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We develop the extended dynamical mean-field théBFPMFT) with a view towards realistic applications.
(1) We introduce an intuitive derivation of the E-DMFT formalism. By identifying the Hartree contributions
before the E-DMFT treatment, it allows us to handle systems in symmetry-breaking phases within a simple
formalism.(2) We make an implementation of E-DMFT through a real Hubbard—Stratonovich transformation
to decouple the nonlocal two-particle interactions. We apply it to a three-dimensieXamnodel, withU the
on-site andv the nearest-neighbor interactions, and investigate the behavior of the various Green’s functions,
especially the density susceptibility, as the density instability is approached. We obtain the phase diagram at a
finite temperature(3) We present a formalism incorporating E-DMFT with cellular DMF4) We suggest an
improvement of the E-DMFT approach by combining it with a general@¥dmethod. The method combines
the local self-energy from E-DMFT and the nonlocal ones from the perturbative calculat@®@WofVe apply
the method to a one-dimensiorldtV model with two sublattices carrying different chemical potentials. By
comparing with those from density matrix renormalization group calculations, we show that the results are
shifted in the correct direction due to tl@W contributions.(5) In order to handle the generic Coulomb
repulsion within E-DMFT, we describe a method to tailor E-DMFT so that the proper momentum dependence
can be kept in general response functions.
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I. INTRODUCTION present a simplified derivation of these equations in a
broken-symmetry phase. A method for handling arbitrary in-
The dynamical mean-field theorfDMFT) has been a teractions within E-DMFT-QMC by an interaction sftts
powerful tool for the study of strongly correlated electronicalso discussed in these sections. We show the formalism
systems. It has allowed us to gain insights into nonperturbacombining E-DMFT with cellular DMFT(C-DMFT) in Sec.
tive problems such as the Mott paramagnetic metal to para¥ and with theGW approximatio* in Sec. VI.
magnetic insulator transition at finite temperaturéghere To illustrate the ideas and the working of the methods we
are many current attempts to extend the scope of the DMF®PplY them to two problems. The transitions between a Mott
approach in several directions: to include momentum deperinsulator(Ml), a band insulatoBl), and a Fermi liquidFL)
dence in the self-enerdy/ to account for the effects of in a three-dimensioné8D) U-V model is discussed in Sec.
finite-range interaction ;1*and to combine DMFT with re- V. The model describes an electron system with an on-site
alistic band structur&—18 repulsion U and a nearest-neighbor interactidh It was
The current paper is devoted to an investigation of thereated in simple DMFT at h&lfand quarte?® fillings and is
extended dynamical mean-field theqB~DMFT), an exten- relevant to materials with a charge-ordered pttasé The
sion of the original DMFT, in order to take into account the problem of the transition between Ml and Bl phases in a 1D
spatially nonlocal interactions beyond the Hartree level. ThdJ-V model with alternating chemical potentials was dis-
idea of E-DMFT was developed independently in the studiegussed in the context of mixed-stack organic compotititls
of spin glas€' systems with a nonlocal Coulomb and ferroelectric perovskités.We exhibit in Sec. VIl the
interaction>*? and the heavy-fermion systethThe deriva- implementation of the E-DMFGW method on the 1D
tion of E-DMFT based on the Baym—Kadanoff functional model. Sec. IX is the conclusion.
has been achieved in Ref. 12.
We present here several methodological developments Il. MODEL HAMILTONIAN
which build on the E-DMFT approach with a view to obtain
a more realistic description of solids. Our goals are to de-
scribe(a) the frequency dependence of the effective interac- 1 3
tion and its effects on the single-particle specth, the ef- A=—2 2 > (tijci‘rgchJr H_C_)_Z > h,S.
fects of short-range correlations, arid) a momentum- 277 < i a=0
dependent polarization. These three effects are certainly

We start with the following Hamiltonian:

3
present in realistic models of solid%:>*We discuss them in N A 1 2y &
this paper in the framework of model Hamiltonians in Secs. UZ Mirhi ™3 % aﬁE:o SiaViapS @
IV, VII, and VIII. It should be pointed out that the problem is def

not touched on in this paper as how to obtain the parametefbhe operatorsazéfo
of the model Hamiltonian from first-principles calculations. o _ _
In addition we present several technical advances for théices fora=1,2,3 andr" =1, the identity. So the zeroth

analysis of E-DMFT equations. In Secs. Il and Ill, we component o5, is the charge density and the rest the spin

Ty o Cigr With 7% being the Pauli ma-
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operators. Similarlyh;,-o represents the chemical potential o 1
and the other three, witlw=1,2,3, the external magnetic Mia:Mia—EU—jgi) Viojo({njp) +(n;j;))
field.
In Eqg. (1) the on-site part of the interaction is isolated in
U and the off-site parts are described By, jz; hence, —Uj(;) Vizja((nj) —(nj))). 3

Viaig=0. We have allowed all possible forms of the instan- _ _ _ _

taneous direct and exchange interactions, but excluded sonfée work with the functional integral representation of the
others, like the pair hoppings. Unless otherwise specified, theartition function at finite temperature<0T = 1/8<.3 We
form of the interactiorV;, ;5 will be generic with only the want to perform a Hubbard—Stratonovich transform and de-
simple requirements that the interaction be translational incouple theV interactions' Since ultimately we will map the
variant, Via,jﬁ:Va,ﬁ(“ —il), and symmetric, Viaip man)_/—body_syste_m to an impurity mode_l and solye the s.elf—
:Vjﬁ,ia- Due to possib]e jonic screening and SuperexchangéonSISt.e.nt |mp_ur|ty problem via numerical tec_hnlques like
mechanisms, we have the freedom to a certain extent iRMC, it is desired that the Hubbard—Stratonovich transform
Choosingu and the Components of independent|y at the be I’ea|2.3 To this end, we need first to add the |dent|ty ma-
level of the model Hamiltonian. While it is reasonable totrices A ,4l;; to the off-site interaction to ensure that, for

take U>0, in the off-site interaction matri¥ all possibili-  givena and 8, the matrix
ties are allowed if some effective forms of the interactions _ def
are under consideration. In other words, the matils not [Vagplij=Naglij—[Vagplij (4)

necessarily positive or negative definite.

In this paper we keep for simplicityy,h;#0 and set s positive definite. The minus sign in front of the bare inter-
hy,h,=0. This choice is more general than it appears sincection in the above equation is needed for a real Hubbard—
we can always choose the direction of the effective magnetigtratonovich transform. Practically we can take any value of
field to be thez direction by appropriately rotating the sys- ), as long as it is greater than the biggest eigenvalue of the
tem. Furthermore, we assume that the spin symmetry brealnatrix [V.s] whose elements are defined HW,gl;;
ing, if it happens, is also along thedirection. This assump-  def o
tion is very natural itV;,, ;s is symmetric under permutation — Viaig: 10 keep the symmetry, we requixg s =X g, - Us-
among the three directions. However, it is actually more reing the Hubbard—Stratonovich transform, one can write the
strictive since it requires that N/a,ﬁ(|i —j|) produces any partition function in terms of the following functional inte-
easy axis, the direction of the easy axis should be also in theral:

z direction. We can then define a spin-dependent chemical

potential zZ= f D! (7,6 o(7); b1 o(D]exg—S), (5

def with the Euclidean action

Hig=hiot+ ohis.

S= f ﬁdT{ > ¢l (1)d,Ci0(7)

Before deriving the E-DMFT formalism, we need first to 0 Lo

separate out the Hartree contributions from the interactions.
It is known from a Baym-—Kadanoff functional analysis of —
E-DMFT (Ref. 12 that in the phases with broken symmetry,
Hartree terms contribute to E-DMFT by shifting the chemi-
cal potentiaP? In the current case, due to the spin exchanges, - Iu’ieftfrni ot UEﬁE nip(7)ng (7):
this shift is spin dependent. It is also known that in the cir- [ o [
cumstance of C-DMF one needs to handle separately

N| -

iEj > [l (T)ej (1) +H.c]

B

3
L ! , 1
Hartree contributions from the nonlocal interaction across + R AV o D gt
the cluster boundary. With all these motivations, we rewrite 2 .EJ a,ﬁ’E:O Pia( MV apliy” 1,5(7)
the Hamiltonian as follows: 3
L =2 2 hial D87, ©)
A=->2> > (ti;CloCiot H.c)— X uffni,
29 < o where
a1 ° & . & . U=U+Vigio—Visj1—Vizia— Viajs
' 171 wp=0 =U+ N~ A1—Aoo— Aas.

2 While the\ dependencies are explicitly contained in the ef-
)zective on-site interaction)®™ and the interaction matrices
def ) V,.p, they cancel each other exactly so that all the physically
:0:=0~-(0) with the average over the ground state. Themeasyrable quantities are independentofThe electron-
effective chemical potential is defined to be phonon vertex defined in EE) is local. In an insulator with

where the normal ordering of the operators is defined b
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a long-range Coulomb interaction, one needs a differenwith p,=(2x/8)(n+ 1/2) for integern. The equation is in
choice of vertex, as will be discussed later in Sec. VIII. the 2x2 matrix form labeled by spiw=1, | .

