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Effects of exciton–acoustic-phonon scattering on optical line shapes and exciton dephasing
in semiconductors and semiconductor quantum wells
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The interaction of excitons with acoustic phonons in direct band-gap semiconductors gives the dominant
contribution to the temperature-dependent part of the exciton homogeneous linewidths and to dephasing rates
at lower temperatures, e.g., below 150 K in bulk GaAs. Experimental results have shown that this contribution
increases substantially in going from GaAs quantum wells to bulk GaAs. A perturbation treatment of acoustic
phonon scattering in a simple band exciton model—i.e., neglecting valence-band coupling and anisotropy of
exciton dispersion—agrees with experimental results in narrow quantum wells. On the other hand, it fails by an
order of magnitude for bulk GaAs and by a large factor for other materials. Here we give a thorough theoretical
discussion of this problem. The exciton linewidth is calculated to lowest order in the exciton–acoustic-phonon
coupling including valence-band interactions and anisotropic exciton dispersion. The effects of multiple scat-
terings of phonons in higher orders of the exciton-phonon interactions are calculated and previous work on
these effects are discussed. The effects of impurity motion from acoustic phonons on the exciton linewidths are
evaluated. We conclude that the temperature-dependent exciton linewidth is given reasonably well by the
lowest-order phonon scatterings provided that the full anisotropic exciton dispersion is included. Higher-order
phonon scatterings give a small contribution to the linewidth and can affect the line shape. These results agree
well with available experimental results for the low-temperature exciton linewidths in bulk GaAs and ZnSe and
in quantum wells from these materials.

DOI: 10.1103/PhysRevB.66.085314 PACS number~s!: 78.20.2e, 78.67.De, 71.35.Cc
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I. INTRODUCTION

The interaction of excitons with acoustic phonons in
rect band-gap semiconductors gives the dominant contr
tion to the temperature-dependent part of the exciton ho
geneous linewidths and dephasing rates at lo
temperature, e.g., below 150 K in bulk GaAs.1,2 There has
been much interest in the effects of confinement on exc
broadening and dephasing.1,3,4,5Some understanding of con
finement effects on the exciton-phonon interaction can
obtained by comparing exciton linewidths in quantum we
to the corresponding bulk values. In relatively narro
wells—say, narrower than 100 Å—the splitting of the v
lence band into heavy- and light-hole bands at theG point is
sufficiently large to justify an evaluation of the excito
phonon matrix elements in a simple band model—i.e.,
glecting light–heavy-hole coupling. If carrier tunneling in
the barriers is taken into account, this model gives excito
acoustic-phonon scattering rates that are in overall agreem
with experimentally deduced rates.3–6 In bulk materials, on
the other hand, the simple band model for a ‘‘heavy-h
exciton’’ 7 gives exciton–acoustic-phonon scattering ra
that are an order of magnitude smaller than the values
duced from the experimentally measured linewidths.8 A sat-
isfactory quantitative theory for the exciton–acoustic-phon
scattering in bulk materials is required for an understand
of confinement effects on exciton linewidths, exciton deph
ing and dissipation effects in optical quasimodes in semic
ductor microcavities,9 and exciton-polariton photolumines
cence in bulk microcavities.10
0163-1829/2002/66~8!/085314~14!/$20.00 66 0853
-
u-
o-
r

n

e

-

–
ent

e
s
e-

n
g
-
-

Several possibilities have been suggested to address
discrepancy between experiment and theory for the b
linewidth, including higher-order phonon scattering with
an effective elastic approximation for the phonon scatterin7

polariton effects on exciton dispersion,8 contributions from
the shear components of the deformation poten
interaction,3 and the effects of self-consistency in the broa
ening of the final states.3 In this work we address this in
detail theoretically. We develop fully the linewidth to lowe
order in the exciton-phonon scattering including valen
band coupling and the resulting nonparabolic exciton disp
sion. We give the effects of multiple-phonon scattering
higher orders of the exciton-phonon interaction and disc
the region of validity of the approach given in Ref. 7. W
also consider the effects of self-enegy corrections aris
from impurity motion due to phonons.

First, consider exciton phonon scattering to lowest ord
The exciton–acoustic-phonon scattering rates in direct ba
gap bulk semiconductors with cubic structure are evalua
to lowest order, taking the degeneracy of the valence ban
the zone center and the anisotropy of the exciton disper
into account. Theoretical models for excitons in which ba
degeneracy is taken into account will be referred to as ‘‘co
plex band models.’’ Both deformation potential~DP! and pi-
ezoelectric~PE! interactions with acoustic phonons are i
cluded. The resulting scattering rate gives the acou
phonon contribution to the exciton dephasing rate and a
determines the homogeneous linewidth of the absorp
evaluated to the lowest order in the interaction strength—
the Fermi golden rule~FGR! in the time-dependent perturba
©2002 The American Physical Society14-1
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tion theory11 with a thermal average over the phonon dist
bution taken. Here we define the linewidth as the half-wid
at half-maximum~HWHM! of the absorption. The use of th
FGR is equivalent to the one-phonon process approxima
in the evaluation of the exciton self-energy,12 resulting in an
approximately linear temperature dependence of the sca
ing rate, except at very low temperature. The matrix e
ments for DP and PE interactions are out of phase—i.e.,
is real and the other is imaginary13—and they do not inter-
fere to the lowest order. Therefore the corresponding li
width to this order is the sum of the two contributions,

G5G~0!1GDP1GPE5G~0!1dacT, ~1!

where G~0! denotes the temperature-independent part
may arise from impurity scattering in the bulk case.

For detailed evaluations we consider two materials, Ga
and ZnSe. In both cases, the heavy-exciton dispersio
strongly anisotropic in reciprocal space.14 The exciton radius
in GaAs is about 3.3 times larger than in ZnSe. It turns
that the size of the exciton in a complex band material~i.e.,
including coupling in the valence band and thus anisotro
in the exciton dispersion! is an important factor in determin
ing the relative contribution of DP and PE interactions to
scattering rates. In addition, the piezoelectric tensor com
nents for ZnSe are much smaller than those for GaAs. In
simple band model of the ‘‘heavy-hole exciton,’’ using a
effective-mass approximation near the zone center,
center-of-mass~COM! motion and the relative motion of th
conduction-band electron with massmc and the valence-
band hole with massmv can be separated exactly by a CO
transformation. The exciton then has a massM5mc1mv , a
reduced massm5mcmv /(mc1mv), a total momentum\K,
and an effective Bohr radiusa054p«̄\2/me2, wheree is
electron charge, 1.602 19310219 C. The permittivity of the
semiconductor«̄5«« f , with « f being the permittivity in free
space, 8.854310212 F/m, and« is the static dielectric con
stant. The deformation potential for the conduction band
scalarDc and the deformation potential tensor for the v
lence band is replaced by an effective scalarDv . For the
ground-state exciton with initial momentum\K in'0, the fi-
nal momentum\K, as determined by the energy conserv
tion in one-phonon absorption, is given byK52MvLA /\,
where vLA is the speed of sound for the longitudin
phonons. The resulting linewidths in the FGR simple ba
approximation are easily obtained,8 and the DP and PE term
in Eq. ~1! are given by

G0
DP/kBT5

M2

pvLA\3r

3F Dc

~11a0
2a0h

2 K2/4!22
Dv

~11a0
2a0e

2 K2/4!2G2

, ~2!

G0
PE/kBT5

e14
2 e2

70p«̄2r\ S 3

vLA
3 1

4

vTA
3 D

3F 1

~11a0
2a0h

2 K2/4!22
1

~11a0
2aoe

2 K2/4!2G2

, ~3!
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where the parameters of the COM transformationa0e and
a0h in the simple band model are given bya0e5mc /M ,
a0h5mv /M , e14 is a component of the piezoelectric tenso
r is the material density, andvTA is the speed of sound fo
the transverse phonons. SI units are used here.

