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This paper is concerned with the out-of-equilibrium two-lead Kondo model, considered as a model of a
qguantum dot in the Kondo regime. We revisit the perturbative expansion of the dot’s magnetization, and
conclude that, even at order 0 in the Kondo interactions, the magnetization is not given by the usual equilib-
rium result. We use the Schwinger-Keldysh method to derive a Dyson equation describing the steady state
induced by the voltage between the two leads, and thus present the correct procedure for calculating pertur-
bative expansions of steady-state properties of the system.
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[. INTRODUCTION close to equilibrium. The out-of-equilibrium Anderson and
Kondo models have been studied by various methods in the
In recent years, much experimental and theoretical workast decade. Much of this wotk!! has concentrated on the
has been devoted to exploring the properties of so-calledoncrossing approximation approach, which adopts a slave-
“quantum dots.™ These are mesoscopic devices in which aboson description of the problem, and then renders it trac-
“dot” containing a small number of electrons is isolated table by neglecting certain vertex corrections. This yields a
from two macroscopic leadslenoted “left” and “right”) by picture in which the Kondo resonance in the density of states
potential barriers, through which tunneling processes takés both split and broadened as the voltagebetween the
place. Experimentally, these systems are small devices fabrieads is increased. Recent wifthas explored a new ap-
cated using a two-dimensional electron gasor carbon proach, where one attempts to use the Bethe ansatz results
nanotube$. The number of electrons on the dd, is con-  for the Anderson model to construct a Landauer-type picture
trolled by a gate voltag¥. From the experimental point of of transport through the dot. This approach also involves
view, one is primarily interested in the current flowing approximation, when one comes to construct the “in” and
through the dot as a function of, and of the potential “out” scattering states from the dressed excitations of the
differenceV between the two leads. When tunneling is weakmodel. Another thredd*has involved studying the Ander-
enough, the Coulomb blockade phenomenon appetive:  son model via perturbation theory in the on-site Coulomb
conductance through the dot is essentially zero except in theepulsionU. While these works provide approximate infor-
vicinity of certain special values d¥,, where the energy mation on the behavior of the current-voltage characteristic,
difference between the ground states of the dot Withnd  they shed little light on the nature of the many-body state of
N+ 1 electrons vanishes. At these points, conductance pealtise system whev>T .
are observed. In particular, a basic question recently debatéd is
A simple model for such a system is the Anderson modelwhether the Kondo problem has a strong coupling regime at
where the localized level represents the dot and the hoppinigw temperature and high voltage. In discussing this point, a
term describes its hybridization with the leads. In this paperprevious papér used a second-order perturbative expression
we shall restrict ourselves to the regime where the occupder the magnetic susceptibility in the out-of-equilibrium
tion of the dot is not fluctuating, and where va@pplication  steady state induced By. This putative result was however
of Coulomb blockade ideas would predict a strongly sup-4ncorrect, even at order O id, the strength of the Kondo
pressed conductance. However, wherns odd there is ex- couplings; in this paper, we correct this result at order 0,
actly one unpaired spin, which is coupled to the leads via aliscuss the related physics and present a systematic method
Kondo interaction. In this case, in the linear response regimepr calculating higher-order corrections d Our main con-
spin physics opens up a new transmission channel via thelusion is that, even at order 0 i) the Keldysh function of
Kondo effect. Although the occupancy of the dot remainsthe spin deviates from its equilibrium value and therefore the
fixed, spin-flip interactions permit the formation of strong steady-state magnetization of the dot is not givenhby,
dot-lead hybridization for temperatur@s< Ty, whereT is = 3tanh@/2T). Rather, it must be computed by solving a
the Kondo temperature. As the temperature approaches zeoansport equation. We emphasize that this issue is not di-
this leads to unitary limit conductanc& & G,=2e?/h) via  rectly related to the so called “decoherence tifeiut is a
a sharp resonance at the Fermi surface—the Abrikosov-Sullasic point about perturbation theory to be addressed before
resonance. This effect was predicted in the context of quardiscussing out-of-equilibrium renormalization group equa-
tum dots fourteen years agf,and was recently observed in tions and the existence of a strong coupling regime at large
a series of experiments® voltage. In particular, it has ramifications for other physical
By contrast, in the large-voltage regime, full nonequilib- quantities, e.g., the current and the current-current correla-
rium calculations are required, and much less is known thation function in a magnetic fielsee Sec. Il C 2
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The paper is organized as follows. In Sec. Il, we presentead is spin-flip scattered into tlgherlead. If the mode(1)
the model, our main resultthe magnetization at order 0 is derived from the Anderson model, one finds tkad,
given by Eq.(4)], and the associated physical discussion. In=|Jg|2. In this paper, however, we relax this relation be-
Sec. lll, we present a detailed pedagogical derivation of Egtween the coupling constants and treat them as independent
(4) using the Keldysh method. Finally, in Appendix D, we parameters. Finally, the last terms represent the coupling to
present more details about the computation presented in Re¢he magnetic field. We allow two different magnetic fields,

15, and explain why it was incorrect. B, for the spin and,. for the lead electrons; this permits the
calculation of the total and local spin susceptibilities within
Il. RESULTS AND DISCUSSION the same computation.

In this paper, we shall be interested in the values taken by

Our starting point is the Hamiltonian of the two-lead the followi tities in th ilibri teady stat
Kondo model. For a discussion of the modeling of the quan- € following guantities in the nonequiibrium steady state

tum dot, and for a derivation of this model from the Ander- mduced_ by_ the voltag®: the dot magnetizatiom dot» th_e
son model via an out-of-equilibrium Schrieffer-Wolff trans- magnetization of the leadMeaqs, thE.“ .t(_)FaI magnetlzanon
formation, we refer the reader to the literature, in particular™tor» @nd the total and local susceptibilities. These are given

tot»
Ref. 16 and references therein. The Hamiltonian is by

Mot Bs,Bc) =(S,), (29

H= ; (8k+ﬂa)clkacaka+Hrefl+Htrans
M eagd Bs,Bc) = Cl e oCako | » 2b
_BSSZ_BC; O-Clka-cakaa Iead& S C) <z%’ T ake ako’> ( )

