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Extended dynamical mean-field theory andGW method

Ping Sun and Gabriel Kotliar
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-80

~Received 24 May 2002; published 30 August 2002!

We develop the extended dynamical mean-field theory~E-DMFT! with a view towards realistic applications.
~1! We introduce an intuitive derivation of the E-DMFT formalism. By identifying the Hartree contributions
before the E-DMFT treatment, it allows us to handle systems in symmetry-breaking phases within a simple
formalism.~2! We make an implementation of E-DMFT through a real Hubbard–Stratonovich transformation
to decouple the nonlocal two-particle interactions. We apply it to a three-dimensionalU-V model, withU the
on-site andV the nearest-neighbor interactions, and investigate the behavior of the various Green’s functions,
especially the density susceptibility, as the density instability is approached. We obtain the phase diagram at a
finite temperature.~3! We present a formalism incorporating E-DMFT with cellular DMFT.~4! We suggest an
improvement of the E-DMFT approach by combining it with a generalizedGWmethod. The method combines
the local self-energy from E-DMFT and the nonlocal ones from the perturbative calculation ofGW. We apply
the method to a one-dimensionalU-V model with two sublattices carrying different chemical potentials. By
comparing with those from density matrix renormalization group calculations, we show that the results are
shifted in the correct direction due to theGW contributions.~5! In order to handle the generic Coulomb
repulsion within E-DMFT, we describe a method to tailor E-DMFT so that the proper momentum dependence
can be kept in general response functions.

DOI: 10.1103/PhysRevB.66.085120 PACS number~s!: 71.10.2w, 71.30.1h
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I. INTRODUCTION

The dynamical mean-field theory~DMFT! has been a
powerful tool for the study of strongly correlated electron
systems. It has allowed us to gain insights into nonpertur
tive problems such as the Mott paramagnetic metal to p
magnetic insulator transition at finite temperatures.1 There
are many current attempts to extend the scope of the DM
approach in several directions: to include momentum dep
dence in the self-energy,1–7 to account for the effects o
finite-range interactions,8–14 and to combine DMFT with re-
alistic band structure.15–18

The current paper is devoted to an investigation of
extended dynamical mean-field theory~E-DMFT!, an exten-
sion of the original DMFT, in order to take into account th
spatially nonlocal interactions beyond the Hartree level. T
idea of E-DMFT was developed independently in the stud
of spin glass,8,11 systems with a nonlocal Coulom
interaction,9,12 and the heavy-fermion system.10 The deriva-
tion of E-DMFT based on the Baym–Kadanoff function
has been achieved in Ref. 12.

We present here several methodological developm
which build on the E-DMFT approach with a view to obta
a more realistic description of solids. Our goals are to
scribe~a! the frequency dependence of the effective inter
tion and its effects on the single-particle spectra,~b! the ef-
fects of short-range correlations, and~c! a momentum-
dependent polarization. These three effects are certa
present in realistic models of solids.19–22We discuss them in
this paper in the framework of model Hamiltonians in Se
IV, VII, and VIII. It should be pointed out that the problem
not touched on in this paper as how to obtain the parame
of the model Hamiltonian from first-principles calculation

In addition we present several technical advances for
analysis of E-DMFT equations. In Secs. II and III, w
0163-1829/2002/66~8!/085120~20!/$20.00 66 0851
a-
a-

T
n-

e

e
s

ts

-
-

ly

.

rs

e

present a simplified derivation of these equations in
broken-symmetry phase. A method for handling arbitrary
teractions within E-DMFT-QMC by an interaction shift23 is
also discussed in these sections. We show the forma
combining E-DMFT with cellular DMFT~C-DMFT! in Sec.
V and with theGW approximation24 in Sec. VI.

To illustrate the ideas and the working of the methods
apply them to two problems. The transitions between a M
insulator~MI !, a band insulator~BI!, and a Fermi liquid~FL!
in a three-dimensional~3D! U-V model is discussed in Sec
IV. The model describes an electron system with an on-
repulsion U and a nearest-neighbor interactionV. It was
treated in simple DMFT at half2 and quarter25 fillings and is
relevant to materials with a charge-ordered phase.26–28 The
problem of the transition between MI and BI phases in a
U-V model with alternating chemical potentials was d
cussed in the context of mixed-stack organic compounds29,30

and ferroelectric perovskites.31 We exhibit in Sec. VII the
implementation of the E-DMFT-GW method on the 1D
model. Sec. IX is the conclusion.

II. MODEL HAMILTONIAN

We start with the following Hamiltonian:

Ĥ52
1

2 (
i , j

(
s

~ t i j ĉis
† ĉ j s1 H.c.!2(

i
(
a50

3

hiaŜia

1U(
i

n̂i↑n̂i↓1
1

2 (
i , j

(
a,b50

3

ŜiaVia, j bŜj b . ~1!

The operatorsŜia5
def

ĉis
† ts,s8

a ĉis8 with ta being the Pauli ma-

trices for a51,2,3 andt05I 232 the identity. So the zeroth
component ofŜia is the charge density and the rest the sp
©2002 The American Physical Society20-1
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operators. Similarly,hia50 represents the chemical potenti
and the other three, witha51,2,3, the external magneti
field.

In Eq. ~1! the on-site part of the interaction is isolated
U and the off-site parts are described byVia, j b ; hence,
Via,ib50. We have allowed all possible forms of the insta
taneous direct and exchange interactions, but excluded s
others, like the pair hoppings. Unless otherwise specified,
form of the interactionVia, j b will be generic with only the
simple requirements that the interaction be translational
variant, Via, j b5Va,b(u i 2 j u), and symmetric, Via, j b
5Vj b,ia . Due to possible ionic screening and superexcha
mechanisms, we have the freedom to a certain exten
choosingU and the components ofV independently at the
level of the model Hamiltonian. While it is reasonable
takeU.0, in the off-site interaction matrixV all possibili-
ties are allowed if some effective forms of the interactio
are under consideration. In other words, the matrixV is not
necessarily positive or negative definite.

In this paper we keep for simplicityh0 ,h3Þ0 and set
h1 ,h250. This choice is more general than it appears si
we can always choose the direction of the effective magn
field to be thez direction by appropriately rotating the sy
tem. Furthermore, we assume that the spin symmetry br
ing, if it happens, is also along thez direction. This assump
tion is very natural ifVia, j b is symmetric under permutatio
among the three directions. However, it is actually more
strictive since it requires that ifVa,b(u i 2 j u) produces any
easy axis, the direction of the easy axis should be also in
z direction. We can then define a spin-dependent chem
potential

m is5
def

hi01shi3 .

Before deriving the E-DMFT formalism, we need first
separate out the Hartree contributions from the interactio
It is known from a Baym–Kadanoff functional analysis
E-DMFT ~Ref. 12! that in the phases with broken symmetr
Hartree terms contribute to E-DMFT by shifting the chem
cal potential.32 In the current case, due to the spin exchang
this shift is spin dependent. It is also known that in the c
cumstance of C-DMFT,33 one needs to handle separate
Hartree contributions from the nonlocal interaction acro
the cluster boundary. With all these motivations, we rew
the Hamiltonian as follows:

Ĥ52
1

2 (
i , j

(
s

~ t i j ĉis
† ĉ j s1H.c.!2(

i ,s
m is

effnis

1U(
i

:n̂i↑ ::n̂i↓ :1
1

2 (
iÞ j

(
a,b50

3

:Ŝia :Via, j b :Ŝj b :,

~2!

where the normal ordering of the operators is defined

:O:5
def

O2^O& with the average over the ground state. T

effective chemical potential is defined to be
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eff5m is2

1

2
U2 (

j (Þ i )
Vi0,j 0~^nj↑&1^nj↓&!

2s (
j (Þ i )

Vi3,j 3~^nj↑&2^nj↓&!. ~3!

We work with the functional integral representation of t
partition function at finite temperature 0,T51/b,`.34 We
want to perform a Hubbard–Stratonovich transform and
couple theV interactions.4 Since ultimately we will map the
many-body system to an impurity model and solve the s
consistent impurity problem via numerical techniques li
QMC, it is desired that the Hubbard–Stratonovich transfo
be real.23 To this end, we need first to add the identity m
trices labI i j to the off-site interaction to ensure that, fo
given a andb, the matrix

@Ṽab# i j 5
def

labI i j 2@Vab# i j ~4!

is positive definite. The minus sign in front of the bare inte
action in the above equation is needed for a real Hubba
Stratonovich transform. Practically we can take any value
lab as long as it is greater than the biggest eigenvalue of
matrix @Vab# whose elements are defined by@Vab# i j

5
def

Via, j b . To keep the symmetry, we requirelab5lba . Us-

ing the Hubbard–Stratonovich transform, one can write
partition function in terms of the following functional inte
gral:

Z5E D@ci ,s
† ~t!,ci ,s~t!;f i ,a~t!#exp~2S!, ~5!

with the Euclidean action

S5E
0

b

dtH(
i ,s

cis
† ~t!]tcis~t!

2
1

2 (
i , j

(
s

@ t i j cis
† ~t!cj s~t!1H.c.#

2(
i ,s

m i ,s
eff ni ,s1Ueff(

i
:ni↑~t!::ni↓~t!:

1
1

2 (
i , j

(
a,b50

3

f ia~t!@Ṽab# i j
21f j ,b~t!

6(
i

(
a50

3

f ia~t!:Sia~t!:J , ~6!

where

Ueff5U1Ṽi0,i02Ṽi1,i12Ṽi2,i22Ṽi3,i3

5U1l002l112l222l33.