In a simple valence-band modela0K is small, and the
exciton form factors, the expressions in the square brac
in Eqs.~2! and~3!, can be replaced by (Dc-Dv) for DP and
0 for PE. Therefore, the contribution of the piezoelect
scattering is negligible in a simple band model. On the ot
hand, in a complex band model the corresponding factors
given by more complicated expressions that take the ani
ropy of the exciton dispersion into account. If one defines
effective anisotropic exciton massM (K̂ ), its values for some
directions will be significantly larger thanM defined in a
simple band model.14,15 The values ofK in some directions
will not be small, and the electron and hole contributions
GPE do not necessary cancel, unless the effective exc
radius is small.

In Sec. II we formulate the exciton linewidth problem b
considering exciton states involved in the evaluation of
exciton-phonon interaction matrix elements based on
Kohn-Luttinger Hamiltonian for the valence band. There a
in Appendix A we redefine the problem in terms of excito
states and also discuss a choice of the electron-hole co
nate transformation convenient for the exciton-phonon s
tering problem. The exciton-phonon matrix elements
evaluated in Sec. III and used for the evaluation of the o
cal linewidth in the FGR approximation. The effects
multiple-phonon scatterings and the resulting absorption
shapes are evaluated in Sec. IV and Appendix B. We find
these combined multiphonon terms have only a small ef
on the linewidth and that the temperature dependence of
calculated linewidth agrees well with the available expe
mental results. On the other hand, we find that the m
tiphonon terms have a noticeable effect on the line shap
higher temperatures. The effects of exciton-impurity scat
ing and possible impurity effects on exciton-phonon scat
ing are also considered there and in Appendix C. T
exciton-phonon scattering in GaAs and ZnSe quantum w
is considered in Sec. V. A short version of the present w
dealing with the FGR calculation has been given earlie16

The present paper gives fuller details of these calculati
for the FGR and also discusses the multiphonon and impu
effects.

II. EXCITONS IN DIRECT BAND-GAP BULK
SEMICONDUCTORS WITH DEGENERATE

VALENCE BANDS

We obtain an effective-mass exciton Hamiltonian in a c
bic semiconductor15,17,18using a simple isotropic conductio
band, the Kohn-Luttinger Hamiltonian19 for the valence
band, and a statically screened electron-hole Coulomb in
action:

He-h5
pe

2

2mc
2

e2

4p«« f ure2rhu
2Hv , ~4!
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2Hv5
ph

2

2m0
S g11

5

2
g2D2

g2

m0
~phx

2 Jx
21phy

2 Jy
21phz

2 Jz
2!

2
2g3

m0
~phxphy$Jx ,Jy%1c.p.!, ~5!

where pe,h are the electron and hole momentum operat
2 i\“e,h , J is a spin-3/2 angular momentum operator,m0 is
the free-electron mass,mc is the conduction-band mass,g1 ,
g2 , and g3 are the Luttinger parameters,$a,b%[(1/2)(ab
1ba), and c.p. stands for cyclic permutations.« is the di-
electric constant, and« f is the permittivity of free space. Th
conserved total exciton momentum isPT5pe1ph with ei-
genvalues\K . In Kane’s perturbation theory14 the terms that
involve g2 andg3 , the ‘‘d-like’’ part of He-h , are treated as
a perturbation on the ‘‘s-like’’ part of He-h which has a hy-
drogenlike spectrum. In second order the energy shift of
1s state from the conduction-band minimum is given by

E1s~K !52EB1s1DE~K !

52EB1s1
\2K2

2m0
$A7@B21C2g~q,f!#1/2%,

g~u,f!5 1
4 ~sin4 q sin2 2f1sin2 2q!, ~6!

whereEB1s is the binding energy and we have used po
coordinatesK,q,f. The constantsA, B, andC are expressed
through mc , g1 , g2 , and g3 ~Ref. 14! and CÞ0 if g2
Þg3 . The two signs in Eq.~6! give heavy and light excitons
Although the light exciton dispersion is only slightly anis
tropic, the heavy-exciton dispersion is strongly anisotrop
If one defines an effective direction dependent massM (K̂ ),
given by the inverse curvature ofE(K ) at K50, and uses
parameter values from Table I, then for different directions
reciprocal space one obtains for the heavy exciton in G
M ^100&50.8, M ^110&51.5, andM ^111&52.

For the evaluation of the exciton-phonon interaction m
trix elements, we will use a spherical model approximat
for the exciton wave functions.20,21 The spherical model is
obtained from Eq.~5! by replacingg2 andg3 by one param-
eterg:

HSP5
pe

2

2mc
1

ph
2

2m0
S g11

5

2
g2D2

g

m0
~ph•J!2

2
e2

4p«« f ure2rhu
. ~7!

TABLE I. Values of the band parameters~Ref. 43! used in the
calculation and the effective ground-state exciton radius calcul
in the spherical model.

mc /m0 g1 g2 g3 aexc ~Å!

GaAs 0.067 6.85 2.10 2.90 134.9
ZnSe 0.16 4.30 1.14 1.84 44.4

aReference 43.
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The value of g in Ref. 21 was used givingg5(2g2
13g3)/5 as the one that results in a reasonable approxi
tion for the binding energy of an exciton at rest.

In the simple band model, the relative motion of the ele
tron and hole can be separated from the COM motion b
linear coordinate transformation. There is no such trans
mation for the Hamiltonian in Eq.~7!. One can still define a
relative electron-hole wave vector by

ke5aeK1k, kh5ahK2k, ~8!

with arbitrary coefficients satisfyingae1ah51. The eigen-
functions ofHe-h can be written as

Fex
~K !~re ,rh!5eiK•RF~K !~r !, ~9!

where R5aere1ahrh and r5re2rh . The functionsF(r )
are obtained as eigenfunctions of theK -dependent effective
Hamiltonian.15 The total angular momentum can be writte
asJtot5F1s5L1J1s, whereJ ands are spin-3/2 and -1/2
operators of hole and electron, respectively, andL is the
orbital angular momentum of the exciton. We will use t
notationM, m, andn for the projections ofF, J, ands. We
chooseK̂ as the direction of quantization for angular m
menta.F is not conserved even in the spherical model, b
M[Fz is conserved. Using theL-J coupling scheme,15,17the
exciton eigenstates can be written as

Fl;M ,n
~K ! ~r !5(

m
fl;M ,n,m

~K ! ~r !

5(
L,F

Rl;L,F
~K ! ~r !uL,J53/2,F,M ,n&, ~10!

where

uL,J,F,M ,n&5~2F11!1/2~21!L2J1M

3 (
m1m5M

S L J F

m m 2M DYLm~q,f!um
z vn

z ,

~11!

um and vn are the hole and electron spinor functions,m
561/2, 63/2, n561/2, the indexg denotes the bound ex
citon states analogous to the hydrogenic states of the sim
band model, and we use the 3j symbols defined in the theor
of addition of angular momenta.11

The study of theK-dependent Hamiltonian obtained as
result of the coordinate transformation in Eq.~8! is greatly
facilitated by expressingp andJ operators in terms of irre-
ducible spherical tensors. The corresponding expressions
selection rules can be found in Refs. 15 and 17. The ma
elements of the tensor products can be evaluated using
Wigner-Eckart theorem and 6j symbols.22,23 The exciton
Hamiltonian is given in terms of spherical tensor operators
Appendix A.

At K50 the exciton problem is formally similar to th
shallow acceptor problem,24–26 and the ground state, whic
we denote byl51s, can be written as

d

4-3
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F1s;3/2,M ,n
~0! ~r !5R0~r !u0,3/2,3/2,M ,n&

1R2~r !u2,3/2,3/2,M ,n&. ~12!