P . Mol B) =M ot B,B) +Mieaqd B,B) = Mpayii, (20
Het=|Jr 2 (ChkeTooCriror)S| +(RoL),
k,k’ 0,0’
IM(B)
Xtot™ —(;B , (2d)
- . B=0
Htrans:(JRL E (Caka'o-oa"CLk’o’)S +(R‘_)I—)u
k.k", o0’
(N M gofBs,B.=0) )
wherec!, = creates an electron in leade {L,R} with mo- Xioc™ 9B ' (2¢)

mentumk and spinc, and J,, Jg and J g=(Jg)* are Bs=0
Kondo coupling constants between the electrons and the spimhere angular-brackets - -) denote an expectation value

of the dotS. The first term irH describes the electrons in the taken in the steadfi.e., long-time state of the systenM p,;
leads, withe, being the bare energy of an electron of mo- is simply the_ Pauli paramagnetic contripution from the lead
mentumk at zero voltagéthe same for each lepdndu, is  €lectrons which would be present even in the absence of the
the potential in the lead. Each lead consists of a free elec- impurity, and which we therefore exclude froM . We

tron gas with a density of statege) of bandwidthD: ulti- ~ consider the perturbative expansions of these steady state
mately, we will be interested in the result in the large band-quantities; more precisely, we define

width (D—w) limit, but the computations are first

performed for finiteD. We will make the physical assump- Jr=0rd, 3,=0.3, Jn=0rJ 3)

tion that the leads are in thermal equilibrium at a temperature

T. The voltage is applied by taking the chemical potentials ofand we letJ go to zero while keeping the coefficient,

the two leads to be differenfy, — ugr=V. H,q describes 6., and 6, fixed. In the following, the expression “order
regular Kondo processes, where an electron from a given” refers to the ordem of this expansion inl.

lead is spin-flip scattered back into thkemelead; H 40 de- Our main result is the order O term of the perturbative
scribes “spin-flip cotunneling,” where an electron from one expansion of the magnetization

(B)(l 0%+ 67
ol = +
T 2604,

B-V\] 63+67 (B
T g T

+0(J), 4

1 B
Miot(B) =Mgof B,Bc) +O(J) = ztan*(ﬁ) 1
_[¢

2

B+V
T

T
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where ¢ is defined by

X

p(X)=—. ®)
tan)‘( =

2

[At this order, M y,(B,B.) does not depend oB;.] As a
result, the magnetic susceptibility at order O is

03+ 67
2603,
03+ 07
260%,

1 1+
xﬂm=ﬁl<ﬂ +0(d),  ®

T+

E‘P
and in particular fofV|—ce,
O3+ 0F

205,

2lv| -

x(T,V)~ @)
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Moreover, as expected on physical grounds, the nonequi-
librium result is much less universal than the equilibrium
one. In equilibrium, the magnetization of a spin weakly
coupled to a bath depends neither on the properties of the
bath except the temperatuiienor on the form of the cou-
plings between the spin and the bath. Neither of these state-
ments holds true for the nonequilibrium Kondo modél;,

(at order 0 depends not only off but also on the voltag¥

and on a ratio involving the parametefig, 6, , and 0y, .
ThusM g is perturbative inJ, but not in the three variables
Jr,JL . JrL, and in particular it is not analytic i8g,J, ,Jg_
around (0,0,0). One can find such a dependence on the ratio
of couplings even in a simple free mod@ single level
coupled to two leads as illustrated in Appendix B. Further-
more, it should be remembered that we compuikg; with

free leads: introducing interactions in the leads would change
the function¢ (the important quantity being the electron-
electron bubble in the leagds-or example, we expect a dif-
ferent result to hold for a spin coupled to Luttinger liquids,
even at order 0.

It should be noted that the resul) gives a nontrivial
expression for the magnetization even at zero temperature.

A striking feature of Eq(4) is that the magnetization at Since ¢(x)—|x| as|x|— <, we find that

order 0 inJ is not given by the equilibrium expressidh,,
1

=3tanh®/2T). This may seem surprising: since the cou-

Mit(B,V) |10

plings to the leads are relaxed to zero, why should we not

find Mg,

netization of a spin weakly coupled, via the Hamilton{an

to two leads with different chemical potentials. It is simply
an out-of-equilibrium extension of the Curie law. In particu-
lar, we emphasize that the finite susceptibilityfat0 cannot

be interpreted as a renormalizati¢or a screeningof the
spin due to the voltage.

the magnetization of a free spin? Physically, the

answer is thaM ¢ is not the “magnetization of a free spin,” B
but rather the magnetization of a spin weakly coupled to an =5
equilibrium bath. On the other hand, E(f) gives the mag-

03+ 67
205,
e +0(J).
3 (|B+V[+][B=V|)+ e B
RL
(8

We then have two casdsve can takeB,V>0): for B>V
>0, we obtain the equilibrium resuM (B,V)=sgn B)/2
+0(J), but for 0<B<V, the magnetization is a still a func-

At long times, the state of the spin is completely deter- ion of B/V
mined by the properties of these leads, and hence so is i%% '
distribution function, which describes the population of its

two states as a function of temperature, voltage, and mag- n Ot 6;

netic field. Since the whole system is not in equilibrium, this B 202,

steady state is not described by the Gibbs distribution; in Mt0t|T:0~§ ————|» 9)
particular, the fluctuation-dissipation theorefDT) need v+ Or+ 9L|B|

not hold. Hence the magnetization need not(é&ed is not géL

Meqat order O inJ. Rather it should be computed by solving
a transport equation in the steady-state regime, i.e., a quair agreement with Eq(7) in the limit |V|>|B|. Physically,
tum Boltzmann equatior{At dominant order this procedure there are two sources of energy available to flip the spin: the
is equivalent to using a semi-classical master equation; satermal fluctuations of both batlisepresented b¥) and the
Appendix A) fact that an electron can go fromto R and give to the spin
The crucial point is thallg,J, ,Jg_ are relaxed to zero, an energy of ordeW. If we decreaseB from high values
assuming that they are still bigger than the coupling of the(B>T,V), the spin is locked untiB reaches the largest of
spin to any other thermal bathf we were to take into ac- these energy scales. Thus the magnetization at zero tempera-
count such a couplingdenoted byl,) then the result would ture is expected to saturate only f&8=>V. Similarly, the
cross over toMqq when Jg,J, ,Jg <Jo (all the couplings  susceptibility is in general expected to behaveyasl/E,
going to zero while maintaining fixed ratijpdn fact, Eq.(4)  whereE is the largest energy available to flip the spin. The
implies that the equilibrium value is only an upper bound:fact that our result is still nontrivial at zero temperature im-
0=M(J=0)/Mg4<1, which follows from the convexity plies that it could be seen in numerical computations, such as
of ¢. This bound is saturated only in equilibrium, i.e., for the density matrix renormalization gro@PMRG) approach
0. —0 or V—0. of Cazalilla and Marstof/
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lll. DERIVATION OF Eq. (4) shown below, the solution is nonthermal even at order @ in

