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Effects of exciton-acoustic-phonon scattering on optical line shapes and exciton dephasing
in semiconductors and semiconductor quantum wells
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The interaction of excitons with acoustic phonons in direct band-gap semiconductors gives the dominant
contribution to the temperature-dependent part of the exciton homogeneous linewidths and to dephasing rates
at lower temperatures, e.g., below 150 K in bulk GaAs. Experimental results have shown that this contribution
increases substantially in going from GaAs quantum wells to bulk GaAs. A perturbation treatment of acoustic
phonon scattering in a simple band exciton model—i.e., neglecting valence-band coupling and anisotropy of
exciton dispersion—agrees with experimental results in narrow quantum wells. On the other hand, it fails by an
order of magnitude for bulk GaAs and by a large factor for other materials. Here we give a thorough theoretical
discussion of this problem. The exciton linewidth is calculated to lowest order in the exciton—acoustic-phonon
coupling including valence-band interactions and anisotropic exciton dispersion. The effects of multiple scat-
terings of phonons in higher orders of the exciton-phonon interactions are calculated and previous work on
these effects are discussed. The effects of impurity motion from acoustic phonons on the exciton linewidths are
evaluated. We conclude that the temperature-dependent exciton linewidth is given reasonably well by the
lowest-order phonon scatterings provided that the full anisotropic exciton dispersion is included. Higher-order
phonon scatterings give a small contribution to the linewidth and can affect the line shape. These results agree
well with available experimental results for the low-temperature exciton linewidths in bulk GaAs and ZnSe and
in quantum wells from these materials.
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[. INTRODUCTION Several possibilities have been suggested to address this
discrepancy between experiment and theory for the bulk
The interaction of excitons with acoustic phonons in di-linewidth, including higher-order phonon scattering within
rect band-gap semiconductors gives the dominant contriblan effective elastic approximation for the phonon scattefing,
tion to the temperature-dependent part of the exciton homapolariton effects on exciton dispersidrgontributions from
geneous linewidths and dephasing rates at lowethe shear components of the deformation potential
temperature, e.g., below 150 K in bulk GaAsThere has interaction® and the effects of self-consistency in the broad-
been much interest in the effects of confinement on excitorening of the final state$In this work we address this in
broadening and dephasifid*°Some understanding of con- detail theoretically. We develop fully the linewidth to lowest
finement effects on the exciton-phonon interaction can berder in the exciton-phonon scattering including valence-
obtained by comparing exciton linewidths in quantum wellsband coupling and the resulting nonparabolic exciton disper-
to the corresponding bulk values. In relatively narrowsion. We give the effects of multiple-phonon scattering in
wells—say, narrower than 100 A—the splitting of the va- higher orders of the exciton-phonon interaction and discuss
lence band into heavy- and light-hole bands atlhgoint is  the region of validity of the approach given in Ref. 7. We
sufficiently large to justify an evaluation of the exciton- also consider the effects of self-enegy corrections arising
phonon matrix elements in a simple band model—i.e., nefrom impurity motion due to phonons.
glecting light—heavy-hole coupling. If carrier tunneling into  First, consider exciton phonon scattering to lowest order.
the barriers is taken into account, this model gives exciton-The exciton—acoustic-phonon scattering rates in direct band-
acoustic-phonon scattering rates that are in overall agreemegép bulk semiconductors with cubic structure are evaluated
with experimentally deduced ratd=® In bulk materials, on to lowest order, taking the degeneracy of the valence band at
the other hand, the simple band model for a “heavy-holethe zone center and the anisotropy of the exciton dispersion
exciton”’ gives exciton—acoustic-phonon scattering ratesnto account. Theoretical models for excitons in which band
that are an order of magnitude smaller than the values dedegeneracy is taken into account will be referred to as “com-
duced from the experimentally measured linewidttdssat-  plex band models.” Both deformation potent{@P) and pi-
isfactory quantitative theory for the exciton—acoustic-phonorezoelectric(PE) interactions with acoustic phonons are in-
scattering in bulk materials is required for an understandingluded. The resulting scattering rate gives the acoustic
of confinement effects on exciton linewidths, exciton dephasphonon contribution to the exciton dephasing rate and also
ing and dissipation effects in optical quasimodes in semicondetermines the homogeneous linewidth of the absorption
ductor microcavities, and exciton-polariton photolumines- evaluated to the lowest order in the interaction strength—i.e.,
cence in bulk microcavitie¥ the Fermi golden rul¢FGR) in the time-dependent perturba-
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tion theory* with a thermal average over the phonon distri-where the parameters of the COM transformatigg and
bution taken. Here we define the linewidth as the half-widthag, in the simple band model are given hyp.=m./M,

at half-maximum(HWHM) of the absorption. The use of the «y,=m,/M, e, is a component of the piezoelectric tensor,
FGR is equivalent to the one-phonon process approximatiop is the material density, angy, is the speed of sound for

in the evaluation of the exciton self-enerdyiesulting in an  the transverse phonons. Sl units are used here.
approximately linear temperature dependence of the scatter- In a simple valence-band modajK is small, and the

ing rate, except at very low temperature. The matrix eleexciton form factors, the expressions in the square brackets
ments for DP and PE interactions are out of phase—i.e., oni Eqgs.(2) and(3), can be replaced byQ(.-D,) for DP and

is real and the other is imagindf~and they do not inter- 0 for PE. Therefore, the contribution of the piezoelectric
fere to the lowest order. Therefore the corresponding linescattering is negligible in a simple band model. On the other

width to this order is the sum of the two contributions, hand, in a complex band model the corresponding factors are
DP | 1PE given by more complicated expressions that take the anisot-
[=L(0)+ I+ TI"=T(0)+dyT, (1) ropy of the exciton dispersion into account. If one defines an
where I'(0) denotes the temperature-independent part anéffective anisotropic exciton masé(K), its values for some
may arise from impurity scattering in the bulk case. directions will be significantly larger thaM defined in a

For detailed evaluations we consider two materials, GaAsimple band modéf**® The values oK in some directions
and ZnSe. In both cases, the heavy-exciton dispersion ill not be small, and the electron and hole contributions in
strongly anisotropic in reciprocal spat&The exciton radius I'"F do not necessary cancel, unless the effective exciton
in GaAs is about 3.3 times larger than in ZnSe. It turns outadius is small.
that the size of the exciton in a complex band matéiial, In Sec. Il we formulate the exciton linewidth problem by
including coupling in the valence band and thus anisotropyzonsidering exciton states involved in the evaluation of the
in the exciton dispersigris an important factor in determin- exciton-phonon interaction matrix elements based on a
ing the relative contribution of DP and PE interactions to theKohn-Luttinger Hamiltonian for the valence band. There and
scattering rates. In addition, the piezoelectric tensor compon Appendix A we redefine the problem in terms of exciton
nents for ZnSe are much smaller than those for GaAs. In thetates and also discuss a choice of the electron-hole coordi-
simple band model of the “heavy-hole exciton,” using an nate transformation convenient for the exciton-phonon scat-
effective-mass approximation near the zone center, thtering problem. The exciton-phonon matrix elements are
center-of-mas$COM) motion and the relative motion of the evaluated in Sec. Il and used for the evaluation of the opti-
conduction-band electron with mass, and the valence- cal linewidth in the FGR approximation. The effects of
band hole with mass, can be separated exactly by a COM multiple-phonon scatterings and the resulting absorption line
transformation. The exciton then has a milks m.+m,, a  shapes are evaluated in Sec. IV and Appendix B. We find that
reduced masg.=m,m,/(m.,+m,), a total momentunkK,  these combined multiphonon terms have only a small effect
and an effective Bohr radiugy=4me#?/ ue?, wheree is on the linewidth and that the temperature dependence of the
electron charge, 1.602 ¥910~*° C. The permittivity of the ~ calculated linewidth agrees well with the available experi-
semiconductoE =&, with &7 being the permittivity in free  mental results. On the other hand, we find that the mul-
space, 8.854 10”2 F/m, ande is the static dielectric con- tiphonon terms have a noticeable effect on the line shape at
stant. The deformation potential for the conduction band is &igher temperatures. The effects of exciton-impurity scatter-
scalarD, and the deformation potential tensor for the va-ing and possible impurity effects on exciton-phonon scatter-
lence band is replaced by an effective scalar. For the INg are also considered there and in Appendix C. The
ground-state exciton with initial momentuftK;,~0, the fi-  €xciton-phonon scattering in GaAs and ZnSe quantum wells
nal momentumiK, as determined by the energy conserva-'S co_n5|de_red in Sec. V. A shor_t version of the_present work
tion in one-phonon absorption, is given by=2Myp /4,  dealing with the FGR calculation has been given eatfier.
where v, is the speed of sound for the longitudinal The present paper gives fuller details of these calculations
phonons. The resulting linewidths in the FGR simple pandor the FGR and also discusses the multiphonon and impurity
approximation are easily obtainend the DP and PE terms €ffects.
in Eq. (1) are given by