While thel dependencies are explicitly contained in the
fective on-site interactionUeff and the interaction matrice
Ṽab , they cancel each other exactly so that all the physica
measurable quantities are independent ofl. The electron-
phonon vertex defined in Eq.~6! is local. In an insulator with
0-2
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a long-range Coulomb interaction, one needs a differ
choice of vertex, as will be discussed later in Sec. VIII.

Several remarks are in place. First, since our strategy
separate out all the Hartree contributions from the inter
tions, we certainly need to treat the auxiliary field in t
same way. However, due to the identity

^f ia&57(
j

(
b50

3

@Ṽab# i j ^:Sj b :&50,

we need not bother to normal order thef fields here. The
current formalism of E-DMFT can be extended directly to
general bose field13 which can develop nonzero expectatio
values, if we replacef ia by :f ia :. Second, there is an arb
trariness in choosing the sign of the electron-phonon ve
which is reflected in the ‘‘6 ’’ signs appeared in Eq.~6!. It
comes from the freedom in the Ising (Z2) symmetry of the
order parameters. For definiteness, we take ‘‘2 ’’ from now
on. Finally, one can also try to decouple the on-site inter
tion by using yet another continuous auxiliary field. Becau
this interaction does not get any renormalization as we de
E-DMFT and because for the local density-density inter
tion there is the more efficient Hirsch–Fye algorithm35 which
uses the discrete Ising auxiliary field, we will not impleme
this here.36

For future reference, we first define the following Matsu
ara Green’s function:

Gis, j s8~t2t8!5
def

2^Ttcis~t!cj s8
†

~t8!&, ~7!

x ia, j b~t2t8!5
def

2^Tt :Sia~t!::Sj b~t8!:&, ~8!

Dia, j b~t2t8!5
def

2^Tt :f ia~t!::f j b~t8!:&. ~9!

Notice that the auxiliary field Green’s functionD depends on
the value ofl introduced to make the effective interactio
matrix Ṽ positive definite while the Green’s functions for th
electrons do not. The auxiliary phonon Green’s functions
related to the electronic two-particle response functions
the following identity, which can be derived by integratin
out the auxiliary degrees of freedom in the phonon Gree
function,

x21~k,ivn!5Ṽk1P21~k,ivn!, ~10!

with the self-energy given by the Dyson equation f
phonons:

P~k,ivn!52Ṽk
212D21~k,ivn!, ~11!

wherevn5(2p/b)n for integern. The above two equation
are in matrix form in charge-spin space labeled
a50,1,2,3. The bare interaction vertex2Ṽk plays the role
of a free propagator and is defined as@Ṽk#ab

5
def

(1/Ld)( j ,l Ṽ j a,lbexp@2ik•(j2l)#. For later use, we also
write down the Dyson equation for the electron Gree
function:

S~k,ipn!5 ipn2tk2G21~k,ipn!, ~12!
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with pn5(2p/b)(n11/2) for integern. The equation is in
the 232 matrix form labeled by spins5↑,↓.

With the above preparation, we now derive E-DMFT. W
will consider two situations. In the next section we descr
the first case, the E-DMFT for a homogeneous system
which all the lattice sites are equivalent to each other. In t
case the E-DMFT approximation amounts to integrating
all but one lattice site to get an effective single-site act
which is equivalent to a self-consistent impurity model. A
sites that are integrated out contribute to self-consistent b
of free fermions and bosons for the impurity model. Here
should have a homogeneous chemical potentialm is5ms . In
the second case~see Sec. V! we explore the E-DMFT for
systems with two mutually penetrating sublattices. W
present a formalism combining E-DMFT and C-DMFT wi
a cluster of two neighboring sites. While it is natural to app
this formalism to a system with two nonequivalent subl
tices, it can also be applied to the homogeneous situation
the latter case, the purpose is to treat more accurately
spatial correlations than the single-site E-DMFT. This co
bination of E-DMFT and C-DMFT can be formulated fo
clusters of arbitrary size.

III. E-DMFT OF A HOMOGENEOUS SYSTEM

We first explore the single-site E-DMFT applicable to
homogeneous system. By keeping one lattice site while in
grating out the rest using the cavity construction,1 we obtain
the E-DMFT effective action32

S0
eff52E

0

b

dtE
0

b

dt8(
s

c0,s
† ~t!G s

21~t2t8!c0,s~t8!

2
1

2E0

b

dtE
0

b

dt8 (
a,b50

3

:f0a~t!:D ab
21~t2t8!

3:f0b~t8!:1UeffE
0

b

dt:n0,↑~t!::n0,↓~t!:

2E
0

b

dt (
a50

3

:f0a~t!::S0,a~t!:. ~13!

This is an impurity model with both electron and~auxiliary!
phonon degrees of freedom. The impurity model Gree
functions are identified with the local Green’s functions
the lattice model, namely@see Eqs.~7!–~9!#,

Gss8
loc

~t2t8!5G0s,0s8~t2t8!,

xab
loc~t2t8!5x0a,0b~t2t8!,

Dab
loc~t2t8!5D0a,0b~t2t8!. ~14!

The E-DMFT self-consistent loop is formed as follows. O
starts with the effective action, Eq.~13!, and measures the
local electron and phonon Green’s functions as defi
0-3
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through Eq.~14!. Then one calculates the self-energies us
the local version of the Dyson equations:

Ss~ ipn!5G s
21~ ipn!2@Gs

loc#21~ ipn!, ~15!

P~ ivn!5D 21~ ivn!2@D loc#21~ ivn!. ~16!

One of the basic assumptions of DMFT is the locality of t
self-energy.1 Notice that from Eq.~10! the phonon self-
energy is different from, although related to, the respo
functions and the locality of the former does not imply t
locality of the latter. Under this assumption, the same lo
quantities can be calculated, by using Eqs.~10!–~12!,

Gs
loc~ ipn!5(

k
Gs~k,ipn!

5(
k

@ ipn2tk2ms
eff2Ss~ ipn!#21, ~17!

x loc~ ivn!5(
k

x~k,ivn!5(
k

@Ṽk1P21~ ivn!#21,

~18!

D loc~ ivn!5(
k

D~k,ivn!52(
k

@Ṽk
211P~ ivn!#21.

~19!

In the DMFT with phonons,13 one substitutes the results o
Eqs. ~17! and ~19! back in the local Dyson equations~15!
and ~16! and generates a new set of the dynamical We
functionsG and D which serve as the starting point of th
next iteration. This completes the self-consistent loop.

It is interesting to notice, however, that one has anot
choice to form a self-consistent loop through the electro
two-particle Green’s functionx loc instead ofD loc, as used in
Refs. 9,10 and 12. It is important that the two different p
cedures are compatible with each other. By combining E
~18! and~19!, one can find the following relation in the ma
trix form:

@x loc#21~ ivn!52D~ ivn!1P21~ ivn!, ~20!

where the local phonon Dyson equation~16! has been used
This is nothing but the identity one can derive directly fro
the effective action, Eq.~13!, and is the local version of the
electron-phonon identity, Eq.~10!. Hence the two routines
which correspond to making the DMFT approximation at t
different stages of the formulation—one directly from t
nonlocal electron interaction and the other after
Hubbard–Stratonovich decomposition—are indeed equ
lent, as long as the same interaction vertex defined in Eq~4!
is used.

There is, though, still one point left out: that is, the arb
trariness of the value of the constantslab in Eq. ~4!. They
were introduced in our formalism for the purpose of ensur
the applicability of the real Hubbard–Stratonovich transfo
and are thus unphysical. While it is obvious that artific
effects from thel dependencies cancel out exactly in t
original action, Eq.~6!, it is not clear if the same thing hap
08512
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pens after the E-DMFT approximation. On the other ha
the earlier versions of E-DMFT~Refs. 9, 10 and 12! use only
the bare interactions and have no such problem.

We will show in the following that, even after th
E-DMFT approximation, the effects from thesel terms still
cancel exactly inall measurable quantities and only th
physical interactions determine the physics. In doing so,
also establish the equivalence of our E-DMFT with existi
ones. The physical reason behind this perfect cancellatio
that the static quartic interactions, including thel terms we
introduced, do not get any renormalization in DMFT, even
the presence of those nonlocal interactions.

To proceed, we need to check the effects on the pho
dynamical Weiss functions of the arbitraryl dependence we
added in Eq.~4! for ensuring the positive definiteness. The
are easily seen by checking the high-frequency behavio
the phonon Weiss functions. In this limit, the phonon se
energy goes to zero at the rate of the inverse freque
square, since it is approximately proportional to the lo
two-particle Green’s function as shown in Eq.~20! ~remem-
ber D approaches a finite constant in the same limit!. So
from Eq. ~19! we have

Dab
loc~ ivn! →

n→`
2(

k
Ṽk,ab52lab ~21!

and thus

Dab~ ivn! →
n→`

2lab . ~22!

We can make a shift of the dynamical phonon Weiss fu
tions by defining~in the matrix form!

D̃~ ivn!5
def

D~ ivn!1l. ~23!

The Weiss function defined above approaches zero in
high-frequency limit. We then integrate out the auxilia
fields in the effection action, Eq.~13!. After rearranging the
variables and introducing a new set of the auxiliary fie
f̃0,a , the effective action becomes

S̃0
eff52E

0

b

dtE
0

b

dt8(
ss8

c0,s
† ~t!G ss8

21
~t2t8!c0,s8~t8!

2
1

2E0

b

dtE
0

b

dt8 (
a,b50

3

:f̃0a~t!:D̃ab
21~t

2t8!:f̃0b~t8!:1UE
0

b

dt:n0,↑~t!::n0,↓~t!:

2E
0

b

dt (
a50

3

:f̃0a~t!::S0,a~t!:. ~24!

