under ap rotation around
the x axis @(hx,hy,hz)→(2hx,hy,hz)# together with a
change of sign of the magnetic fieldsBs andBc , and hence
Gxy andGxx are respectively odd and even in the magne
field. In particular, forBs5Bc50, Gxy50. The foregoing
arguments apply to the full propagator and to the free pro
gatorG0 ~computed with only the magnetic fieldBs).

A different basis is also useful: defining the Dirac fermi
f and its Green’s functionGB by

f [
hx2 ihy

A2
, ~22!

GB~ t !52 i Š^ f ~ t ! f †~0!&‹K , ~23!

we have the relations

Gxx~v!5Gyy~v!5
1

2
@GB~v!1G2B~v!#, ~24a!

Gxy~v!52Gyx~v!5
i

2
@GB~v!2G2B~v!#. ~24b!

In the (f ,hz) basis, the propagator is diagonal, so it is mo
convenient, for example to write the Dyson equatio
whereas the original basis (hx,hy,hz) is more convenient for
the diagrammatics. The bare propagators in the (f ,hz) basis
are given by
08531
e
f
he
n
n,

c

a-

,

Rz
0~v!5

1

v1 is
, ~25a!

Kz
0~v!52iheq~v!

s

v21s2
, ~25b!

RB
0~v!5

1

v2B1 is
, ~25c!

KB
0~v!52iheq~v!

s

~v2B!21s2
, ~25d!

wheres is a small regulator which, as discussed in Sec. III
should be thought of as the width due to coupling to
auxiliary thermal bath.

4. Vertex factors and Dyson equations

The vertex factors can be extracted simply from t
Hamiltonian, and the Feynman rules are summarized in
1 ~in the 6 basis!. Note that we have oriented the Majoran
fermion lines, despite the operator property that (h†)5h; a
proof that the lines are orientable is given in Appendix C

We now derive the expression for the Dyson equat
describing theh fields. In general, a Dyson equation read

G21~v!5G0
21~v!2S~v!, ~26!

where the inversion has to be taken in the tensor produc
the x,y,z space and the Keldysh space~thus with 636 ma-
trices!. The free propagator is given by Eq.~25a!. In the
x,y,z basis, the self energy can be written as

S~v!5S Sd~v! iSa~v! 0

2 iSa~v! Sd~v! 0

0 0 Sz~v!
D ,

Sm~v!5S Sm
R~v! Sm

K~v!

0 Sm
A~v!

D , mP$a,d,z%. ~27!

Using the definitions~24a!, we find

FIG. 1. Feynman rules: we represent the Majorana fermi
with dashed lines and the electrons with solid lines.a,b are lead
indices;u,v are spin indices for the electrons;k is a Keldysh index
k561; h i ,aP$x,y,z% are flavor indices for the Majorana fer
mion; ands are the Pauli matrices. The vertex is given in the6
basis.
5-6
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G6B5S 1

v7B2S6B
R ~v!1 is

S6B
K ~v!12isheq~v!

uv7B2S6B
R ~v!1 isu2

0
1

v7B2S6B
A ~v!2 is

D ,

S6B~v![Sd~v!6Sa~v!. ~28!

C. Perturbation expansion in the steady state

After these preliminaries, let us now come back to t
perturbative expansion in the steady state and develop on
points introduced in Sec. III A. In Sec. III C 1 we show th
the limitsJ→0 ands→0 do not commute; in Sec. III C 2 we
solve that problem and present the derivation of Eq.~4! to-
gether with an algorithm for computing higher-order terms
the perturbative expansion.

1. Noncommutativity of limits

We are interested in the steady-state values of the ma
tizations ~2a! and ~2b!, which can be expressed in the fo
lowing way:

Mdot5
i

4E dv

2p
@KB~v!2K2B~v!#, ~29a!

M leads5
i

2E dv

2p (
a5R,L
u51,2

~21!u~Kc!au,au . ~29b!