M2 II. EXCITONS IN DIRECT BAND-GAP BULK
FgP/kBT= —_— SEMICONDUCTORS WITH DEGENERATE
mULARp VALENCE BANDS
% D B D, ? @) We obtain an effective-mass exciton Hamiltonian in a cu-
(1+ada5,K24)% (1+ajas.K?/4)%| " bic semiconductdr”*8using a simple isotropic conduction
band, the Kohn-Luttinger Hamiltonidh for the valence
2.e° 3 4 band, and a statically screened electron-hole Coulomb inter-
FEE/kBTZ W(T T) action:
eph\via vra
L L i pé ¢’
% (1+ada5,K?/4)? (1+a§a§eK2/4)2} » He.h=2—mc— 47788f|l’e—rh|_H”' (4)
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TABLE |. Values of the band paramete(®Bef. 43 used in the The value of y in Ref. 21 was used givingy=(2v,
calculation and the effective ground-state exciton radius calculated- 3y,)/5 as the one that results in a reasonable approxima-

in the spherical model. tion for the binding energy of an exciton at rest.
In the simple band model, the relative motion of the elec-
me /Mg 71 2 73 Bexc (A) tron and hole can be separated from the COM motion by a
GaAs 0.067 6.85 210 2.90 134.9 Iinegr coordinate trgnsfprmation. There is no ;uch t'ransfor-
ZnSe 0.16 4.30 1.14 1.84 44.4 mation for the Hamiltonian in Eq7). One can still define a

relative electron-hole wave vector by

%Reference 43.

ke: C(eK+k, kh: C(hK_k, (8)
2
Pn > ) Y2 2 2, 22, 212 with arbitrary coefficients satisfying.+ «,=1. The eigen-
—-H =— + — _‘z Jo+ Je+ Yy et ap . € elgen
’ 2mg ( nrar mo(phx Pyt Pinalz) functions ofH,_,, can be written as

2 iK-
= 28 (Dpbryldu g} + o), (5) D, (re,rp) = FO(r), ©
0

where R= agro+ apry, andr=r.—ry,. The functions®(r)
wherepe, are the electron and hole momentum operatorsyre obtained as eigenfunctions of tiiedependent effective
—ifiVep, Jis a spin-3/2 angular momentum operatopis  Hamiltonian® The total angular momentum can be written
the free-electron massy; is the conduction-band masg,,  asJ,=F+s=L+J+s, whereJ ands are spin-3/2 and -1/2
¥2, and y; are the Luttinger parameterfa,b}=(1/2)(ab  operators of hole and electron, respectively, ands the
+ba), and c.p. stands for cyclic permutationsis the di-  orbital angular momentum of the exciton. We will use the
electric constant, anek is the permittivity of free space. The notationM, u, and v for the projections of, J, ands. We

conserved total exciton momentum R =pe+pn With - ¢hgoseR as the direction of quantization for angular mo-
genvaluegiK. In Kane's perturbation theotythe terms that  menta F is not conserved even in the spherical model, but

involve y, and ys, the “d-like” part of He,, are treated as  \=f js conserved. Using the-J coupling schemé>' the
a perturbation on theslike” part of He., which has a hy- oy .iton eigenstates can be written as

drogenlike spectrum. In second order the energy shift of the
1s state from the conduction-band minimum is given by . «
O (=2 BN

E.(K)=—EB;s+AE(K) m

72K? _ (K) _
:_EBls+ Z_mO{AI[BZ+ng(ﬁa¢)]1/2}1 ; R)\;L‘F(r)“_,\] 3/2,F,M,V>, (10)
where
g(6,¢)= % (sin* I sir’ 2¢+sir 29), (6)

. - IL,J,F,M,v)y=(2F + 1)1 — 1)L~ I+M
where EBy; is the binding energy and we have used polar

coordinate,9,¢. The constantd, B, andC are expressed L J F ,
throughmg, y;, v,, and y; (Ref. 14 and C#0 if v, Xm+p,=M m u —M Yim(3 @)u,vs,,

# y5. The two signs in Eq(6) give heavy and light excitons.

Although the light exciton dispersion is only slightly aniso- (11
tropic, thg heavy—excitqn dis_per;ion is strongly anisE)tropic.u# and v, are the hole and electron spinor functions,
If one defines an effective direction dependent mdgK), =+1/2, +3/2, v==1/2, the indexy denotes the bound ex-

given by the inverse curvature &(K) at K=0, and uses jion states analogous to the hydrogenic states of the simple
parameter values from Table I, then for different directions ing5nq model, and we use th¢ 8ymbols defined in the theory
reciprocal space one obtains for the heavy exciton in GaAgs 5qdition of angular momenta.
M(100=0.8,M(110 =15, andM(11)=2. _ The study of theK-dependent Hamiltonian obtained as a
_For the evaluation of the exciton-phonon interaction mayegyt of the coordinate transformation in E8) is greatly
trix elements, we will use a Spf;?l’lCEﬂ model approximationgacilitated by expressing andJ operators in terms of irre-
for the exciton wave functioriS:* The spherical model is gycible spherical tensors. The corresponding expressions and
obtained from Eq(5) by replacingy, andy; by one param-  gejection rules can be found in Refs. 15 and 17. The matrix
etery. elements of the tensor products can be evaluated using the
, , Wigner-Eckart theorem and j6symbols?>?® The exciton
H _ Pe n Pn . E Y 3)2 Hamiltonian is given in terms of spherical tensor operators in
S~ om. | 2mp Y1t 572 Mo (Pp- Appendix A.
At K=0 the exciton problem is formally similar to the
@ shallow acceptor probleff;?® and the ground state, which
we denote by =1s, can be written as

e2

B dreere—rpl’
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D90 (1) =Ro(r)]0,3/2,3/2M,v) If we consider an exciton in its ground state to be created
e by a circularly right-polarized photon with momentum
+R,(r)[2,3/2,312M, v). (12 #Kphor then M+v=1 with the quantization axis along

) Kphot- The electron spin is not changed in the scattering, and
Ry and R, are found as solutions of the system of two \ye wijll drop ther index. Because the photon wave vector at
coupled differential equations. Because of the coupling, thptical frequencies is small, in the evaluation of phonon in-
behavior ofR,(r) near the origin is different from that in @ quced exciton linewidth by FGR we can set the initial mo-
hydrogenic model. We choose a variational treatment of thenentum of the exciton to be zero. If we consider for the
24 . .
problem;™ with moment only the & exciton states and use just the=0 part
A 32aar R B2y BT as an approximation for the wave function, the correspond-
Ro(r)=Aa™%e %, Ry(r)=Bg>re 7, 13 ing exciton-phonon matrix element for DP interaction can be
which reproduces the correcdependence at smal found ~ shown to be
by a polynomial expansion of the radial functions. We find
that R, is much smaller thaiRy and define an effective ex- DP _ * ;o
citon radius asi.,.= 1/a. The values ofy,; obtained in the VMvM'?T(O’q)_%: Dy u(¥,¢7)
spherical model are given in Table |. Kt#0 there are in-
finitely many terms in the expansion in Eq.0). Following
Ref. 15, we consider only those basis states that are coupled
to theL =0 state in first order. This restriction can be shown v
to reduce the exciton problem to a four-dimensional sub- — U A=K, —k+0) do(K) do(k— ae) ],
space for theM =+3/2 case and a five-dimensional sub- (16)
space for thévl = = 1/2 case. A particular choice of the linear ) ) )
transformation coefficients in E¢) eliminates the coupling Whered’ and ¢’ are the polar angles of the vectgrwith
of the L=0 state to thd1,3/2,3/2M,v) states. Definingy,  'espect to the quantization axis¢o(k) is the Fourier trans-

x f AHUS(G) oK) ok + and)