R0 and R2 are found as solutions of the system of tw
coupled differential equations. Because of the coupling,
behavior ofR2(r ) near the origin is different from that in
hydrogenic model. We choose a variational treatment of
problem,24 with

R0~r !5Aa3/2e2ar , R2~r !5Bb5/2re2br , ~13!

which reproduces the correctr dependence at smallr, found
by a polynomial expansion of the radial functions. We fi
that R2 is much smaller thanR0 and define an effective ex
citon radius asaexc51/a. The values ofaexc obtained in the
spherical model are given in Table I. AtKÞ0 there are in-
finitely many terms in the expansion in Eq.~10!. Following
Ref. 15, we consider only those basis states that are cou
to theL50 state in first order. This restriction can be show
to reduce the exciton problem to a four-dimensional s
space for theM563/2 case and a five-dimensional su
space for theM561/2 case. A particular choice of the linea
transformation coefficients in Eq.~8! eliminates the coupling
of the L50 state to theu1,3/2,3/2,M ,n& states. Definingge
[1/mc , this choice can be shown to be

ah5
ge

ge1g124g/)
, ~14!

with ae512ah . Consider theM563/2 case. Using a
variational function R1,5/2(r )5 iChr exp(2hr), one can
show that the coupling of theL50 state to theu1,3/2,5/2,
63/2,n& state is small unlessK is large. For example, in the
GaAs case with this choice ofae andah , the coupling of the
L50 state to this state is smaller than the coupling to
L52 state by a factor of 0.13(Kaexc)

2, where aexc is the
radius of theL50 state given in Table I. It is then justified t
neglect this coupling for small and intermediate (K
;1/aexc) values of exciton total momenta. We can therefo
estimate the exciton form factors for the 1s state by using the
L50 wave function andae , ah from Eq. ~14!.

III. EXCITON INTERACTION WITH ACOUSTIC
PHONONS IN BULK SEMICONDUCTORS

Because we will include multiple-phonon processes in
calculation, it is convenient to use second quantization, w
B̂ andâ standing for exciton and phonon annihilation ope
tors. The exciton-phonon interaction Hamiltonian is given

Hexc-phon5( Vll8;MM8;nn8;t~K ,K 8!B̂l8M8n8
†

~K 8!B̂lMn~K !

3~ âK82K ,t1âK2K8,t
†

!, ~15!

wheret denotes three phonon polarization states. In the c
plex band model, in which the degeneracy of the vale
band is taken into account, the matrix elementV depends on
both the initial and final momenta.
08531
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If we consider an exciton in its ground state to be crea
by a circularly right-polarized photon with momentu
\Kphot, then M1n51 with the quantization axis along
Kphot. The electron spin is not changed in the scattering,
we will drop then index. Because the photon wave vector
optical frequencies is small, in the evaluation of phonon
duced exciton linewidth by FGR we can set the initial m
mentum of the exciton to be zero. If we consider for t
moment only the 1s exciton states and use just theL50 part
as an approximation for the wave function, the correspo
ing exciton-phonon matrix element for DP interaction can
shown to be

VM ,M8;t
DP

~0,q!5(
m

DM8m
* ~q8,w8!

3E d3kbUt
c~q!f0~k!f0~k1ahq!

2UMm;t
v ~2k,2k1q!f0~k!f0~k2aeq!c,

~16!

whereq8 and w8 are the polar angles of the vectorq with
respect to the quantization axisz, f0(k) is the Fourier trans-
formation of R0(r )/A4p, and the 434 matrix Dmn(q,w)
5exp(imf)dmn(q) is the spin-3/2 representation of the r
tation group.11 The momentum-dependent coefficientsUc

andUv are the interaction matrix elements for the electro
phonon and hole-phonon scatterings, respectively.

For a simple isotropic conduction band the deformat
potential is a scalar13 and the corresponding matrix eleme
is

Uc~q!5 iV21/2S \q

2rvLA
D 1/2

Dc , ~17!

whereV is the volume andDc is the conduction-band~sca-
lar! deformation potential. The deformation potential ope
tor wnm that enters into the hole–acoustic-phon
interaction13,27 is given by a convolution of the second-ran
operator tensorJnm

i j with the strain tensorui j where the in-
dicesi,j refer to the coordinate componentsx, y, z andn, m
refer to the components of a 434 matrix in theJ53/2 sub-
space: wnm5Jnm

i j ui j , with

Jxx5S a1
5

4
bD I 2bJx

2, Jxy52
d

)
$Jx ,Jy%, ~18!

whereI is the identity operator and the other components
obtained by cyclic permutations. In the spherical model
isotropic form of the deformation potential is obtained
definingb asd/).28

The values of deformation potential constants along w
other material parameters used here are listed in Table II.
coefficientsUmm8;t

v are obtained from the parameter tensorJ
and the four eigenvectors of the valence band Hamiltonia
Eq. ~5! in the following way.13 Define the following convo-
lution matrix:
4-4
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TABLE II. Values of material parameters in the electron-phonon interaction and calculated values of the linear coefficien
temperature dependence of the acoustic-phonon-induced HWHM of the exciton.

«
r

~g/cm2!
vLA

(105 cm/s)
vTA

(105 cm/s)
Dc

~eV!
a

~eV!
b

~eV!
e14

~C/m2!
dac

~meV/K!

GaAs 12.5b 5.3c 4.8c 3.34c 29.3d 2.7c 22.62 0.16f 7.8
ZnSe 8.8a 5.65e 4.2 2.7 28h 22h 21 0.049g 9.6

aReference 43. eReference 44.
bReference 14. fReference 45.
cReference 32. gReference 46.
dReference 33. hAn estimate deduced from the papers in Ref. 47.
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@Jtq#nm5 1
2 Jnm

i j ~di ,tqej1dj ,tqei !, ~19!

wheredtq is a dimensionless phonon polarization vector a
e[q/q. Consider the eigenvectors ofHv in the J53/2 sub-
space,Al(k), with componentsAln(k) with l andn563/2,
61/2. These components enter the expansion of the B
functions at the degeneracy pointk0 : ulk(r )
5(nAln(k)ulk0

(r ). Using a tensor product ofAl ’s, we de-

fine the 434 matrices

@All 8~k,k8!#nn8[Aln~k!Al 8n8
* ~k8! ~20!

and define the deformation potentialsQ l l 8 by the trace op-
eration in theJ53/2 subspace:

Qtq
l l 8~k,k8![tr~All 8Jtq!. ~21!

Using these potentials, the hole-phonon interaction elem
in Eq. ~16! are found as

Ull 8;t
v

~2k,2k1q!5 iV21/2S \q

2rvLA
D 1/2

Qtq
l l 8~2k,2k1q!.

~22!

The exciton-phonon matrix element for the piezoelec
interaction can be shown to be

VM ,M8;t
PE

~0,q!5(
m

DM8m
* ~q8,w8!

3E d3k Ut
PE~q!@f0~k!f0~k1ahq!

2f0~k!f0~k2aeq!#, ~23!

with the electron-phonon matrix elementUPE is given by

Ut
PE~q!5

2ee14

«̄q2 F \

2rvt~q!VG1/2

~qxqydz,tq1c.p.!, ~24!

wherevt(q) is phonon frequency for a given polarizationt.
Also, «̄[«« f with « f being the permittivity of vacuum
8.854310212 F/m.