The purpose of this section is to present the derivation of\nother procedure for solving the problem ofs ldiver-
Eq. (4) and more generally the procedure for obtaining thedences was proposed in Ref. 18 in the context ofuhex
perturbative expansion of physical quantities in the stead@ut-of-equilibrium Anderson model: its method was to
state. It is organized as follows: in Sec. Il A, we first give an Choosethe zeroth-order spin Keldysh functiofsee Sec.
overview of the derivation; full details are given in the fol- !l B 3) in order precisely to cancel the divergences at order
lowing sectiongSecs. Il B and 11l G and in the appendixes, J°- This is completely equivalent to our approach, as ex-

including a presentation of the Keldysh method. plained in Sec. Ill C 2. _ _ . _
Finally, we note that one may give a simple semiclassical

derivation of the out-of-equilibrium resuld) based on a
master equation. This derivation is due to Glazman and
When doing perturbation theory in the steady state, ther@aminski!® and is presented in Appendix A. The success of

are two important small couplingsl, the strength of the such a semiclassical approaet this lowest orderis related
Kondo couplings, and, the small regulator that appears in to the fact that one can compute the equilibrium magnetiza-
Green's functions such as the “spin” retarded functi@e-  tion of a free quantum spin using a classical Ising model. In
fined in Sec. Il B 3, fact, at this order, the semiclassical master equation is strictly
equivalent to the Keldysh component of the steady-state
Dyson equation, so the two apparently disparate derivations
yield the same result.

A. Overview

R3(w)= (10

w—B+is’
The scales should be thought of as being due to the coupling
to an auxiliary thermal bath, which in the physical system
would be the substrate. If the impurity is coupled to such a Let us now turn to the technical details. In the following,
bath whose density of statesys by a couplingg, one finds  for simplicity, we will write some equations for a generic
s~g°p, (in the large bandwidth limjt In the physical quan- fermionic field, which will be specialized afterwards to the
tum dot systemJ>s, meaning that the correct order of lim- fields representing the electrons and the spin.
its to take iss— 0 followed byJ—0, as pointed out in Sec.
I. 1. Generalities

However, “straightforward” perturbation theory ihtakes The basic idea of the nonequilibrium Keldysh

the limit in the opposite order: one first expandsliwhile  method®22 consists in taking the system at an initial time
keepings finite, and only then takes—0 term by term in  t=0 in an initial state described by a density matsixand
the perturbation series. In equilibrium, these two limits Com'|etting the system re'aX, using the Hamiltonian evolution
mute, but out of equilibrium they do not. This is explicitly given byH, to a long-time regime. In order to ensure that the
shown in Sec. IIC1; the out-of-equilibrium Keldysh system relaxes, it may be necessary to add some additional
Green’s function is not analytic around,{)=(0,0). This  coupling terms to the Hamiltonian, in particular to break
nonanalytic behavior is quite generic in situations where aonservation laws: see the discussion in Appendix E. De-
impurity is coupled to several leads, and may be seen even ifending on the system, the long-time regime can be an equi-
a simple free modelsee Appendix B The signature of that |ibrium state, a nonequilibrium steady state, a non-time-
noncommutativity is that “straightforward” perturbation translation-invariant steady state, or even an aging regime
theory fails: its termgstarting atO(J?)] exhibit divergences  glassy systemsIn the quantum dot problem, we assume that
of a 16 form. These are similar to the infrared divergences inthe system reaches at finite voltaye a nonequilibrium
equilibrium perturbation theory that signal an incorrectsteady state, in which we want to compute physical quanti-
choice of reference state. As shown below, divergences at tjes.
orderJ? signal an incorrect choice for the Keldysh Green’s A “Keldysh” average of any quantityA is defined by
function at order 0, or equivalently of the distribution func-
tion which describes the nonthermal population of the two (A1) e=(eMAe M) =Tr(poeM'Ae™ ™Y, (11
levels of the spin. Consequently, contrary to the claims of
Ref. 15 there is no possibility of regulating thess diver-  where(---) is the average taken using titial density
gences order by order ih We discuss the putative regulation matrix of the system. The steady-state average is given by
procedure of Ref. 15 in Appendix D, and explain why it is
incorrect. (A>=t|m<A(t)>zc-

The solution is to begin with the Dyson equation in the
steady state, considered as a functional equation for the fullsing the usual representation of the evolution operator
Green'’s functionG, using the skeleton self-energy diagramse "' as aT-ordered exponential in the interaction picture
(see Appendix E for further detajlsAfter taking thes—0 (and the antiF-ordered one foe''!), one can obtain an ex-
limit in this equation, a perturbative expansion ®may be  pansion in the coupling constahtFollowing the usual con-
inserted into it, and a solution obtained order by orded.in ventions, it is convenient to keep track of the two exponen-
Solving the Keldysh component of this Dyson equation istials using a closed time contour, running from OHtee and
equivalent to solving the quantum Boltzmann equation; advack to O(Ref. 21): we denote by+ the upper contouffrom

B. Technical preliminaries: the Keldysh method
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0 to ), which arises from expanding ", and by — the

PHYSICAL REVIEW B56, 085315 (2002

where the fieldy,, is in the interaction picture. From the

lower contour. In accordance with this notation, we defineexpansions of the evolution operators, we obtain the dia-

the four Green’s functions,
S )= =Ty,

G, ()= —i(¥(O ¥ (),

G, (tt)=—i(TyO ¥ (),

G, (tLt)=i(y ()t 12

Here T is the time-ordering operatof] the anti-time-
ordering operator, ang is anyfermionicfield. The two in-
dices of the matrixG will be called “indices in Keldysh
space.” In the following, Eqs(12) will be summarized with
the notation

G, (tt)=—i{(g(t) (1)) (13

and G will always denote a X2 Keldysh matrix.

The Green'’s function&l2) are not independent but can be
expressed as functions of the retarded, advanced, a

Keldysh Green’s functions defined, respectively’by
Ry(t,t)=—iot—t" ){s(t), ¢ ()},
Ayt =100t =)y, ¢ (1),

Ky(tt)=—i{[¢(t), " (1)), (14)
as is shown from the transformatfén
e G,” G, | _ (R¢ Kl,,)
"le," G,” “lo A
-~ 1/1 1 1 1
=zl —1)%l 1 o) (15

We will denote the first set of Green’s functio(i®) “the =
basis,” and the secon(l4) the “Larkin-Ovchinnikov (LO)
basis.”

There are further relations between these Green’s func-

tions. In generalR,(t,t")=[A,(t’,t)]*. Moreover, in equi-
librium FDT reads:

K./,((x))zheq(w)[Al/,(w)_R,//(a))], heq(a))z—tank(%),
(16)

thus the retarded Green'’s function is the only remaining in-

grammatic expansion, provided th@at- - ), satisfies Wick’s
theorem. For the problem at hand, we take as the initial con-
dition the density matrix of the model witdg=J, =Jg_

=0 and for the spin a finits (arising from the coupling of
the spin to a thermal bath; see Sec. I)l &oing to the long
time limit, every function becomes a function of the differ-
ence of the times, and transforming to Fourier space we ob-
tain standard Feynman rules.