=1/m,, this choice can be shown to be formation of Ry(r)/\4m, and the 44 matrix D (9, ¢)
=exp(im¢)d,,(9) is the spin-3/2 representation of the ro-
Ye tation group'’ The momentum-dependent coefficiert§

=, (14  andU? are the interaction matrix elements for the electron-
Yot v1—4yIV3 phonon and hole-phonon scatterings, respectively.

with ae=1—a,. Consider theM==3/2 case. Using a For.a §imple isotropic conduction ba'nd the Qeformation

variational function Ry s(r)=iC nr exp(r), one can Potentialis a scald? and the corresponding matrix element

show that the coupling of the=0 state to thd1,3/2,5/2, 'S

+3/2v) state is small unles is large. For example, in the 1o

GaAs case with this choice of, and«,,, the coupling of the us(q) = iVl/2< hq ) D 1n

L=0 state to this state is smaller than the coupling to the 2pva '

L=2 state by a factor of 0.1B(@..)?2 wherea.,. is the ) . ]

radius of theL =0 state given in Table I. It is then justified to WhereV is the volume and. is the conduction-bantsca-

neglect this coupling for small and intermediaté ( lar) deformation potentlal._ The deformation potenfual opera-

~1la,) values of exciton total momenta. We can thereforef® Wnm that —enters into the hole-acoustic-phonon

estimate the exciton form factors for the dtate by using the interactiort**"is given by a convolution of the second-rank

L=0 wave function andr,, a;, from Eq. (14). operator tensoE J,,, with the strain tensou;; where the in-
dicesi,j refer to the coordinate componentsy, zandn, m

. EXCITON INTERACTION WITH ACOUSTIC refer t.o the c_oaniEJonents. %f a4 matrix in thed=3/2 sub-
PHONONS IN BULK SEMICONDUCTORS space: Wnm==nmUij, Wit

a

Because we will include multiple-phonon processes in our
calculation, it is convenient to use second quantization, with BX*=

B anda standing for exciton and phonon annihilation opera-

tors. The exciton-phonon interaction Hamiltonian is given by, narel is the identity operator and the other components are
obtained by cyclic permutations. In the spherical model the
Hexc—phonzz V)\)\"MM"VV"T(KaK’)BI’MfV'(K,)B)\MV(K) isotropic form of the deformation potential is obtained by
T definingb asd/v3.%
X (Bt é‘-}r(fK’ D, (15) The valu_es of deformation potential constants along with
: other material parameters used here are listed in Table Il. The
wherer denotes three phonon polarization states. In the comsoefficientsU Z#,;T are obtained from the parameter tensor
plex band model, in which the degeneracy of the valencend the four eigenvectors of the valence band Hamiltonian in
band is taken into account, the matrix eleméndepends on  Eq. (5) in the following way*® Define the following convo-
both the initial and final momenta. lution matrix:

2b
ary

d
| —bJ2, Exy=—‘/—§{JX,Jy}, (18
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TABLE II. Values of material parameters in the electron-phonon interaction and calculated values of the linear coefficient in the
temperature dependence of the acoustic-phonon-induced HWHM of the exciton.

p UlA UTA D¢ a b €14 dac
P (glcm?) (10° cm/s) (10° cm/s) (eV) (eV) (eV) (CImP) (ueVIK)

GaAs 12.8 5.3 4.8 3.3€ -9.3 2.7 -2.62 0.16 7.8
ZnSe 8.8 5.65 4.2 2.7 -g" -2n -1 0.049 9.6
%Reference 43. ®Reference 44.
bReference 14. 'Reference 45.
‘Reference 32. 9Reference 46.
dReference 33. AN estimate deduced from the papers in Ref. 47.

— _ 1 —ij linewidth resulting from th atterings to the final exciton

[Z lm= 3 Z (i g+ g0, (19 ~ linewidth resulting from the scatterings to the final excito

whered
e=q/q. Consider the eigenvectors bff, in the J=3/2 sub-
spaceA (k), with component#\,(k) with | andn= *+3/2,

+1/2. These components enter the expansion of the B
functions at the degeneracy pointkg: uy(r)

=ZnAin(K) Uy (r). Using a tensor product ok’s, we de-
fine the 4<4 matrices

LAY (k") T =An(KA (K (20)

and define the deformation potenti®&' " by the trace op-

eration in theJ=3/2 subspace:

0", (k.k)=tr(A"'E (21)

Erg)-

states L =1s,K=q,M’,v) with M’'=*3/2, =1/2, and tak-

q IS a dimensionless phonon polarization vector andng thermal average over the phonon population, we obtain

FGR

loch fom=

r F15M+F15M’

1-‘ESM Wjd q(27T)3 2, ll\JAM’;T(qu)|2

X 6(AEw(q)—hv,q), (25

where forAE we use an anisotropic dispersion obtained in
Eq. (6) and the indexu stands for DP and PE. If thesl

Using these potentials, the hole-phonon interaction elemeng@Xciton wave function is approximated by Ilts=0 part, as

in Eq. (16) are found as

hq

1/2
— 0" (—k,—k+
2PULA) ( -

(22)

Up.(—k,—k+a)= |v—1’2(

The exciton-phonon matrix element for the piezoelec
interaction can be shown to be

PE
VM,M’;T

<o,q>=§ Dy, (9',9")

X f dk UPKQ)[ ¢po(K) do(k+ anq)
= ¢o(K) po(k— ae) ], (23

with the electron-phonon matrix elemedf® is given by

1/2
(qqudz,7q+ c.p), (24

f
2pw(q)V
wherew(q) is phonon frequency for a given polarizatien

2eel
Ul ==

Also, e=ee¢ with &; being the permittivity of vacuum,

8.854x 10 12 F/m.

The phonon-induced linewidth of the exciton state
=1s,K~0,M,v) defined in Eq(10) can be evaluated in th
one-phonon processes approximation using FGR. It is th

implied in Eq.(16), the TA phonons do not contribute to DP
scattering at this level of approximation.

Using the parameters from Tables | and Il, we obtain the
scattering rates and corresponding linewidths for the two
states that can be created by a circularly polarized photon,
(M=3/2p=-1/2) and M=1/2,y=1/2). In the absence of
exciton-phonon interactions these states are degenerkte at
=0, but the degeneracy is slightly split by the interaction, the
splitting given by the difference of the real parts of the cor-
responding self-energies. The imaginary parts of the self-
energy in the FGR approximation are the linewidths in Eq.
(25). They are slightly different for the two states, the differ-
ence being much smaller than eitherlof, 5, and "1 1/5.

The corresponding optical linewidth then will be given by
the larger of two. The results for the HWHM aFé SRk T
=7.80ueV/K for bulk GaAs and 9.58ueV/K for bulk
ZnSe. These values are quite close to the experimental
HWHM linewidths in bulk GaAs:?°2°8-10 ueV/K, and
bulk ZnSe®! 10 ueV/K. These experimental results were ob-
tained by resonant Raman scatteringptical dephasing’

and photoluminescencé&3! They are also much larger than
the values obtained in the simple band thé8ryith the
exciton form factors given by Eq&2) and(3). In the case of
bulk GaAs we find that the dominant contribution to the
( scattering rate, about 85%, comes from the PE interaction
e and only 15% comes from the DP interaction. Within the DP
en eontribution, the dominant part comes from the conduction-