The phonon-induced linewidth of the exciton statel
51s,K'0,M ,n) defined in Eq.~10! can be evaluated in th
one-phonon processes approximation using FGR. It is th
08531
d

ch

ts

c

a

linewidth resulting from the scatterings to the final excit
states (l51s,K5q,M 8,n) with M 8563/2, 61/2, and tak-
ing thermal average over the phonon population, we obt

G1s,M
FGR 5G1s,M

DP 1G1s,M
PE ,

G1s,M
u 5pE d3q

V

~2p!3 (
M8,t

kBT

\vtq
uVMM8;t

u
~0,q!u2

3d~DEM8~q!2\vtq!, ~25!

where forDE we use an anisotropic dispersion obtained
Eq. ~6! and the indexu stands for DP and PE. If the 1s
exciton wave function is approximated by itsL50 part, as
implied in Eq.~16!, the TA phonons do not contribute to D
scattering at this level of approximation.

Using the parameters from Tables I and II, we obtain
scattering rates and corresponding linewidths for the t
states that can be created by a circularly polarized pho
(M53/2,n521/2) and (M51/2,n51/2). In the absence o
exciton-phonon interactions these states are degenerateK
50, but the degeneracy is slightly split by the interaction,
splitting given by the difference of the real parts of the co
responding self-energies. The imaginary parts of the s
energy in the FGR approximation are the linewidths in E
~25!. They are slightly different for the two states, the diffe
ence being much smaller than either ofG1s,3/2 and G1s,1/2.
The corresponding optical linewidth then will be given b
the larger of two. The results for the HWHM areGFGR/kBT
57.80meV/K for bulk GaAs and 9.58meV/K for bulk
ZnSe. These values are quite close to the experime
HWHM linewidths in bulk GaAs,5,29,30 8–10 meV/K, and
bulk ZnSe,31 10 meV/K. These experimental results were o
tained by resonant Raman scattering,3 optical dephasing,29

and photoluminescence.30,31 They are also much larger tha
the values obtained in the simple band theory7,8 with the
exciton form factors given by Eqs.~2! and~3!. In the case of
bulk GaAs we find that the dominant contribution to th
scattering rate, about 85%, comes from the PE interac
and only 15% comes from the DP interaction. Within the D
contribution, the dominant part comes from the conductio
4-5
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band electron scattering. Therefore, the total result will
be sensitive to the factor-of-2 variations of valence-band
formation potential values for GaAs that one encounters
the literature.32,33

In the case of bulk ZnSe, on the other hand, almost all
contribution comes from the DP interaction, with the PE
teraction contributing less than 1%. The reason for the la
PE contribution in bulk GaAs was indicated earlier followin
Eq. ~4!. For ZnSe, on the other hand, there are two fact
contributing to the negligible PE effect on the exciton: t
value of e14

2 is much smaller than in GaAs, and the sm
effective exciton size, represented byaexc in Table I, greatly
diminishes the exciton form factor for the PE interaction.
addition, we find that the smallness of the exciton size ma
the exciton form factor for ZnSe dependent more on the
ference of the DP parameters for the conduction and vale
bands,uDc2au, rather than on their values separately. This
useful to know because the differences between band de
mation potentials are easier to determine than the potent

IV. EFFECTS OF MULTIPLE-PHONON SCATTERINGS IN
BULK EXCITON ABSORPTION

To go beyond the FGR approximation, we turn now to t
contribution of the multiple-phonon processes to the exci
linewidth. These have been evaluated by Toyozawa34 for the
DP interaction in the simple band model using a quasiela
approximation for acoustic phonons and neglecting the m
mentum dependence of the exciton form factor. That
approximation required the use of the sharp cutoff at la
values of momentum transfer. In Ref. 34 the Debye wa
vector was chosen somewhat arbitrarily as the cutoff. As
result of the elastic phonon approximation~EPA! in the
renormalized exciton propagator, the absorption line sh
near the band edge was obtained in the temperat
independent form off (E/kB

2T2), with the linewidth}T2. In
the EPA theGFGR50, and the nonzero result at the unren
malized exciton-phonon vertex level of approximati
comes from the self-consistent type of diagrams in the s
dard perturbation theory12,35—i.e., the diagrams in which the
virtual phonons are reabsorbed~reemitted! in the order op-
posite to their emission~absorption!.

In Toyozawa’s formalism, the sum of all such terms c
responds to a lowest-order approximation in the excit
phonon interaction for the thermal average of the exci
resolvent operator.34 The criterion for the self-consistency o
the approximations used in Ref. 34 as applied to the
interaction in GaAs requiresT.70 K. It seems to us, how
ever, that the criterion for the validity of the EPA isGSC

.GFGR, where GSC is the linewidth evaluated in the sel
consistent approximation with the EPA andGFGR is the FGR
result for the DP interaction. From this criterion we dedu
the requirementT.270 K in the case of GaAs. Thus theT2

dependence of the linewidth obtained in Ref. 34 will not
observed at temperatures where the exciton–acoustic-ph
scattering dominates the temperature dependence.

We start by outlining a multiple-phonon theory based
the Hamiltonian in Eq.~15! in the one-exciton subspace
Unlike in the FGR approximation, both~virtual! phonon
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emission and absorption contribute to the exciton s
energy, as do exciton states other than 1s. We find, however,
that at least in the simple band model the scatterings to thp
state and higher excited states make negligible contribut
to the linewidths of the 1s state and restrict the formalism t
the 1s exciton subspace. The time-dependent exciton pro
gator is defined as12

Gnn8~K ,t !52 iu~ t !^̂ Bn~K ,t !Bn8
1

~K ,0!&&, ~26!

where indexn refers to the quantum numbersM andn that
define an exciton state, all operators are in the Heisenb
picture, and the double brackets imply a thermal aver
over the phonon ensemble. The electron spin projectio
not affected by the electron-phonon scattering and will
be referred to explicitly here. Because of the degenerac
the 6M exciton states at anyK ,15 one can formulate the
theory in such a way that the indexn is two valued, referring
to the ‘‘heavy’’- and ‘‘light’’-exciton branches, which we
will denote as n51 and n52, correspondingly. The
frequency-dependentGnn8(K ,v) is defined as a Fourie
transformation over time, and we write the 232 propagator
matrix as Ĝ(K ,v). The noninteracting propagator will b
denoted asĜ0(K ,v), and Dyson’s equation for the propag
tor is

Ĝ5Ĝ01Ĝ0ŜĜ, ~27!

where the self-energyŜ(K ,v) is also a 232 matrix. One
can then obtain a perturbation expansion for the exciton s
energy in a standard way.12

Let the exciton-photon interaction matrix element for
exciton in staten and a photon with wave vectork and po-
larizationj be T(j,k,n). The probability of one-photon ab
sorption is found as12

1

tkj
522(

n,n8
T~j,k,n!T* ~j,k,n8!Im Gnn8~k,v!. ~28!

For a weak exciton-phonon interaction, the off-diagonal e
ments ofŜ can be neglected compared to the diagonal on
and then the absorption line shape is obtained from Eq.~28!,
settingkphot50:

a~v!52 (
n51,2

Snn9 ~v!

@\v2E1s2Snn8 ~v!#21@Snn9 ~v!#2 ,

~29!

where S8 and S9 are the real and imaginary parts of th
self-energy, andE1s is the energy of the exciton state in th
absence of the interaction. At the FGR level of approxim
tion one obtains a sum of two Lorentzians, withuS118 2S228 u
small compared toS118 .