Indeed, the dot magnetization is given by

Mdot5^Sz&52
i

2
^@hx,hy#&5

1

2
Kxy~ t50!.

M leads is derived analogously.
We begin with the expression for the dot magnetizat

derived from Eq.~29a! using the Dyson equation~28!:

Mdot5
1

4pE dv ImS heq~v!

v2B2SB
R~v!1 is

D
2E dv

8ip

SB
K~v!2heq~v!@SB

A~v!2SB
R~v!#

uv2B2SB
R~v!1 isu2

2~B→2B!, ~30!

where the last term denotes an antisymmetrization inB. The
first term in Eq.~30! can be transformed into a sum ov
Matsubara frequencies and thus we see that the limitsJ→0
ands→0 commute in that term. However, the second term
more interesting. First, it vanishes in equilibrium since t
numerator cancels, as required by the FDT. Moreover, us
~for e→0)

1

uv2B1 i eu2
;

1

e
d~v2B!, ~31!

we see that in that second term these limits do not comm
08531
e
the

e-
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te.

J→0 and thens→0. We first takeSB
R50 in the denomi-

nator. We find that this second term in Eq.~30! gives a di-
verging term at second order inJ proportional toJRL

2 /s.
More precisely, using the expression for the self-energy
second order derived in Appendix F, and Eq.~31! with
e5s, we find

Mdot;
JRL

2

s
tanhS B

2TD H wS B

TD2
1

2 FwS B1V

T D1wS B2V

T D G J
up to a finite~i.e., not diverging ass→0) term of orderJ2

and toO(J3) terms@w is defined in Eq.~5!#.
s→0 and thenJ→0. Using Eq.~31! with e5Im SB

R(B)
~we work at dominant order inJ), we find

Mdot52
1

4 S SB
K~B!

SB
A~B!2SB

R~B!
D 2~B→2B!1O~J!,

~32!

where the self-energy has to be expanded at order 2 inJ @the
first term in Eq.~30! cancels a part of the second term#.

The second limit is the physical one~as explained in Sec
II ! and it gives a formula~32! for the magnetization at orde
0. However, to make use of this formula one needs to kn
the Keldysh@SB

K(B)# and spectral@SB
A(B)2SB

R(B)# parts of
the self-energy. The leading terms of these self-energies
of order 2 inJ, but because the ratio of them is taken, th
determine the magnetization at order 0. The crucial poin
that Eq.~32! is in fact an implicit equation forhB(B), which
appears on the left-hand side becauseMdot is defined in
terms of it by Eq.~29!, and on the right-hand side becau
the self-energies atO(J2) depend on the Keldysh Green
function atO(1), andhence onhB . The most elegant way to
capture this ‘‘feedback’’ effect is to reformulate the proble
in terms of the perturbative expansion of the steady-s
Green’s function in powers ofJ, starting from the Dyson
equation in which thes→0 limit has already been taken. W
now describe this method in more detail, and specify
procedure for calculating the steady-state Green’s functi
perturbatively inJ to arbitrary order.

2. Perturbative expansion of steady-state quantities

Let us now give a general method for computing the p
turbative expansion of the Green’s functions, and use i
derive Eq.~4!. First, we reformulate slightly the diagram
matic expansion in terms of the full Green’s functionGc and

FIG. 2. Diagram of the skeleton self-energy at second order
5-7
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of skeleton diagrams, and we explicitly derive the stea
state Dyson equation as a functional equation forGc ~again,
for simplicity, we write some equations for a generic fie
c). The ‘‘generic’’ Dyson equation reads

Gc~J,s,v!5$Gc0
21~v!2Sskel@Gc#~J,s,v!%21, ~33!

where Sskel is a functional ofGc defined by the skeleton
expansion of the self-energy~see Appendix E for a deriva
tion!. We first take thes→0 limit in Eq. ~33! and then solve
it order by order inJ. It is, in principle, sufficient to solve Eq
~33! for Gc since the magnetization can be directly extrac
from a Green’s function, and other physical quantities~e.g.,
currents! are given by their skeleton expansions.