tric
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band electron scattering. Therefore, the total result will noemission and absorption contribute to the exciton self-
be sensitive to the factor-of-2 variations of valence-band deenergy, as do exciton states other thanWe find, however,
formation potential values for GaAs that one encounters irthat at least in the simple band model the scatterings tp the
the literature’>33 state and higher excited states make negligible contributions
In the case of bulk ZnSe, on the other hand, almost all théo the linewidths of the & state and restrict the formalism to
contribution comes from the DP interaction, with the PE in-the 1s exciton subspace. The time-dependent exciton propa-
teraction contributing less than 1%. The reason for the larggator is defined &3
PE contribution in bulk GaAs was indicated earlier following
Eq. (4). For ZnSe, on the other hand, there are two factors G (K, t)=—i6(t){(Bn(K,1)B,,(K,0)), (26)
contributing to the negligible PE effect on the exciton: the
value of €5, is much smaller than in GaAs, and the small where indexn refers to the quantum numbeks and v that
effective exciton size, represented &y in Table |, greatly ~ define an exciton state, all operators are in the Heisenberg
diminishes the exciton form factor for the PE interaction. Inpicture, and the double brackets imply a thermal average
addition, we find that the smallness of the exciton size makegver the phonon ensemble. The electron spin projection is
the exciton form factor for ZnSe dependent more on the difhot affected by the electron-phonon scattering and will not
ference of the DP parameters for the conduction and valendee referred to explicitly here. Because of the degeneracy of
bands|D.—a|, rather than on their values separately. This isthe =M exciton states at ani,'® one can formulate the
useful to know because the differences between band defotheory in such a way that the indexs two valued, referring

mation potentials are easier to determine than the potential¥® the “heavy”- and “light”-exciton branches, which we
will denote as n=1 and n=2, correspondingly. The

frequency-dependenG,,,(K,w) is defined as a Fourier

transformation over time, and we write thex2 propagator

matrix asG(K,w). The noninteracting propagator will be
To go beyond the FGR approximation, we turn now to thegenoted a$%(K,w), and Dyson’s equation for the propaga-

contribution of the multiple-phonon processes to the excitonijgy ig

linewidth. These have been evaluated by ToyoZ4va the

DP interaction in the simple band model using a quasielastic G=G+G%S 6 27)

approximation for acoustic phonons and neglecting the mo- '

mentum dependence of the exciton form factor. That Ias%here the self-energi(K ©) is also a 22 matrix. One

approximation required the use of the sharp cutoff at Iargecan then obtain a perturbation expansion for the exciton self-
values of momentum transfer. In Ref. 34 the Debye waveenergy in a standard waj

vector was chosen somewhat arbitrarily as the cutoff. As the” " 27 exciton-photon interaction matrix element for an

result of the elastic phonon approximatiggPA) in the exciton in staten and a photon with wave vectdrand po-

renormalized exciton propagator, the absorption line shapg .__.. . i )
near the band edge was obtained in the temperature?”zatlongbeT(g’k'n)' The probability of one-photon ab

independent form of (E/k3T?), with the linewidth< T2, In orption is found

the EPA thel'™®R=0, and the nonzero result at the unrenor-

malized exciton-phonon vertex level of approximation —_—= —22 T(EKNMTH(EK,N)IMG,, (K, w). (28
comes from the self-consistent type of diagrams in the stan-  7k¢ n,n’

dard perturbation theoty™—i.e., the diagrams in which the For a weak exciton-phonon interaction, the off-diagonal ele-
virtual phonons are reabsorbéaemitted in the order op- P ' 9

posite to their emissiofabsorption. ments of3, can be neglected compared to the diagonal ones,
In Toyozawa’s formalism, the sum of all such terms cor-and then the absorption line shape is obtained from(£),

responds to a lowest-order approximation in the excitonS€ttingKpho=0:

phonon interaction for the thermal average of the exciton

IV. EFFECTS OF MULTIPLE-PHONON SCATTERINGS IN
BULK EXCITON ABSORPTION

resolvent operato¥ The criterion for the self-consistency of _ 2 Sin(w)
the approximations used in Ref. 34 as applied to the DP a(w)= o lho—Ej—3, (0) P+ [3 (0)]?’
interaction in GaAs require$>70 K. It seems to us, how- (29)

ever, that the criterion for the validity of the EPA I&°¢
>TFCR whereI'SC is the linewidth evaluated in the self- whereX’ and X" are the real and imaginary parts of the
consistent approximation with the EPA afi®Ris the FGR ~ self-energy, and  is the energy of the exciton state in the
result for the DP interaction. From this criterion we deduceabsence of the interaction. At the FGR level of approxima-
the requiremenT>270 K in the case of GaAs. Thus tié  tion one obtains a sum of two Lorentzians, with;;— 25,
dependence of the linewidth obtained in Ref. 34 will not besmall compared t&. ;.
observed at temperatures where the exciton—acoustic-phonon Rather than proceed with explicitly including the anisot-
scattering dominates the temperature dependence. ropy of the valence band in the exciton propagator, we will
We start by outlining a multiple-phonon theory based ontake here a simpler approach of an effective simple band
the Hamiltonian in Eq.(15) in the one-exciton subspace. model in the estimating the effects of the multiple-phonon
Unlike in the FGR approximation, botkvirtual) phonon  processes on the optical linewidth. In this approach we will
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replace the valence-band DP interaction matrix element

Un ..(—k,—k+0q) in Eq.(16) by an effective scalar defor- 10 j
mation potential ~
hq \M2 08~
UK/ieff(q) — iV—l/Z( DUeﬁ’ (30) r0)=0.1 meV
2pv A

o
o

with DUEﬁ defined using an angular averageth'M,;T(O,q)
which is also averaged over twb|M’| values with respect
to the second index. We will also define the effective simple ™ 04
band exciton mass by equating the resulting FGR scattering
rate to the corresponding result of the complex band mode
in the previous section. This mass will depend on interaction -
strengths of both DP and PE interactions. Using the param:
eter values in Tables | and Il, we obtain, for GaAs®"
~1.46 eV, M®/my~1.71.

We can also include the effect of the impurity scattering  FiG. 1. LinewidthI'(T), defined as the HWHM, for bulk GaAs
on the exciton self-energy. In doing so we will neglect theshown forI'(0)=0.1 meV as a function of temperature. The thick
real part of the impurity-induced energy shift of the excitonsolid line shows the FGR approximation in the complex band
energy and denote the frequency-independent imaginary pattodel, Egs.(1) and (25. The dashed line show§(T) with
by I'(0). This I'(0) corresponds to the temperature- multiple-phonon contributions including the vertex terms. The
independent part of the exciton linewidth in H@) that we  dash-dotted line showl(T) with only self-consistent terms(®). It
would obtain if we had used the FGR approximation. Theis seen that the vertex terms mostly cancel the self-consistent cor-
summation of the self-consistent terms gives an equation foiections to the linewidth. The thin solid line shows the linewidth of
the part of the self-energy, which we refer to n), and the corresp(_)ndir_lg transverse exciton-polariton calculated in the
neglecting the dependence®bn momentum variations, we FGR approximation.
use an approximation that gives a correct FGR limit:

HWHM T (meV)

10 30 50 70 90
T (K)

with some additional approximations, as explained in Appen-
dix B. Each term of the orderr2in the exciton-phonon
interaction carries a factor proportional T@". The resulting
equation for3 =32 +3®4+30)1... |ooks like Eq.(31)

V
3@(w)= | d®q5—322 [|[VP(a)|+|ViHq)|?]
(2m)3°4

v N.(q) with a renormalized frequency-dependent interaction vertex.
ho+ho(q)—Eegdk+9)—3@(w)+il'(0) The solution of this transcendental equation was then per-
formed numerically.
NAq)+1 The optical exciton linewidth defined as the HWHM was

- ho—thw(q) —Eedk—0) —3@(w)+i(0)|”  found from the absorption line shapéw). The results for
(31) bulk GaAs are shown in Fig. 1 fdf(0)=0.1 meV, as func-
tions of temperature in the 10—-100 K range. The thick solid
whereN_(q) is the acoustic phonon occupation at a givenline shows the FGR approximation in the complex band
temperature and ,(q) andEg(k) are the phonon and ex- model, Eqs(1) and(25). The dashed line shows(T) with
citon dispersions, respectively. The factor of 2 comes fronthe inclusion of the multiple-phonon contributions, including
the summation over the two degenerate values of the finakhe vertex terms. The dash-dotted line shdw3) with only
state exciton quantum numbigr’. At temperatures above 10 self-consistent term&(?) included. It is seen in Fig. 1 that
K we can replaceN(q) by kgT/Zqu, and neglect the the vertex terms mostly cancel the self-consistent corrections
spontaneous-phonon emission term. The absorption lint the linewidth, the resulting linewidth being approximately
shape in the self-consistent approximation is then found byinear in T. The thin solid line shows the linewidth of the
numerical solution of Eq(31) and using Eq(29). corresponding transverse exciton polariton, calculated in the
As we know from Toyozawa’s work: the vertex terms in  FGR approximation, including both phonon absorption and
the perturbation theory for the self-energy can make a sigemission® and using the effective simple band model with
nificant contribution to the total absorption. We will consider the same parameters as we obtained for the exciton problem.
the same two classes of the self-energy vertex diagrams ashe transverse polariton linewidth in bulk GaAs is thus
Ref. 34 in the partial summation of the vertex correctionsfound to be quite close to the exciton linewidth.
From the point of view of the corrections to the exciton- From Fig. 1 we conclude that the inclusion of the mul-
phonon interaction verteX, these terms fall in two class- tiphonon processes has only a small effect on the exciton
es: ladder diagrams and maximally crossed diagrams itinewidths in GaAs, as compared to the FGR result. At
terms of phonon lines. Here, however, we do not need &igher temperatures multiphonon processes modify the shape
momentum cutoff, the convergence of the integrals beingf the absorption curve without affecting the linewidths. In
provided by the wave vector dependence of the exciton fornfrig. 2 we show the absorption line shapes for three different
factors in Egs(2) and (3). These terms can be summed upvalues of the temperature, 20, 50, and 100 K with the same
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T(0)=0.1 meV | ZnSe