It can be shown that, while the electronic Green’s fun
tions remain the same, the new local phonon Green’s fu
tion D̃ loc is related to the old one by
0-4
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D̃ loc~ ivn!5D loc~ ivn!1l1@l1D~ ivn!#x loc~ ivn!@l

1D~ ivn!#2D~ ivn!x loc~ ivn!D~ ivn!. ~25!

One can also find the relation between the phonon s
energies:

P̃21~ ivn!5P21~ ivn!1l. ~26!

The self-consistent conditions, Eqs.~18! and~19!, are trans-
formed to

x̃ loc~ ivn!5(
k

@2Vk1P̃21~ ivn!#21, ~27!

D̃ loc~ ivn!52(
k

@2Vk
211P̃~ ivn!#21. ~28!

The self-consistent loop can be formed in the same way
before.

So we have shown that the arbitrariness in the choice ol
does not affect the physical quantities. This point is best s
through Eq.~27! where a simultaneous shift ofVk andP̃21

cancels out exactly. The quantities related to the auxili
fields, including those described in Eqs.~23!, ~25!, ~26!, and
~28!, do depend onl. But as we pointed out, they are n
quantities experimentally measurable.

The formalism shown above, Eqs.~24!–~28!, is equiva-
lent to, although more generic than, those discussed in
existing literature, due to~i! the more general form of the
interaction we have taken,~ii ! the consideration paid to pos
sible broken symmetry, and~iii ! the introduction of thel
terms ensuring the positive definiteness of the interac
matrix. The method allows us to study the models with g
eral interactions, like the antiferromagnetic spin exchang

Before we leave this part, it should be pointed out that
formalism we just developed can readily be applied to
general case containing electron-phonon and long-ra
Coulomb interactions. There is basically only one chan
needed. Due to the dynamics of the real phonons from th
selves, we have an additional term (ivn)2 in those related
equations, including Eqs.~10!, ~11!, ~18!, ~19!, and~28!. The
electron-phonon identities still hold in the new formalism
Without any further change, continuous auxiliary bos
fields can be used to describe real phonon fields within
same formalism.

IV. APPLICATION I: PHASE DIAGRAM OF THE 3D U-V
MODEL AT HALF-FILLING VIA E-DMFT

As an example of a practical implementation, in the f
lowing we apply the E-DMFT formalism based on the co
tinuous auxiliary field approach to a 3D Hubbard model w
a nearest-neighbor density-density repulsion~the U-V
model!. We will be interested in the case at half-filling. Th
is a much simplified version of the model we have inves
gated in the last section. Especially, there is only one lo
shift l5l00 needed to make the interaction matrix positi
definite. Our purpose is to demonstrate the implementa
of E-DMFT and investigate the behavior of the density
08512
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sponse function in approaching the charge-dens
wave~CDW! phase transition. Under the given condition, th
model Hamiltonian allows three different phases: the M
insulating phase whenU is dominant, the band insulatin
phase with the CDW whenV prevails, and the metallic Ferm
liquid phase when the kinetic energy overcomes the inte
tions. In the MI phase the system can develop an antife
magnetic long-range order if the magnetic frustration is we
enough. For simplicity, in the following we will consider th
system at a high enough temperature such that the MI ph
is paramagnetic due to the strong thermal fluctuations
finite-temperature phase diagram atb55.0 is presented in
Fig. 1. In the temperature region where our study is p
formed, the Mott transition is actually a crossover1 so the
phase diagram in Fig. 1 should be viewed as a qualita
representation of the actual phase diagram atT50.

The 3D U-V model allows us to illustrate the novel a
pects of our methodology, including the implementation
E-DMFT with an auxiliary field, carrying out QMC simula
tions with repulsive interactions, cancellation of thel depen-
dence, and investigation of the density-density respon
Physically, we have in mind the following questions:~1!
How is the MI-FL transition affected by the nonlocal inte
action V? ~2! How does the charge density instability d
velop in the E-DMFT equations?~3! How does a frequency
dependent effective interaction affect the quasiparti
properties? These questions cannot be addressed in
simple DMFT studies where theV interaction is handled a
the Hartree level.

The following is the 3D model Hamiltonian we are goin
to study:

Ĥ52
1

2 (
i , j

(
s

~ t i j ĉis
† ĉ j s1H.c.!1U(

i
:n̂i↑ ::n̂i↓ :

1V(
^ i , j &

~ :n̂i↑ :1:n̂i↓ : !~ :n̂ j↑ :1:n̂ j↓ : !, ~29!

FIG. 1. The phase diagram of the 3DU-V model atb55.0. The
centers of the symbols represent the numerical results whose a
racy is of the order of 0.01. The line bounded the BI phase rep
sents the phase transitions from the FL and MI phases. The p
transition line is found by approaching the instability of th
E-DMFT iteration from the smaller values ofV. The line in between
the FL and MI phases represents a crossover. It is determined b
values ofU andV at which ImGs( ip0)520.5.
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PING SUN AND GABRIEL KOTLIAR PHYSICAL REVIEW B 66, 085120 ~2002!
where^ i , j & represents a pair of nearest-neighboring sites
this special case, the Fourier-transformed off-site interac
is given by

Vk5V@cos~kx!1cos~ky!1cos~kz!#. ~30!

We perform QMC simulations similar to those in Ref. 1
The fermionic part of the impurity model is handled by t
standard Hirsch–Fye algorithm.35 The statistical weight from
the part of the continuous bosonic fields is obtained dire
by computing the corresponding Boltzmann factor. We u
here a semicircular density of state for the electronic deg
of freedom.13 The bandwidth is set to beA2 . We consider
paramagnetic solutions at a finite temperature. Since the
tem is exactly at half-filling, we use in QMC particle-ho
symmetry accompanied by a reversal of the phonon displ
ment to increase the efficiency of the simulation. In QM
we takeb55.0 andDt51/4. Correspondingly the invers
temperature range@0,b# is divided intoL5b/Dt520 slices.
The typical number of sweeps for QMC measurements is6

by which all the quantities converge within the statistic
errors. We actually experience a critical slowing down
both QMC simulations and DMFT self-consistent iteratio
as we approach the critical point aroundU53.0 and V
51.6 ~see Fig. 1!. In this region the typical number of itera
tions needed for convergence increases from 10 to 20 an
use in our QMC measurements 2 –43106 sweeps.

Before we present the results, we want to show that at
numerical level, thel-dependent term does not affect th
physical results. We have shown in the previous section
in the formulation of E-DMFT thel dependence does no
show up in physical quantities. However, it can happen t
the formalism is so sensitive to the dependence that i
practical calculation like QMC there is always only part
cancellation and a significantl dependence remains in th
physical measurables. It is also possible that a negligibll
dependence in the results of the impurity model, which
always there unless one can solve the problem exactly,
get magnified during the E-DMFT iterations. In the follow
ing we present the results calculated atU53.0 andV51.6
which show nol dependence. From the phase diagram F
1 one can see that this is the point we have reached close
the parameter space to the finite-temperature critical p
~CP!. If the suggested scenarios of thel dependence in the
physical results may happen, they will most likely happ
around the CP where the system becomes very sensitiv
the extra change froml. In Fig. 2 we plot the imaginary par
of the electron Green’s functions calculated at four differ
l ’s. The result shows nol dependence within the accurac
of the calculation,37 similarly for the electron density Green
functions as shown in Fig. 3. So in both the formulation a
practical calculation, thel term does not play any physica
role and we can use it safely. In all the following calculatio
we setl52.0 in the QMC simulation.

A. Near the Mott crossover line

We first present the result showing the crossover betw
the MI and FL phases. In Fig. 4 we show the data
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Im Gs
loc( ip/b) vs U at V50.0 and 1.0. The reason w

choose to plot this function is that it is known1 that the
asymptotic behavior at the low-frequency limit of the imag
nary part of the electron Green’s function reflects the den
of states~DOS! near the Fermi surface. For the metall
phase the DOS is finite at the Fermi surface and he

Im G( ipn) ——→
pn→0

constÞ0. For the insulating phase, on th
other hand, the corresponding DOS is zero a

Im G( ipn) ——→
pn→0

0. So from the plotting of ImG at the
first fermionic Matsubara frequency we can study the tran
tion or crossover behavior between the two phases. Since
solve the problem at a temperature (b55.0) higher than the
critical temperature (bc;1/0.04; see Ref. 1! of the Mott
transition, what we see in Fig. 4 is that for fixedV,
2Im Gs

loc( ip/b) decreases smoothly asU is increased. This
behavior represents the crossover between the two pha
There is a small but finite shift in between the two curv
calculated atV50.0 and 1.0. This is a result of the comp
tition betweenU and V. In the case ofV51.0 the system
enters the BI phase forU&2.2 which one can see approx
mately from Fig. 1. This region is out of the scope of t
current approach, applicable only to a homogeneous sys
In the range 2.2&U&4.0, which is, roughly speaking, th
crossover region, the value of ImGs

loc( ip/b) at the sameU
is always bigger forV51.0 than that forV50.0. This means

FIG. 2. The imaginary part of the electron Green’s function
four different values ofl calculated atU53.0 andV51.6 as a
function of the Matsubara frequency~Ref. 37!.

FIG. 3. The density susceptibility at four different values ofl
calculated atU53.0 andV51.6 as a function of the imaginary
time.
0-6
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EXTENDED DYNAMICAL MEAN-FIELD THEORY AND GW . . . PHYSICAL REVIEW B 66, 085120 ~2002!
that the existence of a finiteV makes the system more me
tallic and so the effectiveU is smaller, as one anticipate
from qualitative considerations. IfU is increased further so
that 4.0&U, both systems enter the paramagnetic insulat
phase with literally no difference.