We first derive the explicit form of the Dyson equation f
all fields. Defining

sc
K[

Sc
K

2ip
, sc[

Sc
A2Sc

R

2ip
, ~34!

the full set of Dyson equations for the electrons and
Majorana fields can be rewritten explicitly as

Rc~v!5
1

Rc0
212SR~v!

, ~35!

Kc~v!5~12Rc0SR!21Kc0~12SAAc0!
21

1~Rc0
212SR!21SK~Ac0

212SA!21, ~36!

RB~v!5
1

v2B2SB
R~v!1 i01

, ~37!

KB~v!5hB~v!@AB~v!2RB~v!#, ~38!

hB~v![
sB

K~v!

sB~v!
, ~39!

Rz~v!5
1

v2Sz
R~v!1 i01

, ~40!

Kz~v!5hz~v!@Az~v!2Rz~v!#, ~41!

hz~v![
sz

K~v!

sz~v!
, ~42!

where the bold symbols are 434 matrices~in lead-spin
space!. For completeness, we have also written the defi
tions of theh functions. We have three blocks of equation
for the electrons, thef field, and thehz field, respectively.
Within these blocks, we have an equation for the retar
function ~35!,~37!,~40!, an equation for the Keldysh functio
~36!,~38!,~41!, and for the Majorana fermions the definitio
of theh function~39!,~42!. We definehB with Eq. ~39! rather
than with Eq.~38! since the spectral density is a delta peak
order 0, whereas the self-energy is a smooth function.

The spin and the lead electrons appear on a different f
ing: the order 0 part of the electronic Keldysh function
given byKc0 whereas the order 0 parts ofhB andhz must be
08531
-

d

e

i-
,

d

t

t-

computed using Eqs.~39! and ~42!. Note that to obtain the
ordern part ofhB , one needs to compute the self-energies
ordern12. The method of obtaining the perturbative expa
sion in J order by order is as follows~denoting byf (n) the
ordern part of any functionf ).

~1! Assume that we have the expansion of all functions
ordern21.

~2! SinceSskel is at least of order 1, using Eqs.~35!, ~37!,
and ~40!, we computeRB

(n) , Rz
(n) , Rc

(n) , andKc
(n) .

~3! SinceSskel
K andSskel9 begin at order 2, we compute th

sK ands to ordern12, as functions of the unknownshB
(n)

andhz
(n) .

~4! We then obtain closed equations forhB
(n) andhz

(n) from
Eqs.~39! and ~42! ~expanded to ordern).

Thus the order 0 part of the impurity magnetization
given by @from Eq. ~29a!#

Mdot52
1

2
hB

(0)~B!. ~43!

The order 0 parts ofRB andKB are

RB
(0)5

1

v2B1 i01
, KB

(0)52iphB
(0)~B!d~v2B!,

~44!

and the bare Green’s functions of the electrons are given
Eq. ~18!. We computehB(v5B) at order 0 by expanding the
self-energies at second order~given by the diagram of Fig.
2!, and then solving~39! for hB(B). Finally we find Eq.~4!
in the large bandwidth limit (D→`). The computation is
presented in detail in Appendix F. This completes the co
putation of the Green’s function to order 0.

Note thatKc is thermal at order 0, which expresses t
fact that the leads are in thermal equilibrium. Therefore
leads’ contribution to the total magnetization at order 0
given by the Pauli term, which was explicitly excluded fro
M tot ; henceM tot5Mdot at this order, as claimed in Eq.~4!.
Moreover, we have not written explicitly the full forms of th
functionshB(v) andhz(v) to this order, since they are no
required in the calculation of the zeroth-order Keldysh fun
tions: hB(B) and hz(0)50 are sufficient, since the spectr
density ~at this order! is a delta peak. The full functions
would, however, be needed to compute at second order
functionhB(v) can easily be extracted from Appendix F, an
the calculation ofhz(v) proceeds along similar lines.