Several remarks are in place. First, since our strategy is to With the above preparation, we now derive E-DMFT. We
separate out all the Hartree contributions from the interacwill consider two situations. In the next section we describe
tions, we certainly need to treat the auxiliary field in thethe first case, the E-DMFT for a homogeneous system in
same way. However, due to the identity which all the lattice sites are equivalent to each other. In this

3 case the E-DMFT approximation amounts to integrating out
_ ~ - all but one lattice site to get an effective single-site action
(Bia)= +§j: /32::0 [Vaplij(:Sj:) =0, which is equivalent to a self-consistent impurity model. All
sites that are integrated out contribute to self-consistent baths
we need not bother to normal order tiefields here. The  of free fermions and bosons for the impurity model. Here we
current formalism Of E-DMFT can be eXtended dil’ectly to ashou|d have a homogeneous Chemica| potemialz Mo In
general bose fiefd which can develop nonzero expectation the second casésee Sec. Y we explore the E-DMFT for
values, if we replacep;,, by :¢;,:. Second, there is an arbi- systems with two mutually penetrating sublattices. We
trariness in choosing the sign of the electron-phonon verteyresent a formalism combining E-DMFT and C-DMFT with
which is reflected in the %" signs appeared in Eq6). It 3 cluster of two neighboring sites. While it is natural to apply
comes from the freedom in the Ising4) symmetry of the this formalism to a system with two nonequivalent sublat-
order parameters. For definiteness, we take” from now tjces, it can also be applied to the homogeneous situation. In
on. Finally, one can also try to decouple the on-site interacthe |atter case, the purpose is to treat more accurately the
tion by using yet another continuous auxiliary field. Becausespatial correlations than the single-site E-DMFT. This com-
this interaction does not get any renormalization as we derivgination of E-DMFT and C-DMFT can be formulated for
E-DMFT and because for the local density-density interacclusters of arbitrary size.
tion there is the more efficient Hirsch—Fye algoritiwhich
uses the discrete Ising auxiliary field, we will not implement
this here3® Ill. E-DMFT OF A HOMOGENEOUS SYSTEM
For future reference, we first define the following Matsub-

. We first explore the single-site E-DMFT applicable to a
ara Green'’s function:

homogeneous system. By keeping one lattice site while inte-
def " grating out the rest using the cavity constructfome obtain
Gigjo (7= 7)=—(TCig(7)C}, (7)), (7)  the E-DMFT effective actioif

def
KaipT=T)= ~(TeSe(D8a(T @) S J:drfoﬁdr’; C3 (TG (7= 7" )Co (7))

def
Dia,jp(1—7")=—(T,  bia(1)::0ja(7"):). ) 16 8 3
Notice that the auxiliary field Green’s functidhdepends on - Ef drf dr’ > :gbogl(r):D;é(r— 7')
the value of\ introduced to make the effective interaction o Jo ap=0
matrix V positive definite while the Green’s functions for the , ot [P
electrons do not. The auxiliary phonon Green'’s functions are Xiop(7'):+U fo d7ing,(7):iNg, (7):
related to the electronic two-particle response functions by

the following identity, which can be derived by integrating g
out the auxiliary degrees of freedom in the phonon Green's —J A7 hoa(7)::Sp (7). (13
function, 0 =0

¥ Y Kiwy) =V + T LK iw,), (10)  This is an impurity model with both electron axalxiliary)

_ ) _ phonon degrees of freedom. The impurity model Green’'s
with the self-energy given by the Dyson equation forfunctions are identified with the local Green’s functions of
phonons: the lattice model, namellsee Eqs(7)—(9)],

M(kjiwy)=—V =D Yk,iw,), 11
( wn) k ( (l)n) ( ) GI(](_);,(T_T,):GOGYOG-/(T_T’),

wherew,,= (27/B)n for integern. The above two equations

are in matrix form in charge-spin space labeled by loc

«=0,1,2,3. The bare interaction vertexV, plays the role Xap
of a free propagator and is defined agVy],z

def ’ ’
=(1/Ld)2j,|T/jay,ﬁexp:—ik-(j—I)]. For later use, we also ch?,g(T_T )=Doaos(7— 7). (14
write down the Dyson equation for the electron Green’s
function: The E-DMFT self-consistent loop is formed as follows. One
starts with the effective action, E¢l3), and measures the
S(k,ipp)=ipn—ti— G L(Kk,ipy), (120 local electron and phonon Green’s functions as define

(T_ T,):XOa,OB(T_ TI)!
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through Eq.{14). Then one calculates the self-energies usingpens after the E-DMFT approximation. On the other hand,

the local version of the Dyson equations: the earlier versions of E-DMF{Refs. 9, 10 and J2use only
the bare interactions and have no such problem.
S ,(ipn) =G . M (ipn) —[G2] Xipy), (19 We will show in the following that, even after the
E-DMFT approximation, the effects from theketerms still
H(iwy) =D Yiw,)—[D"T *iwy). (16)  cancel exactly inall measurable quantities and only the

One of the basic assumptions of DMFT is the locality of thephySIcal Interactions d.etermme the physics. In dpmg S0, we
: also establish the equivalence of our E-DMFT with existing
self-energy. Notice that from Eq.(10) the phonon self- . . . A
ones. The physical reason behind this perfect cancellation is

energy 1S different ffo”.‘v although related to, the. reSPONSG At the static quartic interactions, including theerms we
functions and the locality of the former does not imply the'ntroduced do not get any renormalization in DMET, even in
locality of the latter. Under this assumption, the same Iocalhe presen,ce of those nonlocal interactions '
quantities can be calculated, by using EG£)—(12), To proceed, we need to check the effects on the phonon
dynamical Weiss functions of the arbitraxydependence we
G[Sc(ipn)=2 G, (k,ipy,) added in Eq(4) for ensuring the positive definiteness. These
K are easily seen by checking the high-frequency behavior of
the phonon Weiss functions. In this limit, the phonon self-
=E [ipn—tk—uﬁﬁ—zo(ipn)]*l, a7 energy goes to zero at the rate of the inverse frequency
K square, since it is approximately proportional to the local
two-particle Green’s function as shown in E0) (remem-
XIOC(iwn):E X(kyiwn)=2 [VK+H_1(iwn)]_1v ber D approaches a finite constant in the same J)imo
K K from Eq. (19 we have

(18
D% iwn) — ~ 3 Vicup=—Nug (21
D w,)= >, D(Kiwy)=—> [V +(iw,)] L. .
X X
(199  and thus
In the DMFT with phonons? one substitutes the results of D o -
Egs. (17) and (19) back in the local Dyson equatior{45) apli®n) = —Agp. (22

and (16) and generates a new set of the dynamical Weiss
functionsG and D which serve as the starting point of the  \ve can make a shift of the dynamical phonon Weiss func-
next iteration. This completes the self-consistent loop. tions by defining(in the matrix form

It is interesting to notice, however, that one has another
choice to form a self-consistent loop through the electronic
two-particle Green’s function'®® instead ofD'°°, as used in
Refs. 9,10 and 12. It is important that the two different pro-
cedures are compatible with each other. By combining Egs.
(18) and(19), one can find the following relation in the ma- hi
trix form:

(i wn)dﬁfp(i wp) +\. (23

The Weiss function defined above approaches zero in the

gh-frequency limit. We then integrate out the auxiliary
fields in the effection action, Eq13). After rearranging the

(20 variables and introducing a new set of the auxiliary field

o1 " Yiwy) = —D(iw,) + I~ s
X1 () (Ton) (ton). ¢o., the effective action becomes
where the local phonon Dyson equatid®) has been used.
This is nothing but the identity one can derive directly from  _ B B + 1 , ,
the effective action, Eq13), and is the local version of the S0 =~ fo deo dr Z €00(7)G 55 (T= 7" )Co0 (7')
electron-phonon identity, Eq10). Hence the two routines, 77
which correspond to making the DMFT approximation at the 178 B S _
different stages of the formulation—one directly from the - EJO deO dT/a;—o L hoo( 7):Dos(T

nonlocal electron interaction and the other after the

Hubbard—Stratonovich decomposition—are indeed equiva- _ B
lent, as long as the same interaction vertex defined irn(4q. —7')iop(7):+U Jo d7ing;(7):1Ng, (7):
is used.
There is, though, still one point left out: that is, the arbi- s 3
trariness of the value of the constantg; in Eq. (4). They —f dTZ ;500(7);;500(7);_ (24)
0 a=0 '

were introduced in our formalism for the purpose of ensuring

the applicability of the real Hubbard—Stratonovich transform

and are thus unphysical. While it is obvious that artificial It can be shown that, while the electronic Green’s func-
effects from thex dependencies cancel out exactly in thetions remain the same, the new local phonon Green's func-
original action, Eq(6), it is not clear if the same thing hap- tion D'°° is related to the old one by
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N R ; ; : 6 T T T T
D%(i wp) =D"%(iwn) + N+ [N +D(i ) [x' % wn) [\ Trangitions to Bl -
+D(i @)= Dliwy) X1 0) D(iwp). (25 5r I
One can also find the relation between the phonon self- 4 T
energies:
vV 3 BI .
I Yiw,) = Yiw,) +A\. (26) 5 i
The self-consistent conditions, Eq48) and(19), are trans- T
formed to 1 : ]
0 1 FL 1 —I'— 1 1 1
Xion) =2 [Vt T o] ™Y (@27) 0 ' 20 ! 5

FIG. 1. The phase diagram of the 3DV model at3=5.0. The
D%iw,)=— E [_Vk—1+ Iiw,)] (29) centers of the symbols represent the numerical results whose accu-
K racy is of the order of 0.01. The line bounded the BI phase repre-
sents the phase transitions from the FL and MI phases. The phase
Fansition line is found by approaching the instability of the
before. L . ) E-DMFT iteration from the smaller values Wf The line in between
So we have shown that the arbitrariness in the choioe of o F| and Mi phases represents a crossover. It is determined by the
does not affect the physical quantities. This point is Eest S€€fhlues ofU andV at which ImG,(ipy) = —0.5.
through Eq.(27) where a simultaneous shift &f, andl * ) . ] )
cancels out exactly. The quantities related to the auxiliarygPonse function in approaching the charge-density-
fields, including those described in EG&3), (25), (26), and wavg CDW) phase transition. Under the given condition, this