GaAs

d. (neV/K)

ac
N
L

Absorption (arb. units)

|
-2 -1 0 1 2

\ \ T
energy shift (meV) 10 30 50 70

. . . antum well width L (Angstroms
FIG. 2. Absorption line shapes for three different values of tem- Quantum well w (Ang )

perature, 20, 50, and 100 K, with the same value Iq0) FIG. 3. Linear coefficientl,. in the temperature dependence of

=0.1meV as in Fig. 1. With an increase of temperature the linghe linewidthI'(T), defined as the HWHM, is shown as a function

shape becomes asymmetric. of the well width for GaAs/A} ,Ga, sAs and ZnSe/ZnMgSSe quan-
tum wells.

value ofI'(0) as in Fig. 1. We see that at higher temperatures
the line shape becomes asymmetric. If we neglect the imp
rity scattering and sef'(0) to zero, every absorption curve
will have a sharp edge at the lower frequencfesve find
that with increasing value of the impurity scattering the low . .
energy edge broadens and the line shapes become more syfciton—LO-phonon scattering rafés. _

metric. Therefore, only in a very pure material could the . Considera GaAs/Ala, - ,As well with isotropic conduc-

multiphonon modification of the optical exciton line shapetion band with the effective mass in the welne,
be observed. =0.06M,, and mass in the barriersmg=(0.067

In each order of interaction, most of the contribution *0-83%)Mo. Fsgr the heavy holes we use the in-plane mass
comes from scattering to the “heavy-exciton” branch in Eq. Mhnw=0.18Mg,” the mass for the growth directiomy,,,
(6), with scattering to the “light-exciton” branch contribut- =0.34 in the well, andny,,=(0.34+0.42)m,. From the
ing little. Also, scattering to the exciton states other than th&nown band alignments we find the barrier heights for the
1s state was found to be negligible. In addition, we evaluateclectrons and holes/.=0.835% eV andV,=0.411x eV.
the effect of the exciton-phonon interaction vertex renormal-The dependence of the band parameters on the A1 concen-
ization by the effect of the moving impurities_i_e_ the mo- tration x was obtained from Ref. 40. The tunneling of the
tion of impurities in the phonon f|e|ﬁ This effect is known carriers into the barriers was taken into account in the exci-
to be of importance in the microscopic theory of sound atfon form factor by the use of effective well widtf%,ob-
tenuation in impure metaf$.In the case of semiconductors tained by equating the normalization constants of the finite-
the motion of impurities could lead to a temperature-and infinite-barrier models. We consider first the FGR ap-

dependent contribution to the exciton linewidth and this ef-Proximation for the exciton-phonon scattering rates. Here,
fect is evaluated in Appendix C. To |eading order in theun“ke the case of bulk GaAs, the contribution of PE inter-

effective “three-body” exciton-impurity—phonon interaction actions was found to be negligible as compared to the con-
the effect on the linewidth is found to be negligible. The tribution of DP interactions. This is due to the effect of the
details are given in Appendix C. nearly complete decoupling of the light and heavy holes in
narrow quantum wells on the exciton form factor.

The resulting linewidth, defined as the HWHM of the
absorption spectrum, depends linearly on temperature, and
the linear coefficientl,. is shown in Fig. 3 as a function of

Turning next to exciton—acoustic-phonon scattering inthe well width, for x=0.2. The overall magnitude o,
semiconductor quantum wells, we notice that the symmetry-2-3xeV/K is in generally good agreement with experi-
is lowered and the degeneracy of the valence band at thmental results for quantum wefl$;*°1-3 ueV/K, obtained
zone center is partially lifted. The effective exciton Hamil- using transmissioh, resonant Raman scatterifigoptical
tonian is then is more complicated than in the bulk case, andephasind, and photoluminescenceThe results in Fig. 3
an evaluation of the scattering rates in the complex banare for relatively narrow wells in which excitons in only the
model for the wide wells requires a large set of basis funcfirst electron and hole subbands contribute. For wider wells,
tions to describe the exciton wave function. The picture isthis contribution decreases due to the normalization factor of
simpler for the narrower wells where the large splitting of thethe subband functions. As the well becomes wider, there
heavy- and light-hole branches allows one to use a simplavould be an increase ith,c Over the values in Fig. 3 as more

LBand model for heavy holes, at least at small wave vectors.
We then proceed with a simple effective-mass band model
_similar to that used in our earlier investigation of the

V. EXCITON —ACOUSTIC-PHONON SCATTERING IN
SEMICONDUCTOR QUANTUM WELLS
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subbands become accessible as final states. Eventually, as #ygroximation. The use of a linear coordinate transformation
quantum well becomes wide enough, the subbands collapskefined in Egs.(8) and (14) allowed us to use the zero-
on together, and the result should go over to the bulk valuesrbital-momentum component of the exciton wave function
for doc given in Table 1. in the evaluation of the exciton-phonon interaction matrix
In Fig. 3 we also give results for quantum wells of ZnSeelements in the FGR approximation for the exciton linewidth
with ZnMgSSe barriers, systems that have been of experin gq. (25).
mental interest. rece_ntly. The material parameters for these \we have included both deformation potenti@P) and
systems are given in Ref. 41. The overall magnitudes obpjezgelectriq PE) interactions in our calculations, taking into
tained here @,-~4 neV/K) are Compatlb|%1\ﬁl:{th available 5ccount the tensor nature of the valence-band deformation
experimental estimates df~5-10peV/K."""The mate-  yqtential. When the exciton self-energy is evaluated to the

rial parameters for these structures are less well known thagy, o<t order in exciton-phonon interactiRGR approxima-

n tl?]eoﬁgz(: g;ﬁﬁg@l?ﬁﬁzﬁigﬁ?ﬁz self-consistent mul_tion), the optical absorption has a Lorentzian shape with the
tiphonon terms in the two-dimension&tD) limit we have linewidth given by EQ.(25). The resulting linewidths for

evaluated @ in the 2D version of Eq(31) and found that bulk GaAs and ZnSe are close to the experimentally deter-

c o : _mined values:?**%31The relative sizes of the DP and PE
the results for the linewidths are close to those obtained W'ﬂ&onter?but? otilefto the Iingwsj?r;[ deepseneds (?n tth(z valuae c(j)f the

;hg ti(rsnz iﬁﬂgxgg?#gg ?Qn(?vl?clg?égrt]h(:nt?r? gjlﬁeﬁjfmségpiezoelectric tensor componeef, and the effective exciton
P ’ Size agy- In the case of bulk GaAs the dominant contribu-

ggltf-ggﬁgicsttetzf trgrrtr?s CI%nft;I(l:)tmtﬁesrleg inslflaf ar:rlu);rgoarre lﬁrr]nagnttzittieon was found to come from PE interactions, while in the
' T 9 19 case of bulk ZnSe almost all contributions come from DP
to Toyozawa, that the multiphonon terms in 2D are; +oractions
a2 ; . .
small®* because the density of states near the exciton band Using the FGR results for exciton-phonon scattering rates

edge in the 2D system does not vary as sharply as in bth‘ a degenerate band model, one can define an effective

system, the effects of the scattering to the intermediate Stat.es?mple band isotropic mass and effective scalar deformation

on the exciton propagator should be significantly less than "ﬂ)otential, Eq/(30). This effective mass depends on the inter-

bulk._That IS wha_t we_found in the _evgluatlon OT the self ctions included in the model. Here we use actual DP and PE
consistent corrections in 2D, and a similar result is expecte . . i - -

- .Interactions, and the resulting value " is then used in
for the vertex corrections. Therefore, the values of the exci-

. . . ) . the estimate of the effect of multiple-phonon scatterings on
mrrc])xlilrzz\filz)dr:harllré gggl;IC\)l\r‘/]Vir\:Vl(?:S gbstﬁgljg l\)/\gt?eg;?)nzglR ;CF::'U'[_he exciton optical absorption. We have also included the
P 9: y effects of the exciton-impurity scattering in the evaluation of
rate. . . :

the exciton self-energy. The multiple-phonon scatterings

were found to alter the absorption line shape, which can be

V1. SUMMARY AND DISCUSSION noticeably non-Lorentzian at higher temperatures if the im-
_ purity induced linewidtH(0) is small, smaller than 0.1 meV.