Our earlier interpretation of the 1/s divergences in
‘‘straightforward’’ perturbation theory is borne out by th
result. As stated above, the 1/s divergences result from an
incorrect choice of zeroth-order distribution functionh. If we
insert theO(1) part of Eq.~39! into Eq.~30! in place ofheq,
we see that the divergences are cancelled at orderJ2, since to
this order we are now using the correct long-time distribut
function. This shows that our method and that of Ref. 18
equivalent.

It is important to note that these corrections to the zero
order terms in perturbation series are in no way restricted
quantities such as the magnetization. On the contrary, s
what we have really calculated is the correction to the zero
5-8
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PERTURBATIVE EXPANSION OF THE MAGNETIZATION . . . PHYSICAL REVIEW B66, 085315 ~2002!
order Keldysh Green’s function, they manifest themselve
many quantities. As an example, we may consider
current-current correlator: the leading terms in this quan
are of orderJ2, and are calculated by inserting the zero
order Green’s functions into the skeleton diagrams sho
schematically in Fig. 3. The result is that

^I ~2v!I ~v!&5
p~r0JLR!2

2\2
$@hB

(0)~B!#2p~v,V!

2hB
(0)~B!@p~v1B,V!2p~v2B,V!#

1@p~v,V!1p~v2B,V!1p~v1B,V!#%,

~45!

where the functionp(x,y) is defined by

p~x,y!5
x2y

eb(x2y)21
1

x1y

eb(x1y)21
. ~46!

The result~45! is a function of hB
(0)(B), and is therefore

clearly sensitive to the corrections made to the zeroth-o
Green’s function, as expected on the basis of the discus
above.

IV. CONCLUSION

The purpose of this paper has been to present the exp
sion for the order 0 magnetization in the Kondo model out
equilibrium @Eq. ~4!#, and a systematic procedure for obtai
ing higher-order corrections to this result. The result we
tain may seem surprising, in the sense that even at order
J it does not coincide with the equilibrium expressio
1
2 tanh(B/2T). Indeed, the out-of-equilibrium distributio
function which describes the population of the two levels
a weakly coupled spin is in general not thermal but must
computed by solving a transport equation: it is determined
the steady state into which the voltage difference forces
system. Moreover, this distribution function also enters
computation of other physical quantities~e.g., currents! and
their perturbative expansions therefore exhibit similar p
nomena.

Finally, we stress that the issue discussed in this pape
not directly related to the so-called ‘‘decoherence time’’
sue. Answering the question of strong coupling at finite vo
age requires computations at higher orders inJ. It is clear
from the above, however, that the behavior of the out-

FIG. 3. The two skeleton diagrams contributing to the curre
current correlator at leading order. In each diagram, one of
electrons~represented by the solid lines! is from the left lead, and
the other is from the right. The vertices representI, the current
operator.
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equilibrium perturbative expansion will be markedly diffe
ent from that of its equilibrium counterpart. For example, t
O(J) contribution to the Keldysh Green’s function of th
Majorana fermions depends on theO(J3) contribution to the
self-energies. These, however, contain terms that diverge
ln D in theD→` limit, and so such logarithmic divergence
may be expected to appear atO(J) in some of the Green’s
functions, and therefore in physical properties such as
magnetization. Indeed, this phenomenon has been repo
recently;23 the full interpretation of this striking departur
from equilibrium behavior merits further work.
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APPENDIX A: A SEMICLASSICAL DERIVATION
OF EQ. „4…

The magnetization at order 0 inJ ~4! can also be derived
using a semiclassical master equation approach.19 By sym-
metry, the reduced density matrix of the spin is diagonal,
we consider the spin as classical and characterize its sta
the probability of its being up,P↑ , or down,P↓ . The spin
dynamics is governed by a master equation,

dP↑~ t !

dt
5G↓↑P↓~ t !2G↑↓P↑~ t !, ~A1a!

dP↓~ t !

dt
5G↑↓P↑~ t !2G↓↑P↓~ t !, ~A1b!

whereGAB is the rate of the spin-flip processA→B induced
by the Kondo terms. At second order in perturbation theo
these rates are given by

G↓↑' (
a,bP$R,L%

Jab
2 E de1de2r~e12Bc2ma!