(28), do depend on\. But as we pointed out, they are not Mmodel Hamiltonian allows three different phases: the Mott

lent to, although more generic than, those discussed in théquid phase when the kinetic energy overcomes the interac-
existing literature, due tdi) the more general form of the tions. In the MI phase the system can develop an antiferro-
interaction we have takefij) the consideration paid to pos- magnetic long-range order if the magnetic frustration is weak
sible broken symmetry, anii) the introduction of thex enough. For s_|mpI|C|ty, in the following we will consider the
terms ensuring the positive definiteness of the interactioystem at a high enough temperature such that the MI phase
matrix. The method allows us to study the models with geniS Paramagnetic due to the strong thermal fluctuations. A
eral interactions, like the antiferromagnetic spin exchange. finite-temperature phase diagram /5.0 is presented in
Before we leave this part, it should be pointed out that thd"ig- 1. In the temperature region where our study is per-
formalism we just developed can readily be applied to thdormed, the Mott transition is actually a crossovep the
general case containing electron-phonon and long-rangehase diagram in Fig. 1 should be viewed as a qualitative
Coulomb interactions. There is basically only one changdepresentation of the actual phase diagrarfi-a0.
needed. Due to the dynamics of the real phonons from them- The 3D U-V model allows us to illustrate the novel as-
selves, we have an additional teriw()? in those related Pects of our methodology, including the implementation of
equations, including Eqs10), (11), (18), (19), and(28). The ~ E-DMFT with an auxiliary field, carrying out QMC simula-
electron-phonon identities still hold in the new formalism. tions with repulsive interactions, cancellation of thelepen-
Without any further change, continuous auxiliary bosondence, and investigation of the density-density response.

fields can be used to describe real phonon fields within th&hysically, we have in mind the following questiond)
same formalism. How is the MI-FL transition affected by the nonlocal inter-

action V? (2) How does the charge density instability de-

velop in the E-DMFT equations®) How does a frequency-

dependent effective interaction affect the quasiparticle

properties? These questions cannot be addressed in the
As an example of a practical implementation, in the fol-simple DMFT studies where thé interaction is handled at

lowing we apply the E-DMFT formalism based on the con-the Hartree level.

tinuous auxiliary field approach to a 3D Hubbard model with ~ The following is the 3D model Hamiltonian we are going

a nearest-neighbor density-density repulsigihe U-V  to study:

mode). We will be interested in the case at half-filling. This

is a much simplified version of the model we have investi- H=—

gated in the last section. Especially, there is only one local

shift A =\gp needed to make the interaction matrix positive

definite. Our purpose is to demonstrate the implementation B -

of E-DMFT and investigate the behavior of the density re- +V<iE,j) i t4in 0Ny im0, 29

The self-consistent loop can be formed in the same way

IV. APPLICATION I: PHASE DIAGRAM OF THE3D U-V
MODEL AT HALF-FILLING VIA E-DMFT

N| =

iZj > (tijéfrgéjg+H.c.)+UZi NN
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where(i,j) represents a pair of nearest-neighboring sites. In —0.10F ' ' ' '
this special case, the Fourier-transformed off-site interaction —0.15 -
is given by —0.20 | .
—0.25 i
V= V[ cogky) +cogky) + cogk,)]. (30 —0.30 | -
TmGe=(ipn) _g 05| 1
We perform QMC simulations similar to those in Ref. 13. _o40 N—00——
The fermionic part of the impurity model is handled by the ousl ﬁz%g ke
standard Hirsch—Fye algorithfi The statistical weight from ’ X=30->-
the part of the continuous bosonic fields is obtained directly —050L ' ' . . ]
by computing the corresponding Boltzmann factor. We use 0 2 4 Y 6 8 10
here a semicircular density of state for the electronic degrees
of freedom®® The bandwidth is set to be(_ We consider FIG. 2. The imaginary part of the electron Green’s function at

paramagnetic solutions at a finite temperature. Since the syfur different values ofa calculated atU=3.0 andV=1.6 as a
tem is exactly at half-filling, we use in QMC particle-hole function of the Matsubara frequencizef. 37.
symmetry accompanied by a reversal of the phonon displace-
ment to increase the efficiency of the simulation. In QMC,ImG°“(i=/B8) vs U at V=0.0 and 1.0. The reason we
we take 3=5.0 andA7=1/4. Correspondingly the inverse choose to plot this function is that it is knownhat the
temperature randgd,] is divided intoL = 8/A =20 slices.  asymptotic behavior at the low-frequency limit of the imagi-
The typical number of sweeps for QMC measurements s 10nary part of the electron Green’s function reflects the density
by which all the quantities converge within the statisticalof states(DOS) near the Fermi surface. For the metallic
errors. We actually experience a critical slowing down inphase the DOS is finite at the Fermi surface and hence
both QMC simulations and DMFT self-consistent iterations
as we approach the critical point aroutd=3.0 andV
=1.6 (see Fig. 1 In this region the typical number of itera-
tions needed for convergence increases from 10 to 20 and wen G(ip,,) " . 0. So from the plotting of InG at the
use in our QMC measurements 2x40° sweeps. first fermionic Matsubara frequency we can study the transi-
Before we present the results, we want to show that at théon or crossover behavior between the two phases. Since we
numerical level, thex-dependent term does not affect the solve the problem at a temperatug= 5.0) higher than the
physical results. We have shown in the previous section thatritical temperature 8.~ 1/0.04; see Ref. )lof the Mott
in the formulation of E-DMFT thex dependence does not transition, what we see in Fig. 4 is that for fixed
show up in physical quantities. However, it can happen that-Im G',fc(i 7/ B) decreases smoothly &kis increased. This
the formalism is so sensitive to the dependence that in &ehavior represents the crossover between the two phases.
practical calculation like QMC there is always only partial There is a small but finite shift in between the two curves
cancellation and a significant dependence remains in the calculated aV=0.0 and 1.0. This is a result of the compe-
physical measurables. It is also possible that a negligible tition betweenU andV. In the case ofV=1.0 the system
dependence in the results of the impurity model, which isenters the Bl phase fdd<2.2 which one can see approxi-
always there unless one can solve the problem exactly, mayately from Fig. 1. This region is out of the scope of the
get magnified during the E-DMFT iterations. In the follow- current approach, applicable only to a homogeneous system.
ing we present the results calculateduat3.0 andV=1.6  In the range 2.2U=<4.0, which is, roughly speaking, the
which show no\ dependence. From the phase diagram Figcrossover region, the value of I81°(i #/g) at the saméJ

1 one can see that this is the point we have reached closestigalways bigger foV=1.0 than that fol/=0.0. This means
the parameter space to the finite-temperature critical point

pPn—0
ImG(ip,) —— const# 0. For the insulating phase, on the
other hand the corresponding DOS is zero and

(CP). If the suggested scenarios of thedependence in the 0.00

physical results may happen, they will most likely happen

around the CP where the system becomes very sensitive t =002

the extra change from. In Fig. 2 we plot the imaginary part _o0al

of the electron Green'’s functions calculated at four different '

\'s. The result shows na dependence within the accuracy —0.06 -

of the calculatior?! similarly for the electron density Green’s x**(r)

functions as shown in Fig. 3. So in both the formulation and —0.08F N = 0.0 ——
practical calculation, tha term does not play any physical —o10l Qgézg 5
role and we can use it safely. In all the following calculation, A=30-x-
we seth =2.0 in the QMC simulation. —0.12 2- 4'1 é é 0

A. Near the Mott crossover line . I .
FIG. 3. The density susceptibility at four different valueshof

We first present the result showing the crossover betweegalculated atU=3.0 andV=1.6 as a function of the imaginary
the Ml and FL phases. In Fig. 4 we show the data oftime.
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-0.1 T T T T —-0.2 T T T T T
02T i —04}
-03 -
oal A | —06F
Im@e<(in/B) 0.5 - . —08
mGye(in 4 ImE,(ipn V =00—-%—
0.6 - +.'+ . (p)_l_g_ V=05 +
07 + V=00<% . V=145
V=10+- —-12+ V =1.4 =A— 1
-08 B V=15 %-
0.9 i 14+ V=16—
1 1 1 1 1
-16 1 1 !
0 1 2 U 8 4 5 0 1 2 3 4 5 6

FIG. 4. The imaginary part of the electron Green’s function at
the first Matsubara frequency, In&'°(i /), as a function of the
on-site interactiorl for two different values o¥.