2. Lead electrons

Let us begin with the lead electrons. We care here only
about the local Green’s functions, so we will drop the spatial
indices. We denote byQd,) ., g, (t,t") the Green’s function
describing the creation in leggl of an electron with spirr’
at timet’, and a corresponding annihilation in leadof an
electron with spino at timet,

(Go)aopor (1) = =i{(Cap(D)CL (1)) (A7)

(Here the indicesy,Be{L,R}, while 0,6’ =+,—, and the
rigcal electron operators are defined by,*XC.,.) The
Green’s functiorG, is thusa priori a 4X4 matrix (in lead-
spin spacg whose entries are themselvex 2 Keldysh ma-
trices. In the following, a bold notation with subscriptl-
ways designates such ax4t matrix. The bare Green’s
function G is, however, diagonal. The batdiagona) den-
sity of states is

(pCO)a’a',,Bo" = P(w+ O-BC_ Iu'a) 5aﬁ600"

(the energy levels are the same in both leads, but shifted by
the Zeeman energy and the voltagé/e assume that the
baths, being much bigger than the impurity, are permanently
in thermal equilibrium so that the bare electrons’ functions
read

Peol €)
R = | de———7—, 18
Keol )= 2i mheo @) peo( @), (18b
(hCO)aa',Bo"Eheq(w_lu‘a)aaﬁéo'o" ' (180)

where the first two equations are matricial, ang is the
potential of the leadr=R,L. The voltage difference between
the leads is given by = x| — ug.

3. Spin

dependent Green’s function, and so contains all the informa- Since the spin operator is not appropriate for diagram-
tion about the state of the system. Out of equilibrium, how-matic computationsit does not satisfy Wick's theoremwe

ever, K, (o) should be

determined.

and Ry(w)

independently represent the spin 1/2 by three Majorana fermiojfsa

e{X,y,z} which satisfy Wick's theorem and the relations

In order to write the diagrammatic expansion, we also

define the “bare” counterparts of the Green’s functions in __i_ abc_b_c
Egs.(12) and(14) by S'= €M, (193
Go(t,t) = =it O (1)) o, (7®)'=7?3, (19b)
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a _by_ cab o u
{7] 7 }_661 ' (19C) (Gco)au,au(w) = ” Ggmg (LU) = _71_2_:_7@

Using Eq.(19a, one can easily show th& satisfies the
correct commutation relations and th&=3/4. Note that NG Ay
this last constraint isautomatically satisfied, unlike in the 4 Y
case of a Dirac fermion representation, where a Lagrange  Jsa 4 aniys _
multiplier would have been required to fix the magnitude of ~ ~9 %w®  F = K’ N
the spin: the Majorana representation therefore makes th « X
computation simpler. In this paper, we consider only spin ,/"; "\1\\
1/2, but our computations could be extended to higher spin,
provided that one used another representatioréfor FIG. 1. Feynman rules: we represent the Majorana fermions

Let us now discuss the propagat@s, (a,be{x,y,z}) with dashed lines and the electrons with solid lines3 are lead

of the 7, in the presence of a magnetic figdd along thez indices;u,v are spin indices for the electrons;is a Keldysh index
directior; The general form is k=*1; 5;,ae{x,y,z} are flavor indices for the Majorana fer-

mion; ando are the Pauli matrices. The vertex is given in the

Gxx ny 0 basis.
G={ Gyx Gy 0 [,
0 0 G Rg(w): wtis’ (253
Ga(t,t')= =171 7°(t" ), (20 s
0 _ .
where the elements arex2 Keldysh matrices. Indee@,, Kz(w)=2ihef o) w2ts?’ (25b)
=G,,=0 by symmetry. To prove this, note that the Hamil-
tonian is invariant under ar rotation around thez axis, 1
which is implemented by4*, 7Y, 79— (— 7*,— ¥, 7 (and R3(w)= B (250
the corresponding rotation for tleeelectrons. Furthermore, @ IS
making a /2 rotation around the axis, implemented by
X Y .2 y _ X 7 H :
(7%, 9", 9%)—(n,— 7", »%), we obtain the relations Ko(w)=2ihed(w) , (250
° (0—B)?+8?
Gyy=—Gyx, Gx=Gyy. (21

S . ) ) wheresis a small regulator which, as discussed in Sec. Il A,
The Hamiltonian is also invariant undermarotation around  ¢p4.,1d be thought of as the width due to coupling to an

the x axis [(7*,7Y,79)—(— 7", %Y,79)] together with a auxiliary thermal bath.

change of sign of the magnetic fielés andB., and hence

G,y andG,, are respectively odd and even in the magnetic 4. Vertex factors and Dyson equations
field. In particular, forBs=B.=0, G,,=0. The foregoing

arguments apply to the full propagator and to the free propa. 11€ Vertex factors can be extracted simply from the
gator G® (computed with only the magnetic fielL). Hamiltonian, and the Feynman rules are summarized in Fig.

A different basis is also useful: defining the Dirac fermion 1 (in the = basis. Note that we have oriented the Majorana

f and its Green’s functioGg by fermion lines, despite the operator property that)= 7; a

proof that the lines are orientable is given in Appendix C.
=i We now derive the expression for the Dyson equation
(22 describing then fields. In general, a Dyson equation reads

5

- i

Gel(t) AUCIACRA @3 where the inversion has to be taken in the tensor product of
we have the relations the x,y,z space and the Keldysh spatkus with 6x6 ma-
trices. The free propagator is given by EQR5a. In the
X,Y,z basis, the self energy can be written as

f=

G Hw)=Go ")~ X(w), (26)

1
Gu@)=Cyy(w)=5[Cg(w)+G_p(w)], (243
Sg(w)  iZ4(w) O

Gyl @)=~ Gyl @)= 5[Go(w)~G_glw)]. (24) (w)= ‘iEC;‘(“’) Edé‘”) z?>
A

In the (f, »*) basis, the propagator is diagonal, so it is more

convenient, for example to write the Dyson equation, SR w) I(w)
whereas the original basis){, %, %) is more convenient for w @)= 0 SA(w)
the diagrammatics. The bare propagators in they{) basis a
are given by Using the definitiong24a, we find

, me{adz. (27
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1 3K () +2ishe w) *
0FB-3Rg(w)+is |woFB-3IRg(w)+is|?
G.pg= )
1 Y= e [ FETY ST
0
wF B—Egs(w)—is
S.p(w)=2g(0) £ (w). (28) 5

C. Perturbation expansion in the steady state FIG. 2. Diagram of the skeleton self-energy at second order.

After these preliminaries, let us now come back to the
perturbative expansion in the steady state and develop on the J—0 and thers— 0. We first take25=0 in the denomi-
points introduced in Sec. Ill A. In Sec. Ill C 1 we show that nator. We find that this second term in E§0) gives a di-
the limitsJ— 0 ands— 0 do not commute; in Sec. Il C 2we verging term at second order ik proportional toJ3,/s.
solve that problem and present the derivation of @g.to-  More precisely, using the expression for the self-energy at
gether with an algorithm for computing higher-order terms insecond order derived in Appendix F, and H&1) with

the perturbative expansion.