Rather than proceed with explicitly including the aniso
ropy of the valence band in the exciton propagator, we w
take here a simpler approach of an effective simple b
model in the estimating the effects of the multiple-phon
processes on the optical linewidth. In this approach we w
4-6
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replace the valence-band DP interaction matrix elem
UM ,m;t

n (2k,2k1q) in Eq. ~16! by an effective scalar defor
mation potential

UM
v,eff~q!5 iV21/2S \q

2rvLA
D 1/2

Dv
eff , ~30!

with Dv
eff defined using an angular average ofUM ,M8;t

v (0,q)
which is also averaged over two6uM 8u values with respec
to the second index. We will also define the effective sim
band exciton mass by equating the resulting FGR scatte
rate to the corresponding result of the complex band mo
in the previous section. This mass will depend on interact
strengths of both DP and PE interactions. Using the par
eter values in Tables I and II, we obtain, for GaAs,Dv

eff

'1.46 eV, Meff/m0'1.71.
We can also include the effect of the impurity scatteri

on the exciton self-energy. In doing so we will neglect t
real part of the impurity-induced energy shift of the excit
energy and denote the frequency-independent imaginary
by G~0!. This G~0! corresponds to the temperatur
independent part of the exciton linewidth in Eq.~1! that we
would obtain if we had used the FGR approximation. T
summation of the self-consistent terms gives an equation
the part of the self-energy, which we refer to asS (2), and
neglecting the dependence ofS on momentum variations, we
use an approximation that gives a correct FGR limit:

S~2!~v!5E d3q
V

~2p!3 2(
t

@ uVt
DP~q!u1uVt

PE~q!u2#

3F Nt~q!

\v1\vt~q!2Eexc~k1q!2S~2!~v!1 iG~0!

1
Nt~q!11

\v2\vt~q!2Eexc~k2q!2S~2!~v!1 iG~0!G ,
~31!

whereNt(q) is the acoustic phonon occupation at a giv
temperature andvt(q) andEexc(k) are the phonon and ex
citon dispersions, respectively. The factor of 2 comes fr
the summation over the two degenerate values of the fi
state exciton quantum numberM 8. At temperatures above 1
K we can replaceN(q) by kBT/\qvt and neglect the
spontaneous-phonon emission term. The absorption
shape in the self-consistent approximation is then found
numerical solution of Eq.~31! and using Eq.~29!.

As we know from Toyozawa’s work,34 the vertex terms in
the perturbation theory for the self-energy can make a
nificant contribution to the total absorption. We will consid
the same two classes of the self-energy vertex diagrams
Ref. 34 in the partial summation of the vertex correctio
From the point of view of the corrections to the excito
phonon interaction vertex,12 these terms fall in two class
es: ladder diagrams and maximally crossed diagrams
terms of phonon lines. Here, however, we do not nee
momentum cutoff, the convergence of the integrals be
provided by the wave vector dependence of the exciton fo
factors in Eqs.~2! and ~3!. These terms can be summed
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with some additional approximations, as explained in App
dix B. Each term of the order 2n in the exciton-phonon
interaction carries a factor proportional toT2n. The resulting
equation forS5S (2)1S (4)1S (6)1¯ looks like Eq. ~31!
with a renormalized frequency-dependent interaction ver
The solution of this transcendental equation was then p
formed numerically.

The optical exciton linewidth defined as the HWHM wa
found from the absorption line shapea~v!. The results for
bulk GaAs are shown in Fig. 1 forG(0)50.1 meV, as func-
tions of temperature in the 10–100 K range. The thick so
line shows the FGR approximation in the complex ba
model, Eqs.~1! and ~25!. The dashed line showsG(T) with
the inclusion of the multiple-phonon contributions, includin
the vertex terms. The dash-dotted line showsG(T) with only
self-consistent termsS (2) included. It is seen in Fig. 1 tha
the vertex terms mostly cancel the self-consistent correct
to the linewidth, the resulting linewidth being approximate
linear in T. The thin solid line shows the linewidth of th
corresponding transverse exciton polariton, calculated in
FGR approximation, including both phonon absorption a
emission36 and using the effective simple band model wi
the same parameters as we obtained for the exciton prob
The transverse polariton linewidth in bulk GaAs is th
found to be quite close to the exciton linewidth.

From Fig. 1 we conclude that the inclusion of the mu
tiphonon processes has only a small effect on the exc
linewidths in GaAs, as compared to the FGR result.
higher temperatures multiphonon processes modify the sh
of the absorption curve without affecting the linewidths.
Fig. 2 we show the absorption line shapes for three differ
values of the temperature, 20, 50, and 100 K with the sa

FIG. 1. LinewidthG(T), defined as the HWHM, for bulk GaAs
shown forG(0)50.1 meV as a function of temperature. The thi
solid line shows the FGR approximation in the complex ba
model, Eqs. ~1! and ~25!. The dashed line showsG(T) with
multiple-phonon contributions including the vertex terms. T
dash-dotted line showsG(T) with only self-consistent termsS (2). It
is seen that the vertex terms mostly cancel the self-consistent
rections to the linewidth. The thin solid line shows the linewidth
the corresponding transverse exciton-polariton calculated in
FGR approximation.
4-7
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S. RUDIN AND T. L. REINECKE PHYSICAL REVIEW B66, 085314 ~2002!
value ofG~0! as in Fig. 1. We see that at higher temperatu
the line shape becomes asymmetric. If we neglect the im
rity scattering and setG~0! to zero, every absorption curv
will have a sharp edge at the lower frequencies.34 We find
that with increasing value of the impurity scattering the lo
energy edge broadens and the line shapes become more
metric. Therefore, only in a very pure material could t
multiphonon modification of the optical exciton line sha
be observed.

In each order of interaction, most of the contributio
comes from scattering to the ‘‘heavy-exciton’’ branch in E
~6!, with scattering to the ‘‘light-exciton’’ branch contribut
ing little. Also, scattering to the exciton states other than
1s state was found to be negligible. In addition, we evalua
the effect of the exciton-phonon interaction vertex renorm
ization by the effect of the moving impurities—i.e. the m
tion of impurities in the phonon field.37 This effect is known
to be of importance in the microscopic theory of sound
tenuation in impure metals.38 In the case of semiconductor
the motion of impurities could lead to a temperatu
dependent contribution to the exciton linewidth and this
fect is evaluated in Appendix C. To leading order in t
effective ‘‘three-body’’ exciton-impurity–phonon interactio
the effect on the linewidth is found to be negligible. Th
details are given in Appendix C.

V. EXCITON –ACOUSTIC-PHONON SCATTERING IN
SEMICONDUCTOR QUANTUM WELLS

Turning next to exciton–acoustic-phonon scattering
semiconductor quantum wells, we notice that the symme
is lowered and the degeneracy of the valence band at
zone center is partially lifted. The effective exciton Ham
tonian is then is more complicated than in the bulk case,
an evaluation of the scattering rates in the complex b
model for the wide wells requires a large set of basis fu
tions to describe the exciton wave function. The picture
simpler for the narrower wells where the large splitting of t
heavy- and light-hole branches allows one to use a sim

FIG. 2. Absorption line shapes for three different values of te
perature, 20, 50, and 100 K, with the same value ofG(0)
50.1 meV as in Fig. 1. With an increase of temperature the
shape becomes asymmetric.
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band model for heavy holes, at least at small wave vect
We then proceed with a simple effective-mass band mo
similar to that used in our earlier investigation of th
exciton–LO-phonon scattering rates.39

Consider a GaAs/AlxGa12xAs well with isotropic conduc-
tion band with the effective mass in the well,mcw
50.067m0 , and mass in the barriers,mcb5(0.067
10.835x)m0 . For the heavy holes we use the in-plane ma
mhhw9 50.18m0 ,39 the mass for the growth directionmhhw8
50.34 in the well, andmhhb5(0.3410.42x)m0 . From the
known band alignments we find the barrier heights for
electrons and holes,Vc50.8355x eV andVv50.4115x eV.
The dependence of the band parameters on the A1 con
tration x was obtained from Ref. 40. The tunneling of th
carriers into the barriers was taken into account in the e
ton form factor by the use of effective well widths,40 ob-
tained by equating the normalization constants of the fin
and infinite-barrier models. We consider first the FGR a
proximation for the exciton-phonon scattering rates. He
unlike the case of bulk GaAs, the contribution of PE inte
actions was found to be negligible as compared to the c
tribution of DP interactions. This is due to the effect of th
nearly complete decoupling of the light and heavy holes
narrow quantum wells on the exciton form factor.