~ Inthe present work we have evaluated the optical absorpsowever, the total multiple-phonon scattering contribution to

tion spectra and the contribution of acoustic phonons to thene [inewidth was found to be small compared to the one-

exciton linewidths in bulk and narrow quantum wells of di- phonon result—i.e., the one obtained from the FGR approxi-
rect band-gap cubic semiconductors, with numerical resultgation, as shown in Fig. 1.

given for GaAs and ZnSe. EXperimental results have shown We have also considered exciton_phonon Scattering ef-

that the acoustic phonon contribution to the homogeneougcts on the optical linewidth in the case of the quantum
exciton linewidth increases substantially in going from quan-elis sufficiently narrow to neglect the coupling of different
tum wells to bulk. In prior theoretical work the exciton- sypbands. In such cases a simple band model with isotropic
phonon interaction effects in optical spectra have beefy_plane exciton dispersion is applicable, and the resulting
treated USing a Simple band model in which the valence bandajues of the HWHM were found to be Compatib|e with the
is replaced by a single parabolic band with heavy-hole masgxperimentally determined values for the GaAs/GaAlAs
Perturbation theory for acoustic phonon scattering using thgqefs_ 1 and 3-band ZnSe/ZnMgSSe¢Refs. 31 and 41
deformation potential interaction and isotropic dispersion Ofsystems. The contribution of the multiple-phonon scatterings
a simple band description accounts for experiment in quanm quasi-two-dimensional systems was found to be negli-
tum wells, but it fails by an order of magnitude for bulk giple. Comparing the acoustic-phonon-induced linewidths
GaAs. for narrow quantum wells with the bulk values calculated in
In the present work we have taken the coupled structurgne present work, we obtain a qualitative understanding of

of the valence band into consideration, accounting for thghe experimentally observed size dependence of the exciton
degeneracy of the valence band and anisotropic exciton dignewidths?®

persion in bulk semiconductors. The scattering cross section
in Eq. (25) is proportional to the product of density of final

states and the square of the absolute value of the exciton-
phonon interaction matrix element. We accounted for the an-
isotropy of the exciton dispersion in the density of states, S.R. acknowledges useful discussions with B. Gelmont
while the matrix elements were evaluated in the sphericadnd T.L.R. those with M. Cardona and T. Ruf. This work was
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supported in part by DARPAS.R. and T.L.R. and ONR The total angular momentum igt=F+s=L+J+s,

(T.L.R). whereJ ands are spin-3/2 and -1/2 operators of the hole and
electron, respectively, ardis the orbital angular momentum
APPENDIX A: EXCITONS IN THE SPHERICAL of the exciton. As in Eq(10), we will use the notatioM, g,
APPROXIMATION andv for the projections of, J, ands. The angular momen-

) ) ) ~ tum J; does not commute with momentuRy, and the ex-
~ Evaluation of various matrix elements and approxima-citon Hamiltonian has nonzero matrix elements between ex-
tions for the exciton eigenstates are conveniently done if thjion states with different values &, even in a spherical
Hamiltonian is rewritten in terms of the irreducible spherical approximation for the valence band. For the lowest-energy
tensor operatorS:*’ First, after the coordinate transforma- oy iton state at a given value Bf, rewrite Eq.(10) as
tion in Eq. (8) the exciton Hamiltonian in Eq.7) takes the '

form
®(r)=2 R(N|Li,J,F M), (A5)
1 1 p2 e2 Y ) i
Hsp= chr M 2 Admesr mo(p"]) with |L;—J|<F;<L;+J. The Hamiltonian in Eq(A4) has
2 2 an axial symmetry, ant¥l is constant in the eigenstate ex-
n ®e T “h P2+(E— ﬁ) p-P pansion. We restrict the basis states to those that couple to
2m, 2m) T \m, T the L=0 state directly—i.e., in first order df.*® In the M

= +3/2 subspaces, the basis consists of four states, corre-
_ laﬁ(pT,J)erzdhl(p,J)(pT,J)' (A1)  sponding toL=0,1,1,2 andF=3/2,3/2,5/2,3/2. In thél =
Mo Mo +1/2 subspaces, the basis consists of five states, correspond-
ing toL=0,1,1,1,2 and-=3/2,1/2,3/2,5/2,3/2. Matrix ele-
ments of various terms in E4A4) can be evaluated using
the Wigner-Eckart theorem and relations or tables foad
6j symbolstt?2:23
The ground state, which will be referred to as tteesiate,
Py =3pip;— &;p% will have the largest contribution from th#®,3/2,3/2M)
state. In any particular subspace with a given valullpive

where 1= (y,+5%/2)/my, Py is the total momentum with
eigenvaluesiK, and p is the relative momentum of the
electron-hole pair.

Define the Cartesian second-rank tensor operstéts

3 can eliminate the coupling of this state to te3/2,3/2M)
Jij :E(Ji\]j +3;9) — 8,92, (A2)  state by a particular choice of the coefficieatsanday,, Eq.

(14). Specifically, consider theM =3/2 subspace. The
and the corresponding spherical tensor components for thground-state problem is reduced to a three-dimensional sub-
first-rank and second-rank irreducible spherical tensors:  space spanned by the basis functith8/2,3/2,3/2, |2,3/2,3/

2,3/2, and|1,3/2,5/2,3/2, resulting in three coupled linear

P(l):}p P(l):IQ(p +ip,) differential equations for function®;(r) in Eq. (A5), i
R Y L =0,1,2. We will adopt a variational approach, with

, 3 ” _ Ro(r)=Aca*%e ", Ry(r)=Bp¥re #",
6'=\/5Pas PZ=F(P1=iPy),

Ry(r)=iC¢re ¢, (AB)

These functions have the correct behavior at smakhich
follows from the differential equations. The normalization
gives A2+ 3B2+3C?=4. One can then show that with the
With the z axis chosen alonBy, the exciton Hamiltonian  parameters appropriate for GaAs and ZnSe, Table I, the func-

(2) . ;
PiZZE(Pll_ Pr®2iP1y). (A3)

in Eq. (A1) takes the form tion R, is an order of magnitude smaller th&y, and the
5 5 5 5 functionR, is even smaller, unled§/ « is very large. There-
H _p e L(p<z>,‘]<z>)+ e 71“*1) p2 fore we are justified in using the=0 wave function in the
SPT2u er 9m, 2m,  2mgy) T3 evaluation of the exciton-phonon matrix elements in Egs.
) (16) and (23).
pof Fe_ i) oy 1 \/57“h3<2>p2
m. mg ) ° T 3V3mp 0T APPENDIX B: EVALUATION OF EXCITON-PHONON
4 5 yay, . VERTEX TERMS IN THE PERTURBATION
_ § \/;To[p(l)xj(z)]g )st' (A4) THEORY OF THE EXCITON SELF-ENERGY
As we already pointed out in Sec. IV, we use an effective
where simple exciton band model to estimate the contributions of
1 01 the multiple—phonon scatterings to the optical absorpt_ion.
-1 The contribution of the self-consistent terms to the exciton
Mmoo Mg Mg self-energy is shown in the first line of Fig. 4. The thin
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5@ where ¢,=(202M/W)*2 and y=T'(0)/W is included in
m order to account for impurity scattering. Neglecting the
= + + o spontaneous-phonon emission, we obtain from(E#), after
integrating over the angles,
6a)
s® X
keT [ D2(2M)%?2 (=
i ES 2 i / E E \ E U(Z)ZW[ZWZ\;VU%%UZ fo dXXZF%P(X)GL(ﬁe,U'X)
LA
6(2M)12 (ee14 wa
t = | — dx F2d(x
=0, 202 SO 35w W pvia | eer) Jo pe(X)