1. Noncommutativity of limits

We are interested in the steady-state values of the magne'—vI

tizations (2@ and (2b), which can be expressed in the fol-
lowing way:

_i dw
Mdot—zf E[KB(Q’)_K—B(‘O)]: (293
i [(do
Mleadszzj o a_=§F:<,L (-1) (Kc)au,au- (29b)

Indeed, the dot magnetization is given by

i 1
Maor=(S) == 5{[7", 7]) =5 Ky (t=0).

M eadsiS derived analogously.

e=s, we find

S {ol 2o ol )

up to a finite(i.e., not diverging as—0) term of orderJ?
and toO(J3) terms[ ¢ is defined in Eq(5)].

B\ 1
o\ T)—-3

2 T

B—V)

s—0 and thenJ—0. Using Eq.(31) with e=Im35(B)
(we work at dominant order id), we find
M 1( *5(B) (B B)+0O(J)
d '[: 2l A . B | i 1
© 4138B)-3§(B)
(32)

where the self-energy has to be expanded at orderJZtime
first term in Eq.(30) cancels a part of the second tgrm
The second limit is the physical orias explained in Sec.
II) and it gives a formuldé32) for the magnetization at order
However, to make use of this formula one needs to know

We begin with the expression for the dot magnetizatlonthe Keldysr{E (B)] and spectreﬂEA(B) SR R(B)] parts of

derived from Eq(29a using the Dyson equatiof28):
1 hed @)
Mdotzﬂf dolIm ed

wo—B—3F(w)+is
fdw S5(0)—hed ©)[25(w) —25(w)]
8im
—(B——B), (30)

lo—B—35(w)+is|?
where the last term denotes an antisymmetrizatioB. ithe
first term in Eqg.(30) can be transformed into a sum over
Matsubara frequencies and thus we see that the ligrit®
ands— 0 commute in that term. However, the second term is

more interesting. First, it vanishes in equilibrium since the
numerator cancels, as required by the FDT. Moreover, usin

(for e—0)

1 L oB)
T S(w-B),
|o—B+iel?

c (31)

the self-energy. The leading terms of these self-energies are
of order 2 inJ, but because the ratio of them is taken, they
determine the magnetization at order 0. The crucial point is
that Eq.(32) is in fact an implicit equation fohg(B), which
appears on the left-hand side becaldg, is defined in
terms of it by Eq.(29), and on the right-hand side because
the self-energies ab(J?) depend on the Keldysh Green’s
function atO(1), andhence orhg. The most elegant way to
capture this “feedback” effect is to reformulate the problem
in terms of the perturbative expansion of the steady-state
Green’s function in powers of, starting from the Dyson
equation in which the— 0 limit has already been taken. We
now describe this method in more detail, and specify the
procedure for calculating the steady-state Green’s functions
Berturbatlvely ind to arbitrary order.

2. Perturbative expansion of steady-state quantities

Let us now give a general method for computing the per-
turbative expansion of the Green’s functions, and use it to
derive Eq.(4). First, we reformulate slightly the diagram-

we see that in that second term these limits do not commutenatic expansion in terms of the full Green’s functiGr, and
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of skeleton diagrams, and we explicitly derive the steady-computed using Eq€39) and (42). Note that to obtain the
state Dyson equation as a functional equationGgr(again,  ordern part ofhg, one needs to compute the self-energies at
for simplicity, we write some equations for a generic field ordern+ 2. The method of obtaining the perturbative expan-

). The “generic” Dyson equation reads sion in J order by order is as followg&denoting byf(™ the
. . ordern part of any functionf).
Gy(3,5,0)={G (@) = Zge[ Gyl(J,5,0)} 7, (33 (1) Assume that we have the expansion of all functions to

where 3 g is a functional ofG,, defined by the skeleton ordern—1. _ _

expansion of the self-energgee Appendix E for a deriva- (2 SiNCeXgeis at Ie(zg)st Ogn?rde(rn)ly using (%C(§5), (37),
tion). We first take thes—0 limit in Eq. (33) and then solve and(40), we computeRg”, R;”, R¢”, andK".

it order by order ind. Itis, in principle, sufficient to solve Eq.  (3) SinceS & and3 begin at order 2, we compute the
(33) for G, since the magnetization can be directly extractedr™ and o to ordern+2, as functions of the unknowris”
from a Green’s function, and other physical quantitiegy., and h(Z“).

currents are given by their skeleton expansions. (4) We then obtain closed equations fgf’ andh{™ from
We first derive the explicit form of the Dyson equation for Egs.(39) and(42) (expanded to ordenm).
all fields. Defining Thus the order O part of the impurity magnetization is
K SA_SR given by[from Eq. (299]
Y=o YT T 2im 1 5
Mao= = 5hE"(B). (43
the full set of Dyson equations for the electrons and the
Majorana fields can be rewritten explicitly as The order 0 parts oRg andKg are
R w) ! (35) (0) (0) (0)
W)= NN e ————— =i —
¢ R (w) R i K)=2i 7h)(B) 8(w—B),

(44)

— -1 -1
K@) =(1Reo2r) K1~ ZaAco) and the bare Green'’s functions of the electrons are given by
+(Rg—3r) Bk(Ag—2a)"% (30 EQ.(18). We computég(w=B) at order 0 by expanding the
self-energies at second ord@iven by the diagram of Fig.
2), and then solvind39) for hg(B). Finally we find Eq.(4)

Rg(w)= = —, (37 in the large bandwidth limit D—c). The computation is
w—B—Xg(w)+i0 presented in detail in Appendix F. This completes the com-
_ putation of the Green’s function to order O.
Ke(w)=hg(@)[As(@) ~Re(w)], (38) Note thatK is thermal at order 0, which expresses the
oK(w) fact that the leads are in thermal equilibrium. Therefore the
hB(w)EB—, (39 leads’ contribution to the total magnetization at order O is
og() given by the Pauli term, which was explicitly excluded from
Miot; henceM =M 44 at this order, as claimed in E¢4).
R, ()= (40) More_over, we have not written e_xplicitly the full forms of the
z w—E?(wHiO* ' functllons_hB(w) and hz(_w) to this order, since they are not
required in the calculation of the zeroth-order Keldysh func-
K,(@)=h,(o)[A(w)—R,(w)], (41) tions:_ hg(B) gnd hZ(O)_=0 are sufficient, since the spe_ctral
density (at this order is a delta peak. The full functions
af(w) would, however, be needed to compute at second order; the
h(w)= (42)  functionhg(w) can easily be extracted from Appendix F, and