3r~e21Bc2mb!nF~e12ma!~12nF~e22mb!!

3d~e12e21Bs!, ~A2a!

-
e
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G↑↓' (
a,bP$R,L%

Jab
2 E de1de2r~e11Bc2ma!

3r~e22Bc2mb!nF~e12ma!~12nF~e22mb!!

3d~e12e22Bs!. ~A2b!

Taking the large bandwidth (D→`) limit and integrating,
the rates become

G↑↓5~JR
21JL

2!
Bs

eBs /T21

1JRL
2 S Bs2V

e(Bs2V)/T21
1

Bs1V

e(Bs1V)/T21
D , ~A3a!

G↓↑5~JR
21JL

2!
2Bs

e2Bs /T21

1JRL
2 S 2Bs2V

e2(Bs1V)/T21
1

2Bs1V

e2(Bs2V)/T21
D .

~A3b!

The steady-state value of the probability is given by equa
the left-hand sides of Eq.~A1a! to 0, and the magnetizatio
is given byMdot5(P↑2P↓)/2, thus

Mdot5
1

2 S G↓↑2G↑↓
G↓↑1G↑↓

D , ~A4!

which leads to Eq.~4!.
One can see that the Dyson equation in steady stat

second order inJ, maps exactly to the master equation,
though they appear to have different transients. So at ord
this computation is just a reformulation of the one presen
above.

APPENDIX B: A FREE MODEL

In this appendix, we recall14,25 the solution of a simple
free model in an out-of-equilibrium steady-state regim
which displays a result very similar to Eq.~4!. We consider a
free level coupled to some reservoirs of free electrons
hopping terms. The Hamiltonian is given by

H5(
ak

~«k1ma!cak
† cak1(

a
ga~ca

†d1d†ca!1edd†d,

~B1!

FIG. 4. Diagram of the ‘‘generic’’ self-energy at second ord
08531
g

at
-
0,
d

,

ia

where the local reservoir-electron operatorca is defined by
ca5ca(x50)[V21/2(kcak . (V is the usual normalization
factor related to the volume of the reservoirs.! As before, we
assume that the reservoirs are thermalized with the s
temperature as each other, but with different chemical po
tials ma . In particular, we are interested in a model wi
three reservoirs: 1 and 2 are the leads~at different potentials!
and 3 an additional thermal bath~with m350) to which the
level is coupled. Since it is a Gaussian model, we can sim
solve the Dyson equation,

G215G0
212S. ~B2!

We use the (d,c1 ,c2 ,c3) basis. The inverse bare Green
function is given by

G0
21~v!5S v2ed 0 0 0

0 G1
21 0 0

0 0 G2
21 0

0 0 0 G3
21

D , ~B3!

where Ga is the bare Green’s function of the reservoira,
given in the large bandwidth limit by~in the LO basis!

Ga
21~v!5

1

pr0
S i 22iheq~v2ma!

0 2 i D , ~B4!

wherer0 is the density of states, which we take to be t
same for each reservoir. The self-energy is given by

.

FIG. 5. Diagrams ofSxx andSxy .

FIG. 6. Computation of the Keldysh structure of the gene
diagram.
5-10
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S~v!5S 0 g1 g2 g3

g1 0 0 0

g2 0 0 0

g3 0 0 0

D . ~B5!

Solving Eq.~B2!, we find the occupation of the dot in th
steady state

n~ed![^d†d&. ~B6!

In the limit whereg1 ,g2 ,g3 go to zero in fixed ratios, we
obtain

n~ed!5
g1

2nF~ed2m1!1g2
2nF~ed2m2!1g3

2nF~ed!

g1
21g2

21g3
2

,

~B7!

wherenF is the Fermi function. The properties of this resu
are similar to those of Eq.~4!: the occupation of the dot, in
the limit of zero couplings, depends on the ratios of the
couplings and is not in general given by the Fermi functio
Moreover, if g3@g1 ,g2, we recover the equilibrium resu
since the physics is dominated by the thermal bath 3. If,
the other hand, we takeg3!g1 ,g2, we find a nonequilibrium
result since the occupation at order 0 in perturbation the
in the g’s is determined by the leads 1 and 2.