FIG. 6. The frequency dependence of the imaginary part of the
electron self-energy ,(ip,) at different values of the interaction
at fixedU=3.0.

that the existence of a finit¢ makes the system more me- can analyze the behavior from the self-consistent equation
tallic and so the effectivd) is smaller, as one anticipates (19), which can be rewritten as
from qualitative considerations. I is increased further so
that 4.6sU, both systems enter the paramagnetic insulating o, - V.
phase with literally no difference. D ("”n):; 1—V (o) (32)

We then investigate the behavior of the various Green’s "
functions as the transition towards the band insulating phasgs a result of screening the phonon self-energy is negative.
is approached by changing at fixed U. We first show the  Moreover,|TI(i »,)| is a monotonically decreasing function
results atU=3.0. We solve the problem for seven different of frequency, since the screening becomes less effective as
values of the interaction/=0.5, 1.0, 1.3, 1.4, 1.5, 1.6, and the frequency increases. Hence the instability,
1.7. In all the results presented below the data from the lagt it happens, will first show up at the wave vector
case are not shown because we already encounter the ins}(a; def

bility at which the convergence of the self-consistent inter-<_ 4= (7,7, ) and the frequencyo,=wo=0, where the
acti)c/)n is lost. So we can 3iew=1.7 as an upper boundary product VqI1(iwo) = —3VII(iwp) has the biggest positive

of the metallic phase fotJ=3.0. In Fig. 5 we show the value. In Fig. 8 we show the plotting 6f3VII(iw) vsV at

imaginary part of the electron Green'’s function and in Fig. 6'[he givenU. The trend is obvious for the product to approach

the imaginary part of the electron self-energy. It can be seen1 where the corresponding denominator in E@1) van-

clearly that, while the trends of the change of the pIottedShes' This establishes the picture that as the transition point

quantities are in the direction towards a more metallic phas#:S approached, the denominator disappears firgtaitd o,
asV is increasedthat is, bigger In® and smaller self-energy Wwhich corresponds to an .|nstab|I|ty against the homogeneous
at the first several Matsubara frequengi¢ise magnitudes of ground state with a static CDW at wave vectat, @, ).

the changes are very limited, especially in comparison withTh'.S IS a typical phenom_err%n in the Green's func;ﬂon de-

the phonon Green'’s functioffsshown in Fig. 7. The local scription of phase transitio 3alth0ugh_ the quantities in-

phonon Green’s function, which is related to the density Sus\_/olved here are nonperturbative. The instability is signaled
’ y the frequency of a phonon becoming negalf# At this

c_ept_it_)ility as we have shown in the last sect_i(_)n, inc_rease oint an ordered mean-field state would be the correct solu-
significantly as we approach the phase transition point Vv%)on. It should be noted that, even when the instability hap-

—0.15F T T T T T 0.0
—0.20 - —o0l
—0.25
—0.2
TmGe<(ip )_0'30 I —0.30
7 035t D' (iwy,) L
—0.40 VY - —04T 7
ol o5 v=0s e
—045p ¢ V=ld-x- o 05 V—13-8-
—0s0F 4 . | . IV:1.6I- * sk v-lixe |
0 1 2 3 4 5 6 —o7] . . . V=16 xe
Pn 0 1 2 3 4 5 6
FIG. 5. The imaginary part of the local electron Matsubara “r
Green’s function for different values of the interactivnat fixed FIG. 7. The local phonon Matsubara Green’s function for dif-
U=3.0. ferent values of the interactiovi at fixedU =3.0 (Ref. 38.
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1o /

1.0

08}
—3VII(0)
0.6 J

04 _

02 _

e

B S
e e et ek e O
S ot

Rl :
prped

0.0 ' ' .
0.0 0.5 1.0 1.5 2.0 2.3 . . ! .

v 0 1 2 3 4

FIG. 8. The rescaled phonon self-energy at the most instable ) o
point with k= (7,7, 7) andw,=0 for U=3.0. The diamonds rep- FIG. 9. The frequency dependence of the effective on-site inter-

resent the calculated data. The curve is plotted using a polynomidction Uei(i wn) at different values of the interactiov at fixed U
fitting of the phonon self-energhl (which is even inV) up toV*4, =3.0
From the extrapolation the transition is\{=1.85. This value is
less accurate than the one from QMC due to the nonanalyticity nedo that given byU .«(iw;) andV=0. We can understand the
the transition. situation by thinking that there are two differduts control-

ling low- and high-frequency regions separately. Some effec-
pens, one may still continue the paramagnetic solution ofive and screened is in charge of the low-frequency behav-
E-DMFT by taking the principal part in Ed31). Butin 3D ior while the bareU works in the high-frequency region. In
a convergence near the transition is impossible because thetween there is a kind of the crossover connecting the two.
derivative of the phonon Green'’s function with respect to theThe results shown here suggests that a frequency-

control paramete¥ becomes infinite. independent effective) is not enough to capture the physics
in the entire frequency range.
B. Frequency-dependent on-site interaction The set of diagrams presented above are plotted very

close to the line of the Mott crossovésee Fig. 1 In the

fecﬁ\r/]gtgirs:tr:edrgigng d%rr?g?rt?/n t:ac;al:r::(/)isu\?vﬁ(e;hllss t(:];m(i dfoIIowmg we show two other sets of data which are plotted
¥ y in the metallic and Mott insulator phases, respectively.

atA=0,

def .
Ueg(i @) =U+D(iwy), C. Metallic phase

First, we show the results &t=2.0 and increasiny in

and is frequency dependent. From Fig. 9 we can see clear&igs' 11_}13' AS Ca”_be_ sien frorr: Fi%‘ L, at”fthishset Otrp%'
that as the transition is approached, there is a tendency of §1'€ters the system is in the correlated metallic phase. To be

softening of the effective interaction at zero frequency. In oufoncise, we show here three re[?resentgtwe plottings: that is,
model the frequency dependence of the Iddaj is due to the electron and phonon Green'’s functions and the electron

screening of the bare interaction by thdersite Coulomb sglf-energy. One can see tha_t in _this pha_se'the change of the
interactionV. Notice, however, that a frequency-dependént single-electron Green'’s function is very limited as the tran-
occurs more generally in realistic models of correlated elecSton 1S approached av~0.95. Meanwhile, the single-
trons due tointrasite screening by other local orbitals as a

recent local GW calculatio® shows. This is the first —02

E-DMFT study of a model where the interactidhis fre- —04 1

guency dependent. We should stress that this behavior of th —06L

single-particle Green’s function cannot be described by an

ordinary DMFT with fixedU. In Fig. 10 we show how the o . 081

frequency-dependent effectiké changes the single-electron -1.0+

behavior. We plot in Fig. 10 the imaginary part of the elec- 1ol

tron self-energy as a function of the Matsubara frequency. At ’ - l

high frequencies, the self-energy from E-DMFT coincides -4 5552%88_5_ 1
with that calculated using the balkalone. This tells that the -16 X, ! . . .
screening effect is not effective in the high-frequency limit, 0 1 2 3 4 5 6
as we can see from the effectieplotted in Fig. 9. In the Pn

low frequencies, the self-energy deviates to that of a smaller fiG. 10. The imaginary part of the electron self-energy calcu-
effectiveU. In Flg 10 we plotted the self-energies calculated|ated using E-DMFT at)=3.0 andV=1.5 and at the correspond-
at V=0 and U®"=U4(iw,) evaluated at the lowest and ing Us™=U (i w,) for n=0,10 with V=0. We usedU 44(i o)
next-lowest Matsubara frequencies. We can see that at the2.540 andU 44(i w;)=2.760 from our E-DMFT calculation. Ob-
first Matsubara frequency the E-DMFT self-energy is closesviously U g4(i ..) = 3.0.
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—02F
-03F
—0.4
ImGY(ip,) . .
—0.5F =0.1—<%— A
V=175 —05F V=01—— -
V=05-—1H— V=03 +-
—0.6 | V=07 0.6} v=05-8- 1
208 -2 Z 0.7 -
o7k V=09 %~ | —0.7r V=082 1
: _osh V=09-*x- |
—08 L L L L I _0'9* ! ) L I 1
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FIG. 11. The imaginary part of the local electron Matsubara FIG. 13. The local phonon Matsubara Green’s function for dif-
Green’s function for different values of the interactivhat fixed  ferent values of the interactiovi at fixed U = 2.0.
Uu=2.0.

the CP it suggesiqU.,V;) ~(3.0,1.6)], we experienced the

electron self-energy changes quite a lot in the low-frequencgtrongest critical slowing down.
region, showing the stronger cancellation between the effects Two remarks are in place concerning the qualitative fea-
from U andV and thus a more significant reduction of the tures contained in this finite-temperature phase diagram.
self-energy asV is increased. The change of the phononFirst, the slopes of the boundaries of the FL phase are posi-
Green's function is again much bigger than those of the elective on both sides. This actually reflects the competition be-
trons. tweenU andV: The existence of a finite and sm&llrequires
a biggerU in order to make the Mott transition or crossover.
Similarly a finite and smalU makes it harder to develop the
] . o CDW. Second, the effects of a finiteis much stronger than
The second case withl=4.0 is shown in Figs. 14-16. that of U, because of the coordination number, which is 6 in

Here we work in the Mott insulating phase. One can see fronjhe current case. The above features will retain in the phase
the asymptotic behavior of the Green'’s functions in the |°W'diagram afT=0.

frequency limit that in entire the range, especially near the
transition atV.~ 3.4, the system is still in the Mott insulat-
ing phase. Meanwhile, the corresponding phonon Green’s
functions plotted in Fig. 16 change a lot.