T w) the calculation oh,(w) proceeds along similar lines.

where the bold symbols are>x matrices(in lead-spin Our earlier interpretation of the d4/divergences in
spacé. For completeness, we have also written the defini-‘straightforward” perturbation theory is borne out by this
tions of theh functions. We have three blocks of equations,result. As stated above, thesldivergences result from an
for the electrons, thé field, and the»” field, respectively. incorrect choice of zeroth-order distribution functinlf we
Within these blocks, we have an equation for the retardedhsert theO(1) part of Eq.(39) into Eq.(30) in place ofhg,
function (35),(37),(40), an equation for the Keldysh function we see that the divergences are cancelled at dfgasince to
(36),(39),(41), and for the Majorana fermions the definition this order we are now using the correct long-time distribution
of the h function (39),(42). We definehg with Eq. (39) rather  function. This shows that our method and that of Ref. 18 are
than with Eq.(38) since the spectral density is a delta peak atequivalent.
order 0, whereas the self-energy is a smooth function. It is important to note that these corrections to the zeroth-
The spin and the lead electrons appear on a different foosrder terms in perturbation series are in no way restricted to
ing: the order O part of the electronic Keldysh function is quantities such as the magnetization. On the contrary, since
given byK ., whereas the order 0 parts lof andh, must be  what we have really calculated is the correction to the zeroth-
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equilibrium perturbative expansion will be markedly differ-
ent from that of its equilibrium counterpart. For example, the
O(J) contribution to the Keldysh Green’s function of the
Majorana fermions depends on t®¢J%) contribution to the
self-energies. These, however, contain terms that diverge like
InD in theD— o limit, and so such logarithmic divergences
may be expected to appear@{J) in some of the Green’s
FIG. 3. The two skeleton diagrams contributing to the current-fynctions, and therefore in physical properties such as the

current correlator at leading orc_ier._ In_ each diagram, one of th?nagnetization. Indeed, this phenomenon has been reported
electrons(represented by the solid lines from the left lead, and recently,23 the full interpretation of this striking departure

the other is from the right. The vertices represénthe current from equilibrium behavior merits further work
operator.

order Keldysh Green’s function, they manifest themselves in ACKNOWLEDGMENTS
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X—y X+y

eﬁ(x_y)_ 1 + eﬁ(X+Y)_ 1 '

p(x,y)= (46)

APPENDIX A: A SEMICLASSICAL DERIVATION
The result(45) is a function ofh{)(B), and is therefore OF EQ. (4
clearly sensitive to the corrections made to the zeroth-order The magnetization at order 0 ih(4) can also be derived
Green'’s function, as expected on the basis of the discussiquging a semiclassical master equation apprda@y sym-
above. metry, the reduced density matrix of the spin is diagonal, so
we consider the spin as classical and characterize its state by
IV. CONCLUSION the probability of its being upP;, or down,P . The spin

The purpose of this paper has been to present the expre@-'n"’“‘nICS is governed by a master equation,

sion for the order 0 magnetization in the Kondo model out of
equilibrium[Eq. (4)], and a systematic procedure for obtain- dP;(t)
ing higher-order corrections to this result. The result we ob- —at _LuPi® =T Py(v), (Ala)
tain may seem surprising, in the sense that even at order 0 in
J it does not coincide with the equilibrium expression
1tanh@/2T). Indeed, the out-of-equilibrium distribution dP(t)
function which describes the population of the two levels of TZFTLPT(U—FHPL(U, (Alb)
a weakly coupled spin is in general not thermal but must be
computed by solving a transport equation: it is determined by ] o )
the steady state into which the voltage difference forces thherel'sg is the rate of the spin-flip procegs— B induced
system. Moreover, this distribution function also enters the?Y the Kondo terms. At second order in perturbation theory,
computation of other physical quantitiés.g., currentsand  these rates are given by
their perturbative expansions therefore exhibit similar phe-
nomena.
Finally, we stress that the issue discussed in this paperis I'|;~ > Jiﬁf de;desp(e—Be—uy)
not directly related to the so-called “decoherence time” is- @ Be{RL}
sue. Answering the question of strong coupling at finite volt- _ _ _ _
age requires computations at higher ordersl.int is clear *plext B pmpNe(er—pa) (1-Ne(ea = pp)
from the above, however, that the behavior of the out-of- X 8(e1— €+ By), (A2a)
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Vi, au a,u
ny _ .'il' a‘z» ) ;al /:\az :
f(w,B,‘/ho'l,‘/Q,a'Q) —  amsue Peenes IETTT “SPPPeN T y z 2 2 y
1535 W
Byv B,v
v, a, U a,u
2,02
FIG. 4. Diagram of the “generic” self-energy at second order. m
E — a1 az fl N ag
T Py = fane o4 > > >
x x x z z T
2
=~ > ‘]aﬁf de;desp(€1+Be—pu,)
a,Be{R,L}
Byv Byv

Xp(€2—=Bc—pp)Np(€1— po)(1—Ne(er— pp))
X 8(e1— €,— By). (A2b)

Taking the large bandwidthD{(—«) limit and integrating,
the rates become

FIG. 5. Diagrams oB.,, andX,, .

where the local reservoir-electron operatgris defined by
C,=C,(x=0)=Q 25, c .. (Q is the usual normalization
factor related to the volume of the reservoirss before, we
assume that the reservoirs are thermalized with the same
FH:(J%+ JE)L temperature as each other, but with different chemical poten-
eBs/T—1 tials u,. In particular, we are interested in a model with
three reservoirs: 1 and 2 are the legalsdifferent potentials

gy Bs—V N Bst+V (A3a) and 3 an additional thermal battvith u;=0) to which the
RL @Bs—WIT_q =~ gBs+V)IT_q |’ @ levelis coupled. Since it is a Gaussian model, we can simply
solve the Dyson equation,
- -1_~—-1_
FHZ(‘JZR_'—‘JE)ﬁ G =Gy 3. (B2
We use the q,c4,C5,c3) basis. The inverse bare Green’s
) —Bs—V -Bs+V function is given by
IR e (BstVIT_q +e—(Bs—V)/T_ 1)
w—¢g O 0 0
A3b -
(A3Db) B 0 G 0 0
The steady-state value of the probability is given by equating Go(w)=| o ot o |° ®3
the left-hand sides of EqAla) to 0, and the magnetization 2 .
is given byM go= (P, — P,)/2, thus 0 0 0 G;
1(T;—T, where G,, is the bare Green’s function of the reserveir
Mao=75 ﬁ) (A4)  given in the large bandwidth limit bgin the LO basi
) T

which leads to Eq(4). ., 1 (i —2ihg{w—p,)
One can see that the Dyson equation in steady state, at G, (0)= o 0 —j

second order inJ, maps exactly to the master equation, al-

though they appear to have different transients. So at order Where p, is the density of states, which we take to be the

this computation is just a reformulation of the one presentedame for each reservoir. The self-energy is given by

above.