The resulting linewidth, defined as the HWHM of th
absorption spectrum, depends linearly on temperature,
the linear coefficientdac is shown in Fig. 3 as a function o
the well width, for x50.2. The overall magnitude ofdac
;2 – 3meV/K is in generally good agreement with expe
mental results for quantum wells,1,3,4,51–3 meV/K, obtained
using transmission,1 resonant Raman scattering,3 optical
dephasing,4 and photoluminescence.5 The results in Fig. 3
are for relatively narrow wells in which excitons in only th
first electron and hole subbands contribute. For wider we
this contribution decreases due to the normalization facto
the subband functions. As the well becomes wider, th
would be an increase indac over the values in Fig. 3 as mor

-

e
FIG. 3. Linear coefficientdac in the temperature dependence

the linewidthG(T), defined as the HWHM, is shown as a functio
of the well width for GaAs/Al0.2Ga0.8As and ZnSe/ZnMgSSe quan
tum wells.
4-8
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EFFECTS OF EXCITON–ACOUSTIC-PHONON . . . PHYSICAL REVIEW B66, 085314 ~2002!
subbands become accessible as final states. Eventually, a
quantum well becomes wide enough, the subbands colla
on together, and the result should go over to the bulk val
for dac given in Table II.

In Fig. 3 we also give results for quantum wells of ZnS
with ZnMgSSe barriers, systems that have been of exp
mental interest recently. The material parameters for th
systems are given in Ref. 41. The overall magnitudes
tained here (dac;4 meV/K) are compatible with available
experimental estimates ofdac;5 – 10meV/K.31,41The mate-
rial parameters for these structures are less well known
in the case of GaAs/AlGaAs structures.

In order to estimate the effect of the self-consistent m
tiphonon terms in the two-dimensional~2D! limit we have
evaluatedS (2) in the 2D version of Eq.~31! and found that
the results for the linewidths are close to those obtained w
the FGR approximation. An evaluation of the vertex terms
2D turns out to be more complicated than in bulk, but we
not expect them to contribute significantly more than
self-consistent terms. In fact, there is a general argument
to Toyozawa, that the multiphonon terms in 2D a
small:42 because the density of states near the exciton b
edge in the 2D system does not vary as sharply as in b
system, the effects of the scattering to the intermediate st
on the exciton propagator should be significantly less tha
bulk. That is what we found in the evaluation of the se
consistent corrections in 2D, and a similar result is expec
for the vertex corrections. Therefore, the values of the e
ton linewidth in narrow wells obtained with the FGR a
proximation and shown in Fig. 3 should be reasonably ac
rate.

VI. SUMMARY AND DISCUSSION

In the present work we have evaluated the optical abs
tion spectra and the contribution of acoustic phonons to
exciton linewidths in bulk and narrow quantum wells of d
rect band-gap cubic semiconductors, with numerical res
given for GaAs and ZnSe. Experimental results have sho
that the acoustic phonon contribution to the homogene
exciton linewidth increases substantially in going from qua
tum wells to bulk. In prior theoretical work the exciton
phonon interaction effects in optical spectra have b
treated using a simple band model in which the valence b
is replaced by a single parabolic band with heavy-hole m
Perturbation theory for acoustic phonon scattering using
deformation potential interaction and isotropic dispersion
a simple band description accounts for experiment in qu
tum wells, but it fails by an order of magnitude for bu
GaAs.

In the present work we have taken the coupled struc
of the valence band into consideration, accounting for
degeneracy of the valence band and anisotropic exciton
persion in bulk semiconductors. The scattering cross sec
in Eq. ~25! is proportional to the product of density of fina
states and the square of the absolute value of the exc
phonon interaction matrix element. We accounted for the
isotropy of the exciton dispersion in the density of stat
while the matrix elements were evaluated in the spher
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approximation. The use of a linear coordinate transformat
defined in Eqs.~8! and ~14! allowed us to use the zero
orbital-momentum component of the exciton wave functi
in the evaluation of the exciton-phonon interaction mat
elements in the FGR approximation for the exciton linewid
in Eq. ~25!.

We have included both deformation potential~DP! and
piezoelectric~PE! interactions in our calculations, taking int
account the tensor nature of the valence-band deforma
potential. When the exciton self-energy is evaluated to
lowest order in exciton-phonon interaction~FGR approxima-
tion!, the optical absorption has a Lorentzian shape with
linewidth given by Eq.~25!. The resulting linewidths for
bulk GaAs and ZnSe are close to the experimentally de
mined values.5,29,30,31The relative sizes of the DP and P
contributions to the linewidth depend on the value of t
piezoelectric tensor componente14 and the effective exciton
size aexc. In the case of bulk GaAs the dominant contrib
tion was found to come from PE interactions, while in t
case of bulk ZnSe almost all contributions come from D
interactions.

Using the FGR results for exciton-phonon scattering ra
in a degenerate band model, one can define an effec
simple band isotropic mass and effective scalar deforma
potential, Eq.~30!. This effective mass depends on the inte
actions included in the model. Here we use actual DP and
interactions, and the resulting value ofMeff is then used in
the estimate of the effect of multiple-phonon scatterings
the exciton optical absorption. We have also included
effects of the exciton-impurity scattering in the evaluation
the exciton self-energy. The multiple-phonon scatterin
were found to alter the absorption line shape, which can
noticeably non-Lorentzian at higher temperatures if the
purity induced linewidthG~0! is small, smaller than 0.1 meV
However, the total multiple-phonon scattering contribution
the linewidth was found to be small compared to the o
phonon result—i.e., the one obtained from the FGR appro
mation, as shown in Fig. 1.

We have also considered exciton-phonon scattering
fects on the optical linewidth in the case of the quantu
wells sufficiently narrow to neglect the coupling of differe
subbands. In such cases a simple band model with isotr
in-plane exciton dispersion is applicable, and the result
values of the HWHM were found to be compatible with th
experimentally determined values for the GaAs/GaAl
~Refs. 1 and 3–5! and ZnSe/ZnMgSSe~Refs. 31 and 41!
systems. The contribution of the multiple-phonon scatterin
in quasi-two-dimensional systems was found to be ne
gible. Comparing the acoustic-phonon-induced linewid
for narrow quantum wells with the bulk values calculated
the present work, we obtain a qualitative understanding
the experimentally observed size dependence of the exc
linewidths.29
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APPENDIX A: EXCITONS IN THE SPHERICAL
APPROXIMATION

Evaluation of various matrix elements and approxim
tions for the exciton eigenstates are conveniently done if
Hamiltonian is rewritten in terms of the irreducible spheric
tensor operators.15,17 First, after the coordinate transforma
tion in Eq. ~8! the exciton Hamiltonian in Eq.~7! takes the
form

HSP5S 1

mc
1

1

m̃D p2

2
2

e2

4p«« f r
2

g

m0
~p•J!2

1S ae
2

2mc
1

ah
2

2m̃DPT
21S ae

mc
2

ah

m̃ Dp•PT

2
g

m0
ah

2~PT•J!212ah

g

m0
~p•J!~PT•J!, ~A1!

where 1/m̃5(g115g/2)/m0 , PT is the total momentum with
eigenvalues\K , and p is the relative momentum of th
electron-hole pair.