D. Paramagnetic Mott insulating phase

V. E-DMFT PLUS C-DMFT FOR SYSTEMS WITH TWO
SUBLATTICES

Next we consider E-DMFT on systems with two interpen-
E. Phase diagram etrating sublattices. The current study is useful in the situa-
tion when the two sublattices are not equivalent in the sense
. . , that, while it is homogeneous within each of them, the order
able to establish the finite-temperature phase diagram preg,ameter is different in the two sublattices. One then needs
sented in Fig. 1. The phase tr'ansition frpm the metgllic aNGy E-DMFT a cluster containing at least two neighboring
MI phases to the Bl phase is determined unambiguouslyes tjs interesting, though, to notice that the formalism we
from the breakdown of the convergence of the E-DMFT it 6 g5ing o develop also applies to the homogeneous sys-
erations. We locate the crossover I|.ne between the FL.and Mbms. In this case the cluster plays the role to improve the
phases by a search of the points dfl,¥) at which  qyoqeription of the spatial correlations. The formalism de-

IMG(ipo) = —0.5. While its specific value is arguable, this eripeq in this section can be easily extended to problems
criterion works well practically in the sense that right around

Finally, by literally sweeping acrosg-V space, we are

T T T T T —0.16 |
—0.15 | -
—0.18
—0.20 |-
—0.20 |
_ T025F —0.22
Im%,(ip,) Im G'*(ip,.) V=05—-—
—0.30 - —024 | V=10 +— 4
----- e bl
~035 Aal': T el —026 V—25—h
V=05—+&— V=30-*-
—0.40 V=07 —028F V=32—— 1
. / V=038 @ e o V=34 o0
2 V06 % —0.30 ' . : ! :
—0.45 | . . . . . 1 0 1 2 3 4 5 6
0 1 2 3 4 5 6 P

FIG. 14. The imaginary part of the local electron Matsubara
FIG. 12. The imaginary part of the local electron self-energy forGreen’s function for different values of the interactivnat fixed
different values of the interactiov at fixedU=2.0. u=4.0.
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—0.5 T MAG X:Al
10} o= . 33
10 e (33
~15}
T 55 (i) —20F We set for nearest neighbo¥§,; gj,=V#0. We then intro-
T a5 “;fg.g —ﬁ— 1 duce the\ term the same as before:
g0l Voh T
' V=254 -
=351 s AL Vxi,vj=NOxv0ij = Vi vj,
V=341 o
—40p ) ) I ) ! ]
0 1 2 3 4 5 6  with A a constant which ensures tifg,, matrix to be posi-

tive definite. After normal ordering the operators in the inter-
FIG. 15. The imaginary part of the local electron self-energy foractions and performing the Hubbard—Stratonovich trans-

different values of the interactiow at fixed U =4.0. form, we have the effective action
where clusters of bigger sizes are needed. E-DMFT was
combined with the dynamical cluster approximati@CA) f dr{ 2 (ki o(M)3,Cxi,o(T) = 1N (7]
in Ref. 4. Xi,o
Under the given conditions, the nearest-neighbor hop-
pings and interactions alway connect the two different sub- —t > [chio(7)Caa(7)+H.C]
lattices, the next-nearest-neighbor ones are within the same (AiBj), o
sublattice, etc. We rely on the external magnetic fields intro-
duced at the beginning, E@l), to lift any possible degen- +UY ny ()N (1)
eracy in the ground state. To illustrate the basic idea while Xi ’ ’

avoiding any unnecessary repetiticas it will turn out, the 1

E-DMFT with two sublattices shares many properties with += 2 i T)Ivi‘ly-i¢v(7)i

that for the homogeneous systemwe work on a model with Y] b

only nearest-neighbor hoppings and density-density interac-

tions, besides the on-site enenglye chemical potentiaknd _ o (7): [N N : 34
the Hubbard interaction. The Hamiltonian reads 2 1D () + 0y (D] (34

|:| =-—1 z (E:Ll (rE:Bj (r+ HC) with
(Ai,Bj)or ' '
~ A oA 1
2 oot U2 N i HRlo= o™ 5 U= 2 Vox [y 1(7) + .1 (1)),

"’(A% ) (nA| T+nA| WVai, BJ(nBJ T+nBJ D, (32 Uef—U -+,

where every site is label bXi with X labeling the two sub-
lattices, X=A.B, andi the coordinate within the sublattice. WhereX=B if X=A and vice versa. The Green’s functions

(Ai,Bj) represents a pair of neighboring sites. We choose #/€ are going to use are defined as follows:
chemical potential consistent with the two-sublattice picture:

GXV(irli' 7' )——(T Cxi. U(T)cyl 7). (35

def
4 XXY(iT“,T,):_<TT:[nXi,T(T)+nXi,l(T)]:

Do) 2L i e
| v XLy (7) i (7)1), - (36)
—0.6 V=25 A L yir, )\ T yir, |\ T 1),
V=30~
—0.7F gigi_:_ E
—08§ L L L L - . ] XY/ i1 1 def ’
0 1 2 3 4 5 6 DX (ir]i' ") =— (T, dxi( ) pyir(7'):). (37)

FIG. 16. The local phonon Matsubara Green’s function for dif-
ferent values of the interactiovi at fixed U =4.0. The Dyson equations are now<2 matrix equations:
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GAA GﬁB -1 ) Do+ fag —t, AA  AB —1(k . \ —2V,
GBA GEB (k,ipn) = —t T YBA B8 1o 2V, A
EAA AB HAA HAB -1
| sen EBB (k,ipy), (38 B EL HBB} (K,iwp).
(40)
DAA DAB]-1 Y —2v, ]!t We are now in the position to introduce the E-DMFT
san ~pel (Kiwp)=-— } approximation. Following the same procedure as before, we
D D | =2V A can write down the effective E-DMFT action by using the
TIAA  [TAB cavity construction. What we do here is that we first integrate
| BA BB}(k,i ). out all, including those in both sublattices, but two neighbor-
Rl il ing lattice sites, one from each of the two sublattices. In this

(399 Wway, we keep a cluster containing two representative lattice
sites. The cluster plays the role as a composite impurity
In the above equations and for all those with two sublatticeswhich is coupled to the self-consistent fermionic and bosonic
we always define the momentum in the reduced Brillouinpaths. As we have mentioned earlier, it is fottthat the
zone. If the lattice under consideration is of supercubic typeartree terms from the nonlocal interaction across the cluster
in d dimensions, one can easily find that for the nearesthoundary contribute to the effective action. However, since
nelghbor hopping and interaction,=t="_,cosk and V,  the Hamiltonian we use here is prepared in such a way that
—VEI ,cosk;. Similarly as that for the homogeneous sys-there are no longer Hartree terms contained in the interac-
tem, we can derive an identity relating the phonon and election, the procedure towards E-DMFT becomes very straight-
tron density Green’s functions: forward. The effective action is given by

B B 118 B
seff=—J er dr’ > cl,m[g;l]”(r—r')cY,g(r»—Ef drj d7' X i hx(T[D (= 7)1y (7):
0 0 XY,o 0 0 XY

B B
+uefff dry, :nX,T(T)::nX,l(T):—f d7Y 1dx(7)::[ny (1) +ny (D], (41)
0 X 0 X

with X,Y summed oveA,B. From the effective action, we can measure the impurity Green’s functions and calculate the
self-energies by using the local Dyson equations. Self-consistency is reached by identifying the impurity Green'’s functions
with the local Green’s functions which are given as follows:

Gy G S G Gl oo [Pt e S5%ien ||
Geon Gloes|(P= 2 [gon 9ol PIT R | ipy e, ) (3200 320 7
DlOC,AA DIOC,AB ' 2 DAA DAB . 2 A _2Vk -1 HAA(iwn) HAB(iwn) -1
DIOC,BA DIOC,BB (IwN)_ " DBA DBB ( 'Iwn)__ m _2V7k A + HBA(iwn) HBB(iwn) y
(43)
loc,AA loc,AB AA AB Y _2Vk HAA(iwn) HAB(iwn) -1y -1
(OGBA ylocBB (lwp)= E A BB (k"wn):; ”_ka N }‘F M8 w,) TT®%(iw,) } . (449

The same as before, thedependencies cancel out exactly. Combining the last two of the self-consistent eq(#8)carsd
(44), we obtain the following identity:
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)(IOC'AA(i wn) Xloc,AB(iwn)}
XIoc,BA(i wn) Xloc,BB(i wn)

" w,) T*B(iw,)
N w,) TBB(iw,)

1 0
0 1

HAA(i wp) HAB(i wp)
P w,) TP wp)

DIOC,AA(i wn) DlOC,AB(i wn)

+ . .
DIOC,BA(I wn) DlOC,BB(Iwn)

e

|

It is not difficult to check that the above equation can beGreen’s functionsG and D and the interaction vertice@s

obtained directly from the effective action, EGl1). One discussed in Sec. VI, the choice of the phonon field should

needs only to write down the phonon Green’s function ancbe done judiciously The E-DMFTGW method consists of

then integrate out the auxiliary fields. By using the localapproximating® (see Fig. 1Y by leading-order nonlocal

phonon Dyson equation, which is the matrix version of Eq.graphs and evaluating the rest of the functichah the local

(16), one recovers Eq45). approximation. The E-DMFTG W self-energies are given by
This completes the formulation of E-DMFT with two sub-

lattices. One can see that the theory easily combines

E-DMFT with C-DMFT. We employ here a cluster of two

sites, with the application in mind which will be discussed in

Sec. VII. There is, however, no difficulty to extend the for- S . (G,D)

malism to clusters of any size. RO

50(G,D) ]
=T25HEEDMFT(G,D)

. oyl
a;iLj

+(1-8)21(G,D),

VI. GW METHOD COMBINED WITH E-DMFT

As we have mentioned, C-DMFTRef. 6 allows us to od(G,D) E-DMET
pick out a representative lattice cluster, instead of a single I1; j(G,D) = Ti_25ijni,i (G.,D)
site, in order to describe a many-body system. This makes it !
possible to treat the finite-range interaction as well as the +(1-8)I5"YG,D). (46)
broken-symmetry phaseithin the cluster. The advantage of
C-DMFT is that it solves exactly the cluster so that the spatqy the approach to be derivable from a functio, D)
tially nonlocal correlations within the cluster are automati-5ng [1(G,D) have to be calculated self-consistently. The
cally taken into account. In combining with E-DMFT, G\ method has been applied &b initio calculations of
C-DMFT is also able to handle interactions with & rangésemiconductors since the original works by Strinati, Mat-
beyond the cluster size, as we have shown in the last sectiogysch, and Hank®. However, it was pointed out that in the

However, the pri<_:e one has to pay is that in solving a clusteljgqg) density approximation(LDA) GW for electron
a lot more technical resources are needed.