APPENDIX C: ORIENTABILITY
OF MAJORANA FERMION LINES

In this appendix, we demonstrate that we can treat
Majorana lines as oriented in the diagrams. To show this,
simplest to take the lines to represent the bare zero-field
jorana functions, and to treat both the magnetic field and
Kondo interaction as vertices. We have three species of
jorana fermion,$hx,hy,hz%; formally, we may represent eac
of these as the sum of the creation and annihilation opera
of a Dirac fermion,

ha5
1

A2
~ f a1 f a

†!; ~C1!

the dual operatorf a2 f a
† decouples from the problem an

may be ignored. In the absence of a magnetic field and
teractions, all Majorana Green’s functions are diagonal,
the only Green’s functions that occur are

Ga52 i Š^ha~ t !ha~0!&‹K

52
i

2
Š^ f a~ t ! f a

†~0!1 f a
†~ t ! f a~0!&‹K

5S 2
i

2
Š^ f a~ t ! f a

†~0!&‹KD1p-h, ~C2!

where the notation ‘‘p-h’’ stands for ‘‘particle-hole,’’ i.e.,
f↔ f †. We thus see that the bare Majorana Green’s func
may be written simply as the sum of two bare Dirac fermi
Green’s functions of opposite orientations.
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It is easy to see that the vertex factors at the magn
field and Kondo vertices do not depend on whether the D
fermion lines are incoming or outgoing. In the case of t
magnetic field, for example, the interaction term is

Hmag52BSz5 iBhxhy5
iB

2
~ f x1 f x

†!~ f y1 f y
†!, ~C3!

so we see that the vertex factor is the same irrespective o
orientation of the twof lines; a parallel argument may b
given for the Kondo interaction vertex. Hence, each diagr
consists of a sum of 2N diagrams that differ only in the
orientations of theirN Dirac fermion lines.

But these orientational differences do not alter the va
of the diagram, since the bare Green’s function of thef fer-
mion is particle-hole symmetric, and hence Eq.~C2! corre-
sponds to the Green’s function for a single orientation of
Dirac fermion line, with the prefactor 1/2 removed. Hen
we may represent the Majorana Green’s functions in all d
grams using oriented lines.

APPENDIX D: ERRATUM TO REF. 15

In a previous paper,15 a formula @Eq. ~2!# was proposed
for the~second order! perturbative expansion of the magnet
susceptibility in the out-of-equilibrium steady state whi
was of the form

x~T,V!5
1

4T
1O~J!. ~D1!

In this appendix, we briefly rediscuss its derivation and e
plain why it is incorrect. The method used was straightf
ward Keldysh perturbation theory to second order withs fi-
nite in which the bare Keldysh function of the Majorana sp
was taken to be thermal. The 1/s divergences were regulate
using a ‘‘point splitting’’ procedure: since they occur due
the coincidence of two poles in the integrals, one splits th
poles on the real axis to a distanced and sendsd to 0 at the
end of the computation, term by term. The justification giv
in footnote 20 of Ref. 15 is, however, incorrect: endowi
the Majorana fermions on the dot with a fictitious dispersi
does not lead to this prescription, since divergences reap
when the bandwidth is sent to zero. The ‘‘point splitting
regularization prescription can, however, be described ph
cally as follows: let the applied magnetic fieldsBs and Bc
oscillate slowly at a frequencyv0; compute the total magne
tization at frequencyv0 up to second order inJ; then take
the limit v0→0 in the coefficient of each power ofJ.

However, this regulation procedure is based on an in
change of the order of the limitsv0→0 andJ→0. We want
to calculate the static magnetic response, and consequ
wish to takev0→0 beforeJ→0; but in fact the technique
used in Ref. 15 does the opposite: it expands inJ (J→0)
beforetaking thev0→0 limit. It is simple to show that these
limits do not commute; this can be seen explicitly from t
form of the second term of Eq.~30!,
5-11
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ReE dv
g~v!