, (B4)

Vi,01

APPENDIX B: A FREE MODEL

In this appendix, we recaft?® the solution of a simple
free model in an out-of-equilibrium steady-state regime,
which displays a result very similar to E@). We consider a
free level coupled to some reservoirs of free electrons via
hopping terms. The Hamiltonian is given by

Vo, 00

H=> (ex+p)ch e+ g (cid+dfc,)+e4d'd,
ak kT Ha)akak @ 9ol Ca “ d FIG. 6. Computation of the Keldysh structure of the generic
(B1) diagram.
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0 9, 9, O3 It is easy to see that the vertex factors at the magnetic
field and Kondo vertices do not depend on whether the Dirac

S (w)= 9. 0 0 0 _ (B5) fermion lines are incoming or outgoing. In the case of the
gpb 0 0 O magnetic field, for example, the interaction term is
gz 0 0 O
. ) . . ) iB
Solving Eg.(B2), we find the occupation of the dot in the Hmag= —BS=iB7*n'= 7(fx+fl)(fy+f;), (C3)
steady state
n(ed)z(d*d>. (B6) so we see that the vertex factor is the same irrespective of the

orientation of the twdf lines; a parallel argument may be

In the limit whereg,,g,,93 go to zero in fixed ratios, We  giyen for the Kondo interaction vertex. Hence, each diagram

obtain consists of a sum of "2 diagrams that differ only in the
2 2 2 orientations of theiN Dirac fermion lines.
n(eg)= 91NF(€a— #1) + 9oNF(€q— p2) + g3Ne(€q) But these orientational differences do not alter the value

of the diagram, since the bare Green'’s function of ftffier-
(B7) mion is particle-hole symmetric, and hence EG2) corre-
] ] ) ] ] sponds to the Green’s function for a single orientation of the
whereng is the Fermi function. The properties of this result pjrac fermion line, with the prefactor 1/2 removed. Hence

are similar to those of Eq4): the occupation of the dot, in  \ye may represent the Majorana Green'’s functions in all dia-
the limit of zero couplings, depends on the ratios of thes%rams using oriented lines.

couplings and is not in general given by the Fermi function.
Moreover, if g3>04,d9,, we recover the equilibrium result
since the physics is dominated by the thermal bath 3. If, on APPENDIX D: ERRATUM TO REF. 15
the other hand, we talkg;<g,,0,, we find a nonequilibrium
result since the occupation at order O in perturbation theor¥Or
in the g’s is determined by the leads 1 and 2.

92+93+93

In a previous papéer, a formula[Eg. (2)] was proposed
the (second ordegmperturbative expansion of the magnetic
susceptibility in the out-of-equilibrium steady state which

was of the form
APPENDIX C: ORIENTABILITY

OF MAJORANA FERMION LINES

1
In this appendix, we demonstrate that we can treat the X(T,V)= H+O(J)_ (D1)
Majorana lines as oriented in the diagrams. To show this, it is

simplest to take the lines to represent the bare zero-field Ma-

jorana functions, and to treat both the magnetic field and thd this appendix, we briefly rediscuss its derivation and ex-
Kondo interaction as vertices. We have three species of Ma2l&in why it is incorrect. The method used was straightfor-
jorana fermion{ 7, 7%, %}; formally, we may represent each ward Keldysh perturbation theory to second order vsii

of these as the sum of the creation and annihilation operatofdt€ in which the bare Keldysh function of the Majorana spin
of a Dirac fermion, was taken to be thermal. Thesldivergences were regulated

using a “point splitting” procedure: since they occur due to
1 the coincidence of two poles in the integrals, one splits these
Pr=—(f,+ f;); (C1 poles on the real axis to a distanéeand sends to 0 at the
V2 end of the computation, term by term. The justification given
the dual tof .—f d les f th bl q in footnote 20 of Ref. 15 is, however, incorrect: endowing
€ gual operatoff,— 1, decouples rom the problem and y,q Majorana fermions on the dot with a fictitious dispersion
may pe ignored. I_n the absenc,e of a magnetic f|_e|d and "Ndoes not lead to this prescription, since divergences reappear
teractions, all Majorana Green's functions are diagonal, SQvhen the bandwidth is sent to zero. The “point splitting”
the only Green’s functions that occur are regularization prescription can, however, be described physi-
Ga=—i{(77(1) P3(0))) cally as follows: let the applied magnetic fielés and B,
a KA K oscillate slowly at a frequenay,; compute the total magne-
i tization at frequencyw, up to second order id; then take
=— 5((fa(t)f;(0)+ fIFa(0)))k the limit wo— 0 in the coefficient of each power df
However, this regulation procedure is based on an inter-
i " change of the order of the limitgy—0 andJ—0. We want
=| = 7 (fa(OF3(0))c| +p-h, (C2)  to calculate the static magnetic response, and consequently
wish to takewy— 0 beforeJ—0; but in fact the technique
where the notation p-h” stands for “particle-hole,” i.e., used in Ref. 15 does the opposite: it expands ifJ—0)
f—f'. We thus see that the bare Majorana Green’s functiomeforetaking thewo— 0 limit. It is simple to show that these
may be written simply as the sum of two bare Dirac fermionlimits do not commute; this can be seen explicitly from the
Green’s functions of opposite orientations. form of the second term of Eq30),
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g(w) (2) The assumption that the system relaxes to a nonequi-
Ref dw (D2)  librium time translation invariant steady stdthe couplingg
to the relaxation bath is finij@s transcribed mathematically
where g is some function andy~3"(B) (the limit s—0  @as the existence of the limit
having already been takerif we take the limitsJ—0 (i.e.,

y—0) and thenwy—0 we obtain the result of the point lim G(t,t')=G(7) (E2)
splitting prescription df tt e