In this section we propose a less computationally inten-
sive prescription as compared to the E-DMRFTC-DMFT
procedure. It is based on the following physical idea. In real

materials, the on-site Hubbard interactibnis much larger
than the nonlocal ones. Hence the local interaction has to be
treated nonperturbativelgnamely, with DMFT) in order to
1 (2)

A. Interaction Vertices

obtain the local self-energy. Meanwhile, it is legitimate to
make a perturbative expansion to obtain the nonlocal part of
the self-energy in the spirit of th& W method?* The origi-
nal GW method computes a screened Coulomb Mieby
summing random phase approximati@PA) diagrams and
obtains the one-electron self-energy by considering the
lowest-order graph inW, hence the nameGW. The
E-DMFT-GW approach is derivable via the Baym—Kadanoff
functional’” The functional derivatives of the two-particle
irreducible part of the Baym—Kadanoff function@l(G,D) ) @ 3
With respect to_the full Greef"s function give th.e correspond- FIG. 18. (A) The bare interaction vertices contained in E@8.
ing self-energies.®(G,D) is constructed with the full and(34), that is, the local electron-phonon interactioflpand the
local Hubbard interaction &). (B) The nonlocal self-energy con-
E-DMFT-GW tributions described in Eq49) [B(1) and B2)] for electrons and
O] [G’D]=iON"‘Oj+i@j+ Eiq)[Gii Dy ] Eq. (50 [B(3)] for phononci. Th[e strengths of]the leading contribu-
- o tions (from the nearest neighbgrdor the three diagrams are
O[Vv/d], O[U%d*?], and O[1/d], respectively. Since in each of
FIG. 17. The two-particle irreducible functiond®[G,D] in the  the diagrams we require the vertices be from different lattice sites,
E-DMFT-GW approach. there is no double counting.

B. Generalized GW Self-Energies ati #j
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system8' the self-consistency results in incorrect one-G@% 71 o1, 70| 7303, T40°4)

electron spectra and that it is better to compi{&,) with

G, the unperturbed Green'’s function instead. Better total en-

ergy, though, is obtained from(G).*"**We believe that our

proposal resolves this contradiction. The E-DMFT iteration

obtains the largest self-energy tel(tine on-site ong self-
consistently and nonperturbatively. TI@N approximation
is used for the smaller terrtthe off-diagonal one In our

model calculation we find that the difference between

E-DMFT + non-self-consistenGW and E-DMFT + self-

consistentGW is small. This can be generalized in a straight-

forward way to realistic multiband situations.

=(T.Co,(1)C,(m2)Ch (Ta)C], (7))

(T2 (7'4

=G 1104| 7404) G 72075| 7303) — G T2075| T404)

X G 1y04| T303)

B B B
+j dTiE f dTéE f drs
0 ‘Ti 0 o’é 0

B
x> fo dTﬁE G r104| 7107) G my05| Th0p)

We need to discuss more specifically the nonlocal self-

energy diagrams in our generaliz€JV approach in combi-
nation with the E-DMFT. We identify two such contribu-

tions. The first is the boson exchange diagram which is of the

same form as that in th&W method[Fig. 18B1)]. We
require that the two verticeF; be local and come from

different lattice sites, giving rise to the off-diagonal self-
energy. Figure 1@1) uses the full electron-phonon vertices,
instead of the bare ones, in the exchange diagram of th

self-energy. Those local vertices, which can be measured 'TS(BZ)

XTE(r101, 7505|7305, 7400) G T304 | 7305)

X G 740y T404). (48)

If there is no external magnetic field, only two spin configu-

rations are allowed in the two particle Green’s function as
well as the vertex: that with all the spins in the same direc-
tion and that with two spins up and two spins dofffOnce

we get the local vertex, the corresponding contribution to the
5ff-site self-energy can be constructed as shown in Fig.
with again the vertices coming from different sites

E-DMFT-QMC, are defined through the following Green’s 3nq ensuring no double counting of the diagrams. It should

functiorf*®
GIOC(Tl(Tl,TzUZ;T3)
def t
= <TTCU'1( Tl)coz( 7-2) ¢( T3)>

B B B
= J driz f dTéZ f dTéGloc( T,04|T107)
0 ‘Ti 0 o’é 0

X Gl 150| Tp0p) IS (1107, 7507 73) D' 73] 7).

(47)

Unlike the skeleton diagram commonly used for the electron
self-energ§® where one of the vertices should be bare to

avoid overcounting, the diagram in Fig.(B3) uses two full

also be pointed out that the diagrams contained in Figs.
18(B1) and 18B2) are totally different. This can be seen
easily by comparing the nonlocal lines in the two diagrams.
To compare the importance of the two terms, we can in-
vestigate their scaling behavior with the spatial dimenéton.
We should keep in mind that bota andW scale as 1/d for
nearest neighbors in real space, witlthe dimension, and
both interaction vertices are local, which means they do not
scale. We then see that the leading electron-phonon contribu-
tion scales as #/and that of the on-site interaction asi%7.
In the infinite-dimensional limit there is no doubt that the
electron-phonon contribution is more important. However, if
we work in finite spatial dimensionsisually<3) and since
the on-site interactiotd is likely much bigger than the off-
site one,V, these two can be of the same order practically.
This actually happens in the example in 1D which we will
show in the next section.
In the same spirit one can also obtain the leading nonlocal
correction to the phonon self-energy, i.e., Fig(BB, which
is the leading nonlocal correction in terms of the E-DMFT

local vertices. Our requirement—that the two vertices b&neractions. Due to the two electron lines, the diagram scales
from different lattice sites—ensures that there is no overys 14 when the two contributing lattice sites are nearest

counting. While the skeleton construction uses one bare angbighhors.

one full vertex to produce the exact self-energy, our method

In practical calculations, we first solve E-DMFT itera-

uses two full local vertices to produce the leading nonlocatively and obtain all the local self-energies and the interac-
correction. We should also remark that both the electron an€lon vertices. We then apply th& W approximation to cal-

phonon lines appearing in Fig. L) represent the nonper-

culate the nonlocal self-energies by using the Green'’s

turbative Green’s functions from E-DMFT. Especially, the functions obtained from E-DMFT. As in the origin@W,
phonon Green’s function plays the role of a screened Couwe assume here that the corrections do not change dramati-

lomb interaction which in the originaGW is obtained by
using the RPA.

cally the physical properties of the system so that we are
allowed to use the quantities from E-DMFT directly. The last

There is another contribution, which originates from thestep is to use the approximate self-energies in the exact

local interactionU at second ord€iFig. 18B2)]. The reason
this contribution is important is that usually is much big-
ger thanV. The effective local verteX'*° is defined in the
following way:

Dyson equation so that all Green’s functions, with both spa-
tial and temporal dependencies, can be calculated.

The GW contributions to the self-energies are calculated
in real space-time as follows for#j (see Fig. 18
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0 oy

EGW- Py — Bd E 'Bd /2 Bd Bd /I—‘Iop . G(i i oD(i : /Flop [
o (itlj7") T1 o T1L o T2 o T3 (10,7101;72) (imy04]j7107)D(i7o|j75) 3j(T101,7 0;,73)
91

B B B B B B
—f dle dTiE f drzz dTéE J dT32 dTéE Fff(70,7101|720'2,73cr3)
0 g1 0 0—2;. 0 (o) 0 O_é 0 o3 0 O_é ’

X G(i7y04|j 1101) G(i 2075|j 7,05) G (] Té0é|i730'3)rlf,}:(7'éo'§ \To05| 01,7 7)), (49

B B B B Due to the above reasons, the E-DMFT we are going to
Wi 7| T'):f dri > f dry > f dr, > | d7) use in this section is slightly different from that described in
0 0 e YO e IO Sec. V which combined E-DMFT with C-DMFT. Thgure
E-DMFT (without C-DMFT) for two sublattices is estab-
X 2 1“'3°i°( 101,720, 7)G(i T104|j T107) lished in the following way. We first choose a representative
o site from sublattice?, integrate out all the other sites in both
L e 1 the sublattices, and obtain an effective impurity action for
><G(J72‘72|'Tz<72)1ﬂ3,j(72(7217101;T ). this site. Then, from the nearest neighbors of this site, we
(50) choose another representative site, which obviously belongs
) ) _ to sublatticeB, and repeat the same procedure. The two ef-
In the above equations we labeled the vertices by the latticfctive actions reached in this way are the same as that for a
site index with the pOSS|b|I|ty of inequivalent sublattices in homogeneous System we described in Sec. |ll. They are for_
mind. There is a symmetry one can use in the calculation ahally independent of each other at the level of the impurity
1#): model. Of course the two are connected, at self-consistency,
S, o through the Dyson equations which are the same as those
Golitljr)=[Gy(i|in]" (52) given by Egs.(38) and (39), except the off-diagonal self-
It is both physically transparent and technically convenien€nergies are now zero. Technically, one can easily understand
to perform the generalize®&W calculation in coordinate the structure of this E-DMFT by imposing the requirement
space and imaginary tinfé.t is also very easy to extend the ©on all the corresponding equations in Sec. V that the impurity
expressions to systems with different sublattices, as we wilmodel be restrictively local. Then all the off-diagonal dy-

show in the next section. namical Weiss fields, and thus the off-diagonal self-energies,
are zero. However, the impurity Green'’s functions still have
VII. APPLICATION II: 1D BAND INSULATOR VIA nonlocal contributions, as is evident from Ed42)-(44).
E-DMET PLUS GW This scenario of implementinge-) DMFT, in midway be-