~v1v01 ig!~v2v02 ig!
, ~D2!

where g is some function andg;S9(B) ~the limit s→0
having already been taken!. If we take the limitsJ→0 ~i.e.,
g→0) and thenv0→0 we obtain the result of the poin
splitting prescription of15

E dvS g8~v!

v D , ~D3!

whereas if we take them in the opposite order,v0→0 and
thenJ→0, we recover Eq.~4!.

APPENDIX E: THE STEADY-STATE DYSON EQUATION

In this appendix, we present a formal derivation of t
steady-state Dyson equation~33!. First of all, let us empha-
sise that our calculation is carried outin the steady-state
regime, that is, in the long-time limit after the switching o
of the interactions. We assume that, in this limit, the syst
evolves to a time-independent steady state under the
evolution described by its Hamiltonian~as required by the
Keldysh method: see Sec. III B!. Strictly speaking, this is no
possible, since the Hamiltonian~1! conserves the total mag
netization of the system and that conservation law preve
the magnetization of the system from relaxing. However, t
conservation law is not physical~we have omitted, for ex-
ample, spin-orbit terms in the leads!; therefore, to allow the
system to relax to its steady state, we introduce a coupling
that breaks the conservation laws. As a specific example,
could consider an anisotropic (JxÞJyÞJz) Kondo model. As
this extra coupling is relaxed to zero, the transient time ta
to reach the steady state diverges but we make the ass
tion that the values of physical quantities in the steady s
are smooth functions ofg. Therefore, once we have taken th
t→` limit, we can setg50 in the equation which deter
mines the steady state. The details of the derivation ar
follows.

~1! Using the perturbative expansion, we establish
Dyson equation at finite times,

E du$Gc0
21~ t,u!2Sskel@Gc#~ t,u!%* Gc~u,t8!

5d~ t2t8! ^ 1, ~E1!

where Sskel is a functional ofGc defined by the skeleton
expansion of the self-energy. The product should be un
stood as a matrix product in the LO basis.Gc is a function of
two times and ofJ,g. To obtain this equation, we write th
Dyson equation in the finite time diagrammatic expans
outlined in Sec. III B 4,22 and use the definition of the ske
eton diagrams.26,27 In Eq. ~E1!, the timest,t8 andu run from
2` to `, and the couplingsJ are time dependent:Ja(t)
5Jau(t), i.e., we switch on the interaction suddenly att
50.
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~2! The assumption that the system relaxes to a none
librium time translation invariant steady state~the couplingg
to the relaxation bath is finite! is transcribed mathematicall
as the existence of the limit

lim
t,t8→`
t2t85t

G~ t,t8!5G~t! ~E2!

~we shall denote it with the same function name!. This as-
sumption is not trivial. In particular, in Ref. 28 the existen
of steady oscillating states has been suggested using a l
N slave-boson treatment. We exclude them here on phys
grounds, since we do not expect such states to appear in
regime where the perturbation theory is applicable anyw
~i.e., at high temperatures or at high magnetic fields in
Kondo problem!. We can thus take the long time limit, an
Fourier transform the Green’s functions and self-energy
Eq. ~E1! to obtain

Gc~J,s,g,v!5$Gc0
21~v!2Sskel@Gc#~J,s,g,v!%21.

~E3!

~3! Taking the g→0 limit as discussed above, we finall
obtain the Dyson equation~33!,

Gc~J,s,v!5$Gc0
21~v!2Sskel@Gc#~J,s,v!%21. ~E4!

APPENDIX F: COMPUTATION
OF THE SELF-ENERGY DIAGRAM

In this appendix, we present the computation ofhB(B) at
order 0. The computation is in three steps. First, we comp
the self-energy diagrams at second order as a function
‘‘generic’’ diagram.~This simplifies the problem by separa
ing the Majorana and spin indices from the Keldysh stru
ture.! Second, we compute this generic diagram. Finally,
solve the resulting implicit equation forhB(B). Throughout
this appendix, we streamline our notation by omitting t
temperatureT; in the final formulas, therefore,B and V
should be replaced byB/T andV/T, respectively.