We then investigate the behavior of the various Gree
functions as the transition towards the band insulating ph
is approached by changingV at fixed U. We first show the
results atU53.0. We solve the problem for seven differe
values of the interaction:V50.5, 1.0, 1.3, 1.4, 1.5, 1.6, an
1.7. In all the results presented below the data from the
case are not shown because we already encounter the
bility at which the convergence of the self-consistent int
action is lost. So we can viewV51.7 as an upper boundar
of the metallic phase forU53.0. In Fig. 5 we show the
imaginary part of the electron Green’s function and in Fig
the imaginary part of the electron self-energy. It can be s
clearly that, while the trends of the change of the plot
quantities are in the direction towards a more metallic ph
asV is increased~that is, bigger ImG and smaller self-energy
at the first several Matsubara frequencies!, the magnitudes of
the changes are very limited, especially in comparison w
the phonon Green’s functions38 shown in Fig. 7. The loca
phonon Green’s function, which is related to the density s
ceptibility as we have shown in the last section, increa
significantly as we approach the phase transition point.

FIG. 4. The imaginary part of the electron Green’s function
the first Matsubara frequency, ImGs

loc( ip/b), as a function of the
on-site interactionU for two different values ofV.

FIG. 5. The imaginary part of the local electron Matsuba
Green’s function for different values of the interactionV at fixed
U53.0.
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can analyze the behavior from the self-consistent equa
~19!, which can be rewritten as

D loc~ ivn!5(
k

Vk

12VkP~ ivn!
. ~31!

As a result of screening the phonon self-energy is negat
Moreover,uP( ivn)u is a monotonically decreasing functio
of frequency, since the screening becomes less effectiv
the frequency increases. Hence the instabil
if it happens, will first show up at the wave vecto

k5q5
def

(p,p,p) and the frequencyvn5v050, where the
product VqP( iv0)523VP( iv0) has the biggest positive
value. In Fig. 8 we show the plotting of23VP( iv0) vs V at
the givenU. The trend is obvious for the product to approa
‘‘1’’ where the corresponding denominator in Eq.~31! van-
ishes. This establishes the picture that as the transition p
is approached, the denominator disappears first atq andv0,
which corresponds to an instability against the homogene
ground state with a static CDW at wave vector (p,p,p).
This is a typical phenomenon in the Green’s function d
scription of phase transitions,39 although the quantities in
volved here are nonperturbative. The instability is signa
by the frequency of a phonon becoming negative.13,14At this
point an ordered mean-field state would be the correct s
tion. It should be noted that, even when the instability ha

t
FIG. 6. The frequency dependence of the imaginary part of

electron self-energySs( ipn) at different values of the interactionV
at fixedU53.0.

FIG. 7. The local phonon Matsubara Green’s function for d
ferent values of the interactionV at fixedU53.0 ~Ref. 38!.
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PING SUN AND GABRIEL KOTLIAR PHYSICAL REVIEW B 66, 085120 ~2002!
pens, one may still continue the paramagnetic solution
E-DMFT by taking the principal part in Eq.~31!. But in 3D
a convergence near the transition is impossible because
derivative of the phonon Green’s function with respect to
control parameterV becomes infinite.

B. Frequency-dependent on-site interaction

Another interesting property to investigate is the
fective on-site density-density interaction, which is defin
at l50,

Ueff~ ivn!5
def

U1D~ ivn!,

and is frequency dependent. From Fig. 9 we can see cle
that as the transition is approached, there is a tendency
softening of the effective interaction at zero frequency. In o
model the frequency dependence of the localUeff is due to
screening of the bare interaction by theintersite Coulomb
interactionV. Notice, however, that a frequency-dependenU
occurs more generally in realistic models of correlated e
trons due tointrasite screening by other local orbitals as
recent local GW calculation21 shows. This is the first
E-DMFT study of a model where the interactionU is fre-
quency dependent. We should stress that this behavior o
single-particle Green’s function cannot be described by
ordinary DMFT with fixedU. In Fig. 10 we show how the
frequency-dependent effectiveU changes the single-electro
behavior. We plot in Fig. 10 the imaginary part of the ele
tron self-energy as a function of the Matsubara frequency
high frequencies, the self-energy from E-DMFT coincid
with that calculated using the bareU alone. This tells that the
screening effect is not effective in the high-frequency lim
as we can see from the effectiveU plotted in Fig. 9. In the
low frequencies, the self-energy deviates to that of a sma
effectiveU. In Fig. 10 we plotted the self-energies calculat
at V50 and Ueff5Ueff( ivn) evaluated at the lowest an
next-lowest Matsubara frequencies. We can see that a
first Matsubara frequency the E-DMFT self-energy is clos

FIG. 8. The rescaled phonon self-energy at the most inst
point with k5(p,p,p) andvn50 for U53.0. The diamonds rep
resent the calculated data. The curve is plotted using a polyno
fitting of the phonon self-energyP ~which is even inV) up to V 4.
From the extrapolation the transition is atVc.1.85. This value is
less accurate than the one from QMC due to the nonanalyticity
the transition.
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to that given byUeff( iv1) andV50. We can understand th
situation by thinking that there are two differentU ’s control-
ling low- and high-frequency regions separately. Some eff
tive and screenedU is in charge of the low-frequency behav
ior while the bareU works in the high-frequency region. In
between there is a kind of the crossover connecting the t
The results shown here suggests that a frequen
independent effectiveU is not enough to capture the physic
in the entire frequency range.

The set of diagrams presented above are plotted v
close to the line of the Mott crossover~see Fig. 1!. In the
following, we show two other sets of data which are plott
in the metallic and Mott insulator phases, respectively.

C. Metallic phase

First, we show the results atU52.0 and increasingV in
Figs. 11–13. As can be seen from Fig. 1, at this set of
rameters the system is in the correlated metallic phase. T
concise, we show here three representative plottings: tha
the electron and phonon Green’s functions and the elec
self-energy. One can see that in this phase the change o
single-electron Green’s function is very limited as the tra
sition is approached atV;0.95. Meanwhile, the single

le

ial

ar

FIG. 9. The frequency dependence of the effective on-site in
actionUeff( ivn) at different values of the interactionV at fixedU
53.0.

FIG. 10. The imaginary part of the electron self-energy cal
lated using E-DMFT atU53.0 andV51.5 and at the correspond
ing Ueff5Ueff( ivn) for n50,1,̀ with V50. We usedUeff( iv0)
52.540 andUeff( iv1)52.760 from our E-DMFT calculation. Ob
viously Ueff( iv`)53.0.
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EXTENDED DYNAMICAL MEAN-FIELD THEORY AND GW . . . PHYSICAL REVIEW B 66, 085120 ~2002!
electron self-energy changes quite a lot in the low-freque
region, showing the stronger cancellation between the eff
from U and V and thus a more significant reduction of th
self-energy asV is increased. The change of the phon
Green’s function is again much bigger than those of the e
trons.

D. Paramagnetic Mott insulating phase

The second case withU54.0 is shown in Figs. 14–16
Here we work in the Mott insulating phase. One can see fr
the asymptotic behavior of the Green’s functions in the lo
frequency limit that in entire the range, especially near
transition atVc;3.4, the system is still in the Mott insula
ing phase. Meanwhile, the corresponding phonon Gre
functions plotted in Fig. 16 change a lot.

E. Phase diagram

Finally, by literally sweeping acrossU-V space, we are
able to establish the finite-temperature phase diagram
sented in Fig. 1. The phase transition from the metallic a
MI phases to the BI phase is determined unambiguou
from the breakdown of the convergence of the E-DMFT
erations. We locate the crossover line between the FL and
phases by a search of the points of (U,V) at which
ImG( ip0)520.5. While its specific value is arguable, th
criterion works well practically in the sense that right arou

FIG. 11. The imaginary part of the local electron Matsuba
Green’s function for different values of the interactionV at fixed
U52.0.

FIG. 12. The imaginary part of the local electron self-energy
different values of the interactionV at fixedU52.0.
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the CP it suggests@(Uc ,Vc);(3.0,1.6)#, we experienced the
strongest critical slowing down.

Two remarks are in place concerning the qualitative f
tures contained in this finite-temperature phase diagr
First, the slopes of the boundaries of the FL phase are p
tive on both sides. This actually reflects the competition
tweenU andV: The existence of a finite and smallV requires
a biggerU in order to make the Mott transition or crossove
Similarly a finite and smallU makes it harder to develop th
CDW. Second, the effects of a finiteV is much stronger than
that ofU, because of the coordination number, which is 6
the current case. The above features will retain in the ph
diagram atT50.

V. E-DMFT PLUS C-DMFT FOR SYSTEMS WITH TWO
SUBLATTICES

Next we consider E-DMFT on systems with two interpe
etrating sublattices. The current study is useful in the sit
tion when the two sublattices are not equivalent in the se
that, while it is homogeneous within each of them, the or
parameter is different in the two sublattices. One then ne
in E-DMFT a cluster containing at least two neighborin
sites. It is interesting, though, to notice that the formalism
are going to develop also applies to the homogeneous
tems. In this case the cluster plays the role to improve
description of the spatial correlations. The formalism d
scribed in this section can be easily extended to proble

r

FIG. 13. The local phonon Matsubara Green’s function for d
ferent values of the interactionV at fixedU52.0.

FIG. 14. The imaginary part of the local electron Matsuba
Green’s function for different values of the interactionV at fixed
U54.0.
0-9
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PING SUN AND GABRIEL KOTLIAR PHYSICAL REVIEW B 66, 085120 ~2002!
where clusters of bigger sizes are needed. E-DMFT w
combined with the dynamical cluster approximation~DCA!
in Ref. 4.