2

4 vip
G (be,0,X)+ 5 — G1(5e,0,X)
3 v

] . (B5)

RN (N ooy

FIG. 4. Graphic representation of the terms in the perturbatior-rom this equation, we find the self-consistent approxima-
series for the exciton self-energy. The thin straight lines represerfion for the self-energy by replacing by o) in the exciton
the bare exciton propagator, and the thin curved lines represent tigropagators on the right-hand side. The corresponding self-
phonon propagators with the thermal average taken over the phonamergys (?)(w) is used then in Eq(29) to obtain the absorp-
occupation. The thick straight lines represent the exciton propagataion line shapex(w) at this level of approximation.
renormalized by the self-consistent terms. The second and third |n order to simplify the evaluation of the vertex terms, we
lines show the first few vertex corrections of the type taken intogpproximate the sound velocity in the exciton propagators
account in Eq(B15). for different polarizations by one value , andc, by ¢

) _ ) =C_a . This allows us to combine the DP and PE terms in
straight lines represent the bare exciton propagator, and thge following way. By using the angularly averaged PE in-

thin curved lines represent the phonon propagators with thgsraction, the following modified PE form factor can be de-
thermal average taken over the phonon occupafidinere- fined,

fore, every phonon line carries a factorf(q) for phonon

absorption and a factdd (g) + 1 for phonon emission. Cor- 1 ee 52 |12 402, \ 12 £X)

respondingly, each diagram with phonon lines represents F_(x)= \/> 14 ( ) ( _é) P

2" terms. The thick straight lines represent the exciton propa- 35seDc | 2ZMegW 3 vTa X

gator renormalized by the self-consistent terms. Each un- (B6)

renormalized diagram of the fourth and higher order in the . . .

first line of Fig. 4 diverges, but their sum is finite. imd then we can define the total effective exciton form factor
It is convenient to use dimensionless variables here. W& (X), so that

define a dimensionless momentunso that

E2 —_E2 =2
H2G2IZM P, B1) F2(x)=Fpp(X)+ Fpg(X). (B7)
whereW is some energy scale and we $%t=1 meV. We The first diagram in the second line in Fig. 4 represents
define a dimensionless form factor for the effective deformaihe four lowest-order vertex terms in the perturbation series
tion potential interaction as for the self-energy. The evaluation is similar to that for the
elastic scattering® The momentum integrals can be evalu-
1 Dfﬁ/Dc ated in spherical coordinates. The angular integrations are

(B2) elementary, and one is left with a double integral over the
absolute values of two phonon momenta. The sum over the
four terms in=®) can be rewritten so that the integrand is an
even function of the phonon momentaandx,. This allows

us to extend thes, integration to the(—o,») interval. We
obtain then

For(x)= ,
o) = T ad? (17 had)?

wherex=a2, M sWI242 and the dimensionless form factor
for the piezoelectric interaction is given by

1
(1+nadX®)? (1+ra2x))?

Fpe(X)= (B3)

4 kgT)® 2 [~ =2
The dimensionless energy relative to the unrenormalized ex- W 0
citon band edge and the dimensionless self-energy are de-

fined asde=(hw—E;)/W and o=3/W. We also define 1(xy) _ I(—xy)
the exciton propagators for each phonon polarization: de—o—xi—cxy+iy oSe—o—xi+cextiy|
(B8)
G, (de,0,X)= 2, ! (B4)
nEST T A se—o—Xx2+sex+iy’ where
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Dg(ZM )3/2W1/2
=———7 3 (B9)
47°puiph
1(xy)= 1Jw dXpxoF? -
(Xl)_i — 00 X2X2 (XZ) 56—0'—X§—CX2+I7
X1—X5)2+C(X,+X,) — Se— o
] a2 S0 ) 10
(X1t X))+ C(X1+Xy)— de—o

The integrall (x;) can be evaluated in the complex plane.
The integrand has poles from the propagator and cuts from

the logarithm. The contributions from the poles B{x»)
have a small effect on the imaginary part @fand will be
ignored in this calculation. In this way we obtain
c

 JZra(de—atiy)

7~
I(x1>=—7F2<zg)|(1

(X1 +C—223) (21— 23)

X
In (XgtC+223)(2,—23)

21— 24
In ,
22_24

(B11)

c
~l1+
( Je?+4(se—o+iy)

where the branch of the logarithm is chosen which goes to

zero in the double limit—0, x;—0, and

2
c C
25X 5 * \/Z +de—o+iy—2cxy,

= C+\/CZ+5 +i
Z3 4= 5= ] e—o+lvy.

(B12)
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other class. In the approximation of E@®13) the diagrams
of the order 2 add up to give

kgT

o?(n=3)=2 W

(n+ 1)J“f:dx XF2(X)

X2—n| n—l(x)
Se—o—x°—cx+iy
(=x)2 """ H(—x)

Se—o—x°+cx+iy

, (B14)

with J defined in Eq.(B9). The transcendental equation for
self-energyo as a function of the energy shife is obtained
as

o= 21 (o). (B15)

The equation for the self-ener@ydoes not of course depend
on the choice of the energy scalé Numerical solution of
Eq. (B15) is used in the expression for absorpti@ito obtain
the line shapes shown in Fig. 2.

APPENDIX C: EFFECT OF THE PHONON-INDUCED
MOTION OF IMPURITIES ON THE
TEMPERATURE-DEPENDENT LINEWIDTH

Lattice vibrations cause imbedded impurities to move,
and the scattering of electrons and holes by the moving im-
purities is not elastic in the stationary coordinate systém.
The resulting exciton—acoustic-phonon interaction Hamil-
tonian will have “three-body” electron-phonon-impurity
terms. In the lowest-order approximation for the exciton self-

To fourth order in exciton-phonon interaction, the dimen-energy—i.e., the FGR—the contribution of these terms to the

sionless self-energy as a function of the dimensionless erexciton linewidth is proportional to the number of acoustic
ergy shift de is found as the solution of the transcendentalphonons, thus contributing to the linear temperature depen-
equationo= o®(¢) + (o). From numerical evaluation dence in Eq(1). In the case of impure metals, an electron-
we find that no significant error will be made in the absorp-phonon model Hamiltonian was derived in Ref. 38. We con-
tion if we approximate (x) by its elastic limit*1.(x) in Eq. ~ sider here a similar model for the carrier-phonon interaction
(B8), while keepingc#0 in the remaining propagators. In in the case of a direct banc_J—gap semiconduct_or in a sir_nple
doing this, we also replace?(zz) by half of its maximum _band effec_:tw_e mass approximation for the motion of carriers
. =, . _ in the periodic field of the lattice and considering longitudi-
value_—|.e., by (1/2<(0). Then we obtain a simpler ex- nal acoustic phonons.
pression Let us assume there alg,,,, impurities at the lattice sites
R; and that the interaction of electrons in both conduction
and valence bands with impurities is given by the potentials
Uimp(r . —Rj), @=e,h. The effective masses of the electrons
and holes aren, andm;,, respectively. The wave functions
to be used in Eq(B8). of the relative electron-hole motion atg (r), where index
Turning to the higher-order terms, the terms in the pertur\ labels different exciton states. In the low-carrier-density
bation expansion proliferate rapidly, and we will confine our-limit, the three-body interaction is obtained as
selves to the two classes of diagrams considered by
Toyozawa” In the sixth order, the “maximally crossed” dia-
gram is the second one in the second line of Fig. 4. It repre-
sents eight terms as every phonon line can describe either the
emission or absorption of one phonon. The three diagrams in
the third line of the same figure represent 24 terms of the

(Se—o+iy)Y2—x,/2

(de—a+i7) P+ x, /2|’
(B13)