The first part of the computation reduces the spin and l
indices, and thus expresses the self-energy diagrams as
tions of the ‘‘generic’’ diagram presented in Fig. 4, where w
allow any potentialsV1 and V2 for the electrons and any
field B for the internal Majorana line. The main formula is

SB~v!52 (
a,bP$R,L%

s51,2

uJabu2

4
@ f ~v,Bs ,Va ,s,Vb ,s!

1 f ~v,0,Va,1,Vb ,21!#. ~F1!

In this expression, the Keldysh structure is implicit and
convention, the Majorana line is anhz line whenBs50 and
an f line otherwise. To establish Eq.~F1!, we compute the
spin and lead indices ofSxx andSxy , which are given by the
diagrams of Fig. 5~with the Feynman rules given in Sec
III B !, and we use Eq.~28!.
5-12
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We now compute the Keldysh structure of the gene
diagramf ~Fig. 6!. We have

f 12~v!5 ipE dxdyr~x1s1Bc2V1!

3r~y1s2Bc2V2!nF~x2V1!ňF~y2V2!

3@11h̃~B!#d~v1y2x2B!,

f 21~v!52 ipE dxdyr~x1s1Bc2V1!

3r~y1s2Bc2V2!ňF~x2V1!nF~y2V2!

3@12h̃~B!#d~v1y2x2B!, ~F2!

whereňF(x)[nF(2x), and the functionh̃(v) is defined by

h̃~v!5H hB~v!, vÞ0,

hz~0!, v50.
~F3!

We then use the relations22

f K52~ f 121 f 21!, ~F4!

f A2 f R52~ f 122 f 21!. ~F5!

We can perform the integrals in the large bandwidth lim
D→` using

E dx nF~x1A!ňF~x!5
A

eA21
,

and replacing the densitiesr by their finite valuer0 ~we can
take the limitD→` under the integral!. Using the definition
V5V22V1, we find

f K

2ip
5

r0
2

2
~v2B1V!S 12

h̃~B!

tanh
v2B1V

2
D , ~F6!

~ f A2 f R!

2ip
52

r0
2

2
~v2B1V!S 1

tanh
v2B1V

2

2h̃~B!D .

~F7!

Using Eq.~F1!, and introducing
08531
c

t

w~x![
x

tanh
x

2

, ~F8!

we now have

sB~v!5
ur0JRLu2

4
@2hB~B!~v2B1V!2hz~0!~v1V!

1w~v2B1V!1w~v1V!1~V→2V!#

1 (
a5R,L

ur0Jau2

4
@2hB~B!~v2B!

2hz~0!~v!1w~v2B!1w~v!#, ~F9!

sB
K~v!52

ur0JRLu2

4 F ~v2B1V!S 12
hB~B!

tanh
v2B1V

2
D

1~v1V!S 12
hz~0!

tanh
v1V

2
D 1~V→2V!G

2 (
a5R,L

ur0Jau2

4 F ~v2B!S 12
hB~B!

tanh
v2B

2
D

1vS 12
hz~0!

tanh
v

2
D G . ~F10!

Using the definition of the Majorana Green’s functio
Gab

K (t),

Gab
K ~ t !52 i ^@ha~ t !,hb~0!#&, ~F11!

we haveGab
K (2t)52Gba

K (t). In the frequency representa
tion, this readsGab

K (v)52Gba
K (2v) and hence we infer

that Gzz
K (v) is odd in frequency. Consequently, given th

form Gzz
K 5hz(v)d(v) it is clear that

hz~0!50.

Using this result together with Eq.~39! and denoting
x52hB(B), we have
x5
uJRLu2@2xw~V!12B#1~JR

21JL
2!~2x1B!

uJRLu2@2w~V!1w~B1V!1w~B2V!#1~JR
21JL

2!@21w~B!#
.

Solving for x and substituting into Eq.~43! gives Eq.~4! of the text.
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