Under the given conditions, the nearest-neighbor h
pings and interactions alway connect the two different s
lattices, the next-nearest-neighbor ones are within the s
sublattice, etc. We rely on the external magnetic fields in
duced at the beginning, Eq.~1!, to lift any possible degen
eracy in the ground state. To illustrate the basic idea w
avoiding any unnecessary repetition~as it will turn out, the
E-DMFT with two sublattices shares many properties w
that for the homogeneous system!, we work on a model with
only nearest-neighbor hoppings and density-density inte
tions, besides the on-site energy~the chemical potential! and
the Hubbard interaction. The Hamiltonian reads

Ĥ52t (
^Ai,B j&s

~ ĉAi,s
† ĉB j ,s1H.c.!

2 (
Xi,s

mXi,sn̂Xi,s1U(
Xi

n̂Xi,↑n̂Xi,↓

1 (
^Ai,B j&

~ n̂Ai,↑1n̂Ai,↓!VAi,B j~ n̂B j ,↑1n̂B j ,↓!, ~32!

where every site is label byXi with X labeling the two sub-
lattices,X5A,B, and i the coordinate within the sublattice
^Ai,B j& represents a pair of neighboring sites. We choos
chemical potential consistent with the two-sublattice pictu

FIG. 15. The imaginary part of the local electron self-energy
different values of the interactionV at fixedU54.0.

FIG. 16. The local phonon Matsubara Green’s function for d
ferent values of the interactionV at fixedU54.0.
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mXi,s5H mAs , X5A,

mBs , X5B
. ~33!

We set for nearest neighborsV^Ai,B j&5VÞ0. We then intro-
duce thel term the same as before:

ṼXi,Y j5ldXYd i j 2VXi,Y j ,

with l a constant which ensures theṼ232 matrix to be posi-
tive definite. After normal ordering the operators in the int
actions and performing the Hubbard–Stratonovich tra
form, we have the effective action

S5E
0

b

dtH (
Xi,s

@cXi,s
† ~t!]tcXi,s~t!2mX,s

eff nXi,s~t!#

2t (
^Ai,B j&,s

@cAi,s
† ~t!cB j ,s~t!1H.c.#

1Ueff(
Xi

:nXi,↑~t!::nXi,↓~t!:

1
1

2 (
Xi,Y j

:fXi~t!:ṼXi,Y j
21 :fY j~t!:

2(
Xi

:fXi~t!::@nXi,↑~t!1nXi,↓~t!#:J , ~34!

with

mX,s
eff 5mX,s2

1

2
U2(

j
V^Xi,X̄ j &^@nX̄j ,↑~t!1nX̄j ,↓~t!#&,

Ueff5U1l,

whereX̄5B if X5A and vice versa. The Green’s function
we are going to use are defined as follows:

Gs
XY~ i tu i 8t8!5

def
2^TtcXi,s~t!cYi8,s

†
~t8!&, ~35!

xXY~ i tu i 8t8!5
def

2^Tt :@nXi,↑~t!1nXi,↓~t!#:

3:@nYi8,↑~t8!1nYi8,↓~t8!#:&, ~36!

DXY~ i tu i 8t8!5
def

2^Tt :fXi~t!::fYi8~t8!:&. ~37!

The Dyson equations are now 232 matrix equations:

r

-

0-10
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EXTENDED DYNAMICAL MEAN-FIELD THEORY AND GW . . . PHYSICAL REVIEW B 66, 085120 ~2002!
FGs
AA Gs

AB

Gs
BA Gs

BBG21

~k,ipn!5F ipn1mAs 2tk

2t2k ipn1mBs
G

2FSs
AA Ss

AB

Ss
BA Ss

BBG ~k,ipn!, ~38!

FDAA DAB

DBA DBBG21

~k,ivn!52F l 22Vk

22V2k l
G21

2FPAA PAB

PBA PBBG~k,ivn!.

~39!

In the above equations and for all those with two sublattic
we always define the momentum in the reduced Brillo
zone. If the lattice under consideration is of supercubic ty
in d dimensions, one can easily find that for the neare
neighbor hopping and interaction,tk5t( i 51

d coski and Vk

5V( i 51
d coski . Similarly as that for the homogeneous sy

tem, we can derive an identity relating the phonon and e
tron density Green’s functions:
08512
s,

e
t-

-
c-

FxAA xAB

xBA xBBG21

~k,ivn!5F l 22Vk

22V2k l
G

1FPAA PAB

PBA PBBG21

~k,ivn!.

~40!

We are now in the position to introduce the E-DMF
approximation. Following the same procedure as before,
can write down the effective E-DMFT action by using th
cavity construction. What we do here is that we first integr
out all, including those in both sublattices, but two neighb
ing lattice sites, one from each of the two sublattices. In t
way, we keep a cluster containing two representative lat
sites. The cluster plays the role as a composite impu
which is coupled to the self-consistent fermionic and boso
baths. As we have mentioned earlier, it is found33 that the
Hartree terms from the nonlocal interaction across the clu
boundary contribute to the effective action. However, sin
the Hamiltonian we use here is prepared in such a way
there are no longer Hartree terms contained in the inte
tion, the procedure towards E-DMFT becomes very straig
forward. The effective action is given by
te the
nctions
Seff52E
0

b

dtE
0

b

dt8 (
XY,s

cX,s
† ~t!@G s

21#XY~t2t8!cY,s~t8!2
1

2E0

b

dtE
0

b

dt8(
XY

:fX~t!:@D 21#XY~t2t8!:fY~t8!:

1UeffE
0

b

dt(
X

:nX,↑~t!::nX,↓~t!:2E
0

b

dt(
X

:fX~t!::@nX,↑~t!1nX,↓~t!#:, ~41!

with X,Y summed overA,B. From the effective action, we can measure the impurity Green’s functions and calcula
self-energies by using the local Dyson equations. Self-consistency is reached by identifying the impurity Green’s fu
with the local Green’s functions which are given as follows:

FGs
loc,AA Gs

loc,AB

Gs
loc,BA Gs

loc,BBG ~ ipn!5(
k

FGs
AA Gs

AB

Gs
BA Gs

BBG ~k,ipn!5(
k

H F ipn1mAs tk

t2k ipn1mBs
G2FSs

AA~ ipn! Ss
AB~ ipn!

Ss
BA~ ipn! Ss

BB~ ipn!
G J 21

, ~42!

FD loc,AA D loc,AB

D loc,BA D loc,BBG~ ivn!5(
k

FDAA DAB

DBA DBBG~k,ivn!52(
k

H F l 22Vk

22V2k l
G21

1FPAA~ ivn! PAB~ ivn!

PBA~ ivn! PBB~ ivn!
G J 21

,

~43!

Fx loc,AA x loc,AB

x loc,BA x loc,BBG~ ivn!5(
k

FxAA xAB

xBA xBBG~k,ivn!5(
k

H F l 22Vk

22V2k l
G1FPAA~ ivn! PAB~ ivn!

PBA~ ivn! PBB~ ivn!
G21J 21

. ~44!

The same as before, thel dependencies cancel out exactly. Combining the last two of the self-consistent equations~43! and
~44!, we obtain the following identity:
0-11
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Fx loc,AA~ ivn! x loc,AB~ ivn!

x loc,BA~ ivn! x loc,BB~ ivn!
G

5FPAA~ ivn! PAB~ ivn!

PBA~ ivn! PBB~ ivn!
G H F1 0

0 1G1FD loc,AA~ ivn! D loc,AB~ ivn!

D loc,BA~ ivn! D loc,BB~ ivn!
GFPAA~ ivn! PAB~ ivn!

PBA~ ivn! PBB~ ivn!
G J . ~45!
be
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It is not difficult to check that the above equation can
obtained directly from the effective action, Eq.~41!. One
needs only to write down the phonon Green’s function a
then integrate out the auxiliary fields. By using the loc
phonon Dyson equation, which is the matrix version of E
~16!, one recovers Eq.~45!.

This completes the formulation of E-DMFT with two sub
lattices. One can see that the theory easily combi
E-DMFT with C-DMFT. We employ here a cluster of tw
sites, with the application in mind which will be discussed
Sec. VII. There is, however, no difficulty to extend the fo
malism to clusters of any size.

VI. GW METHOD COMBINED WITH E-DMFT

As we have mentioned, C-DMFT~Ref. 6! allows us to
pick out a representative lattice cluster, instead of a sin
site, in order to describe a many-body system. This make
possible to treat the finite-range interaction as well as
broken-symmetry phasewithin the cluster. The advantage o
C-DMFT is that it solves exactly the cluster so that the s
tially nonlocal correlations within the cluster are automa
cally taken into account. In combining with E-DMFT
C-DMFT is also able to handle interactions with a ran
beyond the cluster size, as we have shown in the last sec
However, the price one has to pay is that in solving a clus
a lot more technical resources are needed.

In this section we propose a less computationally int
sive prescription as compared to the E-DMFT1 C-DMFT
procedure. It is based on the following physical idea. In r
materials, the on-site Hubbard interactionU is much larger
than the nonlocal ones. Hence the local interaction has t
treated nonperturbatively~namely, with DMFT! in order to
obtain the local self-energy. Meanwhile, it is legitimate
make a perturbative expansion to obtain the nonlocal par
the self-energy in the spirit of theGW method.24 The origi-
nal GW method computes a screened Coulomb lineW by
summing random phase approximation~RPA! diagrams and
obtains the one-electron self-energy by considering
lowest-order graph inW, hence the nameGW. The
E-DMFT-GW approach is derivable via the Baym–Kadano
functional.17 The functional derivatives of the two-particl
irreducible part of the Baym–Kadanoff functionalF(G,D)
with respect to the full Green’s function give the correspon
ing self-energies.F(G,D) is constructed with the full

FIG. 17. The two-particle irreducible functionalF@G,D# in the
E-DMFT-GW approach.
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Green’s functionsG and D and the interaction vertices~as
discussed in Sec. VIII, the choice of the phonon field sho
be done judiciously!. The E-DMFT-GW method consists of
approximatingF ~see Fig. 17! by leading-order nonloca
graphs and evaluating the rest of the functionalF in the local
approximation. The E-DMFT-GW self-energies are given b

Ss; i , j~G,D !5
dF~G,D !

dGs; i , j
.d i j Ss; i ,i

E-DMFT~G,D !