7T~
la(x0) == 5 F2(0)In

LS

[ —
H _Hex—ph—imp_
2V NN pagk

U (@) Uimp(a) f(a, k)
XB, (p+q)By(p)(a+aty,  (C1
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whereB anda are exciton and phonon annihilation opera- , T o R
tors, Uimp(0) is the Fourier transformation afy(r), f(a,k) Fls_EhKEI (Vis(a,ki{R7HVis(a" K {RH)
depends on equilibrium positions of the impurities and is ad
defined as K2
XNph(k)5 W_hkULA y (CG)
q k. R0
fak)=——=—=2 e TR, (€2
VWpw(k) i whereN,(k) is the Bose function for phonons. To the linear
U, () is the exciton form factor given by order in impurity densityin,=Ninp/V, we obtain
UM'(Q):J’dsr(eiq'rmh/M_e_iq'rme/M)d’:r(r)Qﬁ)\(r)- , _ KeTNimp f d*q 2 2042
= U U . (C
(C3) 1s SWhPUEA (2,”_)3| 15(Q)| | |mp(q)| q ( 7)

M=m,+m,, and V is the volume. The configuration-
dependent exciton-phonon matrix element is given by Various possible approximations for the matrix element
0 Uimp(Q) resultinI’’ a few orders of magnitude smaller than
V(@ KARTD =Uy (@ Uimp(a) f(a.k).  (C4  the linewidth obtained from the exciton-phonon interaction
. . . evaluated in the same approximation. Here we will discuss
COV?S'O"” the mtraband tranS|t|oN$=?\= Ls. The COITe- two different models. In tr?epfirst one, we consider a statically
spondéngillz exciton ~ wave function is ¢1s(r)  gereaned Coulomb potentiali,(q) = e*/4meseq?  For
=(mag,y exp(—rlasd, whereag,. is the exciton Bohr nimp~1018 cm 3 we find from Eq. (C7) that I''/kgT

radius. From Eq(C3) we obtain ~10"’-10°°. In the second model, we consider a short-
1 1 range scattering of strength,. Then the result of Eq.C7)
U.(q)= 55— >3- can be expressed in termsldf, which we define here as the
° (1+Q%@edmi/4AM )" (140 dme/4M”) sum of impurity-induced electron and hole linewidths evalu-

(CS) ated at the energy corresponding to the electron-hole relative
In the FGR approximation, the exciton linewidih is ob- ~ motion in the exciton bound state. One can easily show that
tained as the imaginary part of the exciton self-energy at thd' o= nimpugM/ZWanhz. In terms ofl’y, we obtain from Eq.
band edge. After taking a thermal average over the phonofC7) that I''/kgT~(I'o/1 meV)x 107 °. As I’y is usually
distribution and a configurational average over the positionsmaller than 1 meV, the result is a negligible contribution to
of impurities, we obtain the temperature dependence of the linewidth.

1D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S3V. F. Gantmakher and Y. B. LevinsoBarrier Scattering in Met-

Kyono, Phys. Rev. B51, 16 785(1995. als and Semiconductof®orth-Holland, Amsterdam, 1987
2C. Weisbuch and R. G. Ulbrich, ihight Scattering in Solids ]l '*E. O. Kane, Phys. Rev. B1, 3850(1975.
edited by M. Cardona and G. Gunther¢8pringer-Verlag, Ber-  °M. Altarelli and N. O. Lipari, Phys. Rev. B5, 4898(1977.
lin, 1982, pp. 207-263. 165, Rudin and T. L. Reinecke, Phys. Rev6B 121311(2002.
3T. Ruf, J. Spitzer, V. F. Sapega, V. |. Belitsky, M. Cardona, and K.1N. O. Lipari and M. Altarelli, Phys. Rev. B5, 4883(1977).
Ploog, Phys. Rev. B0, 1792(1994). 18U. Roessler, inFestkoerperprobleme Advances in Solid State
4P. Borri, W. Langbein, J. M. Hvam, and F. Martelli, Phys. Rev. B Physics XIXedited by J. TreusctVieweg, Braunscweig, 1979
59, 2215(1999. p. 77.
SA. V. Gopal, R. Kumar, A. S. Vengurlakar, A. Bosacchi, S. Fran-1°J. M. Luttinger and W. Kohn, Phys. Re®7, 869 (1955.
chi, and L. N. Pfeiffer, J. Appl. Phy87, 1858(2000. 20A. P. Silin, Sov. Phys. Solid State3, 1494 (1971).
6 Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Sc*B. L. Gelmont, S. B. Sultanov, and Al. L. Efros, Sov. Phys. Semi-
wendimann, Phys. Rev. B3, 15 834(1996. cond. 18, 1380(1984).
Y. Toyozawa, Prog. Theor. Phy80, 53 (1958. 22A. R. Edmonds,Angular Momentum in Quantum Mechanics
8S. Rudin, T. L. Reinecke, and B. Segall, Phys. RedB11 218 (Princeton University Press, Princeton, 1860
(1990. 23D, A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
9S. Rudin and T. L. Reinecke, Phys. Rev68 053806(2000. Quantum Theory of Angular Momentuiworld Scientific, Sin-
10y, pellegrini, R. Colombelli, L. Sorba, and F. Beltram, Phys. Rev.  gapore, 1988
B 59, 10 059(1999. 2AN. 0. Lipari and A. Baldareschi, Phys. Rev. L&xs, 1660(1970.
. D. Landau and E. M. Lifshitz, Quantum Mechanics— 258, L. Gelmont and M. 1. Dyakonov, Sov. Phys. Semicobdl905
Nonrelativistic TheoryPergamon, London, 1965 (1972.
128, M. Agranovich, Theory of Excitongin Russiai (Nauka, Mos-  2°A. Baldereschi and N. O. Lipari, Phys. Rev.882697(1973.
cow, 1968. 27G, L. Bir and G. E. Pikus, Sov. Phys. Solid St&{e2039(1960.

085314-13



S. RUDIN AND T. L. REINECKE PHYSICAL REVIEW B66, 085314 (2002

28G. L. Bir, E. Normantas, and G. E. Pikus, Sov. Phys. Solid Staté®S. L. Chuang,Physics of Optoelectronic DevicesViley, New

4, 867 (1962. York, 1995.

29, Schultheis, A. Honold, J. Kuhl, K. Kder, and C. W. Tu, Phys. %1J. Suda, Y. Kawakami, Sz. Fujita, and Sg. Fujita, Jpn. J. Appl.

Rev. B34, 9027(1986. Phys., Part 3, L986 (1994.
30A. Tredicucci, Y. Chen, F. Bassani, J. Massies, G. Deparis, and G"M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hana-

Neu, Phys. Rev. Bl7, 10 348(1993. mura, Excitonic Processes in SolidSpringer-Verlag, Berlin,
31C. W. Chang, H. C. Yang, C. H. Chen, H. J. Chang, and Y. F.  1986.

Chen, J. Appl. Phys89, 3725(2001). 43Semiconductors edited by O. Madelung, Landoldt-Bustein
823, Adachi, J. Appl. Phys$8, R1(1985. New Series, Group Ill, Vols. 17a, 17b, and 28pringer, Berlin,
33D. D. Nolte, W. Walukiewicz, and E. E. Haller, Phys. Rev. Lett. 1982, 1986, 1987

59, 501 (1987). 4. J. MosesThe Practicing Scientist Handbodkan Nostrand,
34Y. Toyozawa, Prog. Theor. Phy27, 89 (1962. New York, 1978.
35D. Pines, inPolarons and Excitonsdited by C. G. Kuper and G. “°G. Arlt and P. Quadflieg, Phys. Status Soli, 323 (1968.

D. Whitfield (Plenum, New York, 1963 p. 155. 46D, Berlincourt, H. Jaffe, and L. R. Shinozawa, Phys. RE29,
36w, C. Tait and R. L. Weither, Phys. Rel66, 769 (1968. 1009 (1963.
7T, Tsuneto, Phys. Re21, 402 (1961). 4'N. T. Pelecano®t al, Phys. Rev. B45, 6037 (1992 S.-H. Wei
38G. Grinewald and K. Scharnberg, Z. Phy68 197 (1974). and A. Zunger,ibid. 60, 5404 (1999; A. Blachaet al, Phys.
393, Rudin and T. L. Reinecke, Phys. Rev4B, 3017(1990. Status Solidi B126, 11 (1984).

085314-14