(w0t wgtiy)(w—wyg—iy)’

t—t'=r1
(we shall denote it with the same function nam€his as-
9’ (w) sumption is not trivial. In particular, in Ref. 28 the existence
j dw( o ) (D3) of steady oscillating states has been suggested using a large-
N slave-boson treatment. We exclude them here on physical
whereas if we take them in the opposite ordeg—~0 and 9rounds, since we do not expect such states to appear in the
thenJ—0, we recover Eq(4). regime where the perturbation thgory is applllcaple anyway
(i.e., at high temperatures or at high magnetic fields in the
Kondo problem. We can thus take the long time limit, and
APPENDIX E: THE STEADY-STATE DYSON EQUATION Fourier transform the Green's functions and self-energy in
Eqg. (E1) to obtain

In this appendix, we present a formal derivation of the
steady-state Dyson equati¢d3). First of all, let us empha-
sisc_e that our c_alculation ig carr_ie(_j ourt the stegdy—.state Gl//(\],s,g,w)={Glzol(w)—Eske[Gl//](J,&g,w)}’l_
regime that is, in the long-time limit after the switching on (E3
of the interactions. We assume that, in this limit, the system . o . .
evolves to a time-independent steady state under the tim&) Taking theg—0 limit as discussed above, we finally
evolution described by its Hamiltoniaas required by the obtain the Dyson equatiof83),

Keldysh method: see Sec. lll)BStrictly speaking, this is not
possible, since the Hamiltonig) conserves the total mag-
netization of the system and that conservation law prevents
the magnetization of the system from relaxing. However, this
conservation law is not physicélve have omitted, for ex- APPENDIX F: COMPUTATION
ample, spin-orbit terms in the legdsherefore, to allow the OF THE SELF-ENERGY DIAGRAM
system to relax to its steady state, we introduce a coujgling

. - In this appendix, we present the computatiorhg{B) at
that breaks the conservation laws. As a specific example, ONE der 0. The computation is in three steps. First. we compute
could consider an anisotropid,(# J, # J,) Kondo model. As : P bsS. ' P

. N . . the self-energy diagrams at second order as a function of a
this extra coupling is relaxed to zero, the transient time taken o R
eneric” diagram.(This simplifies the problem by separat-

e e sty o e Melorans and sin dices from e Kelysh s
. pny q y ?ure.) Second, we compute this generic diagram. Finally, we
are smooth functions af. Therefore, once we have taken the PR .
o o . ) solve the resulting implicit equation fdrg(B). Throughout
t—oo limit, we can setg=0 in the equation which deter-

mines the steady state. The details of the derivation are eig'nsq pi?gteunrg? ’ ivr;/etr;sérefﬁ]n;:lr}g rr(:]trl ar;Ot?;g;fgyeg rr;l:]t(ljn\g/ the
follows. ' '

. , . . should be replaced bB/T andV/T, respectively.
(1) Using _the pe_rt_urbgtlve expansion, we establish the The first part of the computation reduces the spin and lead
Dyson equation at finite times, — .
indices, and thus expresses the self-energy diagrams as func-
tions of the “generic” diagram presented in Fig. 4, where we
allow any potentialsvV, and V, for the electrons and any
f du{G;()l(t,u)—Eske[Gw](t,u)}*Gw(u,t’) field B for the internal Majorana line. The main formula is

Gi[/(‘JISIw)Z{GLZO]-((D)_Eske[Gi//](‘]isvw)}il' (E4)

=8(t—t")®1, (E1) ,
. . . Sow=— 3, Dol

where 3 g is a functional ofG,, defined by the skeleton B wpeRL 4
expansion of the self-energy. The product should be under- o=+,-
stood as a matrix product in the LO bagss, is a function of +f(@0,0V01Vg,—1)]. (F1)
two times and of],g. To obtain this equation, we write the
Dyson equation in the finite time diagrammatic expansionin this expression, the Keldysh structure is implicit and by
outlined in Sec. Il B #? and use the definition of the skel- convention, the Majorana line is ajf line whenB,=0 and
eton diagramé%?”In Eq. (E1), the timest,t’ andurun from  anf line otherwise. To establish EGF1), we compute the
—oo to o, and the couplings) are time dependentl,(t) spin and lead indices &, andX.,,, which are given by the
=J,0(t), i.e., we switch on the interaction suddenlytat diagrams of Fig. Swith the Feynman rules given in Sec.
=0. Il B), and we use Eq.28).

[f((l),BS,Va,O',Vﬁ,O')
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We now compute the Keldysh structure of the generic

diagramf (Fig. 6). We have px)=—7, (F8)
tanhz—
f+_(w)=i7-rJ' dxdyp(x+01B—Vy) we now have
X p(y+05Be= Vo) Ne(x—V)Ne(y —Vy) |podril?

i oa(w)= [~ hg(B) (0= B+V) ~hy(0) (w+V)
X[1+h(B)]8(w+y—x—B),
+o(w—B+V)+p(w+V)+(V——-V)]
f_+(w)=—iﬂf dxdyp(x+o1B;— V1)

J 2
by el e esy

X p(y+ 7B Vo)Ne(X—V)Ne(y = Vo) «RL 4
X[1-h(B)]8(w+y—x—B), (F2) —h(0)(w)+¢(0—B)+e(w)], (F9
whereng(x)=ng(—x), and the functioh(w) is defined by )
K |podrLl hg(B)
. hg(®), w#0, ogl@)=—", (0=B+V)| 1= — =
(@=1h0), w=0. 3 tanh———
We then use the relatioffs h.(0)
z
= —(f,_+f), (F4) HlotVil-— v | TV
tanhT
fA—fR=—(f,_—f_,). (F5)
We can perform the integrals in the large bandwidth limit 2 |podal? hg(B)
D— using T & g |leB)1m— g
’ tanhT
dX Ne(X+A)Ne(X) = ,
f F( ) F( ) eA—l hz(o)
+w| 1— (F10
and replacing the densitigsby their finite valuep, (we can tanhg
take the limitD — under the integral Using the definition 2
V=V,—-V,, we find Using the definition of the Majorana Green’s function
ng(t)v
e _ro B+V)[ 1 h(e) F6 GK(t)=—i 0 F11
2in - o (T BHV) 1= —— | (F6) ab()=—i{[7a(t), 75(0)]), (F11
tanh— we haveGK, (—t)=—G,(t). In the frequency representa-
tion, this readsGX,(w)=—G,(— ) and hence we infer
that G?Z(w) is odd in frequency. Consequently, given the
(fA-fR)  p3 ~ form GX,=h,(w) 8(w) it is clear that
dim 2 @BtV “Brv B
tanh—> h,(0)=0.
(F7) Using this result together with Eq(39) and denoting
Using Eq.(F1), and introducing x=—hg(B), we have

o [IrU2x@(V) +2B]+ (J5+I7) (2x+B)
[IrUZ2¢(V)+ @(B+V)+ @(B—V) ]+ (J3+ID)[2+ ¢(B)]

Solving for x and substituting into Eq43) gives Eq.(4) of the text.
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