1~12d i j !Ss; i , j
GW ~G,D !,

P i , j~G,D !5
dF~G,D !

dDi , j
.d i j P i ,i

E-DMFT~G,D !

1~12d i j !P i , j
GW~G,D !. ~46!

For the approach to be derivable from a functional,S(G,D)
and P(G,D) have to be calculated self-consistently. T
GW method has been applied toab initio calculations of
semiconductors since the original works by Strinati, M
tausch, and Hanke.40 However, it was pointed out that in th
local density approximation~LDA ! GW for electron

FIG. 18. ~A! The bare interaction vertices contained in Eqs.~6!
and~34!, that is, the local electron-phonon interaction A~1! and the
local Hubbard interaction A~2!. ~B! The nonlocal self-energy con
tributions described in Eq.~49! @B~1! and B~2!# for electrons and
Eq. ~50! @B~3!# for phonons. The strengths of the leading contrib
tions ~from the nearest neighbors! for the three diagrams are
O@V/d#, O@U2/d3/2#, and O@1/d#, respectively. Since in each o
the diagrams we require the vertices be from different lattice si
there is no double counting.
0-12
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systems41 the self-consistency results in incorrect on
electron spectra and that it is better to computeS(G0) with
G0 the unperturbed Green’s function instead. Better total
ergy, though, is obtained fromS(G).41,42We believe that our
proposal resolves this contradiction. The E-DMFT iterati
obtains the largest self-energy term~the on-site one! self-
consistently and nonperturbatively. TheGW approximation
is used for the smaller term~the off-diagonal one!. In our
model calculation we find that the difference betwe
E-DMFT 1 non-self-consistentGW and E-DMFT1 self-
consistentGW is small. This can be generalized in a straig
forward way to realistic multiband situations.

We need to discuss more specifically the nonlocal s
energy diagrams in our generalizedGW approach in combi-
nation with the E-DMFT. We identify two such contribu
tions. The first is the boson exchange diagram which is of
same form as that in theGW method @Fig. 18~B1!#. We
require that the two verticesG3 be local and come from
different lattice sites, giving rise to the off-diagonal se
energy. Figure 18~B1! uses the full electron-phonon vertice
instead of the bare ones, in the exchange diagram of
self-energy. Those local vertices, which can be measure
E-DMFT-QMC, are defined through the following Green
function43:

Gloc~t1s1 ,t2s2 ;t3!

5
def

^Ttcs1
~t1!cs2

† ~t2!f~t3!&

5E
0

b

dt18(
s18

E
0

b

dt28(
s28

E
0

b

dt38G
loc~t1s1ut18s18!

3Gloc~t2s2ut28s28!G3
loc~t18s18 ,t28s28 ;t38!D loc~t38ut3!.

~47!

Unlike the skeleton diagram commonly used for the elect
self-energy43 where one of the vertices should be bare
avoid overcounting, the diagram in Fig. 18~B1! uses two full
local vertices. Our requirement—that the two vertices
from different lattice sites—ensures that there is no ov
counting. While the skeleton construction uses one bare
one full vertex to produce the exact self-energy, our meth
uses two full local vertices to produce the leading nonlo
correction. We should also remark that both the electron
phonon lines appearing in Fig. 18~B1! represent the nonper
turbative Green’s functions from E-DMFT. Especially, th
phonon Green’s function plays the role of a screened C
lomb interaction which in the originalGW is obtained by
using the RPA.

There is another contribution, which originates from t
local interactionU at second order@Fig. 18~B2!#. The reason
this contribution is important is that usuallyU is much big-
ger thanV. The effective local vertexG4

loc is defined in the
following way:
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G(2),loc~t1s1 ,t2s2ut3s3 ,t4s4!

5
def

^Ttcs1
~t1!cs2

~t2!cs3

† ~t3!cs4

† ~t4!&

5Gloc~t1s1ut4s4!Gloc~t2s2ut3s3!2Gloc~t2s2ut4s4!

3Gloc~t1s1ut3s3!

1E
0

b

dt18(
s18

E
0

b

dt28(
s28

E
0

b

dt38

3(
s38

E
0

b

dt48(
s48

Gloc~t1s1ut18s18!Gloc~t2s2ut28s28!

3G4
loc~t18s18 ,t28s28ut38s38 ,t48s48!Gloc~t38s38ut3s3!

3Gloc~t48s48ut4s4!. ~48!

If there is no external magnetic field, only two spin config
rations are allowed in the two particle Green’s function
well as the vertex: that with all the spins in the same dir
tion and that with two spins up and two spins down.44 Once
we get the local vertex, the corresponding contribution to
off-site self-energy can be constructed as shown in F
18~B2!, with again the vertices coming from different site
and ensuring no double counting of the diagrams. It sho
also be pointed out that the diagrams contained in F
18~B1! and 18~B2! are totally different. This can be see
easily by comparing the nonlocal lines in the two diagram

To compare the importance of the two terms, we can
vestigate their scaling behavior with the spatial dimension45

We should keep in mind that bothG andW scale as 1/Ad for
nearest neighbors in real space, withd the dimension, and
both interaction vertices are local, which means they do
scale. We then see that the leading electron-phonon contr
tion scales as 1/d and that of the on-site interaction as 1/d3/2.
In the infinite-dimensional limit there is no doubt that th
electron-phonon contribution is more important. However
we work in finite spatial dimensions~usually<3) and since
the on-site interactionU is likely much bigger than the off-
site one,V, these two can be of the same order practica
This actually happens in the example in 1D which we w
show in the next section.

In the same spirit one can also obtain the leading nonlo
correction to the phonon self-energy, i.e., Fig. 18~B3!, which
is the leading nonlocal correction in terms of the E-DMF
interactions. Due to the two electron lines, the diagram sc
as 1/d when the two contributing lattice sites are near
neighbors.

In practical calculations, we first solve E-DMFT itera
tively and obtain all the local self-energies and the inter
tion vertices. We then apply theGW approximation to cal-
culate the nonlocal self-energies by using the Gree
functions obtained from E-DMFT. As in the originalGW,
we assume here that the corrections do not change dram
cally the physical properties of the system so that we
allowed to use the quantities from E-DMFT directly. The la
step is to use the approximate self-energies in the e
Dyson equation so that all Green’s functions, with both s
tial and temporal dependencies, can be calculated.

The GW contributions to the self-energies are calculat
in real space-time as follows foriÞ j ~see Fig. 18!:
0-13
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Ss
GW~ i tu j t8!52E

0

b

dt1(
s1

E
0

b

dt18(
s18

E
0

b

dt2E
0

b

dt28G3,i
loc~ts,t1s1 ;t2!G~ i t1s1u j t18s18!D~ i t2u j t28!G3,j

loc~t18s18 ,t8s;t28!

2E
0

b

dt1(
s1

E
0

b

dt18(
s18

E
0

b

dt2(
s2

E
0

b

dt28(
s28

E
0

b

dt3(
s3

E
0

b

dt38(
s38

G4,i
loc~ts,t1s1ut2s2 ,t3s3!

3G~ i t1s1u j t18s18!G~ i t2s2u j t28s28!G~ j t38s38u i t3s3!G4,j
loc~t38s38 ,t28s28ut18s18 ,t8s!, ~49!
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PGW~ i tu j t8!5E
0

b

dt1(
s1

E
0

b

dt18(
s18

E
0

b

dt2(
s2

E
0

b

dt28

3(
s28

G3,i
loc~t1s1 ,t2s2 ;t!G~ i t1s1u j t18s18!

3G~ j t28s28u i t2s2!G3,j
loc~t28s28 ,t18s18 ;t8!.

~50!

In the above equations we labeled the vertices by the la
site index with the possibility of inequivalent sublattices
mind. There is a symmetry one can use in the calculatio
iÞ j :

Gs~ i tu j t8!5@Gs~ j t8u i t!#†. ~51!

It is both physically transparent and technically conveni
to perform the generalizedGW calculation in coordinate
space and imaginary time.46 It is also very easy to extend th
expressions to systems with different sublattices, as we
show in the next section.