Define the Cartesian second-rank tensor operators17,26

Pi j 53pipj2d i j p
2,

Ji j 5
3

2
~JiJj1JjJi !2d i j J

2, ~A2!

and the corresponding spherical tensor components for
first-rank and second-rank irreducible spherical tensors:

P0
~1!5

1

2
p3 , P61

~1!57
&

4
~p16 ip2!,

P0
~2!5A3

2
P33, P61

~2!57~P136 iP23!,

P62
~2!5

1

2
~P112P2262iP12!. ~A3!

With thez axis chosen alongPT , the exciton Hamiltonian
in Eq. ~A1! takes the form

HSP5
p2

2m
2

e2

«r
2

g

9m0
~P~2!

•J~2!!1S ae
2

2mc
1

g1ah
2

2m0
D PT3

2

12S ae

mc
2

g1ah

m0
D P0

~1!PT32
1

3
A2

3

gah
2

m0
J0

~2!PT3
2

2
4

3
A5

3

gah

m0
@P~1!3J~2!#0

~1!PT3 , ~A4!

where

1

m
5

1

mc
1

g1

m0
.
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The total angular momentum isJT5F1s5L1J1s,
whereJ ands are spin-3/2 and -1/2 operators of the hole a
electron, respectively, andL is the orbital angular momentum
of the exciton. As in Eq.~10!, we will use the notationM, m,
andn for the projections ofF, J, ands. The angular momen-
tum JT does not commute with momentumPT , and the ex-
citon Hamiltonian has nonzero matrix elements between
citon states with different values ofF, even in a spherica
approximation for the valence band. For the lowest-ene
exciton state at a given value ofPT , rewrite Eq.~10! as

F~r !5(
i

Ri~r !uLi ,J,Fi ,M &, ~A5!

with uLi2Ju<Fi<Li1J. The Hamiltonian in Eq.~A4! has
an axial symmetry, andM is constant in the eigenstate e
pansion. We restrict the basis states to those that coup
the L50 state directly—i.e., in first order ofH.15 In the M
563/2 subspaces, the basis consists of four states, co
sponding toL50,1,1,2 andF53/2,3/2,5/2,3/2. In theM5
61/2 subspaces, the basis consists of five states, corresp
ing to L50,1,1,1,2 andF53/2,1/2,3/2,5/2,3/2. Matrix ele-
ments of various terms in Eq.~A4! can be evaluated usin
the Wigner-Eckart theorem and relations or tables for 3j and
6 j symbols.11,22,23

The ground state, which will be referred to as the 1s state,
will have the largest contribution from theu0,3/2,3/2,M&
state. In any particular subspace with a given value ofM, we
can eliminate the coupling of this state to theu1,3/2,3/2,M&
state by a particular choice of the coefficientsae andah , Eq.
~14!. Specifically, consider theM53/2 subspace. The
ground-state problem is reduced to a three-dimensional
space spanned by the basis functionsu0,3/2,3/2,3/2&, u2,3/2,3/
2,3/2&, and u1,3/2,5/2,3/2&, resulting in three coupled linea
differential equations for functionsRi(r ) in Eq. ~A5!, i
50,1,2. We will adopt a variational approach, with

R0~r !5Aa3/2e2ar , R2~r !5Bb5/2re2br ,

R1~r !5 iCj5/2re2jr . ~A6!

These functions have the correct behavior at smallr, which
follows from the differential equations. The normalizatio
gives A213B213C254. One can then show that with th
parameters appropriate for GaAs and ZnSe, Table I, the fu
tion R2 is an order of magnitude smaller thanR0 , and the
functionR1 is even smaller, unlessK/a is very large. There-
fore we are justified in using theL50 wave function in the
evaluation of the exciton-phonon matrix elements in E
~16! and ~23!.

APPENDIX B: EVALUATION OF EXCITON-PHONON
VERTEX TERMS IN THE PERTURBATION
THEORY OF THE EXCITON SELF-ENERGY

As we already pointed out in Sec. IV, we use an effect
simple exciton band model to estimate the contributions
the multiple-phonon scatterings to the optical absorpti
The contribution of the self-consistent terms to the exci
self-energy is shown in the first line of Fig. 4. The th
4-10
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straight lines represent the bare exciton propagator, and
thin curved lines represent the phonon propagators with
thermal average taken over the phonon occupation.12 There-
fore, every phonon line carries a factor ofNt(q) for phonon
absorption and a factorNt(q)11 for phonon emission. Cor
respondingly, each diagram withn phonon lines represent
2n terms. The thick straight lines represent the exciton pro
gator renormalized by the self-consistent terms. Each
renormalized diagram of the fourth and higher order in
first line of Fig. 4 diverges, but their sum is finite.

It is convenient to use dimensionless variables here.
define a dimensionless momentumx so that

\2q2/2Meff5x2W, ~B1!

whereW is some energy scale and we setW51 meV. We
define a dimensionless form factor for the effective deform
tion potential interaction as

FDP~x!5
1

~11lah
2x2!22

Dv
eff/Dc

~11lae
2x2!2 , ~B2!

wherel[aexc
2 MeffW/2\2 and the dimensionless form facto

for the piezoelectric interaction is given by

FPE~x!5
1

~11lah
2x2!22

1

~11lae
2x2!2 . ~B3!

The dimensionless energy relative to the unrenormalized
citon band edge and the dimensionless self-energy are
fined asde[(\v2E1s)/W and s[S/W. We also define
the exciton propagators for each phonon polarization:

Gt~de,s,x!5 (
§561

1

de2s2x21§ctx1 ig
, ~B4!

FIG. 4. Graphic representation of the terms in the perturba
series for the exciton self-energy. The thin straight lines repre
the bare exciton propagator, and the thin curved lines represen
phonon propagators with the thermal average taken over the ph
occupation. The thick straight lines represent the exciton propag
renormalized by the self-consistent terms. The second and
lines show the first few vertex corrections of the type taken i
account in Eq.~B15!.
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where ct[(2vt
2Meff /W)1/2 and g[G(0)/W is included in

order to account for impurity scattering. Neglecting t
spontaneous-phonon emission, we obtain from Eq.~31!, after
integrating over the angles,

s~2!5
kBT

W H Dc
2~2M !3/2

2p2W1/2\3rvLA
2 E

0

`

dx x2FDP
2 ~x!GL~de,s,x!

1
6~2M !1/2

35p2W1/2\rvLA
2 S ee14

«« f
D 2E

0

`

dx FPE
2 ~x!

3FGL~de,s,x!1
4

3

vLA
2

vTA
2 GT~de,s,x!G J . ~B5!

From this equation, we find the self-consistent approxim
tion for the self-energy by replacings by s (2) in the exciton
propagators on the right-hand side. The corresponding s
energyS (2)(v) is used then in Eq.~29! to obtain the absorp-
tion line shapea(v) at this level of approximation.

In order to simplify the evaluation of the vertex terms, w
approximate the sound velocity in the exciton propagat
for different polarizations by one valuevLA and ct by c
[cLA . This allows us to combine the DP and PE terms
the following way. By using the angularly averaged PE
teraction, the following modified PE form factor can be d
fined,

F̃PE~x!5A12

35

ee14

«« fDc
S \2

2MeffW
D 1/2S 11

4

3

vLA
2

vTA
2 D 1/2FPE~x!

x
,

~B6!

and then we can define the total effective exciton form fac
F̃(x), so that

F̃2~x!5FDP
2 ~x!1F̃PE

2 ~x!. ~B7!

The first diagram in the second line in Fig. 4 represe
the four lowest-order vertex terms in the perturbation se
for the self-energy. The evaluation is similar to that for t
elastic scattering.34 The momentum integrals can be eval
ated in spherical coordinates. The angular integrations
elementary, and one is left with a double integral over
absolute values of two phonon momenta. The sum over
four terms inS (4) can be rewritten so that the integrand is
even function of the phonon momentax1 andx2 . This allows
us to extend thex2 integration to the~2`,`! interval. We
obtain then

s~4!52S kBT

W D 2

J2E
0

`

dx1x1F̃2~x1!