tween the single-siteE-) DMFT and the cluster one, has been
Since we want to investigate if th @ W method can im- used successfully in treating systems with inequivalent sub-
prove the E-DMFT results, we need to know the correspondlattices while avoiding the heavy calculations needed in
ing exact solution of the model under investigation. In thisC-DMFT.!
section, we implement the E-DMFT of two sublattices for a We study here the following Hamiltonian:
1D U-V model with an alternating chemical potential. This
model can be solved exactly @& 0 via the density matrix N At oA A
renormalization grougDMRG).*"*® The model is relevant H= _t;; (Civgc”lv"JrH'C')_% Kl o
in the study of the interplay between the electronic correla-
tion and electron-phonon coupling in the mixed-stack or- R 1\ /. 1
ganic compound€*°and the ferroelectric perovskitésThe +UY ( N — 5) ( ni | — E)
phase diagram has been studfd. !
Because we solve the impurity model in E-DMFT using
the QMC simulation which works at finite temperatures, we +VZ (N0 =D (Mg +0g —1). (52
need to make a comparison in the band insulating phase i
where all excitations are gapped so that the effects of therm%e consi : . . .
S ider the special case with alternating chemical po-
excitations are suppressed at low enough temperatures. Vygntial'
also want to make a comparison in parameter space wherée '
the quantum fluctuation is strong enough so that the standard
mean-field solution does not work. It is known that in such a =(—1) (53)
case one needs C-DMFT of at least two sites to get good Hi K
agreement with the exact solutidhOur goal here, though, In this case we know the exact forms of the hopping matrix
is mainly to see if th&s W method can improve the E-DMFT element and the nonlocal interaction. We can write down, for
results. the off-diagonal terms in the Dyson equatid38) and(39),
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tkzte”‘cosk, Vk=Ve”‘cosk. (54) Because of the dimensionality, the momentum summations

] ] ) ) . needed in calculating the local Green'’s functions can be car-
The momentunk is again restricted in the reduced Brillouin (iaq out exactly, which give

zone, given by- 7/2<k=< /2 in the current case. The phase
factors exptik) come from the fact that each sité\,{)

[(B.i)] has two neighbors, one within the same unit cell o é’(rﬁ(ipn)
(B,i) [(A,i)] and the other comes from the cell to the left Gy (lpn)=2k G (Kipn) = %8 Y
(right), (B,i—1) [(A,i+1)]. Hence the latter contributes a {o (IPn) {5 (1pn) 56
momentum-dependent phase factor. Remember when we use (56
the above two equations for self-consistency in E-DMFT thewith
off-diagonal self-energies for both electrons and phonons
should be set to zero due the assumption of locality: o, def off < XX
§U(|pn):|pn+ﬂx _20' (Ipn)
35%(ipn)=0, M"*(iwy)=0. (55  and
4V
D'*X(jw,)= >, D**(K,iw,)= : (57)
(Ton) ; (klwn) V1= 4V w0 ) 1Bl w ) [ 1+ V1 — 4V w, ) 1P (1w, ]
|

In the above, we used again the notation thatB if X A T8
=A and vice versa. As we have noted, the solution of the | BA BB (kiwn)
impurity model in the current case consists of two indepen-
dent parts, one for each representative lattice site, and each TIOMFTAAG ¢ ) TISWAB(j  )elkcosk
of them are exactly the same as that for a homogeneous =| 1OWBA( 4 )e~Tkcosk [IDMFT.B8(

system. The only difference comes in at the self-consistent
conditions which are given by the above pair of equations. (59)

After we get the solution of the impurity model, either . ] ]
within a single iteration or after the convergence of thene momentum dependencies of the off-diagonal terms in
E-DMFT iterations, we can perform th@ W perturbative the ab_ove two equations come in for the same reason as
calculations. To illustrate the idea and see qualitatively hownoSe in the free electron and phonon propagators. In the
the GW self-energy can improve the results, we conside/PUrrent situation bothWterms we discussed in the previ-
here the simplest and the most import&\V contributions, ous septlon cqntrlbute as given by Eqé9) aqd (5.0)' To .
those from the nearest neighbors. They contribute directlytmake life casier, we mgke a f_u rther approximation which

. - " . ?eplaces the full interaction vertices by their bare values:
the off-diagonal self-energies, while for the diagonal ones,
we use those from the E-DMFT calculation. All the other
contributions are neglected bepause the (_Bree_ns functlo_ns de- FI??C( IOy, Ty Ts) = 501’025( 1= 79) (71— 73),
cay exponentially as the spatial separation increases in the (60)
band insulating phase.

We can now Wl’lt(.% down the expression for the self-energy lefc( L0 o0 | T30, T40s)
matrices as follows:

=Ub;, 0,00,,0,0(T1= 72) (71— 73) 6(71— 74).

(61)

EﬁA ﬁB ] Then Eqgs(49) and (50) are greatly simplified and give
S BA BB (k,ipy)
DMFT.AA; GW,AB; ik EGW(i7'|'7")=—G (i7]j=")D(i7|j")
3. (ipn) 3 2MA%(ip,) e cosk e J o7 |
| 25"PAGp e *eosk  ZPMFTEEGp,) ]’ —UG_,(ij7)G_(j7'inG,(idjr),
(58) (62
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il T T T T o —-0.0 T T T T
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FIG. 19. The imaginary part of the local electron Green's func-  F|G. 20. The imaginary part of the local electron Green’s func-
tion G**(ip,) at U=5.0, V=0.5, andu=2.0. The results at tion G**4(ip,) atU=5.0,V=0.5, u=2.0, and3=5.0. The data
three different inverse temperatures are shoRef. 38. Withinthe  |apeled asGW(1) come from the contribution described by Fig.
accuracy of the calculation, the three sets of data lie on a smoothgB1) and GW(2) from Fig. 1&B2). It can be seen tha®\W(1)
curve which means the thermal effects on the result has alreadynd G\W(2) make corrections at the same order to the E-DMFT

been suppressed due to the band gap. result.
W= G (i#i+ G (i+lir). 63 ground-state energy per site to be —2.09_. The _difference_
2’ A T)C (7 li7) €3 between the twas W+ DMFT procedures is again very mi-

nor. From the given results and those performed at the other

In reaching the numerical results we are going to present, wgarameter points which are not shown here, we conclude that
use\ = 2.0 for the positive definiteness of the effective inter-the two procedures, one wit W after E-DMFT and the
action matrix. In every iteration, the impurity model is other withGW in E-DMFT iteration, give very close results,
solved via QMC by 10 sweeps. To reach the E-DMFT con- although it seems the former is a little better.
vergence, ten iterations are usually needed. The physical information contained in Figs. 20—23 can be

We first show in Fig. 19 the temperature dependence ofinderstood as followsi) In one dimension, all the allowed
the imaginary part of the electron Green’s function calcu-modes of the low-energy excitations are those bosonic par-
lated atU=5.0, V=0.5, andu=2.0. The three cases are ticle hole pairs carrying momentukr~0 andk~2kg (=
calculated at three different inverse temperaturgs at half-filling) with respect to the Hartree ground state. This
=5.0,8.0,10.0 with the correspondinyr=0.25,0.20,0.25, explains why a C-DMFT calculation with a cluster of only
respectively. It is obvious that the three sets of data lie on 4vo sites gives quite good restiftswhile the E-DMFT we
single smooth curve. Actually this same situation happens foemployed here does not work very well at low frequencies.
all the other quantities we measured which are not showr he difference is basically that a model of a single site can
here. All these suggest that, at the given temperatures, witbnly capture those modés-0, but a cluster of two sites is
the highest al=1/5.0, the thermal fluctuations are already already good enough for those kat- 7. (i) Since the clas-
suppressed due the band gap and we need not worry abgcgical Hartree energy gap, which is given byJ/2+2V+ u
the temperature effects. In the following, we present the re=0.5, is quite small in this case and both interactions in Eq.
sults calculated g8=>5.0. (52 are (marginally relevant with respect to the metallic

In Fig. 20 we present the data of the imaginary part of theGaussian fixed point, as we go to lower-energy scales and
electron Green’s functions calculated using E-DMFT alonethus longer wavelengths, the energy gap gets renormalized
usingG W with the electron-phonon vertégorresponding to ~ significantly. This explains why the exact DMRG result is so
Fig. 18B1)], and with the local Hubbard vertggorrespond-  different from the MF result at low-frequencies. The high
ing to Fig. 18B2)], respectively. In the latter two thé W
calculations are performed after E-DMFT convergence. The 0.0 . . . . .
exact result and the Hartree mean-fiéldF) result are also i
plotted as references. From the results, one can see that tf
two terms in theGW correction are of the same order. : i

In Fig. 21 we show the results of the imaginary part of the 0.3 RETOURR L R
local electron Green’s function frof®W calculations after ™ Gf?C'AA(ip")_
E-DMFT convergence and those usigW within the
E-DMFT iteration loop. One can see that the difference is

—0.1k:

—02f ™.

—0.5 E-DMFT ——
GW in Tteration - -+ -

GW after E-DMFT —B—

very small. The corresponding real part is plotted in Fig. 22. —0.6 - Exnct DMRG -« -. -- .