VII. APPLICATION II: 1D BAND INSULATOR VIA
E-DMFT PLUS GW

Since we want to investigate if theGW method can im-
prove the E-DMFT results, we need to know the correspo
ing exact solution of the model under investigation. In th
section, we implement the E-DMFT of two sublattices for
1D U-V model with an alternating chemical potential. Th
model can be solved exactly atT50 via the density matrix
renormalization group~DMRG!.47,48 The model is relevan
in the study of the interplay between the electronic corre
tion and electron-phonon coupling in the mixed-stack
ganic compounds29,30and the ferroelectric perovskites.31 The
phase diagram has been studied.49

Because we solve the impurity model in E-DMFT usi
the QMC simulation which works at finite temperatures,
need to make a comparison in the band insulating ph
where all excitations are gapped so that the effects of ther
excitations are suppressed at low enough temperatures
also want to make a comparison in parameter space w
the quantum fluctuation is strong enough so that the stan
mean-field solution does not work. It is known that in such
case one needs C-DMFT of at least two sites to get g
agreement with the exact solution.33 Our goal here, though
is mainly to see if theGW method can improve the E-DMFT
results.
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Due to the above reasons, the E-DMFT we are going
use in this section is slightly different from that described
Sec. V which combined E-DMFT with C-DMFT. Thepure
E-DMFT ~without C-DMFT! for two sublattices is estab
lished in the following way. We first choose a representat
site from sublatticeA, integrate out all the other sites in bot
the sublattices, and obtain an effective impurity action
this site. Then, from the nearest neighbors of this site,
choose another representative site, which obviously belo
to sublatticeB, and repeat the same procedure. The two
fective actions reached in this way are the same as that f
homogeneous system we described in Sec. III. They are
mally independent of each other at the level of the impur
model. Of course the two are connected, at self-consiste
through the Dyson equations which are the same as th
given by Eqs.~38! and ~39!, except the off-diagonal self
energies are now zero. Technically, one can easily unders
the structure of this E-DMFT by imposing the requireme
on all the corresponding equations in Sec. V that the impu
model be restrictively local. Then all the off-diagonal d
namical Weiss fields, and thus the off-diagonal self-energ
are zero. However, the impurity Green’s functions still ha
nonlocal contributions, as is evident from Eqs.~42!-~44!.
This scenario of implementing~E-!DMFT, in midway be-
tween the single-site~E-!DMFT and the cluster one, has bee
used successfully in treating systems with inequivalent s
lattices while avoiding the heavy calculations needed
C-DMFT.1

We study here the following Hamiltonian:

Ĥ52t(
i ,s

~ ĉi ,s
† ĉi 11,s1H.c.!2(

i ,s
m i n̂i ,s

1U(
i

S n̂i ,↑2
1

2D S n̂i ,↓2
1

2D
1V(

i
~ n̂i ,↑1n̂i ,↓21!~ n̂i 11,↑1n̂i 11,↓21!. ~52!

We consider the special case with alternating chemical
tential:

m i5~21! im. ~53!

In this case we know the exact forms of the hopping ma
element and the nonlocal interaction. We can write down,
the off-diagonal terms in the Dyson equations~38! and~39!,
0-14
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tk5teikcosk, Vk5Veikcosk. ~54!

The momentumk is again restricted in the reduced Brillou
zone, given by2p/2,k<p/2 in the current case. The phas
factors exp(6ik) come from the fact that each site (A,i )
@(B,i )# has two neighbors, one within the same unit c
(B,i ) @(A,i )# and the other comes from the cell to the le
~right!, (B,i 21) @(A,i 11)#. Hence the latter contributes
momentum-dependent phase factor. Remember when we
the above two equations for self-consistency in E-DMFT
off-diagonal self-energies for both electrons and phon
should be set to zero due the assumption of locality:

Ss
AB~ ipn!50, PAB~ ivn!50. ~55!
th
en
ea
o

te
s
r

he

o
e

y
es
er
d
t

rg

08512
l

se
e
s

Because of the dimensionality, the momentum summati
needed in calculating the local Green’s functions can be
ried out exactly, which give

Gs
loc,XX~ ipn!5(

k
Gs

XX~k,ipn!5
z

s
XX~ ipn!

zs
AA~ ipn!zs

BB~ ipn!21
,

~56!

with

zs
X~ ipn!5

def
ipn1mX

eff2Ss
XX~ ipn!

and
D loc,XX~ ivn!5(
k

DXX~k,ivn!5
4V2PXX

A124V2PAA~ ivn!PBB~ ivn!@11A124V2PAA~ ivn!PBB~ ivn!#
. ~57!
in
as

the
i-

ich
In the above, we used again the notation thatX̄5B if X
5A and vice versa. As we have noted, the solution of
impurity model in the current case consists of two indep
dent parts, one for each representative lattice site, and
of them are exactly the same as that for a homogene
system. The only difference comes in at the self-consis
conditions which are given by the above pair of equation

After we get the solution of the impurity model, eithe
within a single iteration or after the convergence of t
E-DMFT iterations, we can perform theGW perturbative
calculations. To illustrate the idea and see qualitatively h
the GW self-energy can improve the results, we consid
here the simplest and the most importantGW contributions,
those from the nearest neighbors. They contribute directl
the off-diagonal self-energies, while for the diagonal on
we use those from the E-DMFT calculation. All the oth
contributions are neglected because the Green’s functions
cay exponentially as the spatial separation increases in
band insulating phase.

We can now write down the expression for the self-ene
matrices as follows:

FSs
AA Ss

AB

Ss
BA Ss

BBG ~k,ipn!

.F Ss
DMFT,AA~ ipn! Ss

GW,AB~ ipn!eikcosk

Ss
GW,BA~ ipn!e2 ikcosk Ss

DMFT,BB~ ipn!
G ,

~58!
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FPAA PAB

PBA PBBG~k,ivn!

.F PDMFT,AA~ ivn! PGW,AB~ ivn!eikcosk

PGW,BA~ ivn!e2 ikcosk PDMFT,BB~ ivn!
G .

~59!

The momentum dependencies of the off-diagonal terms
the above two equations come in for the same reason
those in the free electron and phonon propagators. In
current situation bothGW terms we discussed in the prev
ous section contribute as given by Eqs.~49! and ~50!. To
make life easier, we make a further approximation wh
replaces the full interaction vertices by their bare values:

G3
loc~t1s1 ,t2s2 ;t3!5ds1 ,s2

d~t12t2!d~t12t3!,
~60!

G4
loc~t1s1 ,t2s2ut3s3 ,t4s4!

5Uds1 ,s4
ds2 ,s3

d~t12t2!d~t12t3!d~t12t4!.

~61!

Then Eqs.~49! and ~50! are greatly simplified and give

Ss
GW~ i tu j t8!52Gs~ i tu j t8!D~ i tu j t8!

2U2G2s~ i tu j t8!G2s~ j t8u i t!Gs~ i tu j t8!,

~62!
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PGW5(
s

Gs~ i tu j t8!Gs~ j t8u i t!. ~63!

In reaching the numerical results we are going to present
usel52.0 for the positive definiteness of the effective inte
action matrix. In every iteration, the impurity model
solved via QMC by 106 sweeps. To reach the E-DMFT con
vergence, ten iterations are usually needed.

We first show in Fig. 19 the temperature dependence
the imaginary part of the electron Green’s function calc
lated atU55.0, V50.5, andm52.0. The three cases ar
calculated at three different inverse temperaturesb
55.0,8.0,10.0 with the correspondingDt50.25,0.20,0.25,
respectively. It is obvious that the three sets of data lie o
single smooth curve. Actually this same situation happens
all the other quantities we measured which are not sho
here. All these suggest that, at the given temperatures,
the highest atT51/5.0, the thermal fluctuations are alrea
suppressed due the band gap and we need not worry a
the temperature effects. In the following, we present the
sults calculated atb55.0.

In Fig. 20 we present the data of the imaginary part of
electron Green’s functions calculated using E-DMFT alo
usingGW with the electron-phonon vertex@corresponding to
Fig. 18~B1!#, and with the local Hubbard vertex@correspond-
ing to Fig. 18~B2!#, respectively. In the latter two theGW
calculations are performed after E-DMFT convergence. T
exact result and the Hartree mean-field~MF! result are also
plotted as references. From the results, one can see tha
two terms in theGW correction are of the same order.

In Fig. 21 we show the results of the imaginary part of t
local electron Green’s function fromGW calculations after
E-DMFT convergence and those usingGW within the
E-DMFT iteration loop. One can see that the difference
very small. The corresponding real part is plotted in Fig.
In Fig. 23 we show the plotting of the Green’s function b
tween a pair of neighboring sites. We can also compare
result on the average energy per site,e. The result ofGW
after E-DMFT givese521.76 and that forGW within
E-DMFT e521.74. The DMRG finds the exact averag

FIG. 19. The imaginary part of the local electron Green’s fun
tion Gs

loc,AA( ipn) at U55.0, V50.5, andm52.0. The results at
three different inverse temperatures are shown~Ref. 38!. Within the
accuracy of the calculation, the three sets of data lie on a sm
curve which means the thermal effects on the result has alre
been suppressed due to the band gap.
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ground-state energy per site to bee522.09. The difference
between the twoGW1DMFT procedures is again very mi
nor. From the given results and those performed at the o
parameter points which are not shown here, we conclude
the two procedures, one withGW after E-DMFT and the
other withGW in E-DMFT iteration, give very close results
although it seems the former is a little better.

The physical information contained in Figs. 20–23 can
understood as follows.~i! In one dimension, all the allowed
modes of the low-energy excitations are those bosonic
ticle hole pairs carrying momentumk;0 andk;2kF (5p
at half-filling! with respect to the Hartree ground state. Th
explains why a C-DMFT calculation with a cluster of on
two sites gives quite good results33 while the E-DMFT we
employed here does not work very well at low frequenci
The difference is basically that a model of a single site c
only capture those modesk;0, but a cluster of two sites is
already good enough for those atk;p. ~ii ! Since the clas-
sical Hartree energy gap, which is given by2U/212V1m
50.5, is quite small in this case and both interactions in E
~52! are ~marginally! relevant with respect to the metalli
Gaussian fixed point, as we go to lower-energy scales
thus longer wavelengths, the energy gap gets renormal
significantly. This explains why the exact DMRG result is
different from the MF result at low-frequencies. The hig

-

th
dy

FIG. 20. The imaginary part of the local electron Green’s fun
tion Gs

loc,AA( ipn) at U55.0, V50.5, m52.0, andb55.0. The data
labeled asGW(1) come from the contribution described by Fi
18~B1! andGW(2) from Fig. 18~B2!. It can be seen thatGW(1)
and GW(2) make corrections at the same order to the E-DM
result.