3F I ~x1!

de2s2x1
22cx11 ig

2
I ~2x1!

de2s2x1
21cx11 igG ,

~B8!

where

n
nt
the
on
or
rd
o
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J[
Dc

2~2M !3/2W1/2

4p2rvLA
2 \3 , ~B9!

I ~x1!5
1

2 E2`

`

dx2x2F̃2~x2!
1

de2s2x2
22cx21 ig

3 lnF ~x12x2!21c~x11x2!2de2s

~x11x2!21c~x11x2!2de2sG . ~B10!

The integralI (x1) can be evaluated in the complex plan
The integrand has poles from the propagator and cuts f
the logarithm. The contributions from the poles ofF(x2)
have a small effect on the imaginary part ofs and will be
ignored in this calculation. In this way we obtain

I ~x1!52
ip

2
F̃2~z3!H S 12

c

Ac214~de2s1 ig!
D

3 lnF ~x11c22z3!~z12z3!

~x11c12z3!~z22z3!G
2S 11

c

Ac214~de2s1 ig!
D lnS z12z4

z22z4
D J ,

~B11!

where the branch of the logarithm is chosen which goes
zero in the double limitc→0, x1→0, and

z1,2[x12
c

2
6Ac2

4
1de2s1 ig22cx1,

z3,4[2
c

2
6Ac2

4
1de2s1 ig. ~B12!

To fourth order in exciton-phonon interaction, the dime
sionless self-energy as a function of the dimensionless
ergy shift de is found as the solution of the transcenden
equations5s (2)(s)1s (4)(s). From numerical evaluation
we find that no significant error will be made in the abso
tion if we approximateI (x) by its elastic limit34 I el(x) in Eq.
~B8!, while keepingcÞ0 in the remaining propagators. I
doing this, we also replaceF̃2(z3) by half of its maximum
value—i.e., by (1/2)F̃2(0). Then we obtain a simpler ex
pression

I el~x1!52
ip

2
F̃2~0!lnF ~de2s1 ig!1/22x1/2

~de2s1 ig!1/21x1/2G ,
~B13!

to be used in Eq.~B8!.
Turning to the higher-order terms, the terms in the per

bation expansion proliferate rapidly, and we will confine o
selves to the two classes of diagrams considered
Toyozawa.34 In the sixth order, the ‘‘maximally crossed’’ dia
gram is the second one in the second line of Fig. 4. It rep
sents eight terms as every phonon line can describe eithe
emission or absorption of one phonon. The three diagram
the third line of the same figure represent 24 terms of
08531
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other class. In the approximation of Eq.~B13! the diagrams
of the order 2n add up to give

s~2n!~n>3!52S kBT

W D n

~n11!JnE
0

`

dx xF̃2~x!

3F x22nI n21~x!

de2s2x22cx1 ig

2
~2x!22nI n21~2x!

de2s2x21cx1 igG , ~B14!

with J defined in Eq.~B9!. The transcendental equation fo
self-energys as a function of the energy shiftde is obtained
as

s5 (
n51

`

s~2n!~s!. ~B15!

The equation for the self-energyS does not of course depen
on the choice of the energy scaleW. Numerical solution of
Eq. ~B15! is used in the expression for absorptiona to obtain
the line shapes shown in Fig. 2.

APPENDIX C: EFFECT OF THE PHONON-INDUCED
MOTION OF IMPURITIES ON THE

TEMPERATURE-DEPENDENT LINEWIDTH

Lattice vibrations cause imbedded impurities to mov
and the scattering of electrons and holes by the moving
purities is not elastic in the stationary coordinate system37

The resulting exciton–acoustic-phonon interaction Ham
tonian will have ‘‘three-body’’ electron-phonon-impurit
terms. In the lowest-order approximation for the exciton se
energy—i.e., the FGR—the contribution of these terms to
exciton linewidth is proportional to the number of acous
phonons, thus contributing to the linear temperature dep
dence in Eq.~1!. In the case of impure metals, an electro
phonon model Hamiltonian was derived in Ref. 38. We co
sider here a similar model for the carrier-phonon interact
in the case of a direct band-gap semiconductor in a sim
band effective mass approximation for the motion of carri
in the periodic field of the lattice and considering longitud
nal acoustic phonons.

Let us assume there areNimp impurities at the lattice sites
Ri and that the interaction of electrons in both conduct
and valence bands with impurities is given by the potent
uimp(ra2Ri), a5e,h. The effective masses of the electro
and holes areme andmh , respectively. The wave function
of the relative electron-hole motion arefl(r ), where index
l labels different exciton states. In the low-carrier-dens
limit, the three-body interaction is obtained as

H85Hex-ph-imp5
1

A2V
(

l,l8,p,q,k
Ull8~q!uimp~q! f ~q,k!

3B̂l8
1

~p1q!B̂l~p!~ âk1â2k
1 !, ~C1!
4-12
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where B̂ and â are exciton and phonon annihilation oper
tors,uimp(q) is the Fourier transformation ofuimp(r ), f (q,k)
depends on equilibrium positions of the impurities and
defined as

f ~q,k!5
q

AVrv~k!
(

i
e2 i ~q2k!•Ri

0
. ~C2!

Ul8l(q) is the exciton form factor given by

Ull8~q!5E d3r ~eiq•rmh /M2e2 iq•rme /M !fl8
* ~r !fl~r !.

~C3!

M5me1mh , and V is the volume. The configuration
dependent exciton-phonon matrix element is given by

Vll8~q,k;$Ri
0%!5Ull8~q!uimp~q! f ~q,k!. ~C4!

Consider the intraband transitionsl85l51s. The corre-
sponding exciton wave function is f1s(r )
5(paexc

3 )21/2exp(2r/aexc), whereaexc is the exciton Bohr
radius. From Eq.~C3! we obtain

U1s~q!5
1

~11q2aexc
2 mh

2/4M2!22
1

~11q2aexc
2 me

2/4M2!2 .

~C5!

In the FGR approximation, the exciton linewidthG1s is ob-
tained as the imaginary part of the exciton self-energy at
band edge. After taking a thermal average over the pho
distribution and a configurational average over the positi
of impurities, we obtain
S

K

B

n-

Sc

ev

08531
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G1s8 5
p

2
\ (

kqq8
^V1s~q,k;$Ri

0%!V1s~q8,k;$Ri
0%!&

3Nph~k!dS \2k2

2M
2\kvLA D , ~C6!

whereNph(k) is the Bose function for phonons. To the line
order in impurity densitynimp5Nimp /V, we obtain

G1s8 5
kBTnimp

8p\rvLA
3 E d3q

~2p!3 uU1s~q!u2uuimp~q!u2q2. ~C7!

Various possible approximations for the matrix eleme
uimp(q) result inG8 a few orders of magnitude smaller tha
the linewidth obtained from the exciton-phonon interacti
evaluated in the same approximation. Here we will disc
two different models. In the first one, we consider a statica
screened Coulomb potentialuimp(q)5e2/4p« f«q2. For
nimp;1018 cm23 we find from Eq. ~C7! that G8/kBT
;1027– 1026. In the second model, we consider a sho
range scattering of strengthu0 . Then the result of Eq.~C7!
can be expressed in terms ofG0 , which we define here as th
sum of impurity-induced electron and hole linewidths eva
ated at the energy corresponding to the electron-hole rela
motion in the exciton bound state. One can easily show
G05nimpu0

2M /2paex\
2. In terms ofG0 , we obtain from Eq.

~C7! that G8/kBT;(G0/1 meV)31025. As G0 is usually
smaller than 1 meV, the result is a negligible contribution
the temperature dependence of the linewidth.
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