In Fig. 23 we show the plotting of the Green’s function be- o7 . . .  Hortree

tween a pair of neighboring sites. We can also compare the 0.0 1.0 20 3.0 4.0 5.0 6.0
result on the average energy per sie, The result ofGW Pr

after E-DMFT givese=—1.76 and that forGW within FIG. 21. The imaginary part of the local electron Green’s func-

E-DMFT e=—1.74. The DMRG finds the exact average tion G°“*A(ip,) atU=5.0, V=0.5, x=2.0, and3=5.0.
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0.9 ' ' ' ' ' ] exact ones at the lowest frequencies. By incorporating the
08} EDMFT —<— - spatial correlations, th&W perturbation contributes a de-
o7t W o BOMET B - sired correction. Of course in this very case in 1D it is known
0.6 - Hxact DRG] that the spatial correlation is so important that a leading-
Re GlooAA i )0‘5 - . order perturbation !s not enough to recover the exact results.
’ "0t 1 What is important is that the above example shows that the
03 1 GW method works in the way we anticipated. Our major
021 1 objective is to applyGW-DMFT to strongly correlated elec-
01r T tronic systems in higher dimensions. We know E-DMFT
000 10 20 30 20 50 6o Wworks much better as is evident from the scaling behavior

Pn with respect to the dimension. We also know that the
leading-order perturbation in terms of the interaction vertex,
the GW, works better. We thus have a method which is much
easier to handle technically than C-DMFT and is able to

) . achieve the same goal to a certain extent.
frequency behavior, on the other hand, can be captured fairly

well even by the Hartree approximation, which is evident
from Figs. 20—23. This is the region where all the different

approaches converge to give the same resiil. From the E-DMFT allows to describe the interactions in a more

figures of the local electron Green'’s function one can see thafexible way than we have presented so far. The need for
at not too low frequenciegbasically, those beyond the first gch a freedom is evident in the realistic calculation of ma-
two Matsubara frequencigghe E-DMFT result is much bet-  terjals, where instead of the nearest-neighbor repulsion con-
ter than the MF result and closer to the exact ones. This igjdered in this paper we have to treat the Coulomb interac-
consistent with the scaling picture since the contributions tjon and its multipole expansion. For such a system, the

the results at those frequencies higher than the gap energyielectric function is given by, in linear response theGry,
which is of the order of “1” in the current case, can only be

from the local behavior and are_described fairly well py the e Y(qiwy)=1+vx(a,iwy), (64)
E-DMFT. On the other hand, this same reason explains the

big deviation of the E-DMFT result at the first two Matsub- wherev,, is the Coulomb interaction given by, in 3D,
ara frequencies: They are affected more strongly by those

FIG. 22. The real part of the local electron Green’s function
G%**(ip,) atU=5.0,V=0.5, u=2.0, andB=5.0.

VIIl. FURTHER DEVELOPMENT AND OUTLOOK

guantum-thermal fluctuations with longer wavelength, which 41re?
are mostly neglected by the E-DMFT approximatidiv.) V=, (65)
The GW works in the way we have anticipated. It incorpo- q

rates more spatial co.rrelations. into the self-energy so.that thgnd)((q,i o) is the density-density Green’s function defined
low-frequency beh{:\wor benefits a lot from the correctlon.As,[hrough Eq.(8). One can make use of the electron-phonon
we can see from Figs. 21 and 22 tB&V contributes to both identity, Eq.(10) (setA=0), and get

the real and imaginary parts of the local Green’s functions T '

corrections of more than 15%yv) The GW method used . _a_ .

here has little effect on the nearest-neighbor Green’s func- e(G,ion)=1=vgll(q,i@). (66)

tions because it is designed to improve the local Green'gjgre the phonon self-energyl can be understood as the
functions. _ collection of all electron polarization diagrams. If one pro-
What we have shown above is that 64V method can  ceeds with the formalism we presented in the previous sec-
be used to improve the E-DMFT results. Due to the dimentjgns, the phonon self-energfl within the E-DMFT ap-
However, Eq.(66) is not the correct functional form for an
06 . . . . . insulator in which the polarization should be given by
11(q,i w,) ~09%f(q,,) with f weakly g dependent.

0.5 E-DMFT —— 4 2 . . . .
GW in Tteration -+ - To handle this situation in E-DMFT we have to tailor the
GW after E-DMFT —&— . . . .
04 Exact DMRG -+ . formalism to be compatible with the functional form of the
G2B(ip,) Hartree response function. This leads us to the following generaliza-
031 T tion of the action discussed in Secs. Il and Il
02 .
B 1 .
01t . S=So+ | 472 |5 2, $al0:7)Doa(d) o~ 7)
0.0 A—— &
0.0 1.0 2.0 3.0 4.0 5.0 6.0
P ‘aE,; ¢a<q,r>pa<—q>}, (67)
,a,
FIG. 23. The off-diagonal electron Green's function
G'*4B(ip,) atU=5.0,V=0.5, ©=2.0, andB=5.0. where we have defined a generalized electron density
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5ab

47e?

pa(q):2k aEB Cht qoaMaap(K+02K=0/2)Ch g Doan(q)=
(68)

in order that the Coulomb interaction be recovered when the
with  and 3 the spin labels. The indicesandb are used to  auxiliary phonons are integrated out. Under this interaction
label the local degrees of freedom other than spin, like theertex, the auxiliary phonon represents an electric field me-
components of the multipole momeng, is the free action  diating the dipole-dipole interaction. Since only the longitu-
plus the local interaction. The key part here is the electrondinal field is coupled to the dipole moment, we can keep the
phonon vertexA .., s(k+0/2k—q/2) which is momentum corresponding phonon mode and discard the transversal
dependent. A wise choice of this vertex allows us to preservenes. For the E-DMFT approximation, it is desired to work
the physical momentum dependence in the response functian coordinate space where cavity construction is possible. To

after the E-DMFT approximation.
We can define the following Green’s function in matrix
form:

[D(Q,7)]ab=—(T.0a(d,7) $p(—q.0)),
[X(A, ) ]ap=—(T.pa(d. 7 pp(—.0))
=2 Aaapkt+al2k—ql2)
k,k’

XAb‘arﬁr(k,_q/Z,k’ +q/2)
XXaB,a’,B’(k:q:T;k’y_qao)y (69)

with

Xap.o'pr (KA 7K' ,0",0)= —(T,CL, g2.a( T)Ckqrag(7)
X Cl/ +qr2a(0)Ck —q112,5(0)).

The same as before, we can derive an electron-phonon ide
tity

[x(q,iw)] t=—Do(q)+I1"q,iwp). (70)

So far the results are exact. The E-DMFT approximation

amounts to mapping the general mo¢@¥) to an impurity
problem by integrating out all but one lattices Sitee con-
sider the homogeneous phase hefde only new feature is

that the general electron-phonon interaction vertex is no
necessarily local as we had before. The resulting phonoH1

self-energy is a function of frequency only. However, the
general density-density Green’s functigna physical quan-

tity, now contains a nontrivial momentum dependence whic
is evident from Eqgs(69) and(70). Since the electron-phonon
vertex A can alway be adjusted by redefining the auxiliary

phonons, we are able to obtain the desired momentum dé

pendence from physical considerations.

To see how it works, we go back to the example of the

insulator. We need the following form of the electron-phonon
coupling in order to describe the dipole-dipole interaction:

a

Aep(K+ Q2K 0A12) = 5,5, (71)
q

with a=x,y,z. Meanwhile, the free phonon propagator is of
the form

this end one needs to convert the electron-phonon coupling
to real space which can be done by using the Wannier func-
tions.

After solving the E-DMFT problem, the electron density
Green'’s function is given by

—T(iw,)

Jog) =0 ———— (73
X ) =0 T (wn)
and the dielectric function becomes
e(Q,ioy)=1+47e’ll(iw,), (74)

which has the correct form for an insulator.

To conclude, we have introduced in this section a way to
tailor the E-DMFT formalism so that the desired momentum
dependence can be preserved from physical considerations.

IX. CONCLUSION

In this paper we suggested a simple procedure of deriving
the E-DMFT formalism: that is, first separating out the Har-
tree contributions and then making the E-DMFT approxima-
tion with regard to the fluctuations around the Hartree
ground state. This procedure is essential in the phase with
broken symmetry. It also helps to formulate the C-DMFT.

We developed an E-DMFT formulation by using a real
Hubbard—Stratonovich transformation. We introduced a local
shift to the general nonlocal interaction to ensure the positive
definiteness of the effective interaction matrix. Our investi-
gation showed that in all physical quantities the effects from
e arbitrary shift canceled out exactly. We also proved the
equivalence of forming the E-DMFT self-consistency by us-

ing the auxiliary phonon Green’s function and the two-

Halectron Green'’s function. Based on these ideas, we derived

an E-DMFT of a single-impurity site for a homogeneous
system with generic two-particle interactions. We also pre-
ented a formalism of E-DMFT combined with C-DMFT for
a cluster of two lattice sites, which is generalizable to clus-
ters containing any number of sites.
We suggested a generaliz€dV approach to incorporate
the spatial correlations into the E-DMFT approximation.
While the on-site self-energies are obtained nonperturba-
tively through E-DMFT, those relatively weaker off-site con-
tributions can be calculated in a perturbative way. We iden-
tified the most important contributions to the nonlocal self-
energies.

We showed how E-DMFT could be tailored to handle the
response functions with nontrivial momentum dependence in
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an insulator. Through the example of the dielectric functioncombined with theGW method to a 1DU-V model with an
we exhibited that an appropriately defined eIectron-phonogﬂtemaﬁng chemical potential. It was found that G/ ap-
vertex was ablfe to keep the correct functional form of theproach improved the E-DMFT results at low frequencies in
response function. . _ __ the desired direction. We also found that in the case under
We implemented a QMC algorithm with shifts in jyyestigation, it made little difference whether or not &V
E-DMFT to handle the non-positive-definite INteractions. perturbation was performed within the E-DMFT iteration.
This algorithm can be used for a large variety of problems, The success of the E-DMFT implementation opens the
including the Anderson lattice with antiferromagnetic inter- 4oor to tackle many complicated physical problems which
actions. Two examples of the implementations were pregoy|d not be handled by simple DMFT or other methods. The
sented. combination withGW and/or C-DMFT points out a system-

The first example was the application of the single-siteys;~ way to improve théE-)DMFT method.
E-DMFT to the 3DU-V model. We studied the behavior of

the electron Green’s function and the response function as
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