FIG. 21. The imaginary part of the local electron Green’s fun
tion Gs

loc,AA( ipn) at U55.0, V50.5, m52.0, andb55.0.
0-16
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frequency behavior, on the other hand, can be captured f
well even by the Hartree approximation, which is evide
from Figs. 20–23. This is the region where all the differe
approaches converge to give the same result.~iii ! From the
figures of the local electron Green’s function one can see
at not too low frequencies~basically, those beyond the firs
two Matsubara frequencies!, the E-DMFT result is much bet
ter than the MF result and closer to the exact ones. Thi
consistent with the scaling picture since the contributions
the results at those frequencies higher than the gap en
which is of the order of ‘‘1’’ in the current case, can only b
from the local behavior and are described fairly well by t
E-DMFT. On the other hand, this same reason explains
big deviation of the E-DMFT result at the first two Matsu
ara frequencies: They are affected more strongly by th
quantum-thermal fluctuations with longer wavelength, wh
are mostly neglected by the E-DMFT approximation.~iv!
The GW works in the way we have anticipated. It incorp
rates more spatial correlations into the self-energy so tha
low-frequency behavior benefits a lot from the correction.
we can see from Figs. 21 and 22 theGW contributes to both
the real and imaginary parts of the local Green’s functio
corrections of more than 15%.~v! The GW method used
here has little effect on the nearest-neighbor Green’s fu
tions because it is designed to improve the local Gree
functions.

What we have shown above is that theGW method can
be used to improve the E-DMFT results. Due to the dim
sionality, the single-site E-DMFT results deviate from t

FIG. 22. The real part of the local electron Green’s functi
Gs

loc,AA( ipn) at U55.0, V50.5, m52.0, andb55.0.

FIG. 23. The off-diagonal electron Green’s functio
Gs

loc,AB( ipn) at U55.0, V50.5, m52.0, andb55.0.
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exact ones at the lowest frequencies. By incorporating
spatial correlations, theGW perturbation contributes a de
sired correction. Of course in this very case in 1D it is know
that the spatial correlation is so important that a leadi
order perturbation is not enough to recover the exact res
What is important is that the above example shows that
GW method works in the way we anticipated. Our maj
objective is to applyGW-DMFT to strongly correlated elec
tronic systems in higher dimensions. We know E-DMF
works much better as is evident from the scaling behav
with respect to the dimension. We also know that t
leading-order perturbation in terms of the interaction vert
theGW, works better. We thus have a method which is mu
easier to handle technically than C-DMFT and is able
achieve the same goal to a certain extent.

VIII. FURTHER DEVELOPMENT AND OUTLOOK

E-DMFT allows to describe the interactions in a mo
flexible way than we have presented so far. The need
such a freedom is evident in the realistic calculation of m
terials, where instead of the nearest-neighbor repulsion c
sidered in this paper we have to treat the Coulomb inter
tion and its multipole expansion. For such a system,
dielectric function is given by, in linear response theory,22

e21~q,ivn!511vqx~q,ivn!, ~64!

wherevq is the Coulomb interaction given by, in 3D,

vq5
4pe2

q2
~65!

andx(q,ivn) is the density-density Green’s function define
through Eq.~8!. One can make use of the electron-phon
identity, Eq.~10! ~setl50), and get

e~q,ivn!512vqP~q,ivn!. ~66!

Here the phonon self-energyP can be understood as th
collection of all electron polarization diagrams. If one pr
ceeds with the formalism we presented in the previous s
tions, the phonon self-energyP within the E-DMFT ap-
proximation is assumed to be momentum independ
However, Eq.~66! is not the correct functional form for an
insulator in which the polarization should be given b
P(q,ivn);q2f (q,vn) with f weakly q dependent.

To handle this situation in E-DMFT we have to tailor th
formalism to be compatible with the functional form of th
response function. This leads us to the following generali
tion of the action discussed in Secs. II and III:

S5S01E
0

b

dt(
q

F1

2 (
a,b

fa~q,t!D0,ab
21 ~q!fb~2q,t!

2 (
a;a,b

fa~q,t!ra~2q!G , ~67!

where we have defined a generalized electron density
0-17
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ra~q!5(
k

(
ab

ck1q/2,a
† La;ab~k1q/2,k2q/2!ck2q/2,b ,

~68!

with a andb the spin labels. The indicesa andb are used to
label the local degrees of freedom other than spin, like
components of the multipole moments.S0 is the free action
plus the local interaction. The key part here is the electr
phonon vertexLa;a,b(k1q/2,k2q/2) which is momentum
dependent. A wise choice of this vertex allows us to prese
the physical momentum dependence in the response fun
after the E-DMFT approximation.

We can define the following Green’s function in matr
form:

@D~q,t!#ab52^Ttfa~q,t!fb~2q,0!&,

@ x̃~q,t!#ab52^Ttra~q,t!rb~2q,0!&

5(
k,k8

La,ab~k1q/2,k2q/2!

3Lb,a8b8~k82q/2,k81q/2!

3xab,a8b8~k,q,t;k8,2q,0!, ~69!

with

xab,a8b8~k,q,t;k8,q8,0!52^Ttck1q/2,a
† ~t!ck2q/2,b~t!

3ck81q8/2,a8
†

~0!ck82q8/2,b8~0!&.

The same as before, we can derive an electron-phonon i
tity

@ x̃~q,ivn!#2152D0~q!1P21~q,ivn!. ~70!

So far the results are exact. The E-DMFT approximat
amounts to mapping the general model~67! to an impurity
problem by integrating out all but one lattices site~we con-
sider the homogeneous phase here!. The only new feature is
that the general electron-phonon interaction vertex is
necessarily local as we had before. The resulting pho
self-energy is a function of frequency only. However, t
general density-density Green’s functionx, a physical quan-
tity, now contains a nontrivial momentum dependence wh
is evident from Eqs.~69! and~70!. Since the electron-phono
vertex L can alway be adjusted by redefining the auxilia
phonons, we are able to obtain the desired momentum
pendence from physical considerations.

To see how it works, we go back to the example of t
insulator. We need the following form of the electron-phon
coupling in order to describe the dipole-dipole interaction

La;ab~k1q/2,k2q/2!5dab

qa

q2
, ~71!

with a5x,y,z. Meanwhile, the free phonon propagator is
the form
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D0,ab~q!5
dab

4pe2
, ~72!

in order that the Coulomb interaction be recovered when
auxiliary phonons are integrated out. Under this interact
vertex, the auxiliary phonon represents an electric field m
diating the dipole-dipole interaction. Since only the longit
dinal field is coupled to the dipole moment, we can keep
corresponding phonon mode and discard the transve
ones. For the E-DMFT approximation, it is desired to wo
in coordinate space where cavity construction is possible
this end one needs to convert the electron-phonon coup
to real space which can be done by using the Wannier fu
tions.

After solving the E-DMFT problem, the electron densi
Green’s function is given by

x~q,ivn!5q2
2P~ ivn!

114pe2P~ ivn!
~73!

and the dielectric function becomes

e~q,ivn!5114pe2P~ ivn!, ~74!

which has the correct form for an insulator.
To conclude, we have introduced in this section a way

tailor the E-DMFT formalism so that the desired momentu
dependence can be preserved from physical consideratio

IX. CONCLUSION

In this paper we suggested a simple procedure of deriv
the E-DMFT formalism: that is, first separating out the Ha
tree contributions and then making the E-DMFT approxim
tion with regard to the fluctuations around the Hartr
ground state. This procedure is essential in the phase
broken symmetry. It also helps to formulate the C-DMFT

We developed an E-DMFT formulation by using a re
Hubbard–Stratonovich transformation. We introduced a lo
shift to the general nonlocal interaction to ensure the posi
definiteness of the effective interaction matrix. Our inves
gation showed that in all physical quantities the effects fr
the arbitrary shift canceled out exactly. We also proved
equivalence of forming the E-DMFT self-consistency by u
ing the auxiliary phonon Green’s function and the tw
electron Green’s function. Based on these ideas, we der
an E-DMFT of a single-impurity site for a homogeneo
system with generic two-particle interactions. We also p
sented a formalism of E-DMFT combined with C-DMFT fo
a cluster of two lattice sites, which is generalizable to clu
ters containing any number of sites.

We suggested a generalizedGW approach to incorporate
the spatial correlations into the E-DMFT approximatio
While the on-site self-energies are obtained nonpertur
tively through E-DMFT, those relatively weaker off-site co
tributions can be calculated in a perturbative way. We id
tified the most important contributions to the nonlocal se
energies.

We showed how E-DMFT could be tailored to handle t
response functions with nontrivial momentum dependenc
0-18
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an insulator. Through the example of the dielectric funct
we exhibited that an appropriately defined electron-pho
vertex was able to keep the correct functional form of
response function.

We implemented a QMC algorithm with shifts i
E-DMFT to handle the non-positive-definite interaction
This algorithm can be used for a large variety of problem
including the Anderson lattice with antiferromagnetic inte
actions. Two examples of the implementations were p
sented.

The first example was the application of the single-s
E-DMFT to the 3DU-V model. We studied the behavior o
the electron Green’s function and the response function
the density instability was approached. We studied the cr
over between the metallic and Mott insulating phases.
investigated the frequency dependence of the effective
site interaction and showed its impact on the single-elec
behavior. We showed a finite-temperature phase diagram
the 3DU-V model.

In the second example, we applied a single-site E-DM
ev

nd

h

ev

o

08512
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combined with theGW method to a 1DU-V model with an
alternating chemical potential. It was found that theGW ap-
proach improved the E-DMFT results at low frequencies
the desired direction. We also found that in the case un
investigation, it made little difference whether or not theGW
perturbation was performed within the E-DMFT iteration.

The success of the E-DMFT implementation opens
door to tackle many complicated physical problems wh
could not be handled by simple DMFT or other methods. T
combination withGW and/or C-DMFT points out a system
atic way to improve the~E-!DMFT